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Abstract

Given the significant population diversity in genetic variation, we aimed to investigate

whether single nucleotide polymorphisms (SNPs) previously identified in studies of colorec-

tal cancer (CRC) susceptibility were also relevant to the population of the Basque Country

(North of Spain). We genotyped 230 CRC cases and 230 healthy controls for 48 previously

reported CRC-susceptibility SNPs. Only the rs6687758 in DUPS10 exhibited a statistically

significant association with CRC risk based on the crude analysis. The rs6687758 AG geno-

type conferred about 2.13-fold increased risk for CRC compared to the AA genotype. More-

over, we found significant associations in cases between smoking status, physical activity,

and the rs6687758 SNP. The results of a Genetic Risk Score (GRS) showed that the risk

alleles were more frequent in cases than controls and the score was associated with CRC in

crude analysis. In conclusion, we have confirmed a CRC susceptibility locus and the exis-

tence of associations between modifiable factors and the rs6687758 SNP; moreover, the

GRS was associated with CRC. However, further experimental validations are needed to

establish the role of this SNP, the function of the gene identified, as well as the contribution

of the interaction between environmental factors and this locusto the risk of CRC.
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Introduction

Colorectal cancer (CRC)is the fourth most common type of tumour, being 6.1% of the total

new cases of cancer diagnosed in 2018and one of the major causes of cancer-related morbidity

and mortality globally(9.2% of cancer deaths)[1]. There is wide geographical variation in inci-

dence with rates varying 8-fold (colon cancer) and 6-fold (rectal cancer) in both sexes world-

wide[1]. In this sense, Spain is one of the countries with the highest incidence of CRC, and

taking into account both sexes, it was the most frequent cancer diagnosed in 2018 with 13.7%

of newcancer cases[2] and is the main cause of cancer related deaths [3]. Considering the mag-

nitude of the problem, the use of screening tests for early detection and effective treatment of

CRC during the initial stages would have a significant impact on public health. In this sense,

US PreventiveServicesTaskForce and the American CancerSocietyrecommendthescreening

for CRC byannualfaecaloccultbloodtesting (FOBT), flexible sigmoidoscopyor(every 5 years)

orcolonoscopy(every 10 years), in subjects aged 50 years or older [4].

The mechanisms underlying CRC occurrence and progression are complicated and mainly

involve genetic and environmental factors, such as sex[5,6], diet and physical activity [5,7].

Various oncogenes and tumour suppressors, such as KRAS, APC, BRAF, TP53, and SMAD4,

have been identified by CRC-related studies and may be useful for diagnosing and treating

CRC in the future[5,8,9].

There is a direct association between sporadic tumour occurrence and susceptibility vari-

ants carried by an individual[10]. Many candidate gene[11] and genome-wide association

studies (GWAS) [12]have evaluated common genetic risk factors for CRC; however, only a few

of these have been replicated in subsequent studies[10]. Thus, in this study, we aimed to test

the hypothesis that some of the previously reported CRC-related SNPs are associated with

CRC susceptibility in the Basque population, in which there are no previous studies of this

kind. Therefore, we investigated possible associations between 48 susceptibility SNPs and

development of sporadic CRC in the adult population of the Basque Country.

Methods

Design

This is an observational, matched case-control study in a population group residing in the Bas-

que Country (Spain).

Study population

Participants in this study were recruited among patients attending, between January 2012 and

December 2014, any of the three hospitals of the Osakidetza/Basque Health Service (Basurto,

Galdakao and Donostia)belong of the Basque Country Colorectal Cancer Screening Pro-

gramme (CRCSP)[13]. To be eligible for this CRCSP, average risk people from 50 to 69 years,

asymptomatic for colorectal symptoms and registered with the Osakidetza/Basque Health Ser-

vice [13]. Subjects with symptoms suggesting CRC or with high CRC risk, such as individuals

with familial adenomatous polyposis or hereditary nonpolyposis are managed outside this pro-

gramme and are not included in this analysis. Subjects were invited to participate in this study

by the gastroenterologists who performed the colonoscopies as a confirmatory test.

The recruitment and data collection for the present study were conducted between 2014

and 2016. All the patients who were newly diagnosed with CRC (n = 601) were invited to par-

ticipate in this study, that is, the individuals with a positive result, (abnormal) to an immuno-

chemical faecal occult blood test (iFOBT), being the faecal-Haemoglobin cut-off point of 20 μg

Hb/g faeces for both sexes[13] and a colonoscopy[13]. Of those, 283 refused to participate in
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the study, and 10 were excluded due to missing information. Ultimately, 308 subjects (66.2%

men) consented to participate in the survey and completed all the questionnaires.

In addition, for each case, three age- (±9.0 years) and sex-matched control patients were

randomly sought from the list of CRC-free subjects (n = 1,836) who participated in the CRCSP

during the same period as the cases. The matched controls were patients with positive results

(abnormal) for iFOBT and negative colonoscopy results (normal). The participation rate of

the controls was 37.6%, and 17 subjects were excluded due to missing information. Finally, the

matched case-to-control ratio was 1:1, and the final dataset included 308 cases who were diag-

nosed with CRC and 308 age- and sex-matched controls. The flowchart displaying the selec-

tion process for the CRC cases and controls is shown in Fig 1. Thirty-three cases, 39 controls

and 6 cases-controls initially included in this study were excluded from the genetic analysis

because incomplete genotyping by insufficient DNA available for the assay, and the respective

partners of cases and controls were also excluded of the study. Finally, genotyping data were

obtained from 230 cases and 230 controls.

The time spent between the participation in the CRCSP and in the present study was 1.8

(1.0) years (range: 0.4–4.6) in cases and 1.6(1.5) years (range: 0.2–3.7) in controls, without

significant differences (P = 0.119). Consenting participants self-completed and returned a

detailed Food Frequency Questionnaire (FFQ) and one general questionnaire (GQ). The ques-

tions referred to the behaviours before participating in the CRCSP. Assistance from the study

staff was available to help the patients to understand the items on the questionnaires.

This study was conducted according to the guidelines laid down in the Declaration of Hel-

sinki, and all procedures involving patients were approved by the Clinical Research Ethics

Committee of the Basque Country (reference numbers PI2011006 and PI2014042). Written

informed consent was obtained from all the study participants.

Biological samples and genotyping

In this study, healthy tissues or saliva samples of 230 CRC patients and 230 controls were col-

lected and genotyped. Samples were provided by the Basque Biobank for Research-OEHUN

Fig 1. Flow chart of the process of obtaining the sample. CCR, Colorectal cancer.

https://doi.org/10.1371/journal.pone.0225779.g001
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www.biobancovasco.org and were processed following standard operating procedures with

appropriate ethical approval. DNA was extracted using AllPrep DNA / RNA kit (Qiagen) for

paraffin-embedded tissue samples and AutoGenFlex Tissue DNA Extraction kit (Autogen)

for mouthwash saliva samples and then was quantified with NanoDrop™ Spectrophotometer

(ThermoFisher).

Double-stranded DNA was quantified by fluorometry using theQuant-iT™ PicoGreen1

dsDNA Assay Kit (Invitrogen, CA) on a DTX 880 Multimode Detector (Beckman Coulter) to

normalize DNA concentration. After an updated summary of the published SNPs associated

with susceptibility for development of CRC [14,15], those shown in Table 1 were selected.

These SNPs were organized in the context of the gene(s) at or near locus and chromosome

locus. The allelic discrimination was assessed using the MassARRAY1 System (Agena Biosci-

ence) on CeGen-PRB2-ISCII (Nodo USC) following the procedure provided by the manufac-

turer. Quality control samples were included in the genotyping assays.

Associated data

The questionnaire mentioned above, the GQ was used to gather information on weight status

(self-reported weight and height) and environmental factors (demographic factors: age and

sex; and lifestyle information: physical activity (PA) and smoking consumption). These ques-

tions were taken from the Spanish Health Questionnaire [16]. Body mass index (BMI), esti-

mated from self-reported height and weight was classified according to the WHO criteria for

those under 65 years of age [17] and according to the criteria proposed by Silva Rodrı́guez

et al. for those 65 years and older [18].

Diet was assessed using a short FFQ that is a modified version of the Rodrı́guez et al. ques-

tionnaire[19]. This adaptation was validated with multiple 24- recalls in a subsample of the

participants[20]. It consists of 67 items and requires the subjects to recall the number of times

each food item was consumed either per week or per month. The respondents might also

record the consumption of other foods that were not included on the food list.

Average portion sizes were employed to convert FFQ consumptions[21]. For items that

included several foods, each food’s contribution was estimated with weighting coefficients

that were obtained from the usual consumption data[22]. All the food items that were con-

sumed were entered into DIAL 2.12 (2011ALCE INGENIERIA), a type of dietary assessment

software, to estimate energy intake (kcal/d). Moreover, the FFQ included specific questions

about their frequency of intake of five major types of alcohol beverages: beer, wine, cider,

aperitif with alcohol and liquor. In terms of the amount consumed, 10 g of alcohol was con-

sidered a standard drink[23]. Participants were categorized into non-drinker/moderate con-

sumption and risk consumption, according to the SENC criteria that consider moderate

drinking is up to 1 standard drink per day for women and up to 2 standard drinks per day

for men[23]. Alcohol consumption was also expressed in tertiles of ml per day according to

sex (men: T1,� 70.6; T2, 70.7–138.8; T3,� 138.9; and women: T1� 5.8; T2, 5.9–69.8; T3,�

69.9).

Additionally, socioeconomic data was assessed with an index that was obtained from the

clinical databases developed by the Health Department of the Basque Government, namely the

socioeconomic deprivation index (DI). This index was estimated using the MEDEA project

criteria[24] from simple indicators in the 2001 Census, namely unemployment, manual work-

ers, casual workers, low education level and low education level among young people. The DI

was divided into quintiles (Q), with the first being the least disadvantaged and the fifth being

the most disadvantaged. The DI was successfully assigned to 82.4% of participants, while the

address information quality did not permit the linking of the remaining 17.6%.
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Table 1. 48 SNPs associated with susceptibility for the development of CRC and analyzed in this study.

SNP Gene(s) at or near locus, variant type Chr.

locus

ORa Risk

alleleb
SNP Gene(s) at or near locus, variant

type

Chr.

locus

ORa Risk

alleleb

rs12080929 TRABD2B, intron variant 1p33 0.87 C [61] rs1535 FADS2, intron variant, FADS1,

upstream gene variant

11q12.2 1.15 A [69]

rs6687758 DUSP10, regulatory region variant 1q41 1.04 G [62] rs3802842 COLCA1, upstream gene variant,

COLCA2, intron variant

11q23.1 1.14 C [69]

rs6691170 LOC105372950, DUSP10, intergenic variant 1q41 1.01 T [62] rs10849432 LOC105369625, intron variant,

non coding transcript variant

12p13.31 1.14 T [70]

rs10911251 LAMC1, intron variant 1q25.3 1.11 A [62] rs3217810e CCND2, intron variant,

CCND2-AS1, upstream gene

variant

12p13.32 1.19 T [62]

rs11903757 NABP1/SDPR, Intergenic variant 2q.32.3 1.14 C [62] rs3217901 CCND2, intron variant 12p13.32 1.10 G[71]

rs10936599 MYNN, upstream gene variant 3q26.2 1.02 C [62] rs10774214 CCND2, intron variant, non

coding transcript variant

12p13.32 1.17 T [72]

rs647161 C5orf66, Intron variant, non coding transcript

variant

5q31.1 1.07 A [62] rs7136702 LARP4/DIP2B, ATF1, intergenic

variant

12q13.12 1.10 T [62]

rs2736100 TERT, 3 prime UTR variant 5p15.33 1.07 A [63] rs11169552 LARP4/DIP2B, ATF1, upstream

gene variant

12q13.12 1.05 C [62]

rs1321311 SRSF3/CDKN1A, regulatory region variant 6p21.2 1.07 A [62] rs59336 TBX3, intron variant 12q24.21 1.15 T [62]

rs11987193 DUSP4, intergenic variant 8p12 0.79 T [61] rs4444235 BMP4/ATP5C1P1/CDKN3/
MIR5580, downstream gene

variant

14q22.2 1.11 C [73]

rs16892766 TRPS1/EIF3H/UTP23, downstream gene variant 8q23.3 1.25 C [63] rs1957636 LOC105370507, regulatory region

variant

14q22.2 1.03 T [74]

rs6983267 CCAT2, intron variant, non coding transcript

variant, CCAT2, non coding transcript exon

variant

8q24.21 1.15 G [63] rs4779584 SCG5, GREM1, FMN1, intergenic

variant

15q13.3 1.18 T [70]

rs10505477 CASC8, intron variant, non coding transcript

variant

8q24.21 1.11 A [64] rs16969681 GREM 1, downstream gene

variant

15q13.3 1.18 T [75]

rs7014346 CASC8, intron variant, non coding transcript

variant, POU5F1B, intron variant

8q24.21 1.20 A [65] rs11632715 SCG5, GREM1, FMN1, intergenic

variant

15q13.3 1.12 A [76]

rs719725 TPD52L3/UHRF2/GLDC, intergenic variant 9p24.1 1.08 A [61] rs9929218 CDH1, intron variant 16q22.1 1.10 A [75]

rs10795668 LOC105376400, upstream gene variant 10p14 1.32 A [66] rs12603526 NXN, intron variant 17p13.3 1.10 C [69]

rs704017 ZMIZ1-AS1, intron variant, non coding

transcript variant

10q22.3 1.13 G [67] rs4939827 SMAD7, intron variant 18q21.1 1.16 T [77]

rs1035209 ABCC2/MRP2, intergenic variant 10q24.2 1.13 T [68] rs10411210 RHPN2, intron variant 19q13.11 1.15 C [73]

rs12241008 VTI1A, intron variant 10q25.2 1.19 C [38] rs1800469 TGFB1, upstream gene variant

B9D2, downstream gene variant,

TMEM91, intron variant

19q13.2 1.09 G[69]

rs11196172 TCF7L2, intron varian 10q25.2 1.14 A [69] rs2241714 TGFB1, TMEM91, upstream gene

variant, B9D2, missense variant

19q13.2 1.09 C [70]

rs1665650 HSPA12A, intron variant 10.q25.3 0.95 T [64] rs961253 BMP2/HAO1/FERMT1, upstream

gene variant

20p12.3 1.12 A [73]

rs174537 TNEM258, downstream gene variant, MYRF,

intron variant

11q12.2 1.16 G [64] rs4813802 BMP2/HAO1/FERMT1,

regulatory region variant

20p12.3 1.10 C [70]

rs4246215 TNEM258, upstream gene variant FEN1, 3 prime

UTR variant, FADS1, downstream gene variant,

MIR611, upstream gene variant, FADS2, intron

variant

11q12.2 1.15 G [69] rs2423279 HAO1/PLCB1, downstream gene

variant

20p12.3 1.10 C [72]

rs174550 FADS1, intron variant 11q12.2 1.15 T [69] rs5934683 SHROOM, upstream gene variant,

GPR143, intron variant

Xp22.2 1.04 C [31]

Chr, Chromosome; OR, odds ratio; SNP, single nucleotide polymorphism
aOdds ratios of previous studies are reported to calculate weighted Genetic Score
b Superscript numbers correspond with the studies in References

https://doi.org/10.1371/journal.pone.0225779.t001
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Quality management

In the present research, we apply a similar quality management that those used in the IDEFICS

study [25]. A unique subject identification number was attached to each recording sheet, ques-

tionnaire, and sample, as in other researches. The identification number had to be entered

twice before the document could be entered into its respective database. All data were entered

twice independently, and deviating entries were corrected. Inconsistencies that were identified

by additional plausibility checks were rectified.

Statistical analysis

Statistical analyses were performed using SPSS 22.0 (SPSS Inc, Chicago, USA), STATA 13.0

(StataCorp LP, Texas, USA). Categorical variables are shown as a percentage, and continuous

variables are shown as the means and standard deviations (s.d.). Normality was checked using

Kolmogorov-Smirnov-Lilliefors test. Paired t-testorWilcoxonrank-sum test was used to two

related means comparison, and a χ2 test was used to evaluate differences. Tests for association

and deviation from Hardy-Weinberg equilibrium were performed separately in CRC patients

and healthy controls. When expected frequencies were lesser than 5, Fisher’s exact test was

used.

In the case-control study, we estimated the odds ratio (OR) and 95% confidence interval

(95% CI) for the polymorphism selected using conditional logistic regression adjusted for age

(50–59 years old vs. 60–69 years old), sex(women vs. men), BMI (underweight/normal weight

vs. overweight/obesity), physical activity (�15 min/d vs.<15 min/d), smoking status (never

smoker vs. current and former smoker and quit smoking:� 11 years ago vs.< 11 years ago),

alcohol consumption (T1, T2 and T3) and Deprivation Index (DI) (quintile 1–3 vs. quintile

4–5) as categorical variables and energy intake as quantitative (kcal/d). ORs were calculated

for the codominant model, dominant model, recessive model, and allelic comparison. The

most frequent genotype (homozygous) was considered the reference group to calculate ORs in

a codominant and dominant model, and the most frequent genotype (homozygous) and the

heterozygous genotype containing the risk allele were considered the reference group in the

recessive model. The significance level was corrected using a Bonferroni correction by dividing

the standard P value (two-tailed) (0.05) by the total number of SNPs analyzed (n = 48), assum-

ing alpha was equal to 0.001 (α = 0.05/48).

Additionally, correspondence analysis (CA) was performed using PAST 3.21 to identify

potential associations between SNPs associated with CRC and associated data. CA is a multi-

variate statistical technique which provides Cartesian diagrams based on the association of the

variables examined. All variables were represented in graphs and the more closed are the

points the more higher is the level of association between variables[26].

To assess genetic susceptibility, two methods were used as a simple, unweighted count

method (count Genetic Risk Scores, c-GRS) and a weighted method (w-GRS)[27,28]. Both

methods assumed each SNP to be independently associated with risk[29]. An additive genetic

model was assumed: weightings of 0, 1, and 2 were given according to the number of risk

alleles present[29,30].

The count method assumed that each SNP contributed equally to CRC risk and was calcu-

lated by summing the number of risk alleles across the panel of SNPs tested. This produced a

score between 0 and twice the number of SNPs, i.e., representing the total number of risk

alleles. The weighted GRS was calculated by multiplying each β-coefficient for the CRC pheno-

type from the discovery set by the number of corresponding risk alleles (0, 1, or 2 copies of the

risk allele except for the SNP rs5934683 in chromosome X that was coded 0, 0.5, and 1) and

then summing the products[31].
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Finally, we defined the GRS as the count of risk alleles across all 48 SNPs, ranging from 0 to

95 for c-GRS and 0 to 105 for w-GRS. Since the published effects of each SNP were similar, an

unweighted GRS was preferred. However, we also explored the models using weights derived

from the GWAS publications and models fitted to our data[32].

Gene expression association analyses

Gene expression changes in tumour and normal colon tissue associated to SNPs with signifi-

cant association with CRC risk were analyzed using publicly available data and bioinformatic

tools. In the first place Genomic Data Commons Data Portal (GDC) (https://portal.gdc.

cancer.gov) was used to examine data generated by the TCGA (The Cancer Genome Atlas)

research network (https://www.cancer.gov/tcga), but for SNPs with unavailable data in GDC

portal alternative bioinformatic tools were applied. On the one hand, gene expression data

from between case and control samples of colon and rectum adenocarcinomas were compared

using GEPIA (Gene Expression Profiling Interactive Analysis) (http://gepia.cancer-pku.cn/

index.html) [33]. On the other hand, GTEx (The Genotype-Tissue expression project) (https://

gtexportal.org/home/) was used to check the relationship between SNPs and the expression

level of genes related to these SNPs in colon tissue of healthy donors.

Results

Table 2 shows the comparisons of associated data between cases and controls. Cases had a

higher consumption of cigarettes/day and were more engaged in regular physical activity at a

medium-high level as compared with controls. In addition, in the total sample, there were

more smokers in men than in women (70.6% vs. 54.5%; P<0.001); and had a higher consump-

tion of cigarettes/day (11.6(11.1) vs. 9.0(11.4); P = 0.030). Among controls 51.9% of women

and 65.4% of men were smokers (P = 0.049); and among cases, 57.1% of women and 75.8% of

men were smokers (P = 0.004).

The distribution of genotypes and alleles at SNPs selected in the CRC group and in the con-

trol group that deviated from the Hardy-Weinberg equilibrium are shown in Supplementary

Material(S1 Table). The SNPs that were not following the Hardy-Weinberg equilibrium in

cases were rs12080929 and rs5934683. None of the genotype or allele frequencies for the SNPs

analysed reached statistically significant differences between cases and controls, after Bonfer-

roni correction application.

Table 3 presents some results of the association of susceptibility genotypes and alleles with

the risk of CRC in the codominant model. Other SNPs analyzed in this study are shown in

Supplementary Material (S2 Table). Adjusting for potential confounders did not appreciably

alter the observed ORs. Only the rs6687758 exhibited a statistically significant association

with CRC risk based on the crude analysis. The AG genotype of rs6687758 conferred about

2.13-fold increased risk for CRC compared to the AA genotype.

Moreover, there was an association between smoking status, physical activity and the

rs6687758 SNP for CRC risk in cases (Fig 2). We did not find an association between the risk

genotype for rs6687758 and other associated variables (BMI, sex, alcohol consumption, DI

and age). The results of CA for all cases are shown in a Cartesian diagram. The first three axes

accounted for more than 50.0% of the total variance in all cases (axis 1: 23.0%; axis 2: 19.6%

and axis 3: 13.4%). An inverse association can be observed between the variable DI (which

plotted at the negative end of axis 1) and age, positioned in the positive segment of axis 1.

Overall, axis 1 represents a gradient that runs from low values for DI (0: Q1-Q3; 1: Q4-Q5) to

high values for age (0:50–59 y; 1:60–69 y). From the genetic viewpoint, the SNP that showed
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the closest association with associated variables wasrs6687758, which also plotted in the quad-

rant delimited by the positive segments of axis 1 and 2.

Analyses performed to study possible changes in gene expression associated with rs6687758

in tumour versus normal colon tissue showed that gene DUSP10 is more expressed in colon

sigmoid tissue when rs6687758 has GG genotype (in healthy individuals) (S1 Fig), but also,

that it has higher expression in cases of colon and rectum adenocarcinomas than in healthy

persons (S2 Fig).

For SNP rs719725, an increased CRC risk was found to be associated with the CC genotype

in dominant and recessive models for crude analysis, compared with the AA and AC genotype

(ORCC: 1.77; 95% CI = 1.09–2.86; P = 0.020 in recessive model and ORAC+CC: 1.64; 95%

CI = 1.12–2.38; P = 0.010 in dominant model). Moreover, significantly elevated CRC risk was

found to be associated with rs2736100, rs11987193and rs961253by using dominant model (for

rs2736100 ORAA+AC:1.72; 95%CI = 1.00–2.94; P = 0.048 in adjusted model; for rs11987193

ORCC+CT: 1.45; 95%CI = 1.01–2.49; P = 0.046 in crude analysis; and for rs961253 ORAA+AC:

1.47; 95%CI = 1.02–2.11; P = 0.038 in crude analysis).

Table 2. Comparison of associated data between cases and controls with genotyping data.

Cases (n = 230) Controls (n = 230) Pa-value
Age, years, mean(s.d.) 61.5(5.4) 60.9(5.5) 0.333

BMI classification, %

NonOv/Ob 42.2 33.0

Ov/Ob 57.8 67.0 0.043

Physical activity level, %

Low 65.7 77.4

Medium and high 34.3 22.6 0.005

Smoking status, %b

Non-smoker 30.4 39.1

Smoker 69.6 60.9 0.050

Cigarettes, cigarettes/day, mean(s.d.) 10.7(11.2) 8.3(10.9) 0.007

Number of cigarettes, %b

< 15 49.3 66.9

� 15 50.7 33.1 0.003

Alcoholic beverage intake, ml/day, mean(s.d.) 98.0(91.5) 97.2(107.5) 0.637

Tertiles of alcohol intake, ml/dayc, %

T1 32.6 33.9

T2 31.3 35.7

T3 36.1 30.4 0.404

Standard drink units, classification, %

Abstemious /low risk 72.1 79.1

High risk 27.9 20.9 0.078

DI, %b

Q1-Q3 73.5 69.6

Q4-Q5 26.5 30.4 0.409

BMI, body mass index; DI, deprivation index; Ob, obesity; Ov, overweight, Q, quintile; s.d. standard deviation
aP<0.05 wassignificant
bValid percentages
cMen: T1,� 70.6; T2, 70.7–138.8; T3,� 138.9; and women: T1� 5.8; T2, 5.9–69.8; T3,� 69.9

https://doi.org/10.1371/journal.pone.0225779.t002
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Table 3. Association between genetic variants associated with susceptibility and the risk of CRC in the codominant model.

Gene, SNP IDa N

(cases/controls)

Model Ib Model IIc

OR (95% CI) Pd-value OR (95% CI) Pd-value

rs6687758

AA 136/169 1.00 - 1.00 -

AG 87/51 2.13(1.39–3.25) <0.001 1.95(1.05–3.60) 0.034

GG 7/9 1.02(0.37–2.82) 0.967 1.06(0.21–5.28) 0.945

A 359/389 1.00 - 1.00 -

G 101/69 1.60(1.13–2.28) 0.009 1.54(0.97–2.46) 0.067

rs6691170

GG 72/87 1.00 - 1.00 -

GT 112/108 1.22(0.82–1.82) 0.331 1.20(0.64–2.26) 0.570

TT 45/31 1.79(1.01–3.16) 0.045 1.70(0.74–3.89) 0.207

G 256/282 1.00 - 1.00 -

T 202/170 1.23(0.94–1.62) 0.124 1.27(0.89–1.79) 0.185

rs719725

AA 63/91 1.00 - 1.00 -

AC 116/106 1.46(0.97–2.18) 0.068 1.99(1.07–3.71) 0.030

CC 51/31 2.14(1.27–3.64) 0.005 1.80(0.78–4.17) 0.168

A 242/288 1.00 - 1.00 -

C 218/168 1.60(1.22–2.11) <0.001 1.49(1.05–2.10) 0.025

rs12241008

TT 196/204 1.00 - 1.00 -

CT 33/24 1.47(0.82–2.64) 0.192 1.49(0.75–2.95) 0.253

CC 1/2 0.50(0.05–5.51) 0.571 0.78(0.05–12.84) 0.862

T 425/435 1.00 - 1.00 -

C 35/28 1.22(0.72–2.09) 0.455 1.34(0.66–2.72) 0.412

rs7136702

CC 80/91 1.00 - 1.00 -

CT 108/114 1.11(0.75–1.65) 0.593 1.03(0.56–1.89) 0.826

TT 42/25 1.98(1.09–3.64) 0.026 2.83(1.12–7.17) 0.028

C 268/296 1.00 - 1.00 -

T 192/164 1.34(1.03–1.74) 0.030 1.28(0.91–1.80) 0.154

rs2241714

CC 116/101 1.00 - 1.00 -

CT 94/105 0.79(0.55–1.15) 0.217 0.54(0.31–0.95) 0.034

TT 20/23 0.72(0.37–1.38) 0.321 0.28(0.09–0.89) 0.031

C 326/307 1.00 - 1.00 -

T 134/151 0.80(0.61–1.06) 0.125 0.74(0.51–1.07) 0.114

rs961253

CC 101/124 1.00 - 1.00 -

AC 103/76 1.65(1.11–2.46) 0.013 1.79(0.67–4.78) 0.247

AA 26/30 1.03(0.57–1.85) 0.925 1.04(0.41–2.63) 0.941

C 305/324 1.00 - 1.00 -

A 155/136 1.20(0.90–1.59) 0.208 1.11(0.76–1.62) 0.584

A, adenine; C, cytosine; CI, confidence interval; G, guanine; OR, odds ratio; rs, reference single nucleotide polymorphism; SNP, single nucleotide polymorphism; T,

thymine
aThe most frequent genotype (homozygous) was considered the reference group
bModel I, crude conditional logistic regression model
cModel II, conditional logistic regression adjusted forage, sex, BMI, physical activity, smoking status, alcohol consumption, Deprivation Index and energy intake.

Participants with missing data for the confounding variables were included as a separate category for these variables
dP<0.001 was significant

https://doi.org/10.1371/journal.pone.0225779.t003
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Finally, the unweighted GRS of the sample studied was 38.6(4.6) (range: 25–52), with statis-

tically significant differences between cases and controls (39.2(4.4) (range: 28–50.5) vs. 37.95

(4.6) (range: 25–52); P = 0.002). The GRS built as the unweighted count of risk alleles was sig-

nificantly associated with CRC risk, with an average per-allele OR of 1.07 (95%CI = 1.02–1.11;

P = 0.002) in crude analysis. However, this association was not statistically significant in the

adjusted model (OR: 1.04; 95% CI = 1.00–1.10; P = 0.066). On the other hand, w-GRS was 44.7

(5.5) for the total sample, with statistically significant differences between cases and controls

(45.3(5.4) (range: 32.2–58.6)vs.44.1(5.6) (range: 27.7–57.6); P = 0.036). The w-GRS was associ-

ated with CRC risk (OR: 1.04; 95% CI = 1.00–1.09; P = 0.037) in crude analysis but not in the

adjusted one (OR: 1.01; 95% CI = 0.97–1.05; P = 0.588).

Discussion

In this study, we investigated SNPs associated with susceptibility for the development of CRC

in a Basque population who took part in the population screening programme. We found that

out of 48 analysed SNPs, only the rs6687758 was associated with the risk of CRC in this popu-

lation. This is in agreement with previous GWAS that reported a positive association between

this SNP and CRC also in European population[15,34]. Some authors have also observed rela-

tionships between this SNP and colorectal polyp risk[35]; although this SNPs is not associated

significantly with adenoma risk and has their effects on the malignant stage of colorectal

tumorigenesis[36]. The frequency of the risk allele of rs6687758 (G) in the European popula-

tion (22.2%) [37]is similar to that registered in the cases of the present study and higher than

that of the controls.

The other 47 risk SNPs did not replicate in our population. This may be due to differences

in the underlying linkage patterns given the ethnic differences in populations studied. Twenty-

Fig 2. Cartesian diagram of correspondence analysis for studied associations between genetic and environmental

factors in cases. BMI, body mass index; DI, deprivation index; PA, physical activity.

https://doi.org/10.1371/journal.pone.0225779.g002
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oneof the SNPs analyzedhave beenreplicated in Asian, American-Caucasian or African, but

not in European (rs11903757, rs1321311, rs10505477, rs719725, rs704017, rs12241008,

rs11196172, rs174537, rs4246215, rs174550, rs1535, rs10849432, rs3217901, rs4444235,

rs11632715, rs4939827, rs10411210, rs1800469, rs2241714, rs961253 and rs4813802); and 4

were not replicated in population studies; however, they were associated with susceptibility for

development of CRC in GWAS (rs1665650, rs59336, rs1957636 and rs12603526). The effect

sizes of some of these associations were small (OR<1.20, P<0.05, for rs1321311, rs12241008,

and rs704017)[38–40]. Additionally, it may be that the distribution of environmental factors

in our population differs from that of the populations in which these genetic variants were

discovered.

The SNP rs6687758 is in a regulatory region, flanking the promoter of DUSP10, at ~250 kb

from the start of the gene. Hence, it is likely to affect the expression of this gene. Polymor-

phisms in DUSP10 gene (dual specificity protein phosphatase 10) have been previously

demonstrated to be associated with CRC risk [41,42]. In this study, we confirmed this CRC

susceptibility locus in the Basque population sample. Earlier analyses have found frequent dys-

regulation of dual specificity protein phosphatase 10 (DUSP10/MKP-5) in CRC [41]. DUSP10
belongs to the dual kinase phosphatase family. These proteins are associated with cellular pro-

liferation and differentiation, and they act as tumour suppressors [41,43].

Target kinases of DUSPs are inactivated by dephosphorylation of both phosphoserine/thre-

onine and phosphotyrosine residues [41,42]. They act at several levels, taking part in fine-tun-

ing signalling cascades. DUSPs negatively regulate members of the mitogen-activated protein

kinase (MAPK) superfamily [41,44], which are implicated in some activities that are often dys-

regulated in cancer, such as cell proliferation, survival, and migration [41]. MAPK signalling

also plays a key role in determining the response of tumour cells to cancer therapies, since its

abnormal signalling has important consequences for the development and progression of

human cancer [44].

Several studies have already shown the involvement of DUSPs as major modulators of criti-

cal signalling pathways dysregulated in different cancers [43], such as in the case of the overex-

pression of DUSP1/MKP-1 in the early phases of cancer and its decreasing during tumour

progression [42].

There is abundant evidence that DUSP10, in particular, may play an important role in

tumorigenesis and could alter CRC risk [45,46]. It inactivates p38 and JNKin vitro[41,47], and

its upregulation are very common in CRC[48]. The activation of JNK protein is due to the pro-

tein kinase G (PKG)/MEKK1/SEK1/JNK cascade, and it is related with cell proliferation and

inducing apoptosis[41,49]. Moreover, p38 is involved in the promotion of cellular senescence

as a meansof eluding oncogene-induced transformation; it participates in cell cycleregulation

suppressing cell proliferation and tumorigenesis[41,49].

On the other hand, the results extracted from gene expression association analyses show a

higher expression of DUSP10 gene in CRC cases, but also that there is a higher expression of

this gene in colon tissue of healthy controls when they have the GG genotype for rs6687758.

Thus, it would be likely to find a relationship between higher expression of the gene and the

presence of allele G in rs6687758 in tumour tissue. Nonetheless, it would be interesting to fur-

ther explore this aspect through future analyses to compare gene expression between individu-

als carrying the risk variant and control individuals. Previous studies have pointed in the same

direction that there is overall increase in patients’ relapse-free survival when DUSP10 expres-

sion is upregulated, and that DUSP10 mRNA was increased in the tumour compared with nor-

mal tissue adjacent to the tumours [46,49,50].

We found an association between smoking status and the rs6687758 SNP for CRC risk in

cases. Other authors have also observed this association[51]. Benzo[a]pyrene, one of the
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carcinogenic compounds included in cigarette smoke, up-regulated COX-2 in mouse cells[52],

which in turn could either activate or be dependent on the MAPK pathway, suggesting a possi-

ble gene-smoking interaction [53,54]. Concerning the association between physical activity,

the rs6687758 SNP and CRC risk, as far as we know, there are no precedents in the literature.

However, other studies have found interactions between polymorphisms associated with

growth hormone (GH1) and insulin-like growth factor I (IGF-I) (rs647161, rs2665802), physi-

cal activity and CRC [53,54]. According our results, rs6687758, medium-high physical activity

level and CRC would be associated. However, this outcome, contrary o what it could be

expected, could be related to changes in the lifestyles, including physical activity level, in cases

after diagnosis [55].

We also analyzed unweighted and weighted GRS models. We observed that cases had more

risk alleles than controls, this result was according to expectations considering the previous

studies[56]. In the crude analysis, we observed that patients that had a higher number of risk

alleles had a higher risk of CRC. Other authors observed similar results using an adjusted

unweighted model [32]. However, some other authors did not find this association[57]. It

should be noted that common allele variants generally have modest effect sizes[58], but the

combination of multiple loci with modest effects into a global GRS might improve the identifi-

cation of patients with genetic risk for common complex diseases, such cancer[59]. In this

sense, Ortlepp et al.[60] concluded that more than 200 polymorphisms might be necessary for

“reasonable” genetic discrimination.

Our study has several limitations and strengths. The principal limitations of this study were

the small sample size that makes difficult to detect possible associations between polymor-

phisms and disease risk since some genotypes showed very low frequencies in our population.

Another disadvantage of the small sample size is that they can produce false-positive results;

in order to avoid it, the Bonferroni correction was used. The strengths of the study were that

although controls tested positive in iFOBT, in CRCSP were confirmed that they were free of

the disease through colonoscopy. Colonoscopy was used as diagnosis criteria to identify the

cases in order to avoid false positives and negatives.

In conclusion, most SNPs analyzed were not associated with risk of CRC. Only one of the

48 SNPs analyzed, rs6687758, was associated with risk of CRC, in this population (on crude

analysis). Moreover, there were significant associations between smoking status, physical activ-

ity, the rs6687758SNP and CRC risk. On the other hand, the results of the GRS showed that

the risk alleles were more frequent in cases than controls and this score was associated with

this type of cancer in crude analysis. Therefore, in this study, we have confirmed a CRC sus-

ceptibility locus and the existence of associations between modifiable factors such as smoking

and physical activity and the presence of the risk genotype for rs6687758. However, further

experimental validations are needed to establish the role of this SNP, the function of the gene

identified, as well as the contribution of the interaction between environmental factors and

this polymorphism to the risk of CRC.
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Methodology: Iker Alegria-Lertxundi, José M. Ordovás, Marian M. de Pancorbo, Leire Palen-

cia-Madrid, Marta Arroyo-Izaga.

Colorectal cancer susceptibility SNPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0225779 December 10, 2019 13 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225779.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225779.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225779.s004
https://doi.org/10.1371/journal.pone.0225779


Project administration: Marta Arroyo-Izaga.

Software: Iker Alegria-Lertxundi, Marta Arroyo-Izaga.
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