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Abstract

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection, has been associated with neurological and neuropsychiatric illness in many individuals. We

sought to further our understanding of the relationship between brain tropism, neuro-inflammation, and host

immune response in acute COVID-19 cases.

Methods: Three brain regions (dorsolateral prefrontal cortex, medulla oblongata, and choroid plexus) from 5 patients

with severe COVID-19 and 4 controls were examined. The presence of the virus was assessed by western blot against

viral spike protein, as well as viral transcriptome analysis covering > 99% of SARS-CoV-2 genome and all potential

serotypes. Droplet-based single-nucleus RNA sequencing (snRNA-seq) was performed in the same samples to examine

the impact of COVID-19 on transcription in individual cells of the brain.

Results: Quantification of viral spike S1 protein and viral transcripts did not detect SARS-CoV-2 in the postmortem

brain tissue. However, analysis of 68,557 single-nucleus transcriptomes from three distinct regions of the brain

identified an increased proportion of stromal cells, monocytes, and macrophages in the choroid plexus of COVID-19

patients. Furthermore, differential gene expression, pseudo-temporal trajectory, and gene regulatory network analyses

revealed transcriptional changes in the cortical microglia associated with a range of biological processes, including

cellular activation, mobility, and phagocytosis.

Conclusions: Despite the absence of detectable SARS-CoV-2 in the brain at the time of death, the findings suggest

significant and persistent neuroinflammation in patients with acute COVID-19.
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Background
Coronavirus disease 2019 (COVID-19), caused by the

novel severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is currently the most urgent health care

issue in the world. The central nervous system (CNS) is

not the primary organ affected by SARS-CoV-2; how-

ever, there is increasing evidence that the brain is af-

fected by SARS-CoV-2 by multiple mechanisms, each

with potential short- and long-term impacts on neuro-

logical and cognitive function in affected individuals. As

a result, SARS-CoV-2 has been associated with an un-

usually wide range of neurological and neuropsychiatric

manifestations, ranging from asymptomatic cases to pro-

longed states of disability following initial recovery from

COVID-19-associated delirium [1–4].

Systematically studying neurological disease in COVID-19

patients presents several challenges, including only a subset

of the patient population displaying neurological symptoms,

an inability to sample CNS tissues directly in living individ-

uals, and difficulties in distinguishing direct neuro-invasion

from systemic viremia within the brain. Brain autopsies and

neuroimaging studies have demonstrated acute hypoxic and

vascular injury [5, 6], as well as plausible SARS-CoV-2 CNS

tropism [7–10]. Studies employing neuronal organoids have

provided conflicting results regarding the effect of SARS-

CoV-2 on neurons [9, 11, 12] or on epithelial cells in the

choroid plexus [13, 14]. Overall, existing studies provide mul-

tiple mechanisms through which SARS-CoV-2 affects the

human brain, including direct invasion and infection of spe-

cific types of neurons and glia, in addition to endothelial

injury and vascular coagulopathy and diffuse neuroinflamma-

tory processes or systemic inflammatory and hypercoagulable

states.

To fully understand the impact of COVID-19 on the

CNS, it is critical to perform a direct, unbiased, and

comprehensive high-resolution exploration of the tran-

scriptomic landscape in human brain tissue from pa-

tients with COVID-19. Here, we performed droplet-

based single-nucleus transcriptome profiling in the brain

regions that are potentially implicated in clinical mani-

festations of COVID-19: the prefrontal cortex, which is

involved in higher-order cognitive function; medulla

oblongata, which includes the respiratory center; and

choroid plexus, which provides a toxin barrier to the

brain and forms an interface between the blood and

cerebrospinal fluid. The analysis described here exam-

ined the relationship between SARS-CoV-2 infection

and neuroinflammation, brain tropism, and host im-

mune response.

Methods
Samples used in this study

The study cohort consisted of tissue from 5 COVID-19

patients and 4 controls. For each donor, we studied 3

brain regions (PFC, medulla, and ChP). All specimens

were obtained and de-identified by the biorepository at

the Icahn School of Medicine at Mount Sinai in accord-

ance with the policies and regulations at the Icahn

School of Medicine at Mount Sinai (ISMMS) and its in-

stitutional review board. All samples were subjected to

western blot, targeted RNA-seq, and RNA-FISH for viral

spike protein, as well as transcriptomic analysis via

snRNA-seq. We note that all COVID-19 cases were clas-

sified as severe; the clinical characteristics of donors are

detailed in Additional file 1: Table S1.

SARS-CoV-2 viral load quantification in frozen specimens

of postmortem human brain

Brain tissue was harvested based on a modification of pub-

lished protocols [15] for rapid dissection and systematic

neuroanatomical sampling. For each donor, we targeted 3

brain regions, which included the dorsolateral prefrontal cor-

tex (PFC), medulla oblongata (medulla), and choroid plexus

(ChP). For the immunoblotting and SARS-CoV-2-targeted

RNA-seq assay, we included a single dissection with the ex-

ception of the PFC, from which we included separate dissec-

tions of cortical gray matter and white matter. Western blot

analysis was performed using 100 μg of total protein and

anti-SARS-CoV-2 spike glycoprotein (Abcam, Cambridge,

UK. Cat no: ab272504) or anti-β-actin (Abcam, Ab4970S)

primary antibodies. For the SARS-CoV-2 targeted assay, we

used the AmpliSeq Library Plus and cDNA Synthesis kits

from Illumina (Illumina, San Diego, CA. Cat nos: 20019103

and 20022654), and, following quantification and pooling, li-

braries were run on a NovaSeq 6000 S4 (Illumina) in a 2 ×

150 run format. For RNA-FISH, 10-μm sections were incu-

bated with anti-sense DNA probes against the SARS-CoV-2

spike protein RNA sequence. Slides were incubated in True-

Black Lipofuscin Autofluorescence Quencher (Biotium), and

images were acquired on a Zeiss LSM780 confocal micro-

scope. For further details, see Additional file 2: Supplemen-

tary methods.

Immunohistochemistry

For immunohistochemical staining, fixed 40-μm sections

of the choroid plexus from cases and controls were

stained with anti-CD68 antibody (Abcam, ab955), and

images were obtained on a Zeiss LSM780 confocal

microscope and processed with ImageJ. For further de-

tails, see Additional file 2: Supplementary methods.

Generation of single-nucleus RNA-seq from postmortem

human brain

To better control for donor batch effects in the snRNA-

seq analyses, we performed two dissections for each

brain region and individual. The nuclei were extracted

from 50mg of frozen tissue. Each batch included 6 tis-

sue samples, and the nuclei were incubated with

Fullard et al. Genome Medicine          (2021) 13:118 Page 2 of 13



individual nuclear hashing antibodies (BioLegend, San

Diego, CA. TotalSeqA MAb414 anti-Nuclear pore com-

plex protein) to facilitate multiplexed loading of the

single-cell microfluidics device (10x Genomics, Pleasan-

ton, CA). A total of 46,560 nuclei (7760 each) were

loaded, in duplicate, on 10x Genomics B chips using 3′

capture chemistry. snRNA-seq and hash-tag oligo

(HTO) libraries were generated separately and were se-

quenced by Nova-seq (Illumina) obtaining 2 × 100

paired-end reads.

Single-nucleus data processing and demultiplexing

10x Genomics paired-end sequencing reads were proc-

essed and aligned on a pre-mRNA reference genome

using cell ranger v3.1.0. HTO sequencing reads were

preprocessed using kallisto indexing and tag extraction

[16]. We customized an algorithm to identify singlets

and doublets using HTO barcodes (see Additional file 2:

Supplementary methods for more details). Demulti-

plexed unique molecular identifier matrices were com-

bined and labeled by their associated experiment batch

and brain region. The nuclei with fewer than 200 ex-

pressing genes or higher than 5% mitochondrial reads

were omitted. We applied DoubletFinder [17] to remove

doublets that were missed by HTO demultiplexing. We

used Seurat [18] to perform data normalization, UMAP

dimension reduction, and graph-based clustering. Har-

mony [19] was used to adjust batch effects using the first

50 principal components of the transformed count

matrix. UMAP projection and Louvain clustering were

then performed based on the shared nearest neighbor

graph of these 50 harmonized principal components.

We annotated clusters by inspecting a selected set of ca-

nonical markers.

Further clustering was performed on the pooled popu-

lation of immune cells that includes microglia, mono-

cytes, and macrophages. The clustering and UMAP

visualization were based on 2000 variable genes of the

pooled population. We applied Harmony [19] to cali-

brate batch effects. After manual inspection, a few clus-

ters that were seemingly doublets were excluded from

the subclustering analysis. We identified 9 clusters which

are annotated as 7 subclusters of microglia (Mic-1 to

Mic-7) and 2 subclusters of monocytes/macrophage

(Mo-1 and Mo-2) based on the relative abundance of

Mic and Mo/MP in each cluster. Marker genes of these

clusters, comparing one cluster to the other 8 clusters,

were calculated by the Wisconsin rank sum test as im-

plemented in Seurat [18].

Statistical analysis on cell composition

To identify cell composition changes associated with

COVID-19, we computed the fraction of cells annotated

with a cell type in each brain region and then fitted a

linear mixed model:

cell fraction � COVID−19
j tissueþ 1 j tissueð Þ þ 1 j donorð Þ:

Associated cell types were then identified by contrast-

ing cases and controls for each tissue. We repeated stat-

istical tests on the normalized cell fraction using

centered log ratio transformation and obtained similar

results.

Identification of differentially expressed genes

Differentially expressed genes (DEGs) were identified

using a linear mixed model. We first split the combined

count matrix of 10,000 variable genes into sub-matrices

containing the nuclei from one annotated cell popula-

tion. K-nearest neighbor smoothing [20] was applied to

each sub-matrix to impute dropped-out genes. Genes

expressed in less than 1% of cells in a cell population

were further filtered. A pseudo-bulk count matrix was

formed by aggregating single-cell reads per sample.

Using the dream pipeline [21], we fitted a mixed linear

model to the pseudo-bulk count matrix:

Log cpm Gene expressionð Þð Þ � COVID−19
j tissueþ 1 j tissueð Þ þ 1 j donorð Þ

DEGs were then identified by contrasting cases and

controls for each tissue. We omitted the test results on

genes that were sparsely expressed (< 1% cells) in each

tissue.

Cell type enrichment

We performed Fisher’s exact test to compare gene signa-

tures of annotated cell types with those reported in other

studies. To generate the set of marker genes for an an-

notated cell type, we used the Wilcoxon rank sum test,

implemented by the FindMarker function, to compare

cells of one cell type against the rest. Up to 50 marker

genes, with adjusted P-value less than 0.05 and ranked

by fold changes, were included to form the set of marker

genes. We curated gene sets of known cell types from 4

publicly available data sets [8, 22, 23], which are further

described in Additional file 2: Supplementary methods.

The background gene sets were set to be the intersection

of 10,000 variable genes and all possible genes from the

other data source.

Construction and analysis of the transcription factor-gene

network

We used pySENIC [24, 25] to identify transcription fac-

tor regulons. The count matrix of 10,000 variable genes

was used. Genes expressed in less than 1% of cells were

further filtered as recommended by the pySCENIC
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protocol. The gene co-expression network was inferred

using the gradient boosting machine implemented by

arboreto. Enriched motifs for a gene co-expression mod-

ule were predicted using pre-computed databases from

cisTargetDB and the ctx function in pySCENIC. Lastly,

activity scores of inferred regulons were quantified at

the single-cell level using AUCell.

To identify regulons associated with COVID-19, we

first computed the averaged AUCell score per sample

and fitted a linear mixed model:

regulon activity � COVID−19
j tissueþ 1 j tissueð Þ þ 1 j donorð Þ:

Associated regulons were then identified by contrast-

ing cases and controls for each tissue. We restricted our

analysis to the 5 regulons that are most specific to a cell

type ranked by the regulon-specific score [26].

Pseudo-temporal trajectory score

To construct a pseudo-time trajectory that captures dis-

ease progression in the microglia, we computed the

principal components using the gene count matrix of

the top DEGs across three brain regions. We con-

structed a pseudo-time trajectory along the first two

principal components using Slingshot [27]. The order of

the pseudo time trajectory is chosen so that the fraction

of cells from COVID patient is increasing with the

pseudo-time. Gene expression profiles over the pseudo-

time trajectory were analyzed using tradeSeq [28]. Ap-

plying resampling-based sequential ensemble clustering

to genes with non-monotonic profiles, we identified 22

clusters, but a strong similarity between clusters was ob-

served. Using a step-wise approach, we merged meta-

clusters into 4 categories (see also Additional file 2: Sup-

plementary methods).

Transcriptome-wide association study and gene set

enrichment

We used the “B2_ALL_eur_leave_23andme” summary

statistics from the Release 4 (October 2020) of COVID-

19 Host Genetics Initiative, which corresponds to the

phenotype “Hospitalized covid vs. population, leave out

23andMe.” We employed blood and brain EpiXcan [29]

tissue imputation models, trained in the STARNET [29,

30] and PsychENCODE [31, 32] cohorts, respectively.

To derive gene-tissue-trait associations, transcriptomic

imputation models were applied to the summary statis-

tics following the S-PrediXcan approach [33]. For each

tissue, we kept genes with r2 of the correlation between

cross-validated prediction and observed expression

greater than, or equal to, 0.01. For the gene set enrich-

ment analysis, only protein-coding genes were

considered, and the enrichment was tested with Fisher’s

exact test.

Results
SARS-CoV-2 viral load quantification across multiple brain

regions

To characterize the CNS effect of SARS-CoV-2, we per-

formed viral load quantification in human brain tissue

from 5 COVID-19 patients and 4 controls (Fig. 1A). We

note that all COVID-19 cases were classified as severe;

the clinical characteristics of donors are detailed in Add-

itional file 1: Table S1. For each donor, we targeted 3

brain regions (PFC, medulla, and ChP). Immunoblotting

was negative for the presence of viral spike S1 protein in

all tissues examined (Additional file 2: Fig S1). We then

performed transcriptome analysis covering > 99% of

SARS-CoV-2 genome and all potential serotypes. For

each brain region and donor, we included a single dis-

section with the exception of the PFC, from which we

included separate dissections of cortical gray matter and

white matter (for an illustrative example, see Additional

file 2: Fig S2), and generated, on average, 1.2 million

reads per library. Across all samples, none of the se-

quencing reads mapped to the SARS-CoV-2 genome

(Additional file 3: Table S2). In addition, examination of

additional brain regions (red nucleus and substantia

nigra), using fluorescence in situ hybridization (FISH)

for SARS-COV-2 spike protein, also failed to detect the

virus (Additional file 2: Fig S3). Overall, by employing

three different experimental approaches, and exploring

multiple brain regions, we did not detect SARS-CoV-2

in the postmortem brain tissue.

snRNA-seq profiling across multiple brain regions in

COVID-19 patients and controls

We characterized the molecular and cellular perturba-

tions in the CNS of COVID-19 patients, independent of

SARS-CoV-2 direct invasion, by performing droplet-

based single-nucleus RNA sequencing (snRNA-seq) in

the PFC, medulla, and ChP in the same set of 5 patients

and 4 controls (Fig. 1A). To better control for donor

batch effects, we performed two dissections for each

brain region and individual (Additional file 2: Fig S2),

and all samples per donor (n = 6) were pooled together

using nuclear hashing. After preprocessing of snRNA-

seq data, demultiplexing using hashtag-oligo intensity

and quality control, 68,557 high-quality single-nucleus

barcodes, with a median of 2817 detected genes per cell,

were available for downstream analysis (Additional file 2:

Fig S4). Variance in the gene expression was mostly

driven by biological factors (cell type, brain regions, and

donor) (Additional file 2: Fig S5).

We performed de novo taxonomy based on the graph-

based clustering and uniform manifold approximation
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and projection (UMAP) across all brain regions and

samples, and identified 15 major cell clusters (Fig. 1B).

Clustering was independent of donor effect and tech-

nical variables, while differences between the brain re-

gions were preserved (Additional file 2: Fig S6).

Annotation of cell clusters based on the expression of

canonical gene markers identified the following popula-

tions: excitatory neurons (Ex) that express SYT1 and

SLC17A7, inhibitory neurons (In) that express SYT1 and

GAD1, astrocytes (Ast1 and Ast2) that express AQP4,

ependymal cells (Ep) that express CFAP299, oligo-

dendrocyte progenitor cell (OPC) that express VCAN,

oligodendrocytes (Oli) that express MOBP, epithelial

cells (Epi) that express HTR2C, endothelial cells (End)

that express FLT1, mesenchymal cells (Mes) that express

COL1A1, pericytes (Per1 and Per2) that express PDGF

Fig. 1 Droplet-based single-nucleus RNA sequencing in the dorsolateral prefrontal cortex (PFC), medulla oblongata (medulla), and choroid plexus

(ChP) of 5 COVID-19 patients and 4 controls. A Experimental design. Frozen specimens of the human brain were dissected and subjected to a

number of molecular assays, including single-nucleus RNA-sequencing (snRNA-seq), viral genome RNA-seq, and SARS-CoV-2 viral spike protein

detection. B Uniform manifold approximation and projection visualization of annotated single-nucleus data (n = 68,557 barcodes). Colors show

annotated cell types. C Distribution of canonical gene markers on annotated cell populations. The range of violins is adjusted by the maximum

and minimum in each row. D Cell composition of mesenchymal cells and monocytes/macrophage in the choroid plexus stratified by case-control

status. Only comparisons across tissues and cell types that survived false discovery rate correction are shown. Ast1 and Ast2 are the 2 groups of

astrocytes. End, endothelial cells; Epi, epithelial cells; Ep, ependymal cells; Ex, excitatory neurons; In, inhibitory neurons; LM, lymphocytes; Mes,

mesenchymal cells; Mic: microglia; Mo/MP, monocytes/macrophage; Oli, oligodendrocytes; Opc, oligodendrocyte progenitor cell. Peri1 and Peri2

are the two groups of pericytes
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RB, microglial cells (Mic) that express APBB1IP, and

lymphocyte (LM) that express CD96 and monocytes/

macrophage (Mo/MP), expressing CD163 (Fig. 1 and

Additional file 2: Fig S7). Gene set enrichment analysis

showed overlap for expected molecular pathways and

functions, such as myelination for oligodendrocytes,

chemical synaptic transmission for excitatory, and in-

hibitory neurons, and T cell activation for lymphocytes

(Additional file 2: Fig S8). The expression profiles of

each cell type show high concordance with previous

snRNA-seq in human brain tissue [8, 22], peripheral

blood cells, and brain organoids [13] (Additional file 2:

Fig S9), indicating the robust definition of cell subpopu-

lations in the current study.

Compositional analysis identifies changes in the

proportion of immune-related populations in COVID-19

patients

We assessed the relative proportions of the 15 major cell

types in COVID-19 cases compared to controls across the

three brain regions. For each cell cluster, we applied a linear

mixed model to detect the interaction between COVID-19

cases and brain regions, while controlling for donor effects.

Among 45 combinations of cell types and brain regions, we

identified 2 cell populations from choroid plexus, including

Mes cells and Mo/MP, showing a significant increase in their

relative proportions in COVID-19 cases (Fig. 1D). We did

not detect any significant COVID-19-associated changes in

the cell type composition in either the PFC or medulla (Add-

itional file 2: Fig S10). We next sought to confirm the pres-

ence of increased numbers of Mo/MP in the ChP by staining

with an antibody against CD68, which is a marker for Mo/

MP cells. We observe an abundance of CD68-positive cells

in ChP of COVID-19 cases, and these cells do not appear to

be associated with a blood vessel (Additional file 2: Fig S11).

Overall, these results suggest that, in COVID-19, Mo/MP ex-

travasate from the blood vessels into the stroma of the ChP,

which is composed of Mes cells.

To further explore the cell states of immune-related

cells associated with COVID-19 disease status, we then

performed subclustering on the Mic and Mo/MP popu-

lations. We identified 9 clusters that corresponded to 7

subclusters of Mic and 2 subclusters of Mo/MP (Add-

itional file 2: Fig S12a). The relative abundance of Mic-1

and Mic-2 subclusters in PFC showed significant

changes in COVID-19 patients in the opposite direction

compared to controls (Additional file 2: Fig S12b), sug-

gesting a transition from Mic-1 to Mic-2 in PFC with

COVID-19. Interestingly, expression of marker genes

show that Mic-2 expresses, at a higher level, the Com-

plement C3 gene (Additional file 2: Fig S12c) which has

previously been shown to drive microglia activation [34].

The relative abundance of Mo/MP-1 in ChP increases

significantly while Mo/MP-2 remains stable. Compared

to Mo/MP-2, the Mo/MP-1 subcluster expresses LYVE1,

which is a marker that is highly expressed in a subset of

macrophages in the meninges [35].

Differential gene expression analysis uncovered activation

of innate immune cells in COVID-19 brain parenchyma

Molecular processes and biological pathways affected by dis-

ease states can be detected by studying the differences in

gene expression among cases and controls within each cell

subpopulation. For each cell type and brain region, we ap-

plied linear mixed models to identify differentially expressed

genes (DEGs) among COVID-19 patients and controls, while

controlling for donor effects. Among the 15 cell types and 3

brain regions, the microglia in the PFC showed the highest

number of perturbations, including 178 DEGs (Fig. 2A),

followed by monocytes in PFC and ChP. Interestingly, the

majority of DEGs were upregulated in the immune cells

(Mic and Mo/MP), indicating increased immune activity in

COVID-19 patients. We provide a summary of differentially

expressed genes across all cell types in Additional file 4:

Table S3.

We examined whether gene perturbations affected

specific biological processes. To preserve sufficient stat-

istical power, we focused on the DEG signatures de-

tected in microglia from the PFC. Gene set enrichment

analysis identified biological processes such as “macro-

phage activation” (8 genes, P = 9.3 × 10−6) and “phago-

cytosis” (14 genes, P = 1.9 × 10−6) as being enriched

with the 178 DEGs in PFC microglia (Additional file 5:

Table S4). To further investigate transcriptomic changes

in canonical pathways, we calculated the activity scores

across 186 KEGG molecular pathways (Additional file 2:

Fig S13). We then applied linear mixed models and

identified differences in average activity levels across

COVID-19 patients and controls. We identified 16 path-

ways showing significant differences in activity levels in

the microglia of the PFC (Additional file 6: Table S5). As

an illustrative example, we show the expression levels of

the four most significant upregulated pathways (Fig. 2B)

and associated genes (Fig. 2C). Interestingly, the majority

of significant pathways were immune-related, and all of

them, except one, which was related to “steroid biosyn-

thesis,” were upregulated in COVID-19 patients. Deple-

tion of steroid synthesis in COVID-19 patients is

consistent with the clinical evidence that steroid admin-

istration is beneficial to modulate inflammatory response

[36]. Overall, these results suggest the strong activation

of innate immune cells in COVID-19 brain parenchyma.

Pseudo-temporal analysis detected transition of

inflammatory response in PFC across a range of

biological processes

Statistical modeling can be applied to snRNA-seq to extract

temporal information and study dynamic biological processes
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from cross-sectional data sets. We calculated a pseudo-

temporal trajectory score (PTS) in the microglia, based on

the progression of the transcriptional dysregulation in

COVID-19 patients compared to controls (Fig. 3A). PTS has

a wide distribution, potentially indicating microglia in differ-

ent stages of activation and, as expected, COVID-19 patients

demonstrated higher PTS than controls (Fig. 3B). To rule

out patient-specific batch effects, we performed a similar

Fig. 2 Differential gene expression and gene set enrichment analyses in COVID-19 patients compared to controls. A Number of differentially expressed genes

(DEGs) identified in cell types across three brain regions. Up- and downregulated genes are shown in different colors. Cell types are ranked by the total number

of DEGs across three brain regions. Cell types with no more than 10 DEGs in any brain region are omitted. B Gene set activity scores of PFC microglia. The four

most significant pathways among 186 KEGG gene sets are shown. The shade of a violin indicates the median activity score of each individual. C Ten

differentially expressed genes (FDR < 0.05) in four upregulated pathways are shown. The size of a circle shows the relative weight of a gene that contributed to

the activity of a pathway. The relative weight is estimated as the ratio of the expression level of a gene to the sum of expression of all genes in the pathway.

Colors show the log fold change
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analysis stratified by donor and did not observe any effect be-

yond case/control status (Additional file 2: Fig S14).

We categorized 646 commonly expressed microglia

genes into four groups (increasing, decreasing, early

transient, and late transient) based on the expression

patterns capturing progressive changes related to PTS

(Fig. 3C, Additional file 7: Table S6). The majority of

genes were clustered as “increasing” (579 genes),

followed by late transient (36 genes), early transient (16

genes), and decreasing (15 genes). Genes within the “in-

creasing” cluster were more perturbed in COVID-19 pa-

tients (estimated based on pi1 = 0.683), compared to the

other 3 clusters (range of pi1 = 0.051 to 0.077) and were

enriched for 452 biological pathways, including “regula-

tion of immune system process” (136 genes, P = 1.75 ×

10−16) and “apoptotic process” (104 genes, P = 3.19 ×

Fig. 3 Pseudo-temporal trajectory score (PTS) analysis in the microglia-identified gene expression signatures with differential progression patterns

in COVID-19 cases. A Pseudo-temporal trajectory in the microglia across three brain regions. Red and blue colors label cells from COVID-19 cases

and controls, respectively. B PTS across 5 COVID-19 patients and 4 controls in PFC microglia. The shade of violin plots indicates the median

activity score of each individual. C We identified 4 types of gene expression progression patterns over the pseudo-temporal trajectory: increasing

(blue), early transient (orange), late transient (green), and decreasing (red). A dashed line shows the profile of a representative gene in each group
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10−5). In the “early transient” group, 8 out of the 16

genes, including CD83 and 3 heat shock proteins

(HSP90AA1, HSPB1, HSPH1), belong to the “cell activa-

tion” pathway (P = 6.40 × 10−6), while the “late transi-

ent” group was enriched for the “cell mobility” pathway

(P = 4.44 × 10−4). Overall, the pseudo-temporal analysis

supports a model where myeloid-driven inflammatory

response in PFC involves transition across a range of

biological processes, including cellular activation, mobil-

ity, and phagocytosis.

Gene regulatory network (GRN) analysis identified

activated microglia response in patients with COVID-19

Gene regulatory networks (GRNs) define the co-expression

patterns of transcripts, considering the regulatory relation-

ships between transcription factors (TFs) and their target

genes. This analysis can determine cellular functions and

model different systemic behaviors to uncover gene-level re-

lationships in cells associated with disease states. To further

understand the impact of SARS-CoV-2 on the TF-gene rela-

tionships, we explored the differences in GRNs among

COVID-19 cases and controls. Across all cell subpopulations,

we identified 131 TF modules that regulated, on average, 272

genes per module [25] (Additional file 8: Table S7). UMAP

projection based on activity scores of GRNs reaffirmed the

robustness of annotated cell types (Additional file 2: Fig S15).

We defined cell population specificity by ranking TF

modules according to regulon score [26] and uncovered

well-known cell type-specific TFs, such as PAX6 for as-

trocytes and IRX8 for microglial cells (Additional file 2:

Fig S16). We tested whether changes in the activity level

of the top 5 TFs for each cell population were associated

with COVID-19. Among the cell types and brain regions,

TF modules in PFC microglia were the most affected

(Additional file 2: Fig S17). We prioritized 4 out of 5

microglia PFC TFs (IRF8, ATF5, SPI1, TAL1) based on

the upregulation in their activity in patients with

COVID-19 (Z > 2.5, P < 0.05 and FDR within cell type

< 0.05) (Fig. 4A; Additional file 9: Table S8). Projecting

microglia DEGs onto the GRNs of these 4 TFs showed

the co-regulatory TF-gene patterns affected in COVID-

19 (Fig. 4B). Collectively, these results suggest GRNs

corresponding to activated microglia response in pa-

tients with COVID-19 and nominate TFs that partially

regulate those transcriptome changes.

GRNs corresponding to microglia activation in acute

COVID-19 patients demonstrate enrichment for genes

that are predicted to be downregulated in a

transcriptome-wide association study (TWAS) of severe

COVID-19

To assess if acute microglia activation has a beneficial or

deleterious effect, we examined whether the direction of

effect of transcriptome signatures is concordant with

genetically regulated changes in the gene expression that

are associated with severe COVID-19. We leveraged

genetic variation from the COVID-19 Host Genetics Ini-

tiative and the gene expression models from the brain

[31, 32] and blood [30] tissues to impute the genetically

regulated transcriptomic changes [29] associated with

severe COVID19 outcomes (Additional file 10: Table

S9). Since microglia gene expression models are not cur-

rently available, we included proxy tissue (homogenate

brain and whole blood) models to capture the transcrip-

tome profiling of the microglial cell lineage. Given that

the microglia only represent 0.5 to 16.6% of all cells in

the brain parenchyma [37], we also included blood tissue

models corresponding to immune cells which are close

to the microglial cell lineage [38, 39]. We identified 12

significant genes (at FDR 5%) in the brain and blood

(AP000295.1, CCR3, CR936218.2, CRHR1, FYCO1, IFNA

R2, IL10RB, IL10RB-AS1, LRRC37A4P, MAPT-AS1,

OAS1, OAS3) that were associated with hospitalized

COVID-19 patients, with respect to the general popula-

tion. Nominally significant gene-trait associations (P <

0.05) from the imputed blood transcriptome were

enriched (OR = 1.64, P = 0.030, Fisher’s exact test) with

GRNs that are associated with the top 4 microglia TFs

(IRF8, ATF5, SPI1, TAL1) (Fig. 4C). In a secondary ana-

lysis, we examined whether the genetic liability was asso-

ciated with a predicted downregulation or upregulation

of the genes participating in these TF modules. Enrich-

ment was observed only for genes predicted to be down-

regulated (OR = 1.89, P = 0.035, Fisher’s exact test),

compared to genes predicted to be upregulated in sus-

ceptible individuals (OR = 1.35, P = 0.25, Fisher’s exact

test). In addition, OAS1, which was predicted to be

downregulated in susceptible individuals (FDR-adjusted

P = 0.003), was involved in 3 microglia GRNs (SPI1,

IRF5, TAL1, Fig. 4B). Overall, one possible interpretation

of these observations is that these TF modules, which

are activated in the microglia of acute COVID-19 pa-

tients and are predicted to be hypo-active at baseline in

susceptible individuals, may have a beneficial role in the

host response.

Discussion
Recent advances in single-cell approaches provide an op-

portunity to study highly complex tissues like the human

brain at unprecedented resolution. In order to better

understand the impact of acute COVID-19 on the CNS,

we studied the effects of COVID-19 in individual cells

across 3 functionally distinct regions of the human brain

(prefrontal cortex, choroid plexus, and medulla oblon-

gata). Although no virus was detected, single-nucleus

gene expression analysis revealed extensive differences

in the brains of COVID-19 patients when compared to

controls; specifically in the ChP and PFC. We observed a
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relative increase in the proportions of infiltrating im-

mune cells in the ChP, suggesting potential migration of

monocytes/macrophages across the blood-brain barrier.

Microglia residing in the PFC of COVID-19 patients dis-

played dysregulated gene expression. The majority of the

microglial DEGs were upregulated, mediating a myeloid-

driven inflammatory response that involved a range of

biological processes, including cellular activation, mobil-

ity, and phagocytosis. This is consistent with previous

studies that have also described increased inflammatory

response of microglia in COVID-19 cases [8, 10]. Finally,

by leveraging genetic variation to infer differences in

COVID-19 susceptible individuals, we provided prelim-

inary evidence for a potential beneficial role for micro-

glia activation during the acute COVID-19 phase.

Although there is evidence that SARS-CoV-2 spike

protein can be detected in the brain, including the cor-

tex [9], choroid plexus [8], and medulla oblongata [10,

40], immunoblotting, immunohistochemistry, and viral

genome RNA-seq indicate that the virus was not present

at the time of death in the specimens included in this

study. The ability to detect SARS-CoV-2 in the CNS is

affected by the duration of COVID-19 infection, with a

marked decrease in detectable virus by day 20 [10]. In

our study, all individuals had been infected for ≥ 14 days

while the duration of infection was ≥ 30 days for 3 out of

5 COVID-19 cases. In addition, only a subset of

COVID-19 patients indicates non-zero SARS-CoV-2

RNA copies in the CNS, which are more difficult to de-

tect in the brain parenchyma compared to the olfactory

mucosa [10]. Although our focus was on immune cells,

there is evidence, in addition to microglia activation, for

COVID-19-related transcriptional changes in a range of

brain cell types including astrocytes, oligodendrocytes,

and excitatory neurons [8]. The observed differences in

the number of DEGs, and the cell types affected, might

be explained by the experimental design: two versus a

single dissection per brain region and individual. If we

only consider a single dissection per brain region and in-

dividual in our analysis, the number of DEGs increases

(data not shown) and includes perturbations among

every major CNS cell type.

Conclusions
Taken together, these findings indicate persistent activa-

tion of the innate immune response in the brains of pa-

tients with COVID-19. Based on our results, it is

possible that the inflammatory response of microglia is

induced as a result of peripheral immune cells infiltrat-

ing CNS through the blood-brain barrier. Another point

of entry of SARS-CoV-2 to the CNS is by crossing the

neural-mucosal interface in olfactory mucosa [10]. These

two mechanisms are non-mutually exclusive and might

be associated with different stages of disease progression

and presentation of clinical symptoms. While shedding

light on the impact of SARS-CoV-2 on the CNS, our

study was insufficiently powered to fully elucidate all of

the relevant cellular states associated with COVID-19,

and future research efforts are required to confirm, and

expand on, our findings. In conclusion, our study sug-

gests extensive neuro-inflammation and brain immune

response in acute COVID-19 patients, even in the ab-

sence of direct evidence of SARS-CoV-2 neuro-invasion.
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