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Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription
to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications
occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the
combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of
modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray
with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on
thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur
independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a
sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose
occurrence does not correlate with transcription levels. The other group consists of modifications occurring in
gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a
deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish
nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 39 ends of
coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple
modifications share the same role.

Citation: Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, et al. (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10): e328.

Introduction

Nucleosomes play many roles in transcriptional regulation,
ranging from repression through occlusion of binding sites
for transcription factors [1], to activation through spatial
juxtaposition of transcription factor-binding sites [2]. There
are two main ways in which cells modulate nucleosomal
influences on gene expression. One way is through chromatin
remodelling, using the energy of adenosine triphosphate
hydrolysis to modulate nucleosomal structure, often resulting
in changed nucleosomal location [3]. Alternatively, covalent
histone modifications have many effects on transcription.
Histone proteins have highly conserved tails, which are
subject to multiple types of covalent modification, including
acetylation, methylation, phosphorylation, ubiquitination,
sumoylation, and adenosine-diphosphate ribosylation [4–9].

Histone acetylation has been the subject of decades of
research, whereas histone methylation has come under
intense scrutiny more recently. Lysine acetylation neutralizes
lysine’s positive charge, and can influence gene expression in
at least two ways. Firstly, charge neutralization can affect
contacts between the positively charged histone tail and
negatively charged neighbouring molecules, such as adjacent
linker DNA [10], or acidic patches on histones in nucleosomes
[11]. Alternatively, acetyl-lysine is bound by the bromodo-
main, a protein domain found in many transcriptional
regulators; thus, acetylation might affect recruitment of
protein complexes [12]. Histone acetylation is rapidly
reversible, and acetyl groups turn over rapidly in vivo, with
half-lives on the order of minutes [13], allowing for rapid

gene expression changes in response to signals [14]. Acetyla-
tion of histone lysines has been associated with both
transcriptional activation and transcriptional repression
[15–17]. The outcome of acetylation depends on which lysine
is acetylated and the location of the modified nucleosome. A
recent genome-scale study of histone acetylation in yeast
revealed a complicated relationship between histone mod-
ification and transcriptional output [18].
Histone methylation has been best characterized by histone

3-lysine 4 (H3K4), wherein methylation is associated with
active transcription in multiple organisms, ranging from
Saccharomyces cerevisiae to mammals. Lysine can be mono-, di-,
or tri-methylated, and none of these methylation states will
alter lysine’s positive charge (under conditions of standard
lysine pKa and physiological pH). As a result, it is unlikely
that charge–charge interactions are modulated by methyl-
ation, which appears instead to affect cellular processes
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through binding of methyl-lysine–binding proteins. Indeed,
methyl-lysine is bound by at least one domain type—the
chromodomain [19,20]. In contrast to histone acetylation,
histone methylation is long-lived. Although a histone-lysine
demethylase (termed LSD1) was recently identified in
metazoans. S. cerevisiae does not have a homolog of this
protein. Even in metazoans, the proposed enzymatic mech-
anism allows for demethylation of mono- and di-methylated
lysine, but not of tri-methylated lysine [21]. Whether or not
enzymatic demethylation of tri-methyl-lysine occurs, and
whatever other mechanisms allow for replacement of tri-
methylated histones (such as histone replacement—[22]), in
yeast, H3K4 tri-methylation is associated with active tran-
scription. The histone tri-methylation persists for over an
hour after transcription ceases, providing a memory of recent
transcription [23].

The discovery of multiple modification types and modified
residues suggested that different combinations of histone
modifications might lead to distinctive transcriptional out-
comes. According to the ‘‘histone code’’ hypothesis, ‘‘distinct
histone modifications, on one or more tails, act sequentially
or in combination to form a ‘histone code’ that is read by
other proteins to bring about distinct downstream events’’
[6].

This hypothesis has been the subject of much debate, much
of it concerning the requirements for histone modifications
to form a ‘‘code’’ [4–9]. In this study, we focused on the
combinatorial complexity of histone modification patterns.
Insights into this complexity require an understanding of
which combinations of modifications occur in vivo, and the
functional consequences of these combinations. Mutagenesis
of histone tails has demonstrated that not all combinations of
histone modifications lead to distinct transcriptional states
[24]. In addition, genome-wide localization studies of histone
modifications in yeast, flies, and mammals have demonstrated
that not all possible histone-modification patterns occur in
vivo [18,25,26].

A major confounding effect in the interpretation of
previous genome-wide studies of histone modifications in
vivo is the low resolution of the measurements (;500–1,000
base pairs [bp]) relative to the size of the nucleosome (;146
bp). Thus, the measured ratio for a given spot represents an
aggregate that is actually an average of information from
several nucleosomes, which complicates analysis. Further-
more, in some studies, acetylation patterns at intergenic and
coding regions were measured using different microarrays,
precluding a common reference point. Finally, whole
genomic DNA has typically been used as the reference DNA
in these microarray studies, thereby confounding the
measurements of histone modification with underlying
variation in nucleosome density [27,28].

To overcome these limitations, we made use of a recently
developed, high-density oligonucleotide microarray with
;20-bp resolution. We recently used this microarray to
map nucleosome positions across almost half a megabase of
the yeast genome [29]. In this study, we use this microarray to
measure the levels of 12 different histone modifications in
individual nucleosomes. We find that modifications do not
occur independently of each other and that a small number
of distinct combinations occur in vivo. Different modification
patterns are enriched at specific locations in gene or
promoter regions, and these patterns are predictive of the

transcription level of the underlying gene. Sharp transitions
in histone modifications mostly occur near the transcription
start site (TSS). Together these results provide a simpler view
of histone modification, and suggest that there is little
combinatorial information encoded in the histone tails.

Results

High-Resolution Measurement of Histone Modifications
Using Tiled Microarrays
Chromatin immunoprecipitation (ChIP) using modifica-

tion-specific antibodies [30,31] was used to map histone
modifications in actively growing yeast cultures. We used a
standard ChIP protocol, with one major modification (Figure
1A). In our protocol, formaldehyde-fixed yeast were lysed
gently by spheroplasting and osmotic lysis rather than by glass
beads, and DNA was digested to mononucleosomes using
micrococcal nuclease (rather than sheared to ;500 bp by
sonication) (Figure S1). This allowed us to map modifications
at nucleosomal resolution. We used antibodies specific to 12
individual modifications, including mono-, di-, and tri-
methylation of histone H3K4, as well as acetylation of various
lysines on all four histones. Immunoprecipitated DNA was
isolated, linearly amplified [32], and labelled with Cy5
fluorescent dye, while mononucleosomal DNA treated under
identical conditions was used as the ‘‘input’’ and labelled with
Cy3. This choice of input served to control for nucleosomal
occupancy differences (to prevent highly modified, low-
occupancy nucleosomes from appearing to be poorly
modified nucleosomes), as it has been shown that nucleo-
somes are not always present in every cell in a population
[33,34]. Mixtures were hybridized to a tiled microarray
covering half a megabase of yeast genomic sequence,
including almost all of Chromosome III as well as 230
additional 1-kb promoter regions [29]. This represents
approximately 4% of the yeast genome, and includes a total
of 356 promoter regions. Finally, to measure active tran-
scription (while avoiding effects of mRNA instability that
influence mRNA abundance measurements), we also immu-
noprecipitated DNA associated with RNA polymerase II (this
DNA was sheared by sonication rather than cut with micro-
coccal nuclease) [35].

A Chromosomal View of Histone Modifications
The resulting data provide a rich view of histone

modification over half a megabase of yeast sequence,
demonstrating several prominent features (Figure 1B shows
a sample stretch). First, histone modifications generally occur
in broad domains, and there are few examples of nucleo-
somes whose modification pattern was significantly different
from that of their adjacent nucleosomes. This was not due to
limitations in the experimental technique, as we did find
multiple examples of punctate nucleosomes that occurred in
expected locations (see below). Second, modifications were
generally homogeneous for all the probes within a given
nucleosome. Third, correlations could be observed between a
nucleosome’s position relative to coding regions and its
modification pattern. For example, most of the open reading
frames shown in Figure 1B exhibit a striking pattern of
histone H3K4 methylation, with tri-methylation occurring at
the 59 end of the coding region, shifting to di-methylation,
and then to mono-methylation. This pattern is clear over
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most expressed open reading frames on Chromosome III, and
is consistent with reports that Set1 association with RNA
polymerase is responsible for methylation of this lysine
[23,36]. Finally, we noticed broad domains of low acetylation
occurring over heterochromatic regions on our array—
subtelomeric sequences and the silent mating type loci [37]
(Figure S2).

Coupling of Modifications to Organization of

Transcriptional Units

To analyze the relationship of different modifications to

the underlying sequence, we aligned all genes (and their

promoters) by their start codon. For example, Figure 2A

shows data for histone H4K16 acetylation on aligned genes

Figure 1. Overview

(A) Nucleosomes are first cross-linked to DNA using formaldehyde. Cross-linked chromatin is digested to mononucleosomes with micrococcal nuclease.
Mononucleosomal digests are immunoprecipitated using an antibody specific to a particular histone modification, and immunoprecipitated DNA is
isolated and labelled with Cy5. DNA is also isolated from the same nuclease titration step prior to immunoprecipitation, labelled with Cy3, and mixed
with Cy5-labeled immunoprecipitated DNA. Labelled DNA is then hybridized to a tiled microarray covering half a megabase of yeast genome.
(B) Example of raw data. Data are shown for all modifications tested, along with PolII data. Red (green) indicates enrichment (depletion), while grey
indicates missing data. Data from probes found in linker regions are not shown. Each row represents median data from multiple replicates with one
antibody, as indicated (PanAc refers to a nonspecific antibody to acetyl-lysine, which we used to measure bulk acetylation). ‘‘Nucleosomes’’ shows
positions of nucleosomes previously described [29], with dark brown for well-positioned nucleosomes, very light brown for linkers, and intermediate
brown for delocalized nucleosomes. ‘‘ORFs’’ shows locations of annotated genes. Data shown are for Chromosome III coordinates 58,900 to 72,100.
DOI: 10.1371/journal.pbio.0030328.g001
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that were clustered to highlight patterns (see Materials and
Methods). Clearly notable in this representation is a hypo-
acetylated domain adjacent to most start codons. We have
recently discovered that TSSs are found in long nucleosome-
free regions [29]. By aligning genes by the location of the first
nucleosome following the TSS, a clear domain of two hypo-
acetylated nucleosomes can be observed at most PolII
promoters (Figure 2B). This alignment, therefore, provides a
highly informative view of the relationship of histone
modifications to the underlying structure of the genome
(see Figure S3 for the remaining modifications).

To explore the relationship of these modifications to
transcription, we separated genes into ‘‘bins’’ of varying
transcriptional activity (see Materials and Methods) and
averaged the enrichment data for all aligned genes in each
bin (Figures 2C and S4). Several previously identified features
of yeast chromatin are apparent. First, histone H3K4
methylation enrichment correlates with transcription levels,
and occurs in a 59 to 39 gradient (as also seen in Figure 1B)
with tri-methyl enrichment at the 59 end of genes, shifting to
di-methyl and then mono-methyl. Histone H3K4 is methy-
lated by Set1, which is associated with elongating RNA
polymerase [23,36], and, as noted above, this gradient
presumably reflects the kinetics of dissociation of Set1 from
the polymerase, convoluted with the ensemble-average
location of polymerase. Second, we reproduced previous
observations that histone H3K9/K14 acetylation is enriched
over the 59 ends of coding regions [26,38].

Figure 2C also reveals novel locations of particular histone
modification patterns. In particular, the two-nucleosome
hypo-acetylation domain described above for H4K16 acety-
lation is surprisingly general, and a nearly identical pattern is
also seen for acetylation of H4K8 and of H2B K16 (Figures S3
and 2C). This hypo-acetyl domain does not correlate with
transcription levels (as measured by either PolII occupancy or
by mRNA abundance [Figures 2C and S4]). Also, the
acetylation of these residues at the middle and 39 ends of
coding regions is either uncorrelated (H2BK16) or anticorre-
lated (H4K8 and K16) with transcription (Figure 2C). We will
therefore refer to this group of modifications as the
transcription-independent modifications, for convenience (and
to emphasize the stereotyped promoter-deacetyl domain). A
two-nucleosome hypo-acetylation domain is also present at a
smaller subset of promoters for the remaining acetylation
states, and is generally found preferentially in poorly
expressed genes (Figures S3 and 2C). However, the acetylation
of these lysines is found at the 59 end of coding regions,
whereas acetylation of the transcription-independent group
is largely excluded from 59 coding regions. We will refer to
this 59-directed group of modifications as the transcription-

dependent modifications. Acetylation of H2A K7 is an
interesting case, as its pattern appears to be a mixture of

the two types of patterns described. However, we have
recently found that the H2A isoform Htz1 is enriched in a
pattern that dramatically parallels the hypo-acetylation
domain observed for the transcription-independent modifi-
cations (unpublished data), so H2A is expected to be depleted
in this region. This, coupled with the 59-enrichment of
acetylation seen for H2A K7, in highly transcribed genes,
leads us to include this modification in the transcription-
dependent group.

Low Dimensionality of Nucleosome Modification Patterns
The analysis presented above is highly informative, but is

based on aggregated data for many promoters, and thus may
obscure interesting underlying phenomena. A more infor-
mative approach would be to examine the distinct modifica-
tion patterns at individual nucleosomes. We defined the
modification pattern of each nucleosome as the median
hybridization value, for each measured antibody, of the
probes associated with the nucleosome (usually between six
and 15 probes; see Materials and Methods). In addition, we
classified nucleosomes according to their positions relative to
genome annotations (Figure 3A; see Materials and Methods).
We used nine annotation categories that represent nucleo-
somes in promoter regions, transcribed regions, and other
regions (tRNA genes and autonomously replicating sequences
(ARSs). These classifications are discussed further below.
Nucleosomes were clustered by modification pattern, using

a probabilistic hierarchical agglomerative clustering proce-
dure (see Materials and Methods). As is readily apparent from
this clustering (Figure 3B), histone modification patterns span
the full possible range of overall modification level, from
hypo-acetylated to hyper-acetylated. Nevertheless, a striking
aspect of this clustering is the limited range of observed
modification patterns. Visual inspection suggests that, as
previously noted [18], histone modifications are not inde-
pendent of each other. Indeed, the matrix of correlations
between the 12 modifications shows that there are two groups
of strongly correlated acetylations (Figure 3C).

To better understand the effective number of degrees of
freedom among the 12 dimensions available, we performed a
principal component analysis (see Materials and Methods).
Principal component analysis is a technique used to trans-
form a large number of possibly correlated variables to a
smaller number of uncorrelated variables, and thereby
identify the number of independent dimensions in a dataset.
As suggested by the observation above, 81% of the variance in
histone modification patterns is captured by the first two
principal components (Figure 3D). Moreover, if we examine
only the nine acetylations, we can explain 90% of the
variance using two components (unpublished data). The first
principal component corresponds to overall level of histone
modification (Figure S5). The second principal component

Figure 2. Broad Patterns of Histone Modifications

(A) H4K16Ac aligned by ATG. In this representation, the horizontal axis represents location relative to the downstream gene’s start codon, and each
horizontal line represents one PolII-driven gene. Each cell in the resulting matrix corresponds to the acetylation level at a given microarray probe for one
tail position. Red (green) cells mark hyper-acetylated (hypo-acetylated) probes. Non-nucleosomal probes are blackened. We clustered the promoters
using a probabilistic agglomerative clustering algorithm (see Materials and Methods). Arrow indicates annotated ATG.
(B) H4K16 aligned by transcriptional start site, as in (A), except that arrow indicates TSS (identified in [29]) and data before and after the TSS are aligned
by the first nucleosome in that direction.
(C) Relationship of histone modification patterns to transcription level. Genes were split into three groups based on PolII enrichment, and averaged data
for these groups are shown as indicated, aligned as in (B). Transcription level is indicated by red triangles to the left of each set of three rows.
DOI: 10.1371/journal.pbio.0030328.g002
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Figure 3. Nucleosome Modification Patterns

(A) Schematic of annotation scheme for nucleosomes based on their position relative to transcribed units. Intergenic nucleosomes were assigned to the
following categories: promoter region (anything upstream of a coding region), nucleosome immediately upstream to the TSS (‘‘distal’’), and the
nucleosome immediately downstream of the TSS (‘‘proximal’’). Transcribed regions were separated into 59, middle, and 39 CDSs. Finally, to capture
features of chromatin not associated with PolII genes, we independently classified nucleosomes associated with ARS sequences, tRNA genes, and Null
(any other intergenic region).

PLoS Biology | www.plosbiology.org October 2005 | Volume 3 | Issue 10 | e3281758

Global Histone Modification Patterns



corresponds to the relative levels of the two groups of histone
modifications—the transcription-associated modifications
that occur in 59 to 39 gradients over coding regions, and the
group of acetylations characterized by short hypo-acetyl
domains surrounding TSS (Figure S5). By projecting each
nucleosome to a point in the plane spanned by the first two
principal components (Figure 3E), we can visualize the range
of observed modifications. There is a large region of
allowable modifications that is spanned continuously by
different nucleosomes. These results suggest that, at the level
of cell populations, there are no discrete states for nucleo-
some modifications. Instead, nucleosome modification pat-
terns occur continuously over a large range of possible space,
though this two-dimensional space is dramatically simplified
compared to the 12 dimensions available. In other words,
nucleosomes have continuous variation, both in the total level
of acetylation, and in the relative ratio of the two groups of
modifications, but they do not show much complexity beyond
these two axes.

Specific Chromosomal Locations Are Associated with
Characteristic Histone Modifications

Notable in Figure 3B is an association of particular
modification patterns with specific genomic locations. For
example, Cluster 2 consists of hypo-acetylated nucleosomes
that are predominantly located within promoter regions and
at the 39 ends of coding regions. We systematically explored
these correlations by testing the modification data for
statistically significant, location-specific differences in the
levels of each modification type (Figure 4A). For example,
promoter nucleosomes are globally hypo-acetylated in
residues H2A K7 (presumably due to the enrichment of
Htz1), H2B K16, and H4K8 and K16 (and, to a lesser extent,
H3K18), and are depleted of mono- and di-methylated H3K4.
Nucleosomes at 59 ends of coding regions are enriched for
H3K4Me3, as well as H3K18Ac, H4K12Ac, H3K9Ac,
H3K14Ac, H4K5Ac, and H2AK7Ac. When we examine the
modification patterns of individual nucleosomes in the two-
dimensional principal component plot, we can clearly
distinguish nucleosomes in promoter regions from those in
transcribed regions (Figure 4B). Moreover, of the nucleo-
somes in transcribed regions, we can distinguish among
nucleosomes in the 59 end, the middle, and the 39 end of the
transcribed region (Figures 4C and S6).

These results show that specific genomic regions are

characterized by distinct modification patterns, with little
overlap in modification types between the different regions.
We conclude that the histone modification patterns are
highly informative about the location of nucleosomes along
the chromosome, and suggest that, in yeast, nucleosome
modification patterns, like nucleosome positioning, exhibit
local variation around a basic stereotype that is determined
by the chromosomal location.

Variation in Modifications Occurring over Transcribed
Regions is Predictive of Transcription Levels
While nucleosomes at different locations are associated

with statistically different modification patterns, the correla-
tions are imperfect, as a given nucleosome modification
pattern can clearly be found in multiple locations (Figure 4B
and 4C). This imperfect association might be due to differ-
ences in expression level of the coding regions examined. We
therefore separated nucleosome locations (59 coding, etc.)
into bins according to the PolII activity level of the associated
transcription unit. Figure 5A shows the modification pattern
of each of five nucleosomes (defined by position) for highly
PolII-enriched genes, while Figure 5B shows this pattern for
PolII-depleted genes. This view emphasizes both the distinc-
tion between nucleosomes at various genomic locations (as
seen in aggregate in Figure 4) and the transcription-
associated variation in the modification pattern at a given
location. Figure 5C shows a cartoon of the chromatin
structure of an arbitrary yeast gene.

To further explore the relationship between transcription
activity and modification pattern at a given location, we
tested each location for modifications that were significantly
associated with high or low transcription. For example, we
consider the nucleosomes near the 59 ends of those genes with
extreme levels of PolII enrichment or depletion (Figure 6A).
Consistent with results shown in Figures 2C and 5A and 5B,
we see that levels of mono- and tri-methylation of H3K4, as
well as the acetylation level of H3K9, H3K14, H2A K7, H4K5,
and H4K12 have significant differences between these two
classes of 59 coding region nucleosomes (p , 0.01 using t-test).
We trained a classification method that examines these
modifications and predicts whether the nucleosome is part
of an expressed coding region or not. We evaluated this
classifier using leave-one-out cross-validation (see Materials
and Methods) to estimate its accuracy on unseen examples.
This evaluation shows that the classifier is correct on 75.4%

(B) Hierarchical clustering of 2,288 nucleosomes. Left panel: each row corresponds to a single nucleosome, and each column to a particular
modification. Red (green) denotes hyper-acetylation (hypo-acetylation) in the first nine columns and relative level of methylation in the last three
columns. Rows are sorted according to the dendogram built during clustering. PolII shows the PolII occupancy of the gene associated with the
nucleosome in question. Right panel: each row corresponds to a nucleosome (matching the left panel), and each column corresponds to an annotation
of the nucleosome according to the scheme of (A). A blue cell denotes a positive annotation of the nucleosome with the appropriate column label.
Numbers indicate examples of clusters, as follows: (1) nucleosomes enriched for H3K9Ac, H3K14Ac, and H3K4Me3 that are mostly upstream of
transcribed regions; (2) strongly hypo-acetylated nucleosomes, mostly at upstream regions or 39 of coding regions; (3) nucleosomes acetylated at H4K8
and K16, and H2B K16 that are almost exclusively at the middle and 39-ends of coding regions; and (4) hyper-acetylated and methylated nucleosomes
that are mostly found at the 59-end of coding regions.
(C) The Pearson correlations of the 12 modification levels between different probes show that there are two tightly correlated groups of acetylations at
specific residues. The first group consists of H2A K7; H3K9, K14, and K18; and H4K5 and K12. The second group consists of H2B K16; and H4K8 and K16.
Mono- and di-methylation of H3K4 are correlated with the second group, while tri-methylation of H3K4 is correlated with the first group.
(D) The percent of variance captured by using different number of components. The x-axis denotes the number of components, and the y-axis denotes
the percent of the variance in the data explained by each components (blue bars) as well as the cumulative percentage explained (red bars).
(E) Representation of all nucleosomes in two-dimensional modification space. In the left panel, each point represents a nucleosome plotted according
to the relative level of the first principal component (x-axis) and second principal component (y-axis) for the modification pattern. The right panel is a
three-dimensional plot showing density of points along the plane.
DOI: 10.1371/journal.pbio.0030328.g003
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Figure 4. Nucleosome Modifications Relate to Nucleosome Position

(A) Analysis of differential modification for each class of nucleosomes. Rows correspond to specific modifications, and columns correspond to genomic
locations. Each cell is coloured by the average modification level of nucleosomes with this annotation. Non-significant (using false discovery rate of 95%
on t-test p-values) cells are blackened.
(B) Promoter nucleosomes (orange) significantly differ from coding region nucleosomes (pink) in their histone modifications pattern. The left panel
shows the two types of nucleosomes as points in the plane, where the x-axis represents the level of the first principal component, and the y-axis
represents the second principal component. The right panel shows the density within each class.
(C) Distinction between nucleosomes in transcribed regions. Colours denote 59-end (red), middle (green), and 39- end (blue) nucleosomes. Visualization
is as described in (B).
DOI: 10.1371/journal.pbio.0030328.g004
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of the nucleosomes in the training set (compared to 60.1%

when nucleosomes labels are randomly permuted; p ,

0.0001). Thus, although expression values are not perfectly

encoded by histone modifications, they are clearly reflected

in them. We see a similar pattern if we examine nucleosomes

in the middle of coding regions (Figure S7). In this case the

accuracy is 82.7% (compared to 61.3% by chance; p ,

0.0001). Notably, the set of significant modifications in this

case is different, and in fact two of the transcription-

independent modifications, H4K8 and K16, are both slightly

anticorrelated with transcription here.

These results indicate that over coding regions, variation in

histone modification patterns is associated with transcription

level. For example, the transcription-associated modifications

are globally enriched at the 59 ends of genes, and the level of

these modifications is correlated with transcription level. To

Figure 5. Nucleosome Modifications Partitioned by Location and by Transcription Level

(A) Modification patterns of nucleosomes associated with actively transcribed genes. Genes with high levels of PolII occupancy were grouped, and the
modification data for the indicated nucleosome types were averaged.
(B) Modification patterns of nucleosomes associated with poorly transcribed genes, grouped as in (A), except that genes with low levels of PolII were
selected.
(C) Schematic view of yeast chromatin architecture. Cartoon view showing chromatin structure of an arbitrary yeast gene. Yeast genes are typically
characterized by an upstream nucleosome-free region, which serves as the transcriptional start site [29]. Surrounding this nucleosome-free region are
two nucleosomes that exhibit low levels of acetylation at H2BK16, H4K8, and H4K16, and that carry Htz1 in place of the canonical H2A (unpublished
data). The remaining acetylations occur in a gradient from 59 to 39 over actively transcribed genes. Similarly, actively transcribed genes exhibit a
gradient of H3K4 methylation, with trimethylation occurring at the 59- ends of genes, and di- and mono-methylation occurring over the middle of the
coding region. Nucleosomes are coloured to emphasize the different average modification patterns at each indicated location.
DOI: 10.1371/journal.pbio.0030328.g005
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explore whether these results hold true for nucleosomes that

are not found over transcribed regions, and to thereby test

the idea that upstream histone modifications control gene

expression, we repeated the classification analysis for

nucleosomes surrounding the TSS (Figure 6B and 6C), which

are modified in similar ways (Figure 4A) with the exception

that the gene-proximal nucleosome is associated with DNA

passaged by RNA polymerase, while the gene-distal nucleo-

some is not. Here, we found that the gene-proximal

nucleosome indeed carries information about transcription

level—a classification method tested using this nucleosome

correctly identified 72.8% of gene expression patterns (as

Figure 6. Nucleosome Modifications Relate to Transcription Level

(A) Classification plot of nucleosomes in 59-coding regions according to PolII occupancy. A classifier was trained to distinguish between nucleosomes
with high and low PolII occupancy, and evaluated using leave-one-out cross-validation. Each row corresponds to one nucleosome. Nucleosomes are
split into three groups associated with genes corresponding to high, intermediate, and low PolII occupancy level (from top to bottom, respectively). The
left 12 columns denote modification patterns of each nucleosome. Modifications with significant differences between high and low nucleosomes are
marked with the p-value determined by t-test. Colours denote relative acetylation/methylation levels. The rightmost three columns correspond to the
classifier’s prediction of transcription, the expression level (mRNA abundance; see Materials and Methods) and the PolII occupancy of genes. The
average accuracy of random classification was 60.71%, with a standard deviation of 4.3%. Accuracy of classifier was 75.38% (p , 0.0001).
(B) Classification plot of TSS proximal nucleosomes, labelled as in (A). The average accuracy of random classification was 62.45%, with a standard
deviation of 4.75%. Accuracy of classifier was 72.8% (p ¼ 0.0004).
(C) Classification plot of TSS distal nucleosomes; as in (A). The average accuracy of random classification was 65.79%, with a standard deviation of 4.22%.
Accuracy of classifier was 58.4% (p¼ 0.9333).
DOI: 10.1371/journal.pbio.0030328.g006
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compared with 62.4% by chance; p¼ 0.0004). In contrast, the
gene-distal nucleosome, which is not subjected to the passage
of RNA polymerase and associated modifying enzymes, fails
to accurately classify transcription levels (58.4%, as compared
with 65.7% expected by chance), demonstrating that mod-
ification patterns associated with transcribed regions provide
a much better predictor of transcription levels than do
upstream modification patterns.

Modifications Associated with Transcriptional Regulators
The observed modifications at the two TSS nucleosomes

might be either a prerequisite for PolII recruitment or a
consequence of this step. Since we measure modification in a
single condition, we cannot directly resolve this question.
However, we can gain additional insight by examining
nucleosomes in promoters reported to be bound by specific
chromatin remodelers or by specific transcription factors.
Using the results of several recent ChIP studies [39–41], we
compiled a set of target promoters for each factor (see
Materials andMethods). We then tested for distinct patterns in
the promoter nucleosomes. In addition, we analyzed nucleo-
somes around putative transcription factor binding sites [42]
(see Materials and Methods). Our results highlight specific
factors that are significantly associated with specific modifi-
cations (Figure 7). For instance, we see that promoters of genes
bound by the repressor Ume6 are significantly hypo-acety-
lated at most positions. This finding correlates with previous
observations demonstrating recruitment of the HDAC Rpd3
by Ume6 [43,44]. Another interesting example is the signifi-
cant hyper-acetylation of several positions among the targets
of the Rsc remodeling complex. These include H3K9 and, to a
lesser extent, H4K12, H3K14, and H4K5. Recently, mutants in
the Rsc complex were shown to interact genetically with K14
mutations, a finding supported by binding of the complex to
K14-acetylated H3-tail peptides [45].

Modification Boundaries Occur Near Transcriptional Start
Sites

The availability of histone modification data at single
nucleosome resolution allows analysis of the extent to which
modification patterns occur discretely or in broad domains.
As noted above and previously reported [44], histones can be

deacetylated in a localized manner. However, visual inspec-
tion reveals that at locations farther away from the TSS, most
histone modifications occur in broad domains. To further
investigate this, we searched for sharp boundaries to histone
modification domains by identifying pairs of nucleosomes
between which a dramatic change occurs (increase or decrease
of two standard deviations at one of the tail positions). We
found ;100 boundaries for each modification (from 82 to
108). We then examined the locations of these boundaries,
finding that most were located adjacent to TSSs. For example,
boundaries for modifications associated with transcription,
such as H3K4 tri-methyl, occurred across the TSS. This is
visualized in Figure 8A, a scatterplot of K4 tri-methylation for
adjacent nucleosomes (x-axis shows tri-methylation for nucle-
osome N, y-axis shows tri-methylation of N-1). The majority of
nucleosomes show high correlation for this modification
between adjacent nucleosomes, though there are two small
groups of anticorrelated nucleosomes, indicating methylation
boundaries. Pairs of nucleosomes that fall to either side of the
TSS were plotted separately (grouped according to which
strand the gene falls on), showing that most of the K4 tri-
methyl boundaries occur at the TSSs, as expected.

We also examined ‘‘punctate’’ nucleosomes—those differ-
ing significantly in modification type from the two nucleo-
somes to either side. We found 44 nucleosomes with a
punctate pattern of at least one of the 12 modifications in this
study. Examples of punctate nucleosome are shown in Figure
8B and 8C. Most nucleosomes that exhibit this characteristic
are found upstream of the TSS. In many cases, this is clearly
due to the location of the nucleosome between two TSSs,
leading to a single nucleosome exhibiting no transcription-
associated modifications, surrounded by nucleosomes with
the characteristic transcriptional modifications.

Discussion

Profiling Histone Modification at the Mononucleosome
Level
We have mapped, at single-nucleosome resolution, 12

histone modifications in actively dividing cultures of S.

cerevisiae. This, along with the translational positioning of
nucleosomes described previously [29] and location studies

Figure 7. Histone Modifiers

Analysis of differential modification of nucleosomes associated with various transcriptional regulators. Promoter nucleosomes located near binding sites
of the indicated factors were tested for enrichment of all modifications relative to the overall promoter modification pattern. Each cell is coloured by the
average modification level of nucleosomes with this annotation. Non-significant cells (using false discovery rate of 95% on t-test p-values) are
blackened. Localization data are taken from the indicated studies [39–42].
DOI: 10.1371/journal.pbio.0030328.g007
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on the H2A isoform Htz1 (unpublished data), provides a draft
sequence (see below) of the primary structure of half a
megabase of yeast chromatin. We wish to stress the
importance of the high resolution of our method for
deconvoluting the results of previous studies on histone
modification. The use of ;1-kb intergenic and coding probes
in standard microarray studies reports on mixtures of

multiple nucleosomes. For example, we show that the two
nucleosomes immediately adjacent to the TSS are generally
deacetylated at H4K16, whereas surrounding nucleosomes
are often highly acetylated (Figure 2B). As a result, the
acetylation level measured in standard microarray studies will

depend on the length of the 59 untranslated region (which is
especially confounding, as this correlates with functional
classifications of the encoded genes [46]); the length of the
entire intergenic region probed; and the nature of the
intergenic region (divergent or parallel genes), as the deacetyl
signals from the TSS will be diluted by these additional

nucleosomes in a complicated way. Furthermore, the ;300–
500-bp standard shear size used in microarray studies results
in some sampling of additional nearby nucleosomes outside
the borders of the microarray spot. Our methodology
eliminates all these confounding variables and also controls

for local variation in nucleosome density, thus dramatically
simplifying modification mapping.

We note, however, that our study is subject to the same
issues with antibody specificity that remain a crucial
limitation of ChIP studies—the epitope accuracy of any ChIP
study is determined by the specificity of the antibodies used.

We used the state-of-the-art in antibodies (see Materials and
Methods), but improvements in antibody specificity may
improve the fidelity of these experiments. In addition,
ensemble measurements such as those presented here
necessarily provide population averages, and we cannot rule
out the possibility that small subpopulations of cells in

different phases of the cell cycle, or in different epigenetic
states, might be characterized by modification patterns that
are obscured in the population average. Finally, this study
does not provide a complete sequence of chromatin’s
primary structure in our tiled region. A complete view of

the primary structure requires the addition of all additional
modifications, including core domain modifications, and,
ideally, the conformations of the nucleosomes studied.

Histone Tail Modifications Occur in Two Groups that Vary
Quantitatively
This mapping has allowed us to investigate combinatorial

questions raised by the framing of histone modifications as a
‘‘code.’’ Most importantly, we have shown that many histone
modifications are highly correlated with one another,
resulting in few discrete histone modification patterns.
However, we cannot say whether these modifications occur

in the same nucleosome or whether the correlations are due
to a mixture of partially modified nucleosomes at a given
location. Some modified residues may be correlated because
histone-modifying enzymes are not strongly residue-specific
[8,47], whereas other correlations may be due to histone-

modifying enzymes that are either recruited to chromatin by
association with other types of modification, or preferentially
act on tails carrying another modification [48–50]. Still other
modifications may be correlated because the relevant
modifying enzymes may be targeted by association with
similar complexes, such as RNA polymerase [23,51]. These

correlations suggest a high level of redundancy in yeast
histone modification, implying that the code is extremely
simple, carrying only a tiny fraction of the maximum possible
amount of information. Indeed, as principal component
analysis shows, we can compress the 12-dimensional space of

Figure 8. Modification Boundaries

(A) H3K4Me3 boundaries occur across TSSs. The x-axis represents the
level of H3K4Me3 for a given nucleosome, and the y-axis represents the
level of this modification for the preceding nucleosome. Pairs of
nucleosomes flanking the TSS for a gene on the W strand are plotted
as blue squares, and pairs flanking TSSs for genes on the C strand are
plotted as red squares. Remaining nucleosome pairs are plotted as grey
circles.
(B) Example of a punctate nucleosome. Histone modification plotted as
in Figure 1B for a subset of histone modifications. Arrow indicates a
nucleosome whose modification pattern differs significantly for
H3K4Me3 from nucleosomes to either side. Gene names are as labelled.
(C) Example of a punctate nucleosome, labelled as in (B).
DOI: 10.1371/journal.pbio.0030328.g008
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possible modification patterns onto two main axes, with only
a minor loss of accuracy.

This raises the important question of why so many
different modifications occur in the cell, yet such a small
subset of combinations is used. We suggest only a few possible
answers. First, the loss of a positive charge that occurs with
lysine acetylation should reduce the free energy of inter-
action with a negative charge by approximately 1–3 kcal/mol.
Thus, loss of multiple positive charges could lead to much
greater free energy changes in an interaction, and to a much
more pronounced change in interactions than would be
caused by a single acetylation. Furthermore, we note that at
any given nucleosome location the quantitative level of
acetylation varies, allowing for the possibility of ‘‘rheostat’’-
like control of transcription levels. This is consistent with
recent mutagenesis studies showing that transcriptional
response to H4K!R mutations is largely continuous and
analogue, rather than discrete and digital [24]. Second, it is
possible that multiple modifications occur together in order
to cause several distinct required events to occur, whether
they be co-occurring structural changes in the nucleosome or
the 30-nm fibre, or recruitment of protein complexes that
function together. This has been observed at the human
interferon-b promoter, wherein activation of the promoter
causes Gcn5-dependent acetylation of H3K9/14 and H4K8,
whose acetylation recruits TFIID and hSWI/SNF, respectively
[52]. If these protein complexes tend to function together,
then the recruiting modifications will be correlated. Third, if
modifications that occur together at steady-state do not occur
simultaneously, but rather in a temporal cascade [6], this
enables the possibility of complex signal filtering behaviour.
For example, if one histone acetylase were to acetylate a
single lysine, and that acetyl-lysine were to recruit a distinct
histone acetylase that acetylated another lysine, then a
requirement for both acetylations for transcription to occur
would produce a low-pass filter. This filter would reject
transient spikes in signalling pathways and allow transcrip-
tional outcomes only in response to sustained signalling. A
careful examination of the temporal response of histone
modifications to signalling will help determine if this might
occur for the correlated modifications. Finally, if one
modification recruits enzymes that modify the remaining
residues, then having multiple modifications allows for
switch-like behaviour [53,54].

Stereotyped Promoter Architecture
One of the two groups of histone modifications exhibits a

striking, stereotyped pattern in promoter regions. Nucleo-
somes immediately adjacent to the TSS are hypo-acetylated at
H2BK16, H4K8, and H4K16. This hypo-acetylation does not
correlate with transcription levels, and the inability of the
histone modification pattern at the gene-distal TSS-adjacent
nucleosome to accurately reflect transcriptional activity of
the associated gene (Figure 6C) does not support the idea that
upstream modifications are causal for transcription.

In separate work, we have identified this di-nucleosomal
domain that flanks the TSS as highly enriched for the H2A
isoform Htz1 (demonstrating that these nucleosomes do not
appear deacetylated due to some artifactual difficulty with
immunoprecipitation). Also, this enrichment is independent
of transcription (unpublished data). In other words, the
majority of promoter nucleosome-free regions in yeast are

surrounded on either side by nucleosomes with hypo-
acetylated H2BK16, hypo-acetylated H4K8 and K16, and
Htz1 in place of H2A. These results raise two questions: how
does this domain arise, and what is its functional role in
transcription?
Previous reports have shown that Rpd3 deacetylates one to

three nucleosomes when recruited to promoters [44],
consistent with the width of this deacetylation domain.
However, the generality of the pattern observed here suggests
that multiple distinct deacetylases function in this localized
manner, because Rpd3 is present at only a subset of the
promoters analyzed [31,43]. Alternatively, it is possible that
these nucleosomes turn over rapidly (due to the presence of
some assembly of chromatin-remodelling activities at pro-
moters), and that the histone isoform and modification
pattern exhibited reflects the composition of free histones
in the nucleoplasm. In either case, the function of this
domain remains elusive at present.

Relationship of Histone Modifications to Transcription
We have described a group of histone modifications that co-

occur, and that are preferentially found at the 59 ends of
actively transcribed genes. This relationship between histone
modification patterns, location relative to coding regions, and
transcript abundance, would be expected if histone modifica-
tion played a largely passive, rather than instructive, role in
transcription, with nucleosomes being modified by various
enzymes associated with RNA polymerase. This is clearly the
case, for example, for PolII-associated Set1, which is respon-
sible for the correlation between H3K4 tri-methylation over
the 59 end of coding regions and corresponding transcription
levels. A similar type of mechanism appears to hold for the
Set2-mediated tri-methylation of H3K36, which occurs over
transcribed genes [55]. However, mutant studies have shown
abundant transcriptional defects associated with mutations in
histone-modifying enzymes [56,57]. These studies cannot
determine whether histone modification is instructive or
permissive for transcription—in other words, whether histone
modifications initiate a chain of events that result in tran-
scription, or whether that gene is associated with a non-
permissive chromatin structure that must be antagonized
using the modification in question. We suggest that the
transcription-associated modifications play a permissive role
in gene expression, and that the transcriptional defects in
histone-modification mutants result from a partial inability of
RNA polymerase to transit unmodified nucleosomes [58,59],
or to a failure to recruit factors required for efficient
transcription [60]. However, we do not rule out the possibility
that histone modifications play both roles, with an initial mark
that is causal for a transcription pattern subsequently ‘‘erased’’

by modifications occurring with the resultant transcription.

The Histone Code
Taken together, these results do not support a model for

the histone code in which a vast set of widely varying
modification combinations play complicated instructive roles
in transcriptional regulation. Instead, these results further
extend genome-wide studies in Drosophila, which show that
histone modifications occur in few independent combina-
tions [25], and suggest that these patterns are often the result,
rather than the cause, of transcription. These results there-
fore emphasize a role for modifications of the histone tails as
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facilitators of transcription. It will be of great interest in
future studies to assay the dynamic nature of histone
modifications during changes in transcription, and the
establishment of histone modification patterns during DNA
replication.

Materials and Methods

Yeast culture. An aliquot of 450 ml of BY4741 bar1D cells was
grown to an A600 OD of 0.9 in 2-L flasks shaking at 200 rpm in a 28 8C
water bath. Formaldehyde (37%) was added to a 1% final concen-
tration, and the cells were incubated for 15 min at 25 8C, shaking, at
90 rpm. Then, 2.5 M glycine was added to a final concentration of 125
mM, to quench the formaldehyde. The cells were inverted and let to
stand at 25 8C for 5 min. The cells were spun down at 3,0003 g for 5
min at 4 8C and washed twice, each time with an equal volume of ice-
cold sterile water.

Micrococcal nuclease digestion. The cell pellets were resuspended
in 39 ml Buffer Z (1 M sorbitol, 50 mM Tris-Cl [pH 7.4]), 28 ll of b-ME
(14.3 M, final concentration 10 mM) was added, and cells were
vortexed to resuspend. Then, 1 ml of zymolyase solution (10 mg/ml in
Buffer Z; Seikagaku America, Falmouth, Massachusetts, United States)
was added, and the cells were incubated at 28 8C, shaking at 200 rpm,
in 50-ml conical tubes, to digest cell walls. Spheroplasts were then
spun at 3,000 3 g, 10 min, at 4 8C. Spheroplast pellets were
resuspended and split into aliquots of 600 ll of NP-S buffer (0.5
mM spermidine, 1 mM b-ME, 0.075% NP-40, 50 mM NaCl, 10 mM
Tris [pH 7.4], 5 mM MgCl2, 1 mM CaCl2) per 90-ml cell culture
equivalent. Forty units of micrococcal nuclease (Worthington
Biochemical, Lakewood, New Jersey, United States) were added, and
the spheroplasts were incubated at 37 8C for 20 min—this was
determined in initial titrations to yield . 80% mononucleosomal
DNA (see Figure S1), but to repeat these results an independent
titration should be carried out as a preliminary study. The digestion
was halted by shifting the reactions to 4 8C and adding 0.5 M EDTA to
a final concentration of 10 mM.

ChIP. All steps were done at 4 8C unless otherwise indicated. For
each aliquot, Buffer L (50 mM Hepes-KOH [pH 7.5], 140 mM NaCl, 1
mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate) compo-
nents were added from concentrated stocks (10–203) for a total
volume of 800 ll per aliquot. Each aliquot was incubated with 80–100
ll of 50% Sepharose Protein A Fast-Flow bead slurry (Sigma, St.
Louis, Missouri, United States) equilibrated in Buffer L for 1 h on a
tube rotisserie rotator. The beads were pelleted with a 1-min spin at
3,000 3 g, and approximately 2.5%–5% of the supernatant was set
aside as ChIP input material. With the remainder, antibodies were
added to each aliquot (20% of a 450-ml cell culture) in the following
volumes: 25 ll anti-H3K4Me1 Ab (affinity purified; Abcam, Cam-
bridge, Massachusetts, United States), 6 ll anti-H3K4Me2 Ab (affinity
purified; Abcam), 6 ll anti-H3K4Me3 Ab (affinity purified; Abcam), 4
ll anti-H4K16Ac Ab (whole antiserum; Abcam), 9 ll anti-H4K5Ac Ab
(whole antiserum; Abcam), 3 ll anti-H3K14Ac Ab (whole antiserum;
Upstate Cell Signaling Solutions, Charlottesville, Virginia, United
States), 3 ll anti-H2AK7Ac Ab (whole antiserum; Upstate), 2 ll, anti-
H4K8Ac Ab (whole antiserum; Abcam), 15 ll, anti-H4K12Ac Ab
(whole antiserum; Abcam), 25 ll anti-Ac Ab (whole antiserum;
Abcam), 16 ll anti-H3K9Ac Ab (affinity purified; Abcam), 25 ll
anti-H2BK16Ac (L) (whole antiserum; Abcam), and 3 ll anti-
H3K18Ac Ab (whole antiserum; gift of M. Grunstein). We also used
3 ll of a distinct antibody to H4K16Ac (whole antiserum; gift of M.
Grunstein) to assess specificity of different sources of antibody.
Replicates using this antibody were as correlated with each other as
they were with replicates using the Abcam antibody.

These were incubated, rotating, overnight (;16 h), after which the
sample was transferred to a tube containing 80–100 ll of 50% Protein
A bead slurry. The sample was incubated with the beads for 1 h for
the immunoprecipitation, after which the beads were pelleted by a 1-
min spin at 3,000 3 g. After removal of the supernatant, the beads
were washed with a series of buffers in the following manner: 1 ml of
the buffer would be added, and the sample rotated on the tube
rotisserie for 5 min, after which the beads would be pelleted in a 30-s
spin at 3,000 3 g and the supernatant removed. The washes were
performed twice for each buffer in the following order: Buffer L,
Buffer W1 (Buffer L with 500 mM NaCl), Buffer W2 (10 mM Tris-HCl
[pH 8.0], 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1mM
EDTA), and 13TE (10 mM Tris, 1 mM EDTA [pH 8.0]). After the last
wash, 125 ll of elution buffer (TE [pH 8.0] with 1% SDS, 150 mM
NaCl, and 5 mM dithiothreitol) was added to each sample, and the

beads were incubated at 65 8C for 10 min, with frequent mixing. The
beads were spun for 2 min at 10,000 3 g, and the supernatant was
removed and retained. The elution process was repeated once for a
total volume of 250 ll of eluate. For the ChIP input material set aside,
elution buffer was added for a total volume of 250 ll. After overlaying
the samples with mineral oil, the samples were incubated overnight at
65 8C to reverse cross-links.

Antibody specificity. A significant concern with ChIP studies is the
epitope specificity of the antibodies used. High correlations between
different modifications could arise if two antibodies cross-reacted.
We note four reasons that this is unlikely to be a major problem for
this study. First, if antibodies did indeed cross-react, then the
resulting profiles should look like some weighted average (depending
on relative affinities of the two antibodies) of the two ‘‘pure’’ profiles.
If there were a third modification pattern (besides what we term the
transcription-dependent and transcription-independent patterns), then the
two antibodies in question would be expected to show a third mixed
pattern, distinct from the two patterns described, and this was not
observed. On the other hand, if only two true patterns do exist but
there is cross-reactivity for antibodies, the mixed profile is expected
to show a 59 gradient of acetylation, along with two deacetyl
nucleosomes adjacent to the TSS. This pattern was seen for H2AK7,
but, as we note, this is likely due to the replacement of H2A with Htz1
at the TSS-adjacent nucleosomes. Furthermore, this pattern was not
seen for the H3K14 antibody, which recognizes lysine in the context
of a similar site to that of H2AK7 (GGKA). So we do not believe that
these antibodies are cross-reacting.

Second, we repeated experiments for one of the epitopes in this
study (H4K16) with two distinct antibodies, and the results were
indistinguishable. One of these antibodies, from the Grunstein lab,
was previously tested for cross-reactivity by attempting ChIP from
strains carrying the H4K16R mutation [37].

Third, there are two pairs of antibodies for which cross-reaction is
most likely to be a concern: H4K5 and K12 (both lysines occur in the
context of GKGG), and H2AK7 and H3K14 (both occur in the context
of GGKA). However, within each pair, the two antibodies are more
highly correlated with other antibodies in their group than with the
other antibody with a similar recognition site (see Figure 3C). If these
antibodies had cross-reacted, then their profiles should be the most
highly correlated. In addition, technical literature from Upstate
shows that both the H2AK7 and H3K14 acetylation antibodies fail to
immunoprecipitate DNA from yeast strains carrying the appropri-
ately mutated recognition site.

Finally, it is worth noting that even if a pair or two of antibodies
cross-reacted, the point that histone modifications occur at reduced
dimensionality would still hold. Instead of 12 dimensions reducing to
two dimensions, we would say, for example, that 10 dimensions
reduce to two. This is not, to our thinking, a significant change in the
central message of this study. In addition, it would not challenge the
other main points of the manuscript, that the two TSS-adjacent
nucleosomes exhibit a stereotyped modification pattern and that
most of the histone modification that correlates with transcription
levels occurs over coding regions.

Protein degradation and DNA purification. After cooling the
samples down to room temperature, each sample was incubated with
an equal volume of proteinase K solution (13 TE with 0.4 mg/ml
glycogen, and 1 mg/ml proteinase K) at 37 8C for 2 h. Each sample was
then extracted twice with an equal volume of phenol and once with
an equal volume of 25:1 chloroform:isoamyl alcohol. Phase-lock gel
tubes were used to separate the phases (light gel for phenol, heavy gel
for chloroform:isoamyl alcohol). Afterwards, 0.1 volume 3.0 M sodium
acetate [pH 5.3] and 2.5 volumes of 100% ice-cold ethanol were
added, and the DNA was allowed to precipitate overnight at �20 8C.
The DNA was pelleted by centrifugation at 14,0003 g for 15 min at 4
8C, washed once with cold 70% ethanol, and spun at 14,0003 g for 5
min at 4 8C. After removing the supernatant, the pellets were allowed
to dry and then were resuspended in 20 ll 10 mM Tris-Cl, 1 mM
EDTA [pH 8.0], and 0.5 lg of RNase A was added. The samples were
incubated at 37 8C for 1 h, and then treated with 7.5 units of calf
intestinal alkaline phosphatase in a 30-ll volume supplemented with
NEB Buffer 3 (103 concentration of 100 mM NaCl, 50 mM Tris-HCl
[pH 7.9], 10 mM MgCl2, 1 mM dithiothreitol). The samples were then
incubated for a further 1 h at 37 8C and then cleaned up with the
Qiagen MinElute Reaction Cleanup Kit (Qiagen, Valencia, California,
United States), following manufacturer’s directions, except with an
elution volume of 20 ll.

Linear amplification of DNA. The samples were amplified, with a
starting amount of 125 ng for ChIP input materials and up to 75 ng
for ChIP samples, using the DNA linear amplification method
described in BMC Genomics 4:19 [32].
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Microarray hybridization. RNA produced from the linear ampli-
fication (3 lg) was used to label probe via the amino-allyl method as
described at http://www.microarrays.org. Labelled probes were
hybridized onto a yeast tiled oligonucleotide microarray [29] at 65
8C for 16 h, and washed as described at http://www.microarrays.org.
The arrays were scanned at 5-lm resolution with an Axon
Laboratories (Sunnyvale, California, United States) GenePix 4000B
scanner running GenePix 5.1.

Image analysis and data processing. Array features were filtered
using the autoflagging feature of GenePix 5.1 with the following
criteria defining features to be discarded: [Flags]¼ [Bad], or [Flags]¼
[Absent], or [Flags] ¼ [Not Found], or LCase([ID]) ¼ ‘‘empty’’, or
LCase([ID]) ¼ ‘‘blank’’, or ([SNR 635] , 3 and [SNR 532] , 3), or [F
Pixels] , 100, or ([F Pixels] , 150 and [Circularity] , 75).

The remaining features for each array were then block-normalized
by calculating the average net signal intensity for each channel in a
given block, and then taking the product of this average and the net
signal intensity for each filtered array feature in the block.
Afterwards, all block-normalized array features were normalized
using a global average net signal intensity as the normalization factor.

Each histone tail modification epitope was chromatin-immuno-
precipitated in three to six biological replicates, with additional
technical replicates of the microarray hybridizations. Outlying
replicates were removed (with a minimum remainder of three
replicates), and the median was calculated and used for subsequent
data analysis.

Normalization of modification and PolII data. Each assay was
repeated three to six times, and median values per probe were
calculated. Measurements for each antibody were first log (base 2)
transformed and then normalized (to mean of zero and variance of
one).

Data availability. Data can be viewed at http://compbio.cs.huji.ac.il/
Nucs. Data are downloadable at http://www.cgr.harvard.edu/
chromatin, and have been deposited in GEO.

Clustering of aligned genes. The genes were clustered using
PCluster, a probabilistic hierarchical clustering algorithm [61].
Probes at locations relative to gene reference point, either beginning
of coding sequence (CDS) (Figure 2A) or TSS (Figure 2B), are used as
attributes of the gene. Linker probes (based on the nucleosome
locations of [29]) were discarded and treated as missing values.

Splitting genes into transcriptional groups. Each gene was assigned
a transcription activity value based on the average enrichment of
PolII along CDS probes. Genes with less than five CDS probes were
removed to reduce noise. We then used thresholds of 0.75 and�0.75
to classify genes as highly, mid-, and untranscribed. This resulted in
75 highly transcribed genes, 192 intermediate genes, and 57 poorly
transcribed genes. We also repeated the analysis presented in Figure
2C using mRNA abundance rather than PolII occupancy to bin genes
(Figure S4), and the results were qualitatively indistinguishable.

Averaging probes into nucleosomal-based data. A total of 24,947
probes were assigned to 2,288 nucleosomes using a four-probe
minimum size cutoff [29]. We used the hand-called set of nucleosome
positions (these were generated by inspection and adjustment of the
automated hidden Markov model calls; these positions are provided
in the dataset associated with [29]), as that set covered a slightly
greater fraction of the genome. Results are qualitatively unchanged
when only HMM calls are used (unpublished data). For each antibody,
the nucleosomal values were set by the median levels of relevant
probes.

Genomic classification of nucleosomes. Nucleosomes were anno-
tated based on their relative position to nearby genes. Nucleosomes
in the first (or last) 500 bp of annotated genes were annotated as 59
CDS (or 39 CDS) nucleosome. Other CDS nucleosomes were
annotated as mid-CDS. The two TSS adjacent nucleosomes were
annotated as TSS distal (59) and proximal (39) nucleosomes.
Nucleosomes upstream (up to 1 kb or closer to non-dubious CDSs)
were annotated as promoter nucleosomes. Nucleosomes around
tRNA genes (200 bp from each side) or ARS elements (200 bp from
each side) were annotated as tRNA or ARS nucleosomes. Other
nucleosomes were annotated as null. In certain cases, we allowed
more than one annotation per nucleosome; for instance, a
nucleosome between two divergent genes can be annotated as TSS-
proximal for one gene, and a promoter nucleosome for another one.

Single nucleosome clustering. Nucleosomes were clustered using
PCluster [61], treating each nucleosome as a vector of 12 values.

Principal component analysis. Principal component analysis was
applied to the nucleosomal modification data of 2,288 nucleosomes
versus 12 modifications using MATLAB 6.5 (rel 13) procedure
‘‘princomp.’’ Density visualization was done using Parzen windows

density estimator with Gaussian kernels (with standard deviation of
0.3) .

Genomic enrichment of modifications. We compared the mod-
ifications of nucleosomes affiliated with each genomic location
(promoter, TSS distal, etc.) to all other nucleosomes, using a standard
two-tail t-test. To correct for multiple hypotheses, we used a 5% false
discovery rate procedure [62]. The average change was then
calculated for , modification, genomic location . pairs with
significant p-values.

Transcription-specific modifications. To identify specific modifi-
cations at genomic locations with significant correlations to
expression levels of nearby genes, we trained a classification method
to predict whether a nucleosome was associated with genes enriched
or depleted for PolII. To prevent biased results, we applied a leave-
one-out cross-validation procedure in which the tested nucleosome
was removed from the training set, and a classifier was trained on the
rest of the nucleosomes and used to predict the held-out nucleosome
label. We used a Naive Bayes classifier [63] using the implementation
described [64]. We then classified the held-out nucleosome, based on
the probability of its modification pattern under each of the classes.
We computed the overall accuracy of classification and a p-value by
repeating the same leave-one-out procedure with randomly re-
shuffled nucleosome labels.

Functional classification of nucleosomes. We used recent genomic
studies [39–41] and compiled a set of target promoters for each
factor. We then tested the promoter and TSS-distal and TSS-
proximal nucleosomes of these genes for enrichment of specific
modifications. In addition, we created a subset of the target
nucleosomes of Harbison et al., by restricting the nucleosomes to
those up to 100 bp away from putative binding sites bound in rich
growth conditions [42]. As described earlier, we compared the
‘‘bound’’ nucleosomes to all other promoter/TSS nucleosomes, and
used a false discovery rate-corrected two-tail t-test.

Supporting Information

Dataset S1. Complete Dataset

Individual worksheets contain data for all individual replicates before
range normalization, for combined median data organized by
epitope, and for combined median data after range normalization.

Found at DOI: 10.1371/journal.pbio.0030328.sd001 (48 MB XLS).

Dataset S2. Replicate Reproducibility

Data contain correlations between individual experiments for each
antibody.

Found at DOI: 10.1371/journal.pbio.0030328.sd002 (24 KB XLS).

Figure S1. Digestion of Chromatin to Mononucleosomes before
Immunoprecipitation

Gels show micrococcal nuclease-digested DNA from multiple
independent cultures used for the immunoprecipitations reported
here. Molecular markers are as indicated. Blue dots indicate
nucleosomal DNA used for immunoprecipitations, while green dots
show sonicated DNA from the same culture. Digested DNA used for
immunoprecipitation was typically . 80% mononucleosome.

Found at DOI: 10.1371/journal.pbio.0030328.sg001 (674 KB PDF).

Figure S2. Low Levels of Histone Modification over Heterochromatin

Data are plotted as in Figure 1B. Chromosome III coordinates are
shown above the modification data. Three panels show data for a
portion of (from left to right) TelIIIL, HML, and TelIIIR. Only partial
regions of the three are shown, as the remainder was not tiled due to
cross-hybridization concerns [29].

Found at DOI: 10.1371/journal.pbio.0030328.sg002 (551 KB PDF).

Figure S3. Broad Patterns of Histone Modifications

Data are aligned by the TSS, and plotted as in Figure 2B for all
remaining modifications, as indicated.

Found at DOI: 10.1371/journal.pbio.0030328.sg003 (1.8 MB PDF).

Figure S4. Relationship of Histone Modifications to mRNA Abun-
dance

Genes were grouped into low, medium, and high mRNA abundance
classes using data from competitive hybridizations of mRNA versus
genomic DNA on cDNA microarrays (CLL and SLS, unpublished
data). Low-abundance mRNAs were defined as those with log(2) ratios
less than �1, while high-abundance mRNAs were defined as those
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exhibiting log(2) ratios greater than 1. Histone modification data are
averaged and displayed as in Figure 2C, and results are qualitatively
indistinguishable from those generated using PolII occupancy to
classify genes.

Found at DOI: 10.1371/journal.pbio.0030328.sg004 (676 KB PDF).

Figure S5. Representation of the First Two Principal Components

The first component (left panel) consists of all positive coefficients
(plotted on the y-axis), and therefore captures the global magnitude
of modification (both acetylation and methylation). The second
component differentiates between the two groups of correlated
modifications (see Figure 3C). Bars indicate different epitopes as
indicated.

Found at DOI: 10.1371/journal.pbio.0030328.sg005 (512 KB PDF).

Figure S6. Principal Component Analysis of Nucleosome Modifica-
tions

Data plotted as in Figure 4B and 4C, right panels.

Found at DOI: 10.1371/journal.pbio.0030328.sg006 (580 KB PDF).

Figure S7. Nucleosome Modifications Relate to Transcription Level

Classification plot as described in Figure 5, using mid-CDS
nucleosomes. The average accuracy of random classification was
61.27%, with a standard deviation of 5.76%. Accuracy of classifier was
82.65% (p , 0.0001).

Found at DOI: 10.1371/journal.pbio.0030328.sg007 (397 KB PDF).

Accession Numbers

The Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo) accession numbers for the experiments described here are
GSM64526–GSM64587, GSM64591, and GSM64592, and are part of
series accession number GSE2954.
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