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A droplet bouncing on a vertically vibrated bath can become coupled to the surface wave it generates. It
thus becomes a "walker" moving at constant velocity on the interface. Here the motion of these walkers is
investigated when they pass through one or two slits limiting the transverse extent of their wave. In both
cases a given single walker seems randomly scattered. However, diffraction or interference patterns are
recovered in the histogram of the deviations of many successive walkers. The similarities and differences
of these results with those obtained with single particles at the quantum scale are discussed.
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As shown recently [1], a droplet can bounce indefinitely
on a vertically vibrated bath of the same fluid. Near the
Faraday instability threshold [2], this bouncing becomes
subharmonic and the drop emits a localized Faraday wave
packet. A bifurcation occurs by which the drop becomes
spontaneously self-propelled and moves on the liquid sur-
face at constant velocity. This occurs when there is a lock-
in phenomenon so that the drop falls systematically on the
forward front of the wave generated by its previous bounc-
ings [3,4]. We called "walker" the moving droplet dressed
with the wave-packet it emits. A walker is a ‘‘symbiotic’’
structure: if the droplet disappears (by coalescence with the
substrate), the wave vanishes. In reverse, if the wave is
damped, the droplet stops moving. Two interacting walkers
can have discrete stable orbits [3,4] demonstrating that
they have both an inertia due to their mass and nonlocal
interactions due to the interference of their waves.

In order to obtain a better characterization of this double
particle-wave behavior of walkers we undertook the
present experiments on their trajectories when they pass
through apertures limiting the transverse extent of their
wave. They are inspired by the well-known experiments on
diffraction and interference performed at a low flux of
particles. In Young’s two slits configuration it was shown
with photons [5], then with electrons [6–8] that interfer-
ence patterns could be obtained even when only a single
particle at a time was present in the system. These patterns
were then observed through the accumulation of successive
individual events. Such results are usually thought to be
possible only in quantum physics [9].

The experiments are performed in square cells
[Figs. 1(a) and 1(b)] filled with silicon oil and submitted
to a vertical oscillating acceleration ! " !m cos#2"fot$.
Two cells of size 70% 70 mm and 130% 130 mm were
used, filled with a liquid layer of thickness h0 " 4 mm. As
is well-known, in this configuration, the surface of the bath
can become unstable to the formation of standing waves of
frequency fF " f0=2 (and wavelength #F). This is the
parametrically forced Faraday instability [2] which occurs,

in our experiment, above a threshold !F
m & 4:5 g. The con-

tainer was carefully set horizontal and perpendicular to the
vibration axis. The liquid was silicon oil with surface ten-
sion $"0:0209N=m and density %"0:965%103 kg=m3.
Two different oils of viscosity &1 " 50% 10!3 Pa ' s and
&2 " 20% 10!3 Pa ' s were used with which walkers
were optimally obtained at forcing frequencies f1 "
50 Hz and f2 " 80 Hz respectively. The measured
Faraday wavelengths, (#F " 6:95 and 4.75 mm, respec-
tively) are in good agreement with the values computed
from the dispersion relation: !2 " fgk( #$=%$k3g. We
used droplets of diameter D& 1 mm, which become fast
walkers with velocities of the order of a tenth of the phase
velocity V’

F of the Faraday waves (with e.g. V’
F "

189 mm=s for fF " f0=2 " 40 Hz).
As sketched on Figs. 1(a) and 1(b), strips are glued to the

bottom of the cell so that, above them, the depth of the
liquid is reduced to h1. In these regions the Faraday insta-
bility threshold being shifted to larger forcing amplitudes,
the waves are damped and droplets either stopped or
reflected. These band-shaped regions thus form opaque
screens for walkers. An interval of width L between two
strips forms the diffracting slit. The droplet is initially
pushed into a V-shaped structure located far from the
screen and formed of two segments of immersed strips.
The initial direction of motion of the walker is roughly
determined as its moves out of this trap.

Figure 1(a) shows a recorded droplet trajectory. While
its initial motion is straight, the droplet follows a complex
path as it passes through the aperture, before recovering a
straight trajectory again. Figure 1(c) shows that in the slit
region the wave emitted by the droplet is distorted by its
interference with its own reflection on the boundaries. The
deviation is clearly due to this effect. We define the far field
deviation ' as the angle between the straight trajectories,
far from the screen before and after diffraction [see
Fig. 1(a)]. The first question concerns the relation between
' and the region of the slit the droplet has crossed. To
answer this question we repeated single-particle experi-
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ments, having the same walker cross the slit, with various
initial motions. As shown on Fig. 1(a) each initial trajec-
tory is defined by its incidence angle (i and by its normal-
ized impact parameter in the slit Yi " yi=L
(!0:5< Yi < 0:5) [Fig. 1(a)]. The walkers were always
started far from the screen and only those impinging per-
pendicularly on the slit ((I " 90)) were retained.

The plot '#Yi$ [Fig. 2(a)] shows that there is no simple
relation between the deviation and the parameter of impact.
This is also observed on individual realizations: with ap-
parently identical initial conditions: same droplet, same
incidence angle, same Yi, very different trajectories can
be observed [Fig. 2(b)]. However, Fig. 2(a) also shows that
the various values of the deviations are not observed with
the same probability. We thus investigated the statistics of
the deviations obtained with many independent realiza-
tions (taking care that approximately the same density of
particles crosses all regions of the aperture). Figures 2(c)
and 2(d) shows two histograms N#'$ for 125 succes-
sive events. They were obtained with the same slit (of
width L " 14:8 mm) with two different Faraday wave-
lengths: #F " 6:95 mm [Fig. 2(c)] and #F " 4:75 mm
[Fig. 2(d)]. The central peaks have widths of the order of

#F=L and large amplitude lateral lobes are clearly ob-
served. Hence, on Figs. 2(c) and 2(d) the general shapes
of the histograms are compared with the amplitude diffrac-
tion pattern of a plane wave passing through a slit:

 f#'$ " A
!!!!!!!!
sin#"L sin'=#F$
"L sin'=#F

!!!!!!!!: (1)

This amplitude of diffraction of a plane wave turns out to
provide an approximate fit for these histograms. Hence, the
particle behavior exhibits the uncertainty relation ruling
the spatial confinement of a plane wave: )y#)kF$y * 1=2
where )y " L and kF is the Faraday wave vector. Let us
note that diffraction here really concerns the statistical
properties of trajectories of a moving source of circular
waves passing through a slit, a phenomenon for which, to
our knowledge, no theory exists.

These surprising results led us to go one step further and
investigate if interferences with single particles could be
observed. We performed Young’s type of experiments us-
ing a screen with two slits. The experiment requires a fine-
tuning of the forcing amplitude !m to a value very close to
the Faraday threshold. The transverse extension of the

FIG. 2 (color online). (a) The measured deviations a of suc-
cessive individual particles as a function of the parameter of
impact Yi (with L=#F " 2:86). (b) A superposition of three
different trajectories of the same droplet passing 3 times through
the slit with similar initial conditions (i " 90) and Yi " 0:1.
(c) Experimental histogram of the deviation ' as obtained with
NT " 125 single walkers with L=#F " 2:11 (L " 14:7 mm and
#F " 6:95 mm). Since each trajectory has a symmetrical coun-
terpart with respect to the axis of the aperture, the statistic was
improved by taking them into account so that the distributions
correspond to 2NT realizations. The curve is the fit by Eq. (1)
with L=#F " 1:96. (d) Histogram obtained with L=#F " 3:1
(L " 14:7 mm and #F " 4:75 mm). The curve is the fit by
Eq. (1) with L=#F " 2:86.

FIG. 1. (a), (b) Sketch of the central region of the experimental
cell (seen from above and in a cross section along the y axis,
respectively). An individual trajectory is shown in (a) and the
definitions of (i, yi, and ' are given. The width of the slit being
L, the parameter of impact is Yi' " yi=L. (c) A photograph of the
experiment lit with diffuse light showing the wave pattern as the
walker crosses the aperture. The picture was taken at a time
when the trajectory, initially perpendicular to the aperture, was
deflected by the interference with reflected waves.
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walker’s wave packet is then much larger than d. Figure 3
shows the histogram of 75 such trajectories. As above we
compare it to the interference amplitude pattern of a plane
wave:

 f#'$ " A
!!!!!!!!
sin#"L sin'=#F$
"L sin'=#F

cos#"d sin'=#F$
!!!!!!!!: (2)

The interference fringes are clearly observed and well
fitted by this expression. It can be noted that a given droplet
is observed to go through one or the other of the slits.
However its associated wave passes through both slits and
the interference of the resulting waves is responsible for
the trajectory of the walker.

Why is a droplet deviated? When a walker approaches a
boundary, the shape of the surface beneath the drop results
from the interference of the recent waves moving with the
droplet with older waves coming back after reflection. In
these conditions, due to variations of the local slope,
successive jumps have different directions and lengths.
The waves guide the droplet [Fig. 1(c)] and the trajectory
is thus defined iteratively by a type of dynamical echo-
location.

In order to evaluate the main characteristics of this
remote sensing-based motion we performed numerical
simulations. These simulations are an extension of the
theory developed for free walkers [4,10]. We use the
simplifying approximation that the vertical and horizontal
motions of the droplet are decoupled. Takeoff and landing
times are thus determined only by the forcing oscillations
of the liquid bath. The horizontal displacement )rn of the
droplet between two collisions is the result of three pro-
cesses. The droplet, after each takeoff, has a free parabolic
motion with a constant horizontal velocity. At each

bounce, the droplet is given a momentum increment by
its inelastic shock on the surface. The direction and the
intensity of the kick depend on the local surface slope.
During the contact time, the droplet undergoes a viscous
damping of its horizontal velocity due to the shearing of
the air layer between the drop and the bath. In the case of a
free walker, the local slope of the interface results from the
direct accumulation of the previously generated waves.
With these simple hypotheses the walking bifurcation
[3,4,10] is recovered.

In order to compute the effects of the surroundings on
the walker’s trajectory, the walls are modeled by ade-
quately positioned secondary sources. These sources emit
circular waves with a phase opposite to the wave they
receive. The total wave amplitude is thus zero at the
position of the secondary sources, in agreement with ex-
perimental boundary conditions. In this procedure, the
influence of the scattered waves on the droplet trajectory
is taken into account at each collision time, including the
retardation effects due to the finite wave and droplet veloc-
ities. Experimental observations show that the wavelets
produced by previous bounces of the droplet are still
visible after typically 5 to 20 jumps. The calculation of
the wave due to the walker includes this cumulative effect.

The trajectory of the droplet is computed iteratively, )rn
being at each step determined by the local slope of the
interface. The new direction and amplitude of the next
jump are thus the result of the interfering waves scattered
by the walls or directly coming from the previous bounces
at the place of collision.

The simulated droplet trajectories appear quite complex
in the vicinity of the slit, in agreement with the experimen-
tal observations. This result is confirmed in Fig. 4(a) show-
ing the deviation ' versus the normalized impact
parameter Yi for N " 250 successive single realizations.
The associated histogram of ' in Fig. 4(b) is similar to the
amplitude diffraction of a plane wave through a slit. In
spite of the simplifying assumptions the main character-
istics of the experiments are recovered [11].

We have thus obtained in a classical experiment a be-
havior typical of wave particle duality. A discussion of the
relation between these single-particle experiments and
those concerning elementary particles is unavoidable. It
can be first recalled that a coupling between a particle and a
guiding wave is the main ingredient of an early model of
quantum mechanics proposed by de Broglie [12]. Variants
of this model have been developed by Bohm [13] and it
was shown that single-particle interference could be ob-
tained in this framework [14]. Our experiment turns out to
implement a particular version of this type of coupling.
There is, however, a huge gap between our system and the
quantum world where diffraction and interference of single
particles is usually observed.

The differences can be listed. Our experiment has a
macroscopic scale and no relation with the Planck con-
stant. In a walker, the wave is emitted by the particle and
travels at a finite velocity on a 2D material medium. It is a

FIG. 3 (color online). Histogram for the deviation of 75 par-
ticles through two slits of width L " 7:6 mm, a distance d "
14:3 mm apart, the walker’s wavelength being #F " 6:95 mm
(L=#F " 1:1 and d=#F " 1:87). The light line is the envelope
due to the diffraction of a single slit while the curve in black is
the optimum fit by Eq. (2) obtained for effective values L=#F "
0:9 and d=#F " 1:7.
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dissipative system, which is sustained by external forcing.
The system is dispersive but this is masked because the
wavelength is fixed by the forcing. We can measure the
entire trajectory of the particles through the slits, an ob-
servation impossible in quantum mechanics [15]. Finally,
because of a specific type of coupling of the particle with
the wave, the probability distribution of the particles is
linked with the wave amplitude (not with its intensity).

With these differences in mind we can recall the sim-
ilarities. We have shown that the momentum of a walker
becomes ill-defined when the transverse extent of its wave
is spatially limited. This phenomenon results in a disper-
sion of individual deviations, together with a deterministic
probability distribution of these deviations. The uncer-
tainty principle inherent to the Fourier-transform of a
wave is here responsible for a corresponding uncertainty
affecting the motion of the material particle that emits the

wave. We showed in the simulation how this wavelike
behavior of particle trajectories can result from the feed-
back of a remote sensing of the surrounding world by the
waves they emit. This phenomenon gives the walking
droplet a kind of nonlocality since it evolves in a medium
affected by waves it emitted in the past.

We are grateful to Arezki Boudaoud, Suzie Protière, and
Maurice Rossi for stimulating discussions.

*Email address: couder@physique.ens.fr
†Email address: emmanuel.fort@espci.fr

[1] Y. Couder, E. Fort, C. H. Gautier, and A. Boudaoud, Phys.
Rev. Lett. 94, 177801 (2005).

[2] W. S. Edwards and S. Fauve, J. Fluid Mech. 278, 123
(1994).

[3] Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature
(London) 437, 208 (2005).

[4] S. Protière, A. Boudaoud, and Y. Couder, J. Fluid Mech.
554, 85 (2006).

[5] G. I. Taylor, Proc. Cambridge Philos. Soc. 15, 114 (1909).
[6] P. G. Merli, G. F. Missiroli, and G. Pozzi, Am. J. Phys. 44,

306 (1976).
[7] P. G. Missiroli, G. Pozzi, and U. Valdré, J. Phys. E 14, 649

(1981).
[8] A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and

H. Ezawa, Am. J. Phys. 57, 117 (1989).
[9] R. P. Feynman, R. B. Leighton, and M. Sands, The

Feynman Lectures on Physics (Addison Wesley,
New York, 1963), Vol. 3, Chap. 37.

[10] In the model due to A. Boudaoud (see Ref. [4]), the forces
being averaged over a period of the vertical motion, the
horizontal motion is modeled by the following equation:

 m
d2x
dt2

" Fb sin
"
2"

dx=dt
V’

#
" fV

dx
dt

:

The first term on the right is the effective force due to the
bouncing on an inclined surface. It is proportional to !m
and to the slope of the surface waves. The actual tilt of the
surface at the time of collision results from the difference
in propagation of the drop and the wave since the previous
collision. The argument of the sine corresponds to this
phase shift. The second term stands for the viscous damp-
ing due to the shearing of the air layer between the drop
and the bath during the contact.

[11] The fact that the elementary displacement of the drop is
related to the slope of the surface (and thus to the wave
amplitude) appears to be responsible for the amplitude
related diffraction or interference patterns.

[12] L. de Broglie, Ondes et mouvements (Gautier Villars,
Paris, 1926).

[13] D. Bohm, Phys. Rev. 85, 166 (1952).
[14] C. Philippidis, C. Dewdney, and B. J. Hiley, Nuovo

Cimento B 52, 15 (1979).
[15] It can be noted however, that it would not be possible to

observe the phenomenon by any means at its scale. For
instance, the use of a floater to measure the waves would
destroy the diffraction or interference pattern.

FIG. 4 (color online). Numerical simulation of the diffraction
of a walker through a slit. The collision frequency is 40 Hz with
an acceleration of the bath of 4.5 g. The #F " 5:7 mm. The
spatial and temporal attenuations of the Faraday surface waves
are set at 2.5 Faraday periods and 2:5#F, respectively. The
iterative calculation of the slope takes into account the last 10
bounces. The walls are modeled by secondary sources periodi-
cally spaced every #F=2. Because of the limited number of the
secondary sources, the deviations at very large angle are not
simulated properly. (a) The deviation ' of individual particles as
a function of the parameter of impact Yi with L=#F " 3.
(b) Histograms of the deviation ' as obtained with N " 250
single walkers diffracted through the aperture with L=#F " 3.
The curve is the fit by Eq. (1). The second lateral peaks are not
visible because of the limits of simulations.
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