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ABSTRACT

Array manufacturers originally designed single

nucleotide polymorphism (SNP) arrays to genotype

human DNA at thousands of SNPs across the

genome simultaneously. In the decade since their

initial development, the platform’s applications

have expanded to include the detection and charac-

terization of copy number variation—whether

somatic, inherited, or de novo—as well as loss-of-

heterozygosity in cancer cells. The technology’s

impressive contributions to insights in population

and molecular genetics have been fueled by

advances in computational methodology, and

indeed these insights and methodologies have

spurred developments in the arrays themselves.

This review describes the most commonly used

SNP array platforms, surveys the computational

methodologies used to convert the raw data into

inferences at the DNA level, and details the broad

range of applications. Although the long-term future

of SNP arrays is unclear, cost considerations ensure

their relevance for at least the next several years.

Even as emerging technologies seem poised to

take over for at least some applications, research-

ers working with these new sources of data are

adopting the computational approaches originally

developed for SNP arrays.

INTRODUCTION

Identifying DNA variants that contribute to disease is a
central aim in human genetics. Pinpointing these causal
loci requires the ability to assess DNA sequence variation
on a genome-wide scale. At the vast majority (some 99%)
of genomic sites, every human carries the same base resi-
due on both chromosomal homologs. The remainder

encodes much of the diversity among humans, including
differences in disease susceptibility. Single nucleotide poly-
morphisms (SNPs)—genome positions at which there are
two distinct nucleotide residues (alleles) that each appears
in a significant portion of the human population—
comprise a major part of these DNA variants. There are
some estimated 10 million SNPs in the human genome (1).
For simplicity, manufacturers often arbitrarily label the
two alleles of a SNP as A and B. Therefore, since each
individual usually inherits one copy of each SNP position
from each parent, the individual’s genotype at a SNP site
is typically either AA, AB or BB.
Due to the importance of SNPs, the International

HapMap Consortium and others are part of an ongoing
effort to identify SNP loci, genotype them in individuals of
various ancestries, and uncover their correlation structure
in the genome. In the past few years, however, researchers
have uncovered copy number variants (CNVs) as impor-
tant contributors to human genetic variation (2,3). CNVs
are defined as chromosomal segments, at least 1000 bases
in length, that vary in number of copies from human
to human (4). Since their discovery, several high-profile
studies have appeared associating CNVs with a variety
of common diseases. Recent examples include Alzheimer
disease (5), Crohn’s disease (6), autism (7,8), psoriasis (9),
Parkinson’s disease (10) and schizophrenia (11). As the
importance of the duplications and deletions that result
in these variants is becoming apparent, cataloging them
and assessing their frequencies is now an important goal.
The Database of Genomic Variants (http://projects
.tcag.ca/variation/) is a public effort aiming to compre-
hensively catalog all human CNVs (and other forms
of structural variation) in a manner analogous to that
undertaken by the government project dbSNP (http://
www.ncbi.nlm.nih.gov/projects/SNP/) for SNPs.
Considerable progress has been made in the technolog-

ical ability to assay humans for genetic variation.
Commercial probe-based SNP array platforms can now
genotype, with >99% accuracy, about one million SNPs
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in an individual in one assay (12,13). Furthermore, the
cancer research community has, for some years, been
applying these arrays to tumor DNA to find gross copy-
number abnormalities in chromosomes. Refinements
of the corresponding copy-number detection algorithms
subsequently enabled the detection of CNVs in germline
DNA from raw SNP array data, and the technology has
become the central tool in genome-wide detection of var-
ious types of DNA sequence-level human variation.
Over the last decade, the SNP array has been the

common thread in an extremely productive synergistic
relationship between advances in biological understand-
ing, computational methodology and the technological
development in the arrays themselves (Figure 1).
Progress in each of these three scientific arenas has spurred
progress in the other two, resulting in advances that would
have been impossible independently. This review details
the history of the development of, applications for, and
computational advances associated with SNP arrays.
As algorithms used to convert the raw array data into bio-
logical inferences have evolved, so have the array plat-
forms developed in response to the biological and
computational advances. Furthermore, although ‘next
generation’ DNA sequencers may gradually take over
some applications (14), computational biologists have
already begun borrowing methods initially developed for
SNP arrays to analyze sequence data. The review con-
cludes by considering the promise of high-throughput
sequencers as tools to assess human genetic variation,
contrasting their costs and capabilities with those of
SNP arrays.

UNDERLYING TECHNOLOGY AND SNP
GENOTYPING

Although the Affymetrix and Illumina SNP arrays work
using different chemistries, they have several aspects in
common. Both rely on the biochemical principle that
nucleotide bases bind to their complementary partners—
specifically, A binds to T and C binds to G, in Watson–
Crick base pairs. Both array protocols call for the
hybridization of fragmented single-stranded DNA to
arrays containing hundreds of thousands of unique
nucleotide probe sequences. Each probe is designed to
bind to a target DNA subsequence. A specific hypothetical
example for one SNP is shown in Figure 2. In both cases,

specialized equipment can produce a measure of the signal
intensity associated with each probe and its target after
hybridization. The underlying principle is that the signal
intensity depends upon the amount of target DNA in the
sample, as well as the affinity between target and probe.
Extensive processing and analysis of these raw intensity
measures yield SNP genotype inferences. Both manufac-
turers report genotyping accuracy well over 99.5%. This
section details some of the computational algorithms that
have been developed to convert the set of probe intensities
into genotypes.

Affymetrix platform

Affymetrix was the first to commercially produce SNP
arrays, nearly a decade ago. The HuSNP assay, initially
prototyped in Wang et al. (15), was designed to genotype
1494 SNPs on one chip. Subsequent versions increased
stepwise from 10 000 to 100 000 to 500 000, and finally to
nearly one million SNPs in the current release. Every SNP
site is interrogated by a set of probes that are each 25-nt
long. A probe is designed to be complementary, or very
nearly complementary, to a portion of the DNA sequence
harboring the SNP site (Figure 2a). In the first few ver-
sions of the array, each SNP was interrogated by between
24 and 40 distinct probe sequences, forming a probe set.
Within a set, each probe is associated with either allele A
or allele B. Additionally, each probe is either a perfect
match (PM; perfectly complementary to one of the
target alleles), or a mismatch (MM; identical to a perfect
match probe except that the center base is altered so as to
be perfectly complementary to neither allele). The idea of
the mismatch probe comes from mRNA expression arrays
(16), and their purpose is to measure background noise.
The scheme yields quartets comprised of four types of
probes: PMA, MMA, PMB and MMB. The computational
goal is to convert these 8–10 probe quartet intensity mea-
sures from raw array data into a genotype inference—AA,
AB or BB.

With each version of the array developed by the manu-
facturer, the computational community has responded
with corresponding algorithmic development. The algo-
rithms have, in turn, influenced array design. For example,
in deciding which SNPs to include on each new version of
the array, Affymetrix has chosen those for which the
current computational algorithm performs best. For the
10K version of their array (17,18), they adopted a parti-
tioning around medoids (PAM)-based algorithm (19).
Interestingly, PAM is a statistical methodology developed
with social science applications in mind (20), but compu-
tational biologists adapted the approach to meet the needs
of the technology. Briefly, at each SNP the algorithm uses
the maximum difference between PMA and MM probes as
a proxy for allele A abundance, and the analogous mea-
sure for allele B abundance. Unsupervised clustering,
across many samples, of the ratio of A abundance to the
sum of A and B abundances yields the three genotype
classes. Any point not sufficiently close to its closest clus-
ter center is given an indeterminate ‘No Call’ genotype.
To attain a high level of genotypic heterogeneity, the

Figure 1. Synergy between computational methodology, biological
inferences and technology. This review aims to showcase SNP arrays
at the center of a dynamic synergy across these three fields, each help-
ing to drive advances in the others.
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manufacturers trained their algorithm on an ethnically
diverse panel of 133 individuals.

The algorithm used for the 10K version relies on exam-
ining probe intensities across multiple arrays. In order to
compare these values fairly, it is crucial to first normalize
the intensities to take into account non-biological differ-
ences such as overall array brightness. Normalization aims
to correct these technological biases in probe intensity by
homogenizing, to some degree, the intensity distributions
of the arrays. Normalization methods initially proposed
were adopted from the mRNA expression microarray lit-
erature, and include cyclic lowess (21), invariant-set nor-
malization (22) and others. These normalization methods
developed by the computational research community
are relatively sophisticated. Surprisingly, however, cur-
rent consensus seems to have instead settled on a very
simple approach. Quantile normalization (23) is a non-
parametric method that ensures that all arrays in the
study have precisely the same probe intensity distribution.
The basic algorithm can be programmed in one line of
computer code in most languages. One simply replaces
the nth highest probe intensity value of each array with
the mean of the nth highest probe intensity values across
all arrays. The effect is to ensure that an array’s highest-
intensity probe has the same value across arrays, as does
the second highest, and so on. However, the intensity
ranks of the probes within each array remain unchanged.

With the advent of the 100K array, the manufacturer
switched to a dynamic model algorithm (24). Cutler et al.
originally developed the algorithm for a different
Affymetrix product, the sequencing array. Unlike the
PAM-based algorithm, the dynamic model approach
operates without a need for training data. The idea is to
represent the three genotypes by three different models
relating genotype to the signal intensity values of each
probe quartet. The AA model stipulates that the PMA

intensity predominates, while the intensities of the other
three probes have smaller (and approximately equal)
means. Similarly, the BB model stipulates a PMB fore-
ground and approximately equal background for the
other three. The AB model assumes equal PMA and
PMB means in the foreground, and equal MMA and
MMB means in the background. The algorithm also
adds a null model of equal means across all probe types,
corresponding to a genotype No Call. The score for each
model is the difference between the model likelihood and
the highest likelihood among the other models. This yields
four scores for each probe quartet. Finally, a Wilcoxon
signed rank test is performed against the null hypothesis
of median score (across quartets) equal to zero for each
model. A significant P-value gives a corresponding geno-
type call.
When Affymetrix introduced the 500K array, they

initially used the dynamic model algorithm. However,

Figure 2. Overview of SNP array technology. At the top is the fragment of DNA harboring an A/C SNP to be interrogated by the probes shown.
(a) In the Affymetrix assay, there are 25-mer probes for both alleles, and the location of the SNP locus varies from probe to probe. The DNA binds
to both probes regardless of the allele it carries, but it does so more efficiently when it is complementary to all 25 bases (bright yellow) rather than
mismatching the SNP site (dimmer yellow). This impeded binding manifests itself in a dimmer signal. (b) Attached to each Illumina bead is a 50-mer
sequence complementary to the sequence adjacent to the SNP site. The single-base extension (T or G) that is complementary to the allele carried by
the DNA (A or C, respectively) then binds and results in the appropriately-colored signal (red or green, respectively). For both platforms, the
computational algorithms convert the raw signals into inferences regarding the presence or absence of each of the two alleles.
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the computational community again responded to the
evolving platform with yet another approach (25), which
the manufacturer subsequently modified and called
Bayesian Robust Linear Model with Mahalanobis dis-
tance classifier (BRLMM). This algorithm ignores the
MM probes, based on the assertion that they add no
improvement over using the PM probes alone. The
method explicitly models log-transformed probe intensity
as a stochastic function DNA quantity, including probe-
specific effects as a term. For a fixed SNP, the model is

log Iij ¼ fi þ tj þ eij

where Iij is the (normalized) probe intensity in array j
for probe i of the probe set interrogating the SNP, fi
represents the probe-specific effect, tj represents the geno-
type-specific effect (the quantity of interest), and eij is an
error term. BRLMM fits the model using median polish
(26), separately for each of the A and B alleles. The result
is a pair of signal values (one for each allele) at the SNP
for each array. Following a ‘cluster center stretch’ trans-
formation, the algorithm clusters the pairs. The posterior
distribution of a Bayesian procedure determines the clus-
ter centers and variance/covariances. Finally, the method
assigns genotypes based upon the transformed pairs’
Mahalanobis distance from the cluster centers. ‘No
Calls’ are made when the distance from the closest cluster
center is more than half the distance to the second closest.
For the 500K array, as well as its successor the 6.0 array
(see below), model training was performed using the 270
HapMap samples (27).
The most recent version of the Affymetrix array has

seen several changes, largely driven by the academic
sector. The industry collaborated with computational
researchers, whose observations (28–30) led the funda-
mental changes in probe composition to optimize the lim-
ited space available on the array. Each SNP on the
Human SNP Array 6.0 is interrogated only by six or
eight perfect match probes—three or four replicates of
the same probe for each of the two alleles (31).
Therefore, intensity data for each SNP consists of two
sets of repeated measurements. Furthermore, the SNP
probe sets are augmented with nearly 1 million copy
number probes, which are meant to interrogate regions
of the genome that do not harbor SNPs, but rather may
be polymorphic with regard to copy number. Each such
copy number site is interrogated by only one probe (see
below). Academic researchers developed a new genotyping
algorithm, termed Birdseed (32), which Affymetrix
adopted in the software that is marketed with the 6.0
array. From the raw A and B (normalized) probe intensi-
ties, Birdseed obtains a pair of summarized A and B sig-
nals using a median polish procedure similar to that used
in BRLMM. Internally-run array data from 270 individ-
uals (27) determines expected locations of the clusters
formed by plotting A signals versus B signals a priori.
Birdseed fits the signals from the test samples to a
two-dimensional Gaussian mixture model using an expec-
tation–maximization (EM) procedure (33), with initializa-
tion provided by the a priori expected locations. The EM
procedure results in genotypes for each SNP, giving a

confidence score for each genotype based on the call’s
proximity to its cluster. Thresholds may be set for these
confidence scores to generate No Calls.

Illumina platform

Like the Affymetrix platform, the Illumina BeadArray
has gradually increased in capacity over the years—from
100 000 SNPs (Human-1) to the current (HumanHap1M)
one million, with intermediary steps 240 000, 317 000,
550 000 and 650 000. However, from a data analysis per-
spective, the array data output format has remained rela-
tively consistent—one raw measurement for the A allele
and one for the B allele at each SNP (Figure 2b). As a
result of the stability in data output (and fewer years on
the market), there has been considerably less algorithmic
evolution.

The raw file from a single HumanHap1M array consists
of some two million data points, conceptually some one
million pairs,

X1,Y1ð Þ, X2,Y2ð Þ, . . . , XN,YNð Þ:

The computational workhorse in the Illumina protocol is
its normalization procedure. Instead of normalizing across
arrays, the manufacturer’s software performs internal nor-
malization on each sample individually, without relying
on multiple arrays, using the same six transformation
parameters for all allele pairs. The parameters capture
appropriate factors for shifting, scaling, and rotating the
X- and Y-coordinates, and are inferred using the pairs
themselves, following outlier removal. The goal is to pro-
duce a pair of raw allele-specific copy measurements at
each SNP. The method uses these pairs for genotype
calls. Specifically, for each SNP, define a transformed
ratio � of the normalized allele intensities

� ¼
2

�

� �

� arctan
Y

X

� �

:

Each of the three genotypes—AA, AB or BB—represents a
cluster in one-dimensional � space (34,35). Proximity to a
cluster determines a test sample’s genotype, and cluster
separation determines SNP quality score. It should be
noted that, like the current version of the Affymetrix
array, the HumanHap1M also includes copy number
probes meant to interrogate non-SNP human genetic
variation.

Application: determining ancestry from multiple
genotypes

One benefit of the ability to generate many genotypes
easily and quickly is convenient assessment of individual
ancestry. This is particularly important in disease associ-
ation studies involving individuals with diverse ancestries.
In such studies, population stratification can produce
a false apparent association between disease and SNP
genotype when ancestry differs between affected and unaf-
fected groups, as any SNP with allele frequencies differing
by ancestry may appear to be associated with disease. The
necessity of accounting for ancestry in population-based
studies immediately underscores the advantage of SNP
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array-based studies. Rather than relying on self-reported
ancestry, which is notoriously problematic (36), the
researcher can automatically infer detailed information
in this regard without the need for additional data
collection.

The most widely applied method to assess ancestry
based on multiple genotypes is the structure program
(37). Structure assumes that there are K subpopulations
in the sample, with the underlying idea that each geno-
typed locus will have different allele frequencies in each of
the K subpopulations, enabling distinction between them.
After inference using a Markov chain Monte Carlo
method, structure outputs probabilities for each individual
having ancestry from each subpopulation. When structure
assigns to an individual substantial (non-zero) probability
values for more than one subpopulation, it can signal
a mixed ancestral background. With fewer than 100
SNP genotypes, structure can easily classify the HapMap
samples into African, Asian and European ancestries.
Furthermore, varying degrees of European and African
ancestries can be discerned in African American
individuals.

The structure methodology was developed before SNP
arrays became commercially available, and hundreds
of thousands of genotypes is clearly overkill with regard
to the algorithm’s necessary input. In an example of the
technology driving computational development that yields
biological insights, the high genomic resolution enabled
by the SNP array has facilitated a corresponding dramatic
increase in geographic resolution in ancestry inference.
A principal components analysis-based method, termed
EIGENSTRAT (38), facilitates the processing of large
data sets to detect population stratification with greater
sensitivity. This is an important application, as even subtle
population stratification can inflate P-values in associa-
tion studies. The initial EIGENSTRAT publication used
data from the 100K array, and the authors have subse-
quently demonstrated (39) that EIGENSTRAT is able to
subdivide individuals with European ancestry into sub-
groups of northwest European, southeast European and
Ashkenazi Jewish ancestries.

One may regard ancestry as a gross measure of distant
relatedness. SNP genotypes also provide information
sufficient to reveal relatedness on a finer scale, for
example identifying siblings or even distant cousins. Like
population stratification, cryptic relatedness can also
be a confounder in association studies. An extreme case
of two samples being related is the samples’ being from the
same individual. It is not uncommon that the same indi-
vidual’s DNA is inadvertently collected by two different
centers for the same study, for example. To guard against
such replication of samples, which can result in false pos-
itive results in association studies, researchers can easily
screen the samples by comparing genotypes in a pairwise
manner. Two arrays run on the same individual will
match at nearly all genotypes (allowing some differences
due to genotype error), and one group (40) identified
an optimal panel of 34 SNPs from the Affymetrix 50K
array to ‘bar code’ samples. Therefore, SNP array geno-
types allow researchers to infer relatedness across the

entire spectrum, from similarities in ancestry to individu-
ally unique DNA fingerprinting.

Applications: pooled DNA and allele-specific expression

Although the SNP array’s manufacturers designed the
technology to genotype genomic DNA, using one individ-
ual per array, the academic community has extended the
array’s genotyping capabilities to wider applications.
For example, rather than treating SNP genotype as a cat-
egorical variable, researchers have demonstrated (41) that
the array signals may be used to measure SNP allele fre-
quencies, a continuous variable, in pooled DNA from
hundreds of individuals. Using such an approach, a
study may analyze data from pooled disease cases and
pooled controls in batches to assess differences in allele
frequencies, which may signal associations between
genetic variants and disease susceptibility.
Another unforeseen application is the genotyping of

RNA rather than DNA to assess allele-specific expression.
Recently, studies have used both the Affymetrix (42) and
Illumina (43) platforms to detect genes for which one of
the parental alleles is expressed at a higher level than the
other. The authors of the studies were able to detect allele-
specific expression by using the arrays to genotype tran-
scribed SNPs that are heterozygous in the individual’s
genomic DNA, then algorithmically assess the relative
abundance of each of the two SNP alleles in the RNA.
These studies reveal a surprising number of genes that
show an imbalance in allelic expression.

LINKAGE DISEQUILIBRIUM AND GENOME-WIDE
ASSOCIATION STUDIES

The dramatic increase in the density of SNP arrays
has facilitated (and been driven by) a corresponding
explosion of studies aiming to find inherited genomic var-
iants associated with human disease. Armed with the abil-
ity to query DNA genome-wide, researchers may proceed
agnostically, without any a priori expectations as to the
associated variants’ functions or genomic locations. SNP
arrays genotype far fewer than >10 million known human
SNPs. How, then, is the platform able to capture a large
proportion of DNA-level variation by genotyping only
one million (or fewer) SNPs? This can be explained by
linkage disequilibrium.

Linkage disequilibrium (LD) and phasing

LD occurs where alleles at two or more loci appear
together in the same individual more often than would
be expected by chance. LD in humans primarily manifests
itself in loci on the same chromosome that have limited
historical recombination between them. Mathematically,
LD between two SNPs on the same chromosome can be
quantified as correlation between alleles across population
chromosomes. The standard measures of this correlation
are D, D0 and r2, all of which may be expressed as
functions of the allele frequencies of the two SNPs
(44). Technically speaking, D is simply the traditional sta-
tistical covariance of the two binary random variables

Nucleic Acids Research, 2009, Vol. 37, No. 13 4185
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representing haploid genotypes, and r2 is the square of the
statistical correlation coefficient.
Two SNPs that are in strong LD may serve as proxies

for one another. That is, if the correlation between the two
SNPs—as measured by r2, for example—is high, genotyp-
ing one of the SNPs gives nearly complete information
regarding the genotype of the other SNP. Therefore, a
SNP array that genotypes 1 million SNPs effectively
assays a larger proportion of human genetic variation
than represented on the array. Taking advantage of this
principle, the array manufacturers have been specifically
designing arrays to query SNPs that correlate with, or
‘tag’, a large number of other SNPs in the human
genome. The requisite knowledge of the LD structure in
the genome was largely facilitated by the International
HapMap Project (27), which itself uses both the
Affymetrix and Illumina arrays for population genotyping
along with a battery of statistical algorithms. The term
HapMap is an abbreviation for ‘haplotype map’, which
itself is derived from the phrase haploid genotype.
The phrase implies not simply the alleles at each SNP,
but the sequence of consecutive SNP alleles that occur
on each chromosome. For example, suppose an individual
carries heterozygous AB genotypes at each of two (geno-
mically) consecutive SNPs. There are two possible pairs of
two-SNP haplotypes for the individual’s two chromo-
somes. Either (i) one chromosome carries the A allele at
both SNPs and the other the B allele at both SNPs, or
(ii) one chromosome carries the A allele at the first SNP
and the B allele at the second, with the other chromosome
carrying the reverse. The process of determining which of
these possibilities is the reality is referred to as phasing,
and the possibilities become increasingly complex with
more SNPs. Phasing is necessary to determine LD struc-
ture from population genotypes, which is in turn necessary
to estimate the amount of human genetic variation cap-
tured by each SNP. Although there are many algorithms
for computational phasing (45), PHASE (46) is the algo-
rithm used by the HapMap Project. Here we again witness
the computation-biology-technology cycle at work.
The HapMap Project uses SNP arrays to help provide
genotypes in a high-throughput manner. Computational
analysis of the results reveals the biological reality of LD
structure. The cycle is completed as the LD structure
informs the design of the next generation of SNP arrays.
The lower the LD between SNPs, the more independent

information they represent. If the array can physically
accommodate only one million SNPs, then the goal is to
choose the SNPs that capture the largest proportion of
genetic variation measured by known SNPs. A convenient
metric to measure an array’s ability to capture common
human genetic variation is the proportion of known
human SNPs captured, above a fixed r2 threshold, by
array SNPs. Product literature from Affymetrix and
Illumina reports these metrics, and a study by Pe’er
et al. (47) found that some 80% of common (in
Caucasians) human SNPs are captured (at r2> 0.7)
by the markers on the Affymetrix 500K and Illumina
HumanHap300 arrays. When this study was published,
Illumina’s SNP selection was performed to optimally
capture human genetic variation, as assessed by

correlations measured using HapMap Caucasian geno-
types, while Affymetrix selected SNPs that performed
best with regard to genotyping accuracy. This explains
the HumanHap’s ability to capture a similar amount of
genetic variation with fewer SNPs.

Genome wide association studies (GWAS): linking
disease to DNA sequence

The power of SNP arrays to interrogate a significant pro-
portion of human genetic variation has facilitated hun-
dreds of GWAS, and many more are underway. The
goal in GWAS is to find the variants that are statistically
more prevalent in individuals with a disease than in indi-
viduals free of the disease. A study typically entails collect-
ing large numbers of affected (cases) and unaffected
(controls) individuals, and running the DNA of all
individuals on SNP arrays. The researchers then mine
the resulting data for statistically significant differences
in allele frequencies between the two groups. The asso-
ciated variant is then putatively either a disease predispo-
sition allele, or in LD with such an allele. Pinpointing the
predisposition allele can lead to genetic tests, treatment
options, and insight into the disease biology.

In recent years, GWAS have used both the Affymetrix
and Illumina platforms. A considerable limiting factor for
doing these studies is the cost of genotyping enormous
numbers of cases and controls. Large numbers are neces-
sary because the high density of the arrays, while allowing
hundreds of thousands of variants to be tested, results in
hundreds of thousands of tests. In order to avert huge
numbers of false positive associations, the P-value thresh-
old for statistical significance must be very stringent—
typically 10�6 or lower—to accommodate the huge multi-
ple testing burden. This problem is exemplified by the
study performed by the Wellcome Trust Case Control
Consortium (48), wherein the authors performed GWAS
on seven different diseases, �2000 cases for each disease.
Rather than having separate panels of control individuals
for each disease, the study shared 3000 unaffected controls
across the diseases. All 17 000 individuals were genotyped
on the Affymetrix 500K array. The density of the array
allowed the researchers to test an enormous number of
SNPs, but the multiple tests meant that only associations
with P-values less than 5� 10�7 were reported as
bona fide. The large sample sizes were therefore necessary
for power sufficient to obtain such low P-values.

DETECTING SOMATIC CHANGES IN CANCER
CELLS

For decades, cancer biologists have known that chromo-
somal instability is typical of human cancers (49). The
sporadic amplifications and deletions of genomic segments
are an area of intense research interest, as genes in
amplified regions represent candidate oncogenes, and
those deleted represent candidate tumor suppressor
genes. Almost immediately after SNP arrays were devel-
oped, researchers adapted them to query the tumor
genome, drafting the emerging technology for applications
beyond those that the manufacturers intended.
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Loss-of-heterozygosity (LOH) detection from array data

LOH is the sporadic loss of all or part of one of two
parental chromosome homologs. One case is hemizygous
deletion, where one homolog loses a segment while the
other remains at one copy per cell. However, ‘copy-neu-
tral’ LOH (also known as uniparental disomy or gene
conversion)—wherein the retained homolog is duplicated
so as to preserve two total copies per cell—is quite
common in some cancers (50). By definition, LOH implies
a change from a heterozygous state to a homozygous
state. Since SNP arrays are specifically designed to
assess such states, they are natural tools for LOH detec-
tion. Lindblad-Toh et al. (51) applied the very first
Affymetrix prototype SNP array (what would now be con-
sidered a very low-density array at some 1500 SNPs) to
LOH detection by comparing the genotypes in the
patient’s tumor DNA to those in the same individual’s
matched normal DNA. The authors inferred LOH at
regions harboring SNPs heterozygous (AB) in the
normal DNA and homozygous (AA or BB) in the
tumor, as one of the parental homologs has clearly been
lost. SNPs-harboring homozygous genotypes in the
matched normal DNA are non-informative with regard
to LOH. Regions with SNPs having heterozygous geno-
types in the tumor have retained heterozygosity.

Lin et al. (52) extended this idea to infer stretches of
LOH (notwithstanding non-informative SNPs) using a
hidden Markov model (HMM) approach. HMMs have
a long history (53) in the speech recognition literature,
and were first used by computational biologists for
DNA sequence alignment (54). The HMM structure
turns out to be ideally suited for various SNP array ana-
lyses, owing to the fact that the SNPs on the array can
represent observational units in a Markov chain when
ordered according to genomic position on a chromosome.
In the LOH setting, the two hidden states are ‘loss’ or
‘retention’, and the observed data are the paired normal/
tumor genotypes at each SNP. The authors in the Lin
et al. study implemented the methodology in the popular
dChip software as dChipSNP (http://www.dchip.org).
Although it initially required the presence of matched
normal genotypes (which are not necessarily available),
the authors subsequently modified the HMM to allow
LOH detection without paired normal DNA (55). The
modified HMM is based on the observation that LOH is
characterized by expanded stretches of homozygous SNP
genotypes in the tumor, regardless of the matched normal
genotypes. The observed values now consist solely of the
tumor genotypes. As such, the hidden states increase from
two to four with the addition of the (unobserved) hetero-
zygosity status of the patient’s normal DNA at each SNP.

It is important to point out that long stretches of homo-
zygosity may have causes other than tumor LOH. For
example, de novo deletions of certain chromosomal
regions have been associated with a variety of neuro-
psychiatric (56) and mental retardation (57) disorders.
At the SNP level, these deletions will manifest as homo-
zygous genotypes in the entire region. Furthermore, it is
becoming apparent that stretches of homozygosity, due to
inheritance of haplotypes identical-by-descent from both

parents, are longer and more common than previously
believed (58). Distinguishing such autozygosity from
somatic LOH events is a challenging problem.

Somatic copy number lesions

As described above, a key feature of probe hybridization-
based array technology is that expected probe intensity
increases with increased quantity of DNA harboring the
region interrogated by the probe. While expression micro-
arrays have exploited this feature for years, the first paper
(59) describing an algorithm to detect DNA copy number
changes from SNP array data appeared much later. Many
other algorithms followed, but all broadly follow the same
basic steps: summarization followed by smoothing/seg-
mentation. The summarization step entails converting
between 2 and 40 (depending on array platform and ver-
sion) probe-level intensity values into a single measure of
‘raw’ copy number at each SNP, though the newest ver-
sions of both manufacturers’ arrays also have many thou-
sands of singleton non-polymorphic probes that do not
require summarization. Almost all methods infer raw
copy number by comparing a summary measure for the
sample’s probe intensities to that from a panel of normal
samples. These raw copy numbers are rough measures of
the true underlying copy number. The smoothing/segmen-
tation step has spawned an entire subfield of applied com-
putational methodology, often borrowing from more well-
established applications in fields such as signal processing.
The goal is to infer chromosomal segments of locally con-
stant (true) copy number from the noisy raw copy number
measurements. Again, HMM approaches have proved
useful for both the Affymetrix (59) and Illumina (60)
data, although dozens of other methods have been pro-
posed (61), most borrowing from established statistical
methodology.
In the HMM framework for copy number inference,

the hidden states are the true integer copy number, and
the observed data is the raw copy number produced by the
summarization step. Other pieces of the model are
informed by the underlying biology. The dChipSNP soft-
ware implements a copy number HMM for the Affymetrix
arrays, and was demonstrated for the 10K (59) and 100K
(62) versions. Soon thereafter, Peiffer et al. (63) noted that
another source of information—the ‘B allele frequency’
(BAF)—can be obtained from array data, and demon-
strated its informativeness using the Illumina array. The
BAF is simply the B allele signal divided by the sum of
the A and B signals, and is particularly straightforward
to extract from the Illumina platform since the (post-
normalized) data consists of precisely these two measures
at each SNP. Interestingly, the BAF is reminiscent of the
quantity that was clustered to determine genotype in
the Affymetrix 10K array protocol (see above). Table 1
specifies the information gained by considering both
raw copy number and BAF for the range between 0
and 4 copies. Figure 3 demonstrates the utility of both
measures with a real example.
Although these copy number inference methods

perform well, technological and biological issues
can have a negative impact. As a consequence of the
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complexity-reduction step of the array protocols (12,13),
the SNPs are harbored on DNA fragments that vary with
regard to both length and G+C content. Two studies
(64,65) observed that these parameters can affect PCR
amplification kinetics, thereby leading to biases in down-
stream copy number inferences. To ameliorate this effect,
both studies added terms in a linear regression model to
correct for both of these artifacts.
Another problem that emerges from the biological real-

ity is that a primary tumor samples can have contamina-
tion from normal cells, or even consist of several different

subclones, each with different sets of lesions. This moti-
vated the Ogawa group to modify their copy number
inference algorithm CNAG (65) to call LOH from
cancer samples with up to 70–80% contaminating
normal cells (66) from array data. Assié et al. (67) and
Li et al. (68) subsequently extended this to allow copy
number inference in the presence of normal cells, and
were even able to estimate the proportion of cells harbor-
ing a particular lesion when the sample consists of various
subclones.

Since the SNP array provides both copy number and
SNP allelic information, we and others sought to measure
SNP allele-specific copy number (69). From the copy
number of the SNP alleles, one can determine the chro-
mosomal homolog(s) harboring each amplification and
deletion event. We performed our inferences by modeling
probe intensity as a function of allele-specific copy
number, for which we adopted a generalized linear
model. In another example of novel computational meth-
odology yielding biological insight when applied to array
data, the study showed that somatic amplification in lung
cancer appears to be strictly a monoallelic phenomenon
(70). That is, where amplification occurs, it affects only
one of the two parental homologs.

GERMLINE COPY NUMBER VARIATION

Until recently, the consensus view was that SNPs comprise
the vast majority of human genetic variation. This view
began to change in 2004 with the publication of two land-
mark articles (2,3) that uncovered inherited CNVs on a
widespread scale. A detailed comparison (71) between
one individual’s maternal and paternal chromosomes
underscored the importance of non-SNP variation in
DNA-level differences. That study’s authors found that
although SNPs accounted for 78% of all discrete differ-
ences between the two chromosomal homologs, they only
accounted for 26% of the total nucleotide differences.
That is, the number of bases at which two individuals’
DNA sequences differ due to SNPs is likely fewer than
the number of bases at which they differ due to CNVs.
The inferences from the study were partially facilitated
by the Affymetrix 500K and Illumina HumanHap650Y
arrays. Both manufacturers have influenced, and been
influenced by, the germline CNV field over the last few
years.

Methods to mine array data for CNVs

Two studies published in early 2006 (72,73) exploited erro-
neous SNP genotype calls to infer deletions at clusters of
calls that violated Mendelian inheritance or had high
‘No Call’ rates. Mendelian inheritance is violated when
the genotype of a child is inconsistent with that of its
parents. The violations occur, however, as a result of the
(biallelic) assumption of three possible genotypes (AA, AB
or BB) at each SNP site. Under this assumption, individ-
uals with a deletion on one homolog would likely be
assigned a homozygote call, which would often result in
apparent Mendelian inconsistency. For example, suppose
that a child inherits a deletion from a mother and has a

Figure 3. Two sources of information from SNP arrays. The raw copy
number (top panel) and BAF (bottom panel) are plotted for a 14Mb
region on chromosome 9. Both views of the data, from a custom
Illumina array, provide evidence for a focal gain (in red). Note that
the gain manifests itself in the BAF plot as clusters of points interme-
diary between 0.5 and 0 or 1, as expected from the values in Table 1.

Table 1. Copy number state information from SNP array data

CNV type Possible SNP
genotypes

Expected
A+B signal

Expected
BAF

Homozygous gain AAAA 4 0
AAAB 4 0.25
AABB 4 0.5
ABBB 4 0.75
BBBB 4 1

Hemizygous gain AAA 3 0
AAB 3 0.33
ABB 3 0.67
BBB 3 1

Normal AA 2 0
AB 2 0.5
BB 2 1

Hemizygous loss A_ 1 0
B_ 1 1

Homozygous loss _ _ 0 Undefined
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father with a true AA genotype at a SNP in the region. It
will appear that the child has an AA genotype. If the
mother harbors a B allele at the SNP on her non-deleted
homolog, she will appear to have a BB genotype, yielding
apparent Mendelian inconsistency for the trio. If the dele-
tion is common and large enough, there will be a cluster of
SNPs showing the violation across multiple father–
mother–child trios. Similarly, individuals with deletions
at the same locus on both chromosomes will often yield
‘No Calls’, and clusters of these null genotypes may also
indicate deletion.

In this way, these two studies were able to reveal a large
collection of novel germline deletions, but did not actually
take advantage of SNP array data per se, rather exploiting
downstream SNP genotypes. Moreover, their methods
were blind to gains. Given the extensive computational
algorithm development already undertaken for detecting
somatic copy number lesions in cancer from arrays, it is
unsurprising that the first published CNV detection algo-
rithm came from the cancer community. A detailed study
(74) of the 270 HapMap samples applied a computational
method (75) to Affymetrix 500K array data for CNV dis-
covery. The method was adapted from the authors’ tumor
DNA algorithm GIM [Genome Imbalance Map (65)].
In the new adaptation, the study compared GIM-inferred
raw copy numbers pairwise across all 270 samples, infer-
ring CNV regions at consistently aberrant raw copy
number ratios. The algorithm uses cluster analysis to
reveal a ‘maximal clique’ of samples that it infers to be
copy number two, calling the remainder as gains or losses
based on the ratios of their raw copy number to that of
the copy number two samples. Soon after this study was
published, the computational community developed cor-
responding methods for Illumina arrays. Two of the first,
QuantiSNP (76) and PennCNV (60) take an HMM
approach. Rather than using only raw copy number as
observed emission in the Markov process, both of these
methods take also advantage of the BAF measure
described above.

Most recently, a pair of papers appeared (31,32)
describing a new collection of algorithms, termed
Birdsuite. Affymetrix in fact developed their 6.0 array in
collaboration with these researchers and in tandem with
these algorithms. The papers’ authors divided the CNV
calling procedures into two separate methods, one
for genotyping common CNVs (termed copy number
polymorphisms, or CNPs), and one for identifying rare
or de novo CNVs. For CNP genotyping, Birdsuite takes
advantage of an existing map of CNP locations generated
by McCarroll et al. (31). To assign a genotype to a sample
at a CNP, the algorithm summarizes for the raw signals
from the probes within the CNP boundaries, and then
clusters this measure across samples to infer the individual
genotypes. For rare CNV detection, Birdsuite adopts
an HMM approach similar to that used by dChipSNP
described above.

Combining CNVs with SNP genotypes

For a given SNP, genotyping has traditionally meant the
classification of an individual as either AA, AB or BB.

As such, the manufacturers originally designed and opti-
mized the arrays with this goal in mind. As this review has
demonstrated, this is a well-studied problem algorithmi-
cally. If the SNP lies within a copy number variable
region, however, the assumption of two copies at each
locus is no longer valid. Similar to allele-specific copy
number in cancer described above, one can consider a gen-
eralized genotype whereby the SNP is multi-allelic when
considering both base residue and copy number
(Figure 4). SNP genotypes should, in theory, be tractable
from array data, since allelic intensity provides a noisy
measure of allelic dosage. However, this problem is com-
putationally much more difficult than the three-class pro-
blem. Where the data is very clean, one can cluster samples
by generalized genotype (Figure 5), but the noisiness of the
data usually necessitates a more sophisticated approach.
We presented such an approach in Macconaill et al. (77),
and the Birdsuite collection mentioned above also contains
a method to provide SNP allele-specific CNV calls.
As with SNP genotypes, copy number calls are

ambiguous with regard to phase. Matters are further com-
plicated when SNP genotypes are considered simul-
taneously with copy number. Mother–father–child trio
information may sometimes allow unambiguous phase
inference from the generalized SNP genotypes (77). In
the absence of trios, Kato et al. (78) generalized SNP
phasing techniques to infer SNP/CNV haplotypes in this
multiallelic setting. The authors’ algorithm MOCSphaser
(mixture of CNV and SNP phaser) is a straightforward
application of the EM algorithm similar to one developed
earlier for SNPs (79), and is implemented in free software
(http://emu.src.riken.jp/MOCSphaser).

CONCLUSIONS AND FUTURE PROSPECTS

As this review has shown, the history of the development
of SNP arrays is characterized by two recurrent themes.
First, the technology has repeatedly spawned applica-
tions extending well beyond the purpose for which it
was originally designed. Initially driven by computational
work from the cancer community, SNP arrays were

Figure 4. SNP genotypes in the presence of CNVs. (a) Traditional SNP
genotyping, under the assumption of two copies. (b) A chromosome
harbors a duplication of the orange region, resulting in multi-allelic
genotypes for the two SNPs contained in the region. (c) A chromosome
harbors a deletion of the orange region. (d) This individual carries a
deletion of the orange region on both chromosomes, resulting in _ _
genotypes for the two SNPs.
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serendipitously well-positioned for the near-concurrent
discovery of CNVs as a major source of human genetic
variation. Second, we repeatedly witness a synergy
between the array’s technological evolution and advances
in computational development and biological insight. As a
result, the SNP array is now a central tool in biomedical
research.
After regular dramatic increases in marker density

throughout the first several years of the 2000s, this trend
seems to have leveled off. The last arrays with substantial
increases in marker density were commercially released
by Affymetrix and Illumina in May 2007 and July 2007,
respectively. Both manufacturers have been developing
custom SNP genotyping arrays for non-human species
such as mouse, dog, and cow, but plans for the human
arrays are unclear. This review has focused on human
SNP arrays, but applications to other species promises
bring additional insights to evolution, molecular biology,
and genetics.

One contributor to the lack of recent updates to
SNP arrays may be the emergence of a new technology.
Next-generation sequencers of the sort produced by
Illumina/Solexa, Roche/454 and ABI (with others on
the way) are able to produce all of the information
that SNP arrays can produce, but with (theoretically)
greater resolution and accuracy (80). These new machines
can sequence billions of bases DNA sequence much more
cheaply, and in a much shorter time than previously
thought possible. For example, a large study recently
used billions of paired end reads (81) to detect thousands
of CNVs in a single individual, most of which would
have been missed by SNP arrays. Other groups (82,83)
have also recently shown that between 10 and 30 million
reads are sufficient to detect somatic amplifications
and deletions in tumor DNA at a resolution comparable
to that of the densest SNP arrays. Furthermore, paired
end reads can also uncover structural DNA changes
that are invisible to SNP arrays, such as translocations

Figure 5. Calling SNP/CNV alleles from raw data. All three SNPs shown here on chromosome 21 have alleles A and G. All plots show A allele and
G allele intensity values from Illumina HumanHap550 data for 112 HapMap samples. The top three panels show each of the three SNPs individually
along with their generalized genotypes. The bottom panel shows the total raw copy number sums (A signal+G signal) plotted, with each
axis representing one of the SNPs. Note that the samples clearly separate into homozygous deletions (red), hemizygous deletions (blue), and
normal (green).
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and inversions (Table 2). In the first full sequencing of a
cancer genome (85), DNA base-level differences—both
germline (SNPs) and somatic (point mutations)—were
detectable at far more loci than any array could cover.
However, as Table 2 shows, cost considerations make
next-generation sequencers impractical for some applica-
tions at the moment. Moreover, it is important to note
that the computational methodology spawned by the
SNP array community has already begun to prove useful
for high-throughput sequence data. For example, the stu-
dies in refs (82,83) adopted a segmentation approach, sim-
ilar to the circular binary segmentation (86) algorithm
developed for array data, to infer copy number lesions
from millions of sequence reads. Costs associated with
next-generation sequencers will continue to decrease, and
some are predicting the demise of the microarray (14).
Whether this demise comes sooner or later, the insights
gained from SNP arrays and the computational methodol-
ogies developed to handle the resulting data represent sig-
nificant scientific advances from the last decade.
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Table 2. SNP array/next-generation sequencer cost and feasibility

comparison

Genome-wide
interrogation goal

Estimated cost per sample

SNP arraya Next-generation
sequencerb
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