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Abstract The observed heterogeneity in rubella-specific im-
mune response phenotypes post-MMR vaccination is thought
to be explained, in part, by inter-individual genetic variation.
In this study, single nucleotide polymorphisms (SNPs) and
multiple haplotypes in several candidate genes were analyzed
for associations with more than one rubella-specific immune
response outcome, including secreted IFN-γ, secreted IL-6,
and neutralizing antibody titers. Overall, we identified 23
SNPs in 10 different genes that were significantly associated
with at least two rubella-specific immune responses. Of these
SNPs, we detected eight in the PVRL3 gene, five in thePVRL1
gene, one in the TRIM22 gene, two in the IL10RB gene, two in
the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57,
MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype
GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA
was significantly associated with both higher IFN-γ secretion
(t-statistic 4.43, p<0.0001) and higher neutralizing antibody
titers (t-statistic 3.14, p=0.002). Our results suggest that there
is evidence of multigenic associations among identified gene
SNPs and that polymorphisms in these candidate genes con-
tribute to the overall observed differences between individuals

in response to live rubella virus vaccine. These results will aid
our understanding of mechanisms behind rubella-specific im-
mune response to MMR vaccine and influence the develop-
ment of vaccines in the future.
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Introduction

The morbidity associated with rubella virus (RV) infection
remains of great concern. Although typical childhood or adult-
hood infection can be benign (signified by rash, fever, lymph-
adenopathy, and malaise), rubella infection is particularly dan-
gerous in pregnant women, resulting in congenital defects of
the fetus (Plotkin 2001) or, in severe cases, perinatal death
(Sydnor and Perl 2014). The most effective way to prevent
rubella infection and reduce the morbidity associated with
congenital rubella syndrome is maternal immunization with
the measles-mumps-rubella (MMR) virus vaccine, which has
successfully reduced rubella infection by >99 % since its in-
troduction in 1971 in the USA (Lievano et al. 2012).

While many individuals develop protective immunity
against rubella after MMR vaccination (∼95%), others remain
susceptible to infection for several reasons, including waning
rubella-specific immune memory and primary vaccine nonre-
sponse to RV (Sydnor and Perl 2014), both of which are in-
fluenced by genetic factors. Our previous study aimed to
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identify genetic influences on response to rubella vaccine
(Ovsyannikova et al. 2007, 2009a, 2014a). Twenty-seven
genes, including genes in the HLA-A and HLA-B loci, were
found to differ between low and high antibody responders
after stimulation with RV (Haralambieva et al. 2013), suggest-
ing that genetics play a large role in one’s ability to develop
protective immunity against rubella after immunization. In
this study, we identified several single-nucleotide polymor-
phisms (SNPs)/haplotypes in candidate immune response
genes that are significantly associated with multiple rubella
vaccine-induced immune response outcomes after MMR
immunization.

To our knowledge, this study is the first study of its kind to
identify polymorphisms in several candidate genes that are
significantly associated with more than one rubella-specific
immune response (i.e., secreted IFN-γ, IL-6, and neutralizing
antibody titers) post-MMR vaccination. Developing an under-
standing of the function of genetic variability on immune re-
sponse to rubella immunization is critical for designing more
effective vaccines in the future.

Materials and methods

The methods described in this study are similar to those
published for our previous studies (Haralambieva et al.
2011a, 2014; Lambert et al. 2013, 2014; Ovsyannikova
et al. 2011a, b).

Study subjects and immunization

Subjects from a previously described cohort were utilized
for this study (Haralambieva et al. 2010; Ovsyannikova
et al. 2004, 2005, 2010a, 2011b). The study cohort com-
prised a combined sample of 1052 subjects from three
independent cohorts of healthy children in Rochester,
MN. Specifically, 368 healthy children, ranging in age
from 12 to 18 years, were recruited from Rochester,
MN, between the years 2001 and 2002. In 2006–2007,
we enrolled an additional 396 healthy children (age 11–
19 years) as part of our original MMR vaccine studies. In
2008–2009, additional subjects, ranging in age from 11 to
22 years, were added to this cohort, resulting in a cohort
of 1052 subjects. Prior to participation in these studies,
subjects provided documentation of receiving two doses
of rubella-containing vaccine. After excluding subjects
without genotyping data, 1039 subjects remained for anal-
ysis. Each subject provided a written record of receiving
two age-appropriate doses of MMR vaccine. Permission
to conduct this study was granted by the institutional re-
view board of Mayo Clinic.

Antibody measurement

Rubella-specific neutralizing antibody (NA) titers were quan-
tified for each subject using a method that has been previously
published (Lambert et al. 2014). In brief, a modified soluble
immunocolorimetric (ICA)-based neutralization assay
(sICNA) was optimized for high-throughput measurement
and analysis. Measurements were reported as the highest di-
lution at which there was a 50 % reduction in viral activity
(NT50).

Secreted cytokine measurement

Secreted rubella-specific IFN-γ and IL-6 were measured by
conducting enzyme-linked immunosorbent assays (ELISAs).
The complete protocol for this methodology has been previ-
ously published (Dhiman et al. 2010; Lambert et al. 2013;
Ovsyannikova et al. 2009b). To summarize, cryopreserved
peripheral blood mononuclear cells (PBMCs) from each sub-
ject were cultured, in triplicate (2×105 cells per well in 96-
well plates), with either media (control wells) or the W-
Therien strain of RV (MOI=5). PHA (5 μg/ml) was used as
a positive control. Cell cultures were incubated based upon
previous optimization results: 48 h for maximal IFN-γ secre-
tion and 24 h for maximal IL-6 secretion. ELISAs were per-
formed using the manufacturer’s recommendations (BD
Pharmingen), and plates were read at 450 nm on a microplate
reader (Molecular Devices Corporation, Sunnyvale, CA).

Candidate gene SNP genotyping

The description of the tagging SNP selection strategies and
genotyping methods has been previously described
(Haralambieva et al. 2011a, 2014; Ovsyannikova et al.
2011a, b). SNPs within candidate genes, 5 kb upstream and
downstream for each candidate gene, were chosen based on
the linkage disequilibrium (LD) tagSNP selection algorithm
(Yen et al. 2006) from the Hapmap Phase II (http://www.
hapmap.org), Seattle SNPs (http://pga.mbt.washington.edu/),
and NIEHS SNPs (http://egp.gs.washington.edu/), with SNP
minor allele frequencies≥0.05, LD threshold of r2≥0.90.
Overall, 768 SNPs in 92 candidate genes were analyzed as
part of this study (Haralambieva et al. 2014; Pankratz et al.
2010). The 768 SNPs were genotyped using a custom-
designed 768-plex Illumina GoldenGate™ assay (Illumina
Inc., San Diego, CA) following the manufacturer’s instruc-
tions. The BeadStudio 2 software was used to call genotypes.

Statistical analysis

Our goal was to determine whether there were genetic variants
that shared associations with multiple immune response phe-
notypes for rubella. We have reported many of these
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associations previously, and the analytical methods used to
assess the associations are outlined in those publications
(Haralambieva et al. 2011a; Ovsyannikova et al. 2010b,
2011b, 2012). Briefly, to assess the additive genetic associa-
tion with the logarithmic transformation of neutralizing anti-
body NT50 titer, simple linear regression models were
employed. All other phenotypes had multiple observations
per subject and were evaluated with repeated measures ap-
proaches, including an unstructured within-person variance-
covariance matrix to account for within-subject correlations.
A test of the ordinal genotype by stimulation status interaction
assessed the effect of genotype on the average difference be-
tween stimulated and unstimulated PBMC samples. Our pri-
mary tests of association for each of these phenotypes were
adjusted for a number of potentially important covariates, in-
cluding age at enrollment, ages at first and second vaccina-
tions, sex, time between most recent vaccination and study
participation, batch/run number of assay, and the first three
population stratification eigenvectors. The q-values were then
computed. The p-values from these primary tests of associa-
tion were compared on a SNP-by-SNP basis to identify poly-
morphisms significant (p<0.05) for more than one phenotype.
Six-hundred and five SNPs were used in these comparisons.
Summaries of the measures of virus-specific immune re-
sponses were obtained for these SNPs, broken by allelic cat-
egory, as noted in our previously published work
(Haralambieva et al. 2011a; Ovsyannikova et al. 2010a, b,
2011b).

Further exploration of these data then commenced via post
hoc haplotype estimation and analysis. In the absence of ped-
igree data and known linkage phase, there may be multiple
possible haplotypes for an observed genotype. To address this
complication, the expectation-maximum (EM) algorithm, as
per Schaid et al. (Schaid et al. 2002), was used to establish the
conditional posterior probabilities of a given haplotype with
an observed genotype. From these probabilities, a design ma-
trix of expected haplotype counts was constructed and used to
investigate associations with phenotype. The above tech-
niques were applied utilizing the Haplo.Stats package with
the default settings for batch size, maximum number of itera-
tions and convergence criteria. Haplotypes with less than a
1 % frequency were eliminated to help reduce the error asso-
ciated with estimation.

Results

Demographics

In total, 1039 subjects participated in this study. The median
age at the time of enrollment was 15.1 years with a range of
11–22 years. Slightly over half (55.2 %) of the cohort
consisted of male subjects, while the remaining 44.8 % were

female. Caucasian-Americans accounted for 85.0 % of the
cohort, and 8.1 % of subjects identified as either Black or
African-American. Quantification of NA titers, IL-6 secretion,
and IFN-γ secretion within the cohort yielded median values
of 57.4 (range 17.0–2391.2), 3595.7 ng/μl (range −957.3–
5831.8 ng/μl), and 6.1 ng/μl (range −239.0–579.4 ng/μl), re-
spectively. See Table 1 for a summary of subject
demographics.

Associations between SNPs and immune measures

Since the study subjects were racially diverse, genotype-
phenotype data were analyzed for a combined cohort of
1039 subjects (Table 2) and, in addition, separately for 883
Caucasian subjects (Supplementary Table S1).

PVRL3 (Nectin-3) gene associations

Overall, we identified 23 SNPs in 10 genes that were signifi-
cantly associated with more than one rubella-specific immune
phenotype post-MMR vaccination, including eight SNPs in
the PVRL3 gene. Of these eight SNPs, five were significantly
associated with rubella-specific IL-6 and IFN-γ secretion:
rs4682233 (p<0.0007), rs72935984 (p<0.004), rs72937914
(p<0.04), rs10433385 (p<0.01), and rs78545860 (p<0.01).
Interestingly, the major alleles of these SNPs were all associ-
ated with an increase in IL-6 secretion, and enhanced IFN-γ
secretion was observed in four of the five. The remaining three
SNPs identified in the PVRL3 gene (rs75054607,
rs76464851, and rs78157313) were significantly associated
with IFN-γ secretion and NA titers (p<0.002, p<0.002, and
p<0.002, respectively). Though relatively rare (only one ho-
mozygous minor allele GG genotype was observed), increas-
ing copies of the minor alleles in all three of these SNPs
resulted in a greater than 80-fold increase in IFN-γ secretion
from baseline and a greater than 3-fold increase in NA titers
from baseline (Table 2). These associations remained statisti-
cally significant when excluding the homozygous minor allele
genotype observed only in one subject (IFN-γ, p=0.004;
NT50, p=0.0007).

Several of the SNPs in the PVRL3 gene are in high linkage
disequilibrium (LD) and are likely to be inherited together.
SNPs in high LD (r2≥0.92) include rs72935984 and
rs4682233; rs75054607, rs78157313, and rs76464851; and
rs10433385 and rs78545860 (Fig. 1).

PVRL1 (Nectin-1) gene associations

Five SNPs in the PVRL1 gene were also found to be signifi-
cantly associated with multiple rubella-specific immune re-
sponse outcomes. The homozygous major alleles of the
rs11820364 (p<0.008; one homozygous minor allele geno-
type was observed) and rs61247604 (p<0.0005; no
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homozygous minor allele genotype was found) SNPs were
associated with a decrease in both IL-6 secretion and NA
titers. Both associations remained significant when excluding
the homozygous minor allele genotype from analysis
(rs11820364, IL-6, p=0.002; NT50, p=0.02; rs61247604,
IL-6, p=0.0003; NT50, p=0.0005). An increase in the count
of major alleles of the rs73571285 (p<0.02) and rs73571287
(p<0.02) SNPs were associated with an increase in IL-6 se-
cretion and a decrease in secreted IFN-γ; however,
rs73571285 demonstrated no association with neither IL-6
nor IFN-γ secretion, and rs73571287 displayed no association
with IFN-γ secretion when excluding the homozygous minor
allele genotypes from statistical analysis (data not shown).
The three remaining SNPs in the PVRL1 gene (rs79849521,
p<0.03; rs4936489, p<0.03; and rs73578845, p<0.04) were
significantly associated with both IL-6 secretion and NA ti-
ters. Likewise, when examining associations without the ho-
mozygous minor genotypes that have few (0–2) subjects in
that category, IL-6 association with the PVRL1 rs73578845
becomes more significant (p<0.0001), but the NA titer asso-
ciation becomes less significant (p=0.104). Decreasing the
count of the major alleles of the rs79849521 resulted in an
increase from baseline in IL-6 secretion, as well as an increase
in NA titers. Conversely, the major allele of rs4936489 tended
to correlate with enhanced IL-6 (p=0.04) secretion and de-
creased NA titers (p=0.03). These associations remained sta-
tistically significant when excluding the homozygous minor
allele genotype observed only in one individual (IL-6, p=
0.009; NT50, p=0.04) (Table 2).

Several intronic SNPs in the PVRL1 gene have a moderate
likelihood of being inherited together. SNPs with an LD of
r2≥ 0.33 include rs11820364 with rs79849521 and
rs61247604, rs79849521 with rs61247604, and rs73571285
with rs73571287 (Fig. 2).

Table 1 Subject demographics and immune outcomes summary

Subject demographics and immune outcomes summary

Total (N=1039) p value

Age <0.0001

N 1039

Mean (SD) 15.1 (2.2)

Median 15.0

Q1, Q3 13.0, 17.0

Range (11.0–22.0)

Age at first vaccination (months) 0.0002

N 1039

Mean (SD) 20.1 (20.9)

Median 15.0

Q1, Q3 15.0, 16.0

Range (11.0–185.0)

Age at second vaccination (years) <0.0001

N 1039

Mean (SD) 8.4 (3.5)

Median 9.0

Q1, Q3 5.0, 12.0

Range (1.0–17.0)

Time from second vaccination to enrollment (years) <0.0001

N 1039

Mean (SD) 6.7 (2.9)

Median 6.4

Q1, Q3 4.6, 8.6

Range (0.4–16.8)

Gender 0.6255

Male 574 (55.2 %)

Female 465 (44.8 %)

Race <0.0001

American Indian, Alaska Native 4 (0.4 %)

Asian, Hawaiian, Pacific Islander 27 (2.6 %)

Black or African American 84 (8.1 %)

Caucasian-American 883 (85.0 %)

Multiple 28 (2.7 %)

Other 7 (0.7 %)

Unknown 6 (0.6 %)

Ethnicity 0.0089

Not Hispanic or Latino 1012 (97.4 %)

Hispanic or Latino 20 (1.9 %)

Don’t know 7 (0.7 %)

Neutralizing antibody (NT50) 0.0034

N 1029

Mean (SD) 81.6 (123.5)

Median 57.4

Q1, Q3 34.9, 95.5

Range (17.0–2391.2)

IL-6 (ng/μl) <0.0001

N 988

Mean (SD) 3435.4 (908.0)

Table 1 (continued)

Subject demographics and immune outcomes summary

Median 3595.7

Q1, Q3 3027.1, 4005.1

Range (−957.3–5831.8)
IFN-γ (ng/μl) <0.0001

N 969

Mean (SD) 24.4 (70.0)

Median 6.1

Q1, Q3 1.5, 20.0

Range (−239.0–579.4)

Negative cytokine values indicate that the unstimulated secretion levels
were, on average, higher than the rubella virus-stimulated secretion
levels.

IL interleukin, IFN interferon, SD standard deviation,Q1 first quartile,Q3
third quartile, NT50 neutralizing titer
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TRIM22 gene associations

One coding SNP in the tripartite motif containing 22
(TRIM22) gene, rs2291842 (p<0.01), was significantly asso-
ciated with all three rubella-specific immune response out-
comes in this study (IFN-γ, IL-6, and NA titers). For this
SNP, increasing numbers of the minor allele were associated
with an increase in NA titers (1.1-fold) and IFN-γ secretion
(2.0-fold); however, the major allele seemed to correlate with
enhanced secretion of IL-6 (1.1-fold) (Table 2).

Other gene associations

We identified nine other associations between multiple
rubella-specific immune phenotypes and SNPs from the fol-
lowing genes: interleukin 10 receptor beta (IL10RB; two
SNPs), toll-like receptor 4 (TLR4; two SNPs), poliovirus re-
ceptor (PVR; one SNP), adenosine deaminase (ADAR; one
non-synonymous SNP), zinc finger protein 57 (ZFP57; one
SNP), MX dynamin-like GTPase 1 (MX1; one SNP), and
butyrophilin, subfamily 2/3, member A1/3 (BTN2A1/
BTN3A3; 1 SNP). The two SNPs in the TLR4 gene
(rs5030728, p<0.04; and rs2770150, p<0.02) are both signif-
icantly associated with both IL-6 secretion and IFN-γ secre-
tion. The major alleles in both SNPs are associated with in-
creased secretion of IL-6; however, subjects withminor alleles
of these SNPs tended to secrete increased levels of IFN-γ
(Table 2).

Associations between PVRL1 and PVRL3 haplotypes
and rubella immune response outcomes

The Haploview output for the PVRL3 and PVRL1 gene SNPs
that were genotyped and were significant in the study is shown
in Figs. 1 and 2. Among the seven PVRL1 haplotypes with
frequencies ≥1% in the study cohort, the global statistical tests
revealed a significant association (global p=0.017) between
lower IFN-γ secretion and the PVRL1 haplotype
GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCA-
GCGCAGGGGTCCGGG (t-statistic −2.49, p=0.01)
(Table 3). This specific PVRL1 haplotype was not associated
with rubella-specific IL-6 secretion or NA titers. In addition,
we identified six haplotypes (with frequencies ≥1 %) in the
PVRL 3 gene in our study cohort (Table 3). The global tests
demonstrated highly significant associations between IFN-γ
secretion (global p=0.0001) and NA titers (global p=0.037)
and the PVRL3 haplotype. Specifically, the PVRL3 haplotype
GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA
was significantly associated with both higher IFN-γ produc-
tion (t-statistic 4.43, p<0.0001) and higher NA titers (t-statis-
tic 3.14, p=0.0018). PVRL1 and PVRL3 gene haplotype asso-
ciations with rubella-specific immune response outcomes in
the Caucasian cohort are shown in Supplementary Table S2.

Discussion

Previous studies have identified a broad collection of
SNPs/haplotypes identified from HLA and non-HLA genes
significantly associated with humoral and cellular immune
responses to rubella vaccine (Haralambieva et al. 2010,
2014; Ovsyannikova et al. 2004, 2005, 2009b, 2010a, b;
Pankratz et al. 2010). The purpose of this exploratory study
was to identify SNPs in several candidate genes that were
significantly associated with more than one rubella-specific
immune response post-MMR vaccination. To our knowledge,
this is the first study that has identified genes associated with
multiple immune response outcomes. Because the identified
genotypes are significantly associated with more than one RV-
specific outcome, it may be suggested that they have a greater
impact on overall immune response to vaccination
(Ovsyannikova et al. 2014b). Overall, we identified 23 SNPs
in 10 genes that were associated with at least two rubella-
specific immune response outcomes, including secreted IL-
6, secreted IFN-γ, or neutralizing antibody titers, suggesting
joint effects of various genes/genetic variants in the control of
the vaccine-induced immune response.

Our statistical analysis results demonstrated evidence for
the role of multiple SNPs (some in LD) in the poliovirus
receptor (PVR), poliovirus receptor-related 1 (PVRL1), and
poliovirus receptor-related 3 (PVRL3) genes for being immu-
nologically relevant to the development of both antibody and
cytokine immune responses to rubella vaccine. Little is known
about the role of genetic variants within these genes in the
genetic control of immune response to rubella vaccination;
however, it has been demonstrated that the PVR (CD155) gene
encodes a transmembrane glycoprotein that belongs to the
immunoglobulin (Ig) superfamily and serves as a cellular en-
try receptor for poliovirus that mediates cell-cell adhesion and
cell migration (He et al. 2000). While evidence for PVR’s
contribution to RV vaccine-induced immunity is not strong,
CD155/PVR was demonstrated to play a role in regulation of
Th2 phenotype polarization, natural killer (NK) cell activa-
tion, secretion of lytic granules and IFN-γ, and modulation
of antigen-specific IgG antibodies in response to TLR agonists
(Fuchs et al. 2004; Kamran et al. 2013).

We detected eight SNPs in the PVRL3 (Nectin-3,
CD113) gene that were significantly associated with
more than one rubella-specific immune response post-
MMR vaccination. The effects of these SNPs were also
detected at the haplotype level, where haplotype analysis
showed a significant association between the PVRL3
GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA
haplotype and both higher rubella-specific NA titers and
IFN-γ production. This increases our confidence that the
PVRL3 gene locus/allelic variants play a role in the de-
velopment of RV-induced humoral and cellular immune
response. The Nectin family is considered a member of
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the immunoglobulin super family due to structural simi-
larities (Takai et al. 2008). Nectin-3 has been shown to
play a critical role in the control of junctions between
endothelial cells, which is important for the transmigra-
tion of immune cells during infection (Devilard et al.
2013). Once expressed on the surface of T lymphocytes,
Nectin-3 binds to Nectin-2 expressed on endothelial
cells. Results from previous studies suggest that this
trans-interaction induces the opening of endothelial cell
junctions and is required for efficient and effective ex-
travasation of lymphocytes from the blood to sites of
infection (Devilard et al. 2013).

Additionally, we identified several SNPs in the PVRL1
(Nectin-1, CD111) gene that were significantly associated
with multiple rubella-specific immune response phenotypes.
As another member of the Nectin family, Nectin-1 has been
shown to influence viral infection. A study conducted by
Geraghty et al. identified Nectin-1 (referred to as HveC) as
the primary receptor allowing for initial mucosal infection of
herpes simplex virus 1 (HSV-1) and HSV-2 and subsequent
entry into epithelial and neuronal cells (Geraghty et al. 1998;
Satoh-Horikawa et al. 2000). It is unknown how the PVRL1
gene and Nectin gene family relate specifically to immune
response to RValthough speculations can be made.

Based on the functional role of Nectins in lymphocyte
transmigration, HSV infection (Geraghty et al. 1998; Satoh-
Horikawa et al. 2000), and measles virus infection
(Muhlebach et al. 2011), it might be speculated that they also
play a role in the propagation and/or elimination of RV. Since
RV replicates in mucosal cells of the nasopharynx, lympho-
cyte transmigration is essential for terminating viral replica-
tion. Therefore, polymorphisms in the Nectin-3 gene could
significantly impact the ability to evade rubella infection.
Likewise, Nectin-1 has been shown to mediate cellular infec-
tion of HSVand pseudorabies virus (PRV) as well suggesting
that a polymorphism in the Nectin-1 gene may enhance or
decrease one’s susceptibility to rubella viral infection via
downstream effects in viral receptor-mediated entry into host
cells and control following immune response. Future studies
should, therefore, be aimed at determining if such a relation-
ship between Nectin genes and live RV vaccine exists.

In addition, we identified a coding SNP, rs2291842, in the
TRIM22 gene coding region that was significantly associated
with all three immune response outcomes. TRIM22 is a mem-
ber of the tripartite motif family, which is involved in a various
array of cellular processes, including differentiation, regula-
tion, and apoptosis (Reymond et al. 2001). For example,
rs2291841 in the TRIM22 gene was previously associated

Fig. 1 Haplotype block structure of the PVRL3 genetic variants,
analyzed using Haploview software, version 4.2 (all SNPs presented
were genotyped and utilized in the construction of haplotypes). The r2

color scheme is white (r2=0), shades of gray (0<r2<1), and black (r2=1).
The numbers report the r2 value multiplied by 100
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with a higher IFN-γ ELISPOT response to measles virus vac-
cine, while TRIM22 rs885002 was associated with a dimin-
ished IL-10 and TNF-α measles virus-specific response
(Ovsyannikova et al. 2013). Previous studies also identify
TRIM22 as a key regulator of signaling pathways in the innate
immune system, especially the antiviral response (McNab
et al. 2011). These studies also suggest that IFN-γ induces
TRIM22 expression; this leads to an increase in the transcrip-
tion factor nuclear factor-κB, which has been shown to stim-
ulate pro-inflammatory cytokine secretion, including IL-6 se-
cretion (Yu et al. 2011). The minor allele variant (GG) of the
coding rs2291842 identified in this study was associated with
an increase from baseline in both rubella-specific IFN-γ se-
cretion and rubella-specific NA titers. Conversely, the major
allele variant (AA) of this SNP was associated with secreted
IL-6. We speculate that this coding polymorphism may affect
TRIM22 protein structure and hence antiviral function and
IFN-γ, IL-6 and antibody production by NK/T cells, T cells/
macrophages and B cells, respectively. Our earlier studies on
live RV vaccine identified associations between SNPs in the
TRIM22 gene and rubella-specific IFN-γ, IL-2, and IL-6 se-
cretion levels (Ovsyannikova et al. 2010a), as well as humoral
immunity after rubella vaccination (Ovsyannikova et al.
2010b). Therefore, a polymorphism in the TRIM22 gene
may impact the response to live RV vaccine due to its signif-
icance in innate antiviral immune response.

Two SNPs, in the IL10RB gene, rs962859, and rs2284552,
were found to be significantly associated with both rubella-
specific IFN-γ and IL-6 secretion. Expression of IL10RB is
essential for signal transduction induced by IL-10. The inter-
action between IL10RB, IL10RA, and IL-10 has been shown
to impede the secretion of many cytokines, including IL-6
(Dokter et al. 1996). Interestingly, in this study, the major
allele variant of the rs962859 SNP and the minor allele variant
of the rs2284552 SNP were associated with a significant in-
crease in secreted IL-6 levels, suggesting that polymorphisms
in this gene alter this sensitive IL-10 pathway.

Finally, we identified two SNPs in the TLR4 gene that were
significantly associated with rubella-specific IL-6 and IFN-γ
secretion. Toll-like receptor protein 4 is encoded by the TLR4
gene, and it is important for pathogen recognition and activa-
tion of innate immune response pathways (Kopp and
Medzhitov 1999). The major allele variants of the
rs5030728 and rs2770150 SNPs of the TLR4 gene were found
to be significantly associated with increases in rubella-specific
IL-6 secretion; however, they were also associated with de-
creases in rubella-specific IFN-γ secretion. Cytokines IL-6
and IFN-γ are known to have functionally distinct roles and
regulate many biological processes, including antiviral im-
mune response. However, data suggest that IL-6 and IFN-γ
induce overlapping sets of genes and both signal through a
common regulatory JAK/STAT signaling pathway (Qi et al.

Fig. 2 Haplotype block structure of the PVRL1 genetic variants,
analyzed using Haploview software, version 4.2 (all SNPs presented
were genotyped and utilized in the construction of haplotypes). The r2

color scheme is white (r2=0), shades of gray (0<r2<1), and black (r2=1).
The numbers report the r2 value multiplied by 100. Blocks are missing
when the minor allele frequency for at least one SNP is 0
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Table 3 PVRL1 and PVRL3 gene haplotype associations with rubella-specific immune response outcomes in the study cohort

PVRL1 (Nectin-1) Gene Allelea Immune
outcome

Frequency Test statistic Allele
p value

Global
p value

0.0174

GAGGCACGGCAGAGAGGAGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG IFN-γ 0.0377 0.7327 0.4640

GAGGAGAGGCAGCGGGGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG IFN-γ 0.3452 −0.8671 0.3861

GAGGAGAGGCAGCGGAGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG IFN-γ 0.0168 −0.4096 0.6822

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG IFN-γ 0.2571 −1.6004 0.1099

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCGGGG IFN-γ 0.0682 0.3797 0.7042

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCAGCGCAGGG
GTCCGGG

IFN-γ 0.0662 −2.4912 0.0129

GAAGCACGGCAGAGAGGAGAGGGGGAGGGGAAGGAGCAAGGGTCCGGG IFN-γ 0.0498 1.3947 0.1635

0.2050

GAGGCACGGCAGAGAGGAGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG IL-6 0.0377 1.6917 0.0911

GAGGAGAGGCAGCGGGGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG IL-6 0.3452 1.3917 0.1643

GAGGAGAGGCAGCGGAGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG IL-6 0.0168 1.7540 0.0798

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG IL-6 0.2571 1.1243 0.2612

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCGGGG IL-6 0.0682 1.2159 0.2243

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCAGCGCAGGGGTCCGGG IL-6 0.0662 −0.8107 0.4178

GAAGCACGGCAGAGAGGAGAGGGGGAGGGGAAGGAGCAAGGGTCCGGG IL-6 0.0498 −0.0479 0.9618

0.9084

GAGGCACGGCAGAGAGGAGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG NA 0.0377 0.4669 0.6407

GAGGAGAGGCAGCGGGGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG NA 0.3452 0.2172 0.8281

GAGGAGAGGCAGCGGAGGGGGGAGGCCGGAGCGGCGCAGGGGTCCGGG NA 0.0168 −0.2991 0.7649

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCCGGG NA 0.2571 0.8906 0.3734

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCGGCGCAGGGGTCGGGG NA 0.0682 1.0419 0.2977

GAAGCGCGGCGGCGGAGGGAGGGGGCCGGAGCAGCGCAGGGGTCCGGG NA 0.0662 0.7988 0.4246

GAAGCACGGCAGAGAGGAGAGGGGGAGGGGAAGGAGCAAGGGTCCGGG NA 0.0498 0.7432 0.4575

PVRL3 (Nectin-3) Gene Alleleb

0.0001

CACGGGAGAAGCAAGCACAAAAACGGAAAACAA IFN-γ 0.7719 1.4267 0.1540

CACGGGAGAAGCAAGCAGAAAAACGGAAAAAAA IFN-γ 0.0939 1.4610 0.1444

CACAGGAGCAGCAAGAAGGAAAACAAAAAACAA IFN-γ 0.0160 −0.0068 0.9946

GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA IFN-γ 0.0119 4.4292 <0.0001

GACGAAAGCAACCAAAAGAAAAGGAAAAAACAA IFN-γ 0.0294 1.5462 0.1224

GACAGGAGCAGCAAGAAGGAAAACAAAAAACAA IFN-γ 0.0186 −1.2745 0.2028

0.6698

CACGGGAGAAGCAAGCACAAAAACGGAAAACAA IL-6 0.7719 −0.7554 0.4502

CACGGGAGAAGCAAGCAGAAAAACGGAAAAAAA IL-6 0.0939 −0.1292 0.8973

CACAGGAGCAGCAAGAAGGAAAACAAAAAACAA IL-6 0.0160 −0.2601 0.7949

GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA IL-6 0.0119 −1.3743 0.1697

GACGAAAGCAACCAAAAGAAAAGGAAAAAACAA IL-6 0.0294 −0.9995 0.3178

GACAGGAGCAGCAAGAAGGAAAACAAAAAACAA IL-6 0.0186 −1.2313 0.2185

0.0372

CACGGGAGAAGCAAGCACAAAAACGGAAAACAA NA 0.7719 −0.2135 0.8310

CACGGGAGAAGCAAGCAGAAAAACGGAAAAAAA NA 0.0939 −0.3169 0.7514

CACAGGAGCAGCAAGAAGGAAAACAAAAAACAA NA 0.0160 −0.3080 0.7581

GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA NA 0.0119 3.1359 0.0018
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2013; Yuan et al. 1994). The role of TLR4 in the immune
response to viral pathogens (i.e., viral envelope glycoprotein)
has been widely studied (Barton 2007; Ovsyannikova et al.
2011b; Puthothu et al. 2006; Zhou et al. 2011), and our results
support the importance of this gene in the immune response to
live RV vaccine. We also identified one SNP in each of the
following genes that were significantly associated with more
than one rubella-specific immune response post-MMR vacci-
nation: PVR, ZFP57, BTN2A1/BTN3A3, and IFN-γ-induced
antiviral MX1 and ADAR. For example, a non-synonymous
rs2229857 (Lys384/Arg) in the antiviral RNA-specific
ADAR gene, known to be involved in RNA editing and gene
regulation, demonstrated an allele dose-related increase in IL-
6 and IFN-γ secretion with the representation of a minor al-
lele. Consistent with the current results, our earlier vaccine
study with measles demonstrated an association between
ADAR SNP rs2229857 and measles virus-specific IFN-γ
ELISPOT responses (Haralambieva et al. 2011b). We specu-
late that this genetic variant is likely to be involved in regula-
tion of virus-induced cellular immune mechanisms. This
study is strengthened by several factors. The recruitment and
utilization of a relatively large sample population (1039 sub-
jects, 85 % Caucasian) with documented vaccine coverage
and no circulating wild-type RVenhances our confidence that
the immune outcomes measured reflected rubella immuniza-
tion alone and not disease. Additionally, the relatively small
range of age at time of enrollment limits additional factors,
such as immunosenescence and waning immune response.
The chief limitation of this study is the sole use of candidate
genes for statistical analysis and the possibility of detecting
potential false-positive associations. This study could be im-
proved upon by having a more genetically diverse population,
and future studies will explore whether these associations are
observed in other genetically distinct populations. The

associations we report herein cannot be generalized to other
ethnic groups not examined in this study. We observed very
small or no representation of a minor allelic variant for some
SNPs in the PVRL1, PVRL3, PVR, and other candidate genes
that may have skewed the IL-6, IFN-γ, and NA immune re-
sponses. Multiple statistical tests were completed for this ru-
bella vaccine study; thus, it is possible that a number of false-
positive associations with immune response outcomes have
been found. It is important to note that after controlling for
multiple testing via q-value, some of the SNP-specific tests
failed to remain significant at the p<0.1 level. These SNPs
have been noted in Table 2. These associations require confir-
mation in a separate cohort to understand their functional sig-
nificance. Future replication studies are necessary to validate
all of these results.

In conclusion, this is the first study that analyzed and iden-
tified SNPs/haplotypes significantly associated with more
than one rubella-specific immune response post-MMR vacci-
nation. Our results provided additional insights into multigen-
ic and haplotypic associations between candidate gene SNPs
and rubella vaccine-specific NA titers and cytokine produc-
tion. The results from this study suggest that polymorphisms
in these genes contribute to the overall heterogeneity in
rubella-specific immune response phenotypes in individuals
after being immunized with the MMR vaccine. In the future,
these results could aid the prediction of immune response
phenotypes in patients pre-vaccination, as well as influence
the design of better vaccines through generation of new
knowledge and the identification of targets and biomarkers
for vaccine response (Poland et al. 2009, 2011a, b).
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PVRL1 (Nectin-1) Gene Allelea Immune
outcome

Frequency Test statistic Allele
p value
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p value
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