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Single-nucleus RNA sequencing shows convergent evidence from different cell types 

for altered synaptic plasticity in major depressive disorder. 
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Abstract 

Major depressive disorder (MDD) is a complex illness that involves the interaction of different 

brain systems, pathways, and cell types. Past molecular studies of MDD relied on cellular 

homogenates of post-mortem brain tissue, making it impossible to determine gene expression 

changes within individual cells. Using single-cell transcriptomics, we examined almost 80,000 

nuclei from the dorsolateral prefrontal cortex of individuals with MDD and healthy controls. Our 

analyses identified 26 distinct cellular clusters, and over 60% of these showed transcriptional 

differences between groups. Specifically, 96 genes were differentially expressed, the majority of 

which were downregulated. Convergent evidence from our analyses, including gene expression, 

differential correlation, and gene ontology implicated dysregulation of synaptic plasticity in the 

etiopathogenesis of MDD. Our results show that this high-resolution approach can reveal 

previously undetectable changes in specific cell types in the context of complex phenotypes and 

heterogeneous tissues. 
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Introduction 

Major depressive disorder (MDD) is a complex and heterogeneous disorder that affects an 

estimated 300 million people worldwide
1
. MDD can have serious implications, including death 

by suicide. The genetic factors underlying the risk for MDD have been investigated using 

different approaches, including genome-wide association studies
2
. Although some genetic 

associations have been detected, it has been difficult to identify specific and strong genetic 

correlates of the disease
3
. 

The etiopathogenetic theory positing that MDD results from dysregulation of monoaminergic 

transmission, largely implicating the serotonergic and noradrenergic systems, has dominated 

the field for several decades. Recently, other factors have been associated with MDD, including 

glutamatergic and GABAergic transmission
4-7

, glial cell function, including astrocytic and 

oligodendrocytic contributions
7-14

, blood-brain barrier integrity
9
, and inflammation

15
. Thus, a 

wide variety of cell types found in the brain may contribute to the molecular changes underlying 

MDD. 

In experiments conducted with cerebral tissue homogenates, the interpretation of differential 

gene expression is often complicated by the fact that the cellular composition of the sample is 

not uniform. Gene expression patterns in the brain are cell type specific, not only differentiating 

major classes of cells such as neuronal and glial cells, but even differentiating subtypes of glial 

cells and neurons
16,17

. Therefore, it is difficult to verify whether subtle molecular differences 

observed from tissue homogenates are explained by the disease state or by differences in cell 

type composition between samples
18,19

 and, just as gene expression patterns are cell type 

specific, it is likely that gene expression changes associated with MDD are also cell type specific. 

Recently developed techniques for high-throughput single-cell and single-nucleus RNA-

sequencing provide a solution for addressing this inherent drawback to bulk tissue 

experiments
20-22

. 

High-throughput single-cell RNA-sequencing (scRNA-seq) allows profiling of transcriptomes of 

individual cells by capturing the cells in nanolitre droplets using a microfluidic device and tagging 

every RNA molecule in a cell with a cell-specific barcode and a unique molecular identifier 

(UMI), all within the droplet. This method can also be extended to individual nuclei and yields 

comparable information
23,24

, allowing for analysis of frozen tissues, which are not amenable to 

the isolation of intact cells. 

While there has been considerable interest in using single-cell datasets to gain insight into the 

processes underlying complex brain disorders
25,

, no direct comparison of single-cell human brain 

gene expression has yet been performed using high-throughput technologies.  

We collected transcriptomic information on thousands of cells from 34 individuals, of whom half 

died during an episode of MDD, while the other half were psychiatrically healthy controls. We 

investigated differentially expressed genes across cell types and showed an overall enrichment 

for genes involved in synaptic plasticity, long-term synaptic potentiation, and synaptic 

organization. We also investigated the patterns of correlation of expression between 

differentially expressed genes across separate clusters. 
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Our results indicate that snRNA-seq can be successfully applied to complex psychiatric 

phenotypes to elucidate the role of specific cell types in pathology. The approach to snRNA-seq 

described here is an effective tool for interrogating subtle phenotypes with improved resolution 

in archived brain tissue from human brain banks, which are highly valuable but as yet, untapped 

resources for single cell transcriptomic research. 

Results 

The human brain is comprised of many functionally unique cell types localized to specific brain 

regions and layers
22,23,26,27

, including some that have yet to be fully characterized. To assess the 

involvement of individual cell types in the pathophysiology of MDD, we examined nuclei from 

the dorsolateral prefrontal cortex (dlPFC), a region implicated in the pathology of major 

depressive disorder
6,8,11

. To assess a large number of nuclei, we used a droplet-based single 

nuclei method optimized for use with postmortem brain tissue. We assessed 78,886 nuclei from 

34 brain samples, half from patients who died during an episode of MDD, and the other half 

from matched psychiatrically healthy individuals (Table 1, Supplementary Tables 1-3). The 

experimental design is depicted in Fig. 1a. On average, we sequenced to a depth of almost 200 

million reads per sample (Supplementary Table 1). Glial cells have consistently been found to 

have fewer transcripts than neuronal cells
22,28

. We used custom filtering based on the 

distribution of UMIs detected (see Methods, Supplementary Fig. 1a-e, Supplementary Table 4) 

to recover a substantial number of glial cells. With an initial subset of 20 subjects, applying our 

custom filtering increased the total number of cells 1.8–fold but increased the number of non-

neuronal cells by almost 6-fold (data not shown). More than 90% of the filtered cells had less 

than 5% mitochondrial reads, thus ensuring high quality data (Supplementary Fig. 1f). The 

average gene count across nuclei ranged from 2144 in neurons to 1144 genes in glia 

(Supplementary Table 5). UMI counts were approximately twice the gene count for all cell types, 

as expected for this level of sequencing depth (Supplementary Table 5). Between sample 

groups, there were no significant differences in the median gene count (t test p=0.12), median 

UMIs (t test p=0.14) and number of cells (t test=0.07) (Supplementary Table 1). 

Unsupervised clustering identified 26 unique cell types in the dlPFC 

In order to identify different cell types present in the brain samples, we applied unsupervised 

graph-based clustering
29

 using the first 50 principal components derived from the 2135 most 

variable genes across individual cells (see Methods, Supplementary Fig. 2a-b). This initially 

resulted in 30 distinct cell types with the majority (47,461) of cells belonging to excitatory 

clusters, as expected
30

, based on an initial annotation (Supplementary Fig. 2c-d). We then 

reprocessed all excitatory clusters whose average gene expression profiles were mutually highly 

correlated (R>0.95), this included 7 clusters of ~40,000 cells. Two smaller excitatory clusters not 

sufficiently correlated with these 7 were not re-clustered. These ~40,000 cells were reprocessed 

using similar parameters for clustering as the whole dataset (with slight differences, see 

Methods) producing a refined sub-clustering of excitatory cell types (Supplementary Fig. 3a-c, 

Supplementary Table 6). Finally, the clusters were manually curated to eliminate potential 

biases; for example, clusters were removed if mainly one sample contributed to the cells 

contained within the cluster (Supplementary Tables 7-10, Supplementary Fig. 4a-c). After 

stringent quality control (see Methods), we identified 26 unique clusters (Fig. 1b). Each cluster 

was annotated using a combination of known cell markers including broad cell markers to 
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identify neurons in general (SNAP25, RBFO3, STMN2), excitatory cells (SATB2, SCL17A7, 

SLC17A6), inhibitory cells (GAD1, GAD2, SLC32A1) (Fig. 1c-j), and non-neuronal cells, including 

astrocytes (GLUL, SOX9, AQP4, GJA1, NDRG2), oligodendrocytes (PLP1, MAG, MOG, MOBP, 

MBP), oligodendrocyte precursor cells (OPCs) (PDGFRA, PCDH15, OLIG1, OLIG2), endothelial 

cells (CLDN5, VTN) , and macrophages/microglia (SPI, MRC1, TMEM119, CX3CR1) (Fig. 1k-r). 

Gene expression patterns specific to cell type clusters were visualised using DotPlots (Fig. 2a), 

average expression and median expression heatmaps (Supplementary Fig. 5a-b) and violin plots 

(Fig. 2b-e) to form a consensus for annotation. 

Refining cell types  

The clusters generated from our data are consistent with previously reported gene expression 

patterns that vary within cell types (Supplementary Fig. 6), though our considerably larger 

sample set allowed us to produce more unique clusters than previously observed
22

. 

Gene expression patterns previously linked to specific cortical layers (see Methods) coincide 

with our clustering of excitatory cells. In Fig. 2b, the genes are arranged from left to right in 

order of their expression across the cortical layers (from the layer VI to layer II). There is a 

gradient of expression of these genes across the excitatory clusters. For example, clusters Ex1, 

Ex4, and Ex7-9 had high expression of TLE4 (layer VI specific). Ex1, Ex8, and Ex9 showed 

concurrent expression of layer V/VI markers such as TOX. Ex6 and Ex7 additionally showed 

expression of the layer IV specific gene RORB. HTR2C, which is specific to a subset of layer V 

neurons, was prominent in Ex1 alone. PCP4, which is also layer V specific, was present in Ex1-3, 

Ex7, and Ex9. Superficial layer (I-III) markers such as CUX2 and RASGRF2 were mainly seen in the 

large cluster Ex10. Likewise, inhibitory cell types demonstrated subtype specific gene expression 

patterns. For example, In7 was classified as inhibitory parvalbumin because it expressed GAD1 

and PVALB, and lacked VIP and SST (Fig. 2c). Multiple astrocytic clusters were also identified, and 

while the typical sub-classification of astrocytes is based on their morphology within grey or 

white matter
31

, we used only grey matter for these samples. As such, based on the higher 

percentage of GFAP expression in Astros_3 (38%) compared to Astros_2 (21%), we expect 

Astros_3 to represent reactive astrocytes
32

 (Fig. 2d, Supplementary Table 11). 

Oligodendrocyte cell lineage 

We identified five unique cell clusters that fell into the oligodendrocyte lineage (OL), including 

two that we classified as OPCs (Fig 2e). OPCs express a characteristic set of markers such as 

PDGFRA
33

 and PCDH15
34

, which decline as these cells mature into oligodendrocytes, whereas 

other lineage markers like, OLIG2 or SOX10, are present in both mature and immature cells
33

. 

Given these developmental stage specific markers it is possible to plot a pseudotime trajectory
35

 

using gene expression for OPC1, OPC2, Oligos1, Oligos2 and Oligos3. The result indicates that 

OPC2 are the youngest cells within the dataset followed by OPC1, then Oligos2 and Oligos3, with 

Oligos1 being the most mature (Fig. 3a). The expression of thousands of genes varied according 

to pseudotime (q<0.01), but approximately half of the associations were observed in both cases 

and controls (Fig. 3a, right). Among the genes that are uniquely associated with pseudotime in 

cases, there was a 2.7–fold enrichment of apoptosis signalling (FDR p<9.01x10
-3

)
36

, while no 

functional enrichment was observed in controls. To assess the individual profiles of important 

developmental gene markers, we plotted their expression across pseudotime (Fig. 3b-h), 

revealing their expected pattern of expression. 
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Within cluster gene expression differences associated with depression 

We set out to assess gene expression differences between cases and controls within each 

cluster. However, one limitation of droplet based single-cell technology is the possibility of 

capturing doublet or multiplet nuclei in a given reaction. These represent a potential 

confounding factor when assessing differential gene expression between groups. We therefore 

attempted to eliminate them from the dataset by calculating the correlation of each cell to the 

median expression value of its assigned cluster (See Methods, Supplementary Fig. 7). Cells with 

low correlation were removed. We also excluded any genes expressed in less than 10% of the 

cells in that cluster. Using only these purified clusters and filtered genes, we performed a 

differential gene expression analysis (Supplementary Tables 12-36). Olig2 was excluded from 

differential expression analysis because it contained only 48 cells.  

A total of 96 genes (FDR <0.1) were differentially expressed in 16 of the 25 clusters analyzed 

(Fig. 4a) and 45 of those remained significant at FDR<0.05 (12 of 25 clusters). The majority, 80 

genes (83%), were downregulated, in line with findings from previous transcriptomic studies in 

MDD
3,5,7

. While the differential expression analysis treated each cell as a sample, per subject 

contributions to the differential analysis were visualized using heatmaps of average gene 

expression (Supplementary Fig. 8a-p) to assess biases in sample contributions. Thirty-nine of the 

96 differentially expressed genes were found in excitatory cell clusters and, of those, 34 were 

downregulated (Fig. 4b). Certain neuronal clusters contained both upregulated and 

downregulated genes, however it was more common for clusters to have only downregulated 

genes. Non-neuronal clusters tended to have both up- and downregulated genes (Fig. 4c). There 

were two instances of the same gene being differentially expressed in separate clusters: 

PRKAR1B showed decreased expression in excitatory clusters Ex7 (FDR=0.087, FC=0.87) and Ex2 

(FDR=0.047, FC=0.82) and TUBB4B in excitatory clusters Ex7 (FDR=0.079, FC=0.87) and Ex6 

(FDR=0.073, FC=0.86). 

There were strong enrichments of Gene Ontology terms for neuron projection maintenance (84-

fold enrichment; FDR=0.011) and negative regulation of long-term synaptic potentiation (75-fold 

enrichment; FDR=0.012). Both of these terms are hierarchically related with the more general 

term regulation of synaptic plasticity, also enriched in the set of 96 genes (9-fold enrichment, 

FDR=0.012) (Fig. 4d). 

Between and within cluster correlations as indications of how cells interact in MDD 

To assess how interactions between cells might contribute to psychopathology, we assessed the 

correlation of differentially expressed genes between clusters. Average expression per subject 

for each of the differentially expressed genes was calculated in each of the 16 clusters. A 

correlation coefficient for each pair of genes was independently calculated for cases and 

controls and transformed into a Fisher z-score for comparison between groups (see Methods). 

Any z-score with p<0.01 was retained. The significant correlation differences between clusters 

are represented in Fig. 5a. Any differential correlations resulting from a magnitude difference in 

correlation coefficients are represented in grey as they are believed to demonstrate consistency 

in the biological function between groups. A positive z-value (blue) arises from gene pair 

correlations that are positive in cases and negative in controls, whereas a negative z- value 

(orange) arises from the opposite combination. Of equal interest, we examined clusters that 

showed high levels of within-cluster correlation differences. As expected, OPC2 and Ex7 showed 
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the highest number of changes in gene relationships within clusters given they have the highest 

number of differentially regulated genes. Interestingly, the Ex3 cluster has no between cluster 

relationship but shows a within cluster change (Fig. 5b). We used Fisher’s method to assess the 

overall correlation differences between clusters (Fig. 5c). This shows the strongest difference in 

the correlations between In2 and In8.  

Discussion 

The complex arrangement of numerous cell types in cortical cytoarchitectonics makes it difficult 

to tease out the respective implication of these cells in MDD and other brain illnesses. It is only 

with the advent of single-cell technology that we are beginning to understand the total number 

of cellular subpopulations that exist in the brain
17

. Given the complexity of psychiatric disorders 

such as MDD, and the absence of consistent, salient genetic contributions, disentangling the role 

of each cell type in the brain is of great importance and will require the level of resolution we 

have achieved here. 

Compared to previous single-nucleus PFC transcriptomic studies, our larger data set allowed us 

to resolve a greater diversity of excitatory clusters than both droplet-based
22

 (10 vs 2) and full 

length snRNA-seq protocols
26

 (10 vs 8). Custom filtering increased non-neuronal cell content, 

allowing greater resolution of glial subtypes, including multiple astrocytic, oligodendrocytic, and 

OPC clusters. For example, this resolution enabled us to pinpoint changes specific to OPCs but 

not oligodendrocytes, and changes selective to one subset of astrocytic cells. The same principle 

extends to neuronal cell types. 

Differential gene expression analysis suggests synaptic function alterations in depression, 

including synaptic plasticity, regulation of long-term synaptic potentiation, synaptic organization 

and more broadly, learning, memory and cognition. Genes such as APP (Ex3), PRKAR1B (Ex2/7), 

and PRNP (OPC2), were consistently associated with a number of the most enriched terms 

related to synaptic function and cognition.  

Interestingly, APP was found to be differentially correlated with PRAF2, both of which were 

found to be dysregulated within Ex3 (IV/V). There was a strong negative correlation (R=-0.93) in 

MDD cases but a moderate association in controls (R=0.25). The products of these genes 

interact directly
37

 and both are important for synaptic function
38,39

. This is suggestive of synaptic 

dysregulation in layer V pyramidal cells in the PFC of MDD cases. Given that layer V is primarily 

composed of projection neurons
40

, this may implicate other brain regions involved in mood and 

emotions, including the limbic system. 

We found that PRKAR1B (encoding protein kinase cAMP-dependent type I regulatory subunit 

beta) was decreased in MDD cases in 2 separate clusters Ex7 (IV-VI) by 12% and in Ex2 (V) by 

15%. PRKAR1B is involved in the cAMP second messenger-signalling pathway and in dopamine 

receptor signaling
41,42

. Dopamine (DA) is an important modulator of synaptic plasticity in the 

PFC
43,44

. Dopaminergic afferents from the ventral tegmental area (VTA), project primarily to 

layer V in the PFC
17

, and although DA is often overlooked in MDD, recent evidence points to 

altered dopaminergic signal transduction in depression 
45

. 

Additionally, PRKAR1B, from Ex2, was differentially correlated with RAB11B from In3 (SST). 

RAB11B (encoding for a Ras-related protein) is critical in vesicle transport and recycling
46

, in 
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particular, trafficking and recycling of monoamine transporters
47

. It is demonstrably involved in 

dopamine transporter (DAT) recycling
48

. Both PRKAR1B and RAB11B were decreased in MDD 

cases and there was a strong negative correlation between these two genes (R=-0.83) in MDD 

cases, but a strong positive correlation in controls (R=0.59). It is possible that in healthy 

individuals these proteins work synergistically to regulate dopaminergic signal transduction. In 

this study, we found a reduction of RAB11B and PRKAR1B which may disrupt DAT trafficking and 

inhibit DA mediated second messenger signalling, respectively. Together, these changes may 

indicate impaired DA signal transduction and DA-related synaptic plasticity, although further 

empirical evidence is required to support this hypothesis.  

In addition to being associated with mediating synaptic plasticity
49,50

, the prion protein gene 

(PRNP) was strongly decreased (28%; FDR=0.038) in the OPC2 cluster, the least developed cells 

identified in this study. The absence of PRNP has been associated with an increased number of 

undifferentiated oligodendrocytes, and OPCs that do not mature into oligodendrocytes are 

thought to be eliminated by apoptosis
51

. 

Indeed, we uncovered evidence suggesting that MDD may fundamentally modify the 

developmental trajectory of oligodendrocytes. The gene sets associated with developmental 

trajectory differed significantly between MDD cases and controls. We also observed an 

enrichment of apoptosis-related genes in cases but not in controls. This is in line with both the 

described effects of decreased PRNP in OPCs
51

, and evidence of a loss of mature adult 

oligodendrocytes in animal models of depression and anxiety
52

. Interestingly, there is evidence 

suggesting that half of the OPCs (NG2
+
) in the brain do not give rise to any other cell type

53,54
, 

implying a possible independent functional role for these cells. As such, OPCs are now suggested 

to be a distinct glial cell type
55

 implicated in brain plasticity through roles such as integration of 

synaptic activity
56

 and mediation of long term potentiation
57

. Additionally, there is evidence 

directly implicating the loss of this cell type with emergence of depressive-like behaviour
58

. The 

data from this study indicate that in MDD OPCs are not only precursor cells for 

oligodendrocytes, but act as an independently functioning cell type. 

Our paper builds on numerous pieces of convergent evidence pointing to the role of synaptic 

plasticity in the etiopathogenesis of major depressive disorder. In addition, these data expose 

several other possible paths toward deconvoluting the molecular and cellular changes 

underlying depression. With time and new insights into similar single nucleus transcriptomic 

alterations observed in other key brain regions associated with depression, we will be in a better 

position to forage new avenues for therapeutic interventions.  
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Figure Legends 

Figure 1: a) Schematic representation of experimental procedures. Nuclei were extracted from 

Brodmann area 9 (BA9) of the dlPFC of 17 cases and 17 controls, single nuclei were captured in 

droplets for RNA-seq. Unsupervised clustering and cell type annotation were followed by 

differential expression analysis between cases and controls within each cluster. b) TSNE plot 

depicting the ~73,000 cells in 26 clusters identified after strict quality control of initial clusters. 

Includes 2 astrocytic, 3 oligodendrocytic, 2 oligodendrocyte precursor, 1 microglial, 1 

endothelial, 10 excitatory neuronal and 7 inhibitory neuronal clusters. The majority of cells are 

present in excitatory clusters. Individual TSNE plots representing the expression of various 

neuronal (c-j) and non-neuronal (k-r) cell type marker in a given cluster. 

Figure 2: a) Cell type annotation was performed based on expression of well-established marker 

genes. (Left) Dendrogram representing relationship between identified cell clusters based on 

gene expression. (Middle) DotPlot depicting expression of known marker genes in the 26 

clusters of interest. Marker genes are colour coded according to the cell type in which they 

should be detected (e.g.: red for SPI, which is expected to be microglial). The size of the dots 

represents the proportion of cells expressing the gene whereas the colour intensity represents 

the average expression level. (Right) The list of numbers gives the size of each cluster and the 

bar plot depicts the mean number of UMIs per cell in each cluster. Overall, non-neuronal cell 

types show lower mean number of UMIs. b) Cortical layer specific markers varied in expression 

within the excitatory neuronal clusters produced after sub-clustering of initial clusters. The 

schematic of cortical layers can be used to orient the marker genes to the appropriate layer. The 

violin plots depict the expression per cluster of layer specific marker genes going from the more 

superficial layers on the right (starting from CUX2) to the deeper layers on the left (ending at 

NTNG2). Excitatory clusters were annotated with their approximate layer-specific identities 

based on the expression pattern observed. c) Refined inhibitory cluster identification. Known 

classes of inhibitory neurons are identifiable based on the expression pattern of peptide genes 

(VIP, SST, CCK) and calcium binding protein genes (PVALB). d) Astrocyte and non-neuronal cells. 

Higher GFAP expression in Astros_3 than Astros_2 may reflect their reactive state. We were 

unable to detect vimentin (VIM) positive astrocytes, although VIM expression was detected in 

endothelial cells as expected. e) Cells belonging to the oligodendrocyte lineage. 

Figure 3. Pseudotime trajectory. a) (Left) Oligodendrocyte lineage cells from 5 clusters were 

analysed to produce a pseudotime trajectory to gauge their developmental stages. Going from 

left to right along the trajectory we see a progression of immature and mature oligodendrocyte 

precursor cells followed by immature and mature oligodendrocytes in the order shown. Inset 

provides the positions of the clusters in the original TSNE plot. (Right) The diagram shows the 

number of genes that changed in expression with pseudotime separately in cases and controls. 

While 3535 gens were common to both groups, 2010 were only associated with pseudotime in 

cases, and 1660 were only associated with pseudotime in controls. Expression across 

pseudotime of (b-d) genes known to be highly expressed in OPCs or immature oligodendrocytes 

(e) transitionary, or (f-h) highly expressed in mature oligodendrocytes.  

Figure 4: a) For each cluster the percentage change in expression between cases and controls of 

all detected genes are plotted with decreased expression to the left of the midline and increased 

expression of the right. Ninety-six significantly changed genes (of which 16 were upregulated 

and 80 were downegulated) are marked in colour, based on their corrected FDRs as shown in 

the legend (light to dark blue corresponds to higher to lower FDRs). Sixteen out of the 26 
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clusters contained significantly differentially expressed genes b) Contribution of different cell 

type clusters to differentially expressed genes is depicted in pie charts. While the proportion of 

total differentially expressed and downregulated genes contributed by the different cell type 

clusters were relatively similar, non-neuronal clusters contributed a higher proportion of genes 

upregulated in MDD cases. c) Number of clusters in each broad category showing up and 

downregulated genes in MDD cases. While some excitatory and inhibitory clusters showed only 

downregulation, all dysregulated non-neuronal clusters contained both up and downregulate 

genes. A larger proportion (7/8) inhibitory clusters showed dysregulation compared to 

excitatory (6/10) or non-neuronal (4/8) clusters.  There was just one cluster (inhibitory), which 

showed only upregulation. d) Top 25 gene ontology terms associated with the 96 differentially 

regulated genes. 

Figure 5: Significant z-scores for pairs of 95 (one dropped) differentially expressed genes in the 

16 dysregulated clusters are represented in a Circos plot. a) Only the z-score for pairs of genes 

coming from two different clusters are shown here (between cluster z-scores). The gene names 

and the clusters that contain them are labelled outside the circle. Lines connecting genes 

represent that the correlation of gene expression for that pair of genes was significantly 

different between MDD cases and controls. Blue lines indicate positive correlation in cases and 

negative in controls, red lines indicate positive for control and negative for cases, and grey lines 

indicate the same direction of correlation but different strengths. b) As in (a) but for pairs of 

differentially expressed genes in the same cluster. c) Circos plot depicting weighted (see 

Methods) lines showing the overall level of correlational differences between different clusters. 

In brief, the thicker lines connect clusters whose correlations change more strongly between 

MDD cases and controls.  

 

Tables 

Table 1: Sample information 

 

Controls (n=17)  Cases (n=17) p value 

Age (years) 38.71 ± 4.32 41.06 ± 4.66 p=0.714 

Gender 17M 17M - 

PMI (hrs) 34.01 ± 4.94 41.69 ± 4.76 *p=0.190 

pH 6.49 ± 0.06 6.60 ± 0.07 p=0.212 

Storage 

Time 14.71± 1.44 12.47± 1.46 *p=0.543 

Mean ± SEM 

*Mann Whitney test 
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Materials and Methods 

Subjects: Postmortem brain samples 

This study was approved by the Douglas Hospital Research Ethics Board, and written informed 

consent from next-of-kin was obtained for each subject. Postmortem brain samples were 

provided by the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey 

matter samples were dissected from the left cerebral hemisphere of Brodmann Area 9 (dlPFC). 

Brains were dissected by trained neuroanatomists and stored at -80 °C. For each individual, the 

cause of death was determined by the Quebec Coroner’s office, and psychological autopsies 

were performed by proxy-based interviews, as described previously
1
.Cases met criteria for MDD 

whereas controls were individuals who died suddenly and did not have evidence of any axis I 

disorders (Table 1). Post mortem interval (PMI) represents the delay between a subject’s death 

and collection and processing of the brain. 

Nuclei isolation and capture 

50 mg of frozen tissue was dounced in 3 mL of lysis buffer, 10 times with a loose pestle and an 

additional 5 times with the tight pestle. The sample was left to lyse in a total of 5 mL of buffer 

for 5 min, after which 5 mL of wash buffer was added and swirled. The sample was passed 

through a 30 μm cell strainer and spun for 5 min at 500 g. This step was repeated for a total of 

two filtering steps. After pelleting, the nuclei are resuspended in 5-10 mL of wash buffer by 

pipetting up and down 8-10 times. After 3 washes, the nuclei were resuspended in 1 mL of wash 

buffer and mixed with 25 % Optiprep™, and layered on a 29 % optiprep cushion and spun for 30 

min at 10,000 g. Nuclei were resuspended in wash buffer to achieve a concentration of ~1x10
6
 

nuclei/mL.  

We used the 10x Genomics® Chromium™ controller for single cell gene expression to isolate 

single nuclei for downstream bulk RNA library preparation. We strictly followed the protocol as 

outlined by the user guide (CG000052), with the exception of loading concentration, which we 

increase by 30% as we assessed the capture of nuclei to be slightly less efficient than cell 

encapsulation. We aimed to capture ~3000 nuclei per sample.  This system only allows for a 

maximum of 8 samples per capture run. As such, we required multiple batches to collect the 

individual nuclei for all 34 samples (6 batches). Samples 250 and 251 performed poorly, we 

therefore, carried out the capture on two separate chips and sequenced twice combining the 

data from both runs for the final analysis.  

Sequence Alignment and UMI Counting 

A pre-mRNA transcriptome was built using the cellranger mkref (Cellranger version 2.0.1) 

command and default parameters starting with the refdata-cellranger-GRCh38-1.2.0 

transcriptome and as per the instructions provided on the 10X Genomics website. Reads were 

demultiplexed by sample index using the cellranger mkfastq command (Cellranger v2.1.0). Fastq 

files were aligned to the custom transcriptome, cell barcodes were demultiplexed, and UMIs 

corresponding to genes were counted using the cellranger count command and default 

parameters. 

Data Transformation for Secondary Analysis 

The unfiltered gene barcode matrices for each sample were loaded into R using the Read10X 

function in the Seurat R package (version 2.2.0, 2.3.0)
2
. Cell names were modified such that the 
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subject name, batch, and biological condition were added to them. Seurat objects were created 

corresponding to each sample using the CreateSeuratObject function with the imported 

unfiltered gene-barcode matrices provided as the raw data. Individual Seurat objects for each 

sample were combined into one object using the MergeSeurat function sequentially. No filtering 

or normalization was performed up to this step. Since this is a single nucleus dataset, all 

mitochondrial genes that are transcribed from the mitochondrial genome were removed, along 

with genes not detected in any cell. 

Barcode and Gene Filtering 

Based on the distribution of nGene (total number of genes detected in each cell) for the total 

dataset (assessed by summary and hist R
3
 functions), barcodes that were associated with less 

than 110 detected genes were removed. Based on the distribution of nUMI (total numbers of 

UMIs detected in each cell), the top 0.5 % of barcodes were also excluded as most likely being 

multiplets rather than single nuclei as there was a very sharp increase of nUMI from 16,393 at 

the 99.5
th

 percentile to 102,583 at the maximum.  

Next, the distribution of nUMI for the remaining barcodes was fit with three normal 

distributions using the normalmixEM function from the mixtools
4
 package (Supplementary Fig. 

1c). The rationale was that, the filtered barcodes contain a population of low quality “noise” 

barcodes that have a very low nUMI on average, a population of non-neuronal cells that have an 

intermediate nUMI and a population of neuronal cells that have a high nUMI. Based on the 

fitting of the normal distributions, only the barcodes with a high probability (> 0.95) of belonging 

to either the putative “non-neuronal” or putative “neuronal” distributions, and a low probability 

(<0.05) of belonging to the “noise” distribution were retained for further analysis 

(Supplementary Fig. 1c-d). 78,886 cells and 30,062 genes were retained.   

Data Processing and Dimensionality Reduction  

The UMI counts were normalized to 10,000 counts per cell and converted to log scale (Seurat 

function NormalizeData). The batch, condition, and subject information was added as meta data 

to the final Seurat object; nUMI and batch were regressed out using the ScaleData function. The 

Seurat FindVariableGenes function was used with default selections and cut-offs as follows: 

x.low.cutoff = 0.003, x.high.cutoff = 2, y.cutoff = 1. This resulted in a list of 2135 highly variable 

genes, which excludes lowly expressed genes (below 25
th

 percentile), very highly expressed 

genes, and selects only the top 10 % of genes in terms of the scaled dispersion. These highly 

variable genes were used to calculate 100 principal components. Based on the PC elbow plot of 

the standard deviation of the PCs (Supplementary Fig. 2a), the first 50 PCs were retained for use 

in downstream analysis. 

Clustering by Gene Expression 

The FindClusters function was applied with a resolution of 2.5 and identified in 44 initial clusters. 

The goal of clustering is to sort nuclei by cell type so that all remaining gene expression variation 

within clusters is not related to cell differentiation processes. Prior to the advent of single nuclei 

expression profiling, cell types were identified by observing differences in cell morphology, 

behaviour, and anatomic location. It is fairly straight-forward to sort single nuclei expression 

profiles into known cell types according to the expression levels of marker genes that 

differentiate between these cell types. However, it is very unlikely that all cell types have been 

identified so we must rely on nuclei clustering to uncover as-yet unknown cell types.  

Unfortunately, the number of clusters obtained from the clustering algorithm is somewhat 

arbitrary because clustering depends on the settings of several parameters, and there is no 
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consensus on how they should be set. Although clusters obtained using reasonable default 

settings usually correspond to known biological cell types, some clusters may appear to 

potentially identify entirely new cell types or splinter existing cell types into multiple subtypes. 

Deciding if the clusters really do identify new cell types can be difficult or may even be 

impossible from available data. 

To address this issue, we used tools in the Seurat package to sequentially combine any clusters 

that were not sufficiently distinct from each other. In particular, after performing initial 

hierarchical clustering of the graph-based clusters (BuildClusterTree), we assessed the nodes of 

the dendrogram using a random forest classifier (AssessNodes) and then merged together any 

nodes which were in the bottom 25 % of the dendrogram (using the branching.times function 

from the ape R package
5
) and had an out-of-bag-error of more than 5 %. We then repeated this 

clustering and merging process for the nuclei within each terminal node until none of the 

remaining nodes fulfilled our cut-off criteria (Supplementary Fig. 2b). The resulting set of 30 

clusters were then characterized in terms of known markers genes of all major, well-defined 

brain cell types (Supplementary Fig. 2c-d). For refining identification of excitatory neuron types, 

we combined and re-clustered a set of excitatory clusters with highly correlated gene expression 

profiles (R > 0.95) (Supplementary Fig. 3a-c) to get 33 final clusters.  

Cluster Annotation 

Genes used as markers for major cell-types and layer-specificity are listed below. Inhibitory 

neuron subtypes were annotated based on expression of canonical inhibitory interneuron 

markers SST, PVALB, and VIP where possible. Excitatory neuron subtypes were annotated with 

some level of layer specificity based on expression of layer specific markers. We also 

characterised clusters in terms of all genes differentially expressed between clusters 

(FindAllMarkers function, bimodal test, logfc.threshold of log(2), other parameters set to 

default) (Supplementary Table 11). 

Major cell-type markers 

Macrophage/ Microglia: MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN; Astrocytes: 

GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA, 

PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG,MOG, MOBP, MBP; Excitatory neurons: 

SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1,GAD2, SLC32A1; Neurons: 

SNAP25,STMN2, RBFOX3. 

Layer-specific markers: 

L2: GLRA3; L2-3: LAMP5, CARTPT; L2-4: CUX2, THSD7A; L2-6: RASGRF2, PVRL3; L3-4: PRSS12; L4-

5: RORB; L4-6: GRIK4; L5: KCNK2, SULF2, PCP4, HTR2C, FEZF2: L5-6: TOX, ETV1, RPRM, RXFP1, 

FOXP2; L6: SYT6, OPRK1, NR4A2, SYNPR, TLE, NTNG2, ADRA2A 

Purification of Clusters for Differential Expression 

While the level of cluster purity we achieved from the above steps was comparable to that of 

previously published studies, a preliminary assessment of differential expression between our 

biological conditions within each cell type clusters indicated that we needed further “cluster 

purification” steps to remove even very small contaminating populations of doublets or 

misclassified cells. Without such purification uneven presence of contaminating cells can result 

in false positives in the differentially expressed genes identified. Our purification approach 

comprised of calculating a median gene expression profile for all our clusters, calculating the 

correlation of the gene expression of each cell, with the median profile of its cluster (considering 
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only the top 865 genes whose median expression was highly variable, that is had a variance of > 

0.25 across the different cluster) and selecting cells with high correlation. This was done by 

fitting bimodal normal distributions to the total distribution of correlations in the cluster to 

identify low and high correlation peaks. Cells were retained only if they had a low probability of 

falling in the low correlation peak (p < 0.25) and a high probability (p > 0.75) of falling in the high 

correlation peaks (Supplementary Fig. 7).  

Differential Expression Analysis 

Differential expression analysis between the cases and controls was performed using linear 

mixed models implemented in the lme4
6
 and lmerTest

7
 R packages. Mixed models were 

necessary in order to account for dependencies between nuclei obtained from the same subject. 

Biological condition and number of UMIs were included in models as fixed effects and the 

subject and batch as random effects. A false discovery rate (FDR) of 0.1 was used to detect 

differentially expressed genes within each cell type.  

Pseudotime trajectory using Monocle 

For oligodendrocyte developmental trajectory assessment, the data for cells belonging to the 

five clusters in the oligodendrocyte lineage (Oligos_1, Oligos_2, Oligos_3, OPCs_1, OPCs_2) were 

used to create a separate Seurat object using the SubsetData function. The most variable genes 

for these clusters alone were identified using the FindVariableGenes function and the following 

parameters: x.low.cutoff = 0.003, x.high.cutoff = 3, y.cutoff = 1 (giving a total of 895). The Seurat 

object was imported into a CDS (CellDataSet) object using the Monocle
8
 function importCDS.  

Estimation of size factors and dispersions was performed (using the estimateSizeFactors and 

estimateDispersions Monocle functions) on the CDS object using default parameters. 

Dimensionality reduction was then performed using reduceDimension, with reduction_method 

set to DDRTree. The 895 variable genes identified as above were used for ordering the cells into 

a trajectory with the orderCells function. The pseudotime trajectory was then plotted with 

plot_cell_trajectory (Fig. 3a), and the change in expression of genes known to be involved in 

oligodendrocyte development were plotted using plot_genes_in_pseudotime (Fig. 3b-h).  

differentialGeneTest was applied separately to oligodendrocyte lineage cells from control 

subjects and MDD cases with fullModelFormulaStr = "~sm.ns(Pseudotime)". This allows us to 

model the expression of each gene as a function of pseudotime.  All genes detected in at least 

one cell in the respective group were compared and their changes across pseudotime were 

assessed. A q-value cut-off of < 0.01 was used to identify genes associated with pseudotime. The 

overlapping and non-overlapping genes were identified by comparing the lists obtained for the 

two groups (Fig. 3a).  

Correlations between differentially expressed genes 

The average expression profile per subject within each cluster for each of the 96 differentially 

expressed genes was calculated using the AverageExpression function in Seurat. Only subjects 

that contributed cells to all of 16 clusters with differentially expressed genes were retained (13 

controls and 6 MDD cases). The correlation coefficient between the expression of every pair of 

genes was calculated independently for the controls and the MDD cases. One gene (ZFP36) with 

zero average expression in all 6 retained cases was dropped because correlation could not be 

calculated, leaving 95 genes for further analysis. To compare correlation coefficients between 

cases and controls, correlation coefficients were transformed to Fisher z-scores using the fisherz 

function of the R psych
9
 package and a comparison z-score derived using the following formula: 
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𝑧𝑧1 − 𝑧𝑧2� 1𝑛𝑛1 − 3 + 1𝑛𝑛2 − 3 

where z1 denotes the z-score for the cases, n1 the number of cases, z2 the z-score for the 

controls, n2 the number of controls. The resulting z-score for the comparison was converted to a 

two-tailed p-value (Supplementary Fig. 9). P-values were not corrected for multiple testing. 

For assessing the overall strength of correlation differences between clusters we used Fisher’s 

method for combining p-values for each pair of clusters. These combined p-values were used to 

scale the links in the Circos
10

 plot depicting overall correlation differences (Fig. 4c). 

Cell deconvolution 

Expression data from (dbGaP:phs000424.v8.p1)
11

 was used as reference signatures for 

annotated cell types. UMI counts for each cell were converted to transcripts per million (TPMs) 

in order to account for the varying sequencing depth of each cell and sample. Average 

expression levels were calculated for each cell type-specific cluster defined in the paper. 

Cluster-specific gene expression profiles were obtained by summing the UMI values of all 24301 

genes common to our dataset and the reference for each nucleus in each cluster and converting 

the sums to TPMs. R package, DeconRNASeq v1.18.0
12

 was used to deconvolute these cluster-

specific profiles. Using the data from
11

as reference, we were able to estimate the cell type 

composition of our clusters. 

Data Availability 

Raw sequencing data, annotated gene-barcode matrix, and lists of cells used for differential 

gene expression analysis are accessible on the MGSS server: 

http://mgss.cs.mcgill.ca/snRNAseq_paper/ 
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Figure 1c‐j Neuronal markers
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Figure 1k‐r Non‐Neuronal
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Figure 2a
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Figure 2b
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Figure 2c
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Figure 2d
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Figure 2e
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Figure 3a

OPC2 < OPC1 < Oligo2 < Oligo3 < Oligo1

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

a
c
e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s
 n

o
t

th
is

 v
e
rs

io
n
 p

o
s
te

d
 M

a
rc

h
 1

5
, 2

0
1
9
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/3

8
4
4
7
9

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/384479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3b‐h
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Figure 4a
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Figure 4b
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Figure 4c
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Figure 4d
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Figure 5a
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Figure 5b
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Figure 5c
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