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Abstract

The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spher-

ical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The

calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

includes a small temperature gradient. There are three forces that constitute the total thermophoretic

force on a charged colloidal sphere due to the presence of its double layer : (i) the force FW that

results from the temperature dependence of the internal electrostatic energy W of the double layer,

(ii) the electric force Fel with which the temperature-induced non-spherically symmetric double-layer

potential acts on the surface charges of the colloidal sphere and (iii) the solvent-friction force Fsol

on the surface of the colloidal sphere due to the solvent flow that is induced in the double layer

because of its asymmetry. The force FW will be shown to reproduce predictions based on irreversible-

thermodynamics considerations. The other two forces Fel and Fsol depend on the details of the

temperature-gradient induced asymmetry of the double-layer structure which can not be included in

an irreversible-thermodynamics treatment. Explicit expressions for the thermal diffusion coefficient
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are derived for arbitrary double-layer thickness, which complement the irreversible-thermodynamics

result through the inclusion of the thermophoretic velocity resulting from the electric- and solvent-

friction force.

PACS : 82.70.Dd Colloids - 66.10.Cb Diffusion and Thermal diffusion

1 Introduction

The thermal diffusion coefficient of colloidal particles consists, to a good approximation, of additive con-

tributions from single-particle properties and contributions stemming from interactions between colloids

[1]. Single-particle contributions relate to the response of the solvation layer, the structure of the solid

core material and the electric double-layer to a temperature gradient. As far as the electric double layer is

concerned, there are three forces acting on a colloidal sphere. First of all, the internal electrostatic energy

W of the double layer changes with temperature, which results in a force that will be denoted here as

FW . This force will be referred to as the internal force, since it originates from the internal energy of

the double layer. As will be shown, to leading order in temperature gradients, it is sufficient to consider

the spherically symmetric double layer to calculate FW . The temperature-induced change of the structure

of the double layer does not contribute to this force to leading order in gradients. There are two more

contributions to the total thermophoretic force, which are related to the temperature-induced asymmetry

of the double-layer structure. The temperature-induced asymmetric charge distribution within the double

layer results in a displacement of the center-of-charge of the double layer as compared to that of the col-

loidal sphere. This results in an electric force Fel of the double layer on the surface charges of the colloidal

sphere. In addition, the asymmetry of the double-layer structure gives rise to electric body forces that set

the solvent in motion. The friction forces on surface elements of the core of the colloidal sphere due to this

flow leads to an additional solvent-friction force Fsol. The total thermophoretic force F = FW +Fel +Fsol

on the colloidal sphere is the driving force for thermal diffusion.

The temperature-gradient induced double-layer asymmetry can be understood within a first, crude

intuitive approach as follows. The Debye screening length is temperature dependent, both explicitly and

through the dielectric constant of the solvent. The Debye length thus differs on the cold and warm side of
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the colloidal sphere. This induces an asymmetry in the charge distribution and the electric potential.

The available theories on the contribution of the electrical double layer to the single-particle thermal

diffusion coefficient can roughly be divided into two groups : theories where the temperature-induced

asymmetry of the double-layer structure is neglected (such as theories based on irreversible thermodynam-

ics where local equilibrium is assumed) and theories where the detailed double-layer structure is considered

on the basis of equations for charge density, electrical potential and solvent flow. Previous work within

these two classes of theories are summarized below.

An explicit expression for the Soret coefficient, as far as the double-layer contribution is concerned,

has recently been derived by one of the present authors (JKGD) [2] on the basis of an irreversible-

thermodynamics approach. Here, the quasi-static force necessary to move a double layer against a tem-

perature gradient has been shown to be proportional to the temperature derivative of the reversible work

to build up the double layer. For spherically symmetric double layers and within the Debye-Hückel ap-

proximation, this work is equal to 1
2QΦs, where Q is the total charge on the surface of the colloid and Φs

is its surface potential. This leads to the following expression for the Soret coefficient of colloidal spheres

with radius R and an ambient Debye length κ−1 [2],
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where ε is the dielectric constant of the solvent, e > 0 the elementary charge and lB = β e2/4 π ε is the

Bjerrum length (with β = kBT , where kB is Boltzmann’s constant and T is the temperature). The

combination 4πl2Bσ/e is the number of elementary charges on a fictitious sphere with radius lB with

the same charge density σ as the colloids. As will be shown, this expression for the Soret coefficient

corresponds to the internal force FW mentioned above. For thin double layers, the electric double layer

and the charged surface of the colloidal particle can be considered as constituting a capacitor [3]. This

capacitor model leads to an expression for the Soret coefficient that corresponds to eq.(1) for very thin

double layers (where κR � 1), without the temperature dependence of the surface charge (i.e. when

d ln Q/d ln T = 0). Bringuier and Bourdon [4] and Fayolle et al. [5] propose an expression for the single

3



particle thermal diffusion coefficient in terms of the temperature derivative of the total internal energy,

based on arguments within a statistical mechanics approach that is put forward by van Kampen [6].

Disregarding the temperature dependence of the dielectric constant of the solvent and of the total charge,

the resulting expression for the Soret coefficient is in agreement with eq.(1) for arbitrary Debye lengths

(taking the limit E → ∞ in eq.(13) in ref.[4], where E is the energy related to thermally activated

desorption of ions from the surface of the colloids, renders the total charge independent of temperature).

The positive correspondence between the results obtained in ref.[2] and in refs.[4, 5] is quite satisfactory,

since the approaches are rather different. In addition to the single-particle Soret coefficient, ref.[5] also

discusses interaction contributions, which will not be addressed in the present paper.

The above mentioned theories essentially neglect the temperature-induced asymmetry of the double

layer. Such an asymmetry will certainly lead to additional contributions to the Soret coefficient as given

in eq.(1).

An expression for the thermophoretic velocity is derived in ref.[7], with explicit reference to the double-

layer structure, in case of thin double layers and very small colloidal particles. For the very small (metal)

colloidal particles under consideration in ref.[7], the thermophoretic force is essentially equal to the body

force on fluid elements of the dispersion, where the colloidal particles are considered as being part of

an effective fluid. The analysis is based on the Navier-Stokes equation with a gradient in the pressure

generated by the charge distribution close to the surface of the particle. The temperature-gradient induced

asymmetry of the electric potential is assumed to be given by a rather simple form, that probably applies

for very thin double layers, but is not systematically derived from an extension of the Debye-Hückel

theory that includes a temperature gradient. In ref.[7], the emphasis is on metal particles, where the

local temperature variation around the particle is of crucial importance. In the present paper, we shall

neglect differences in thermal conductivity of the solvent and the colloidal core that result in such non-

linear temperature variations in the neighbourhood of the colloidal particle. A combined theory, where

both finite-sized particles and double layers and differences in thermal conductivities of the solvent and the

solid core material of the colloids are considered remains a challenge. Progress could be made by combining

the ideas from ref.[7] for thin double layers and those presented in the present paper. What is also neglected
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in the present paper is the effect of macroscopic pressure gradients that are set up in the bulk solvent

due to temperature gradients. These pressure gradients are discussed in ref.[8]. Comparing typical values

for the thermal diffusion coefficient as obtained from eq.(1) and the typical values corresponding to such

macroscopic pressure gradients (see eqs.(26,31) in ref.[8]), shows that the latter can indeed be neglected.

This may of course be different for neutral, non-charged colloids. In a similar approach, Morozov [9]

considers thermal diffusion in case of very thin double layers and small colloids, where the dispersion is

again described as an effective fluid. As mentioned above, the bulk body force acting on the effective fluid

(see eq.(7) in ref.[9]) can then be directly connected to the thermophoretic force on colloidal particles. A

general formalism for single-particle thermal diffusion of colloids is developed in ref.[10]. Here, a colloidal

particle is assumed to act with a force on the surrounding solvent, which force is added to the Navier-

Stokes equation that describes the solvent flow around the colloidal sphere. The thermophoretic force is

then taken equal to minus the total force with which the colloidal particle acts onto the surrounding fluid

(and possibly ions) plus the friction force as a result of solvent flow (see their eq.(11)). In the explicit

evaluation of these forces for charged colloids in their section 5.2, the temperature-induced deformation

of the double-layer structure is included. However, the resulting expression (47) in ref.[10] for the Soret

coefficient, which is very similar to the result for thin double layers as obtained by Rückenstein [11], is

by a factor κR/4 off from the irreversible-thermodynamics result in eq.(1) in case of thin double layers.

It predicts a quadratic dependence of the Soret coefficient on the Debye screening length for thin double

layers and constant charge, which disagrees with eq.(1) for κR � 1, and is at variance with experiments

on polystyrene colloids [3]. The additional contributions to the Soret coefficient in eq.(1) that arise from

temperature-gradient induced deformation of the double layer, as calculated in the present paper, are also

quite different from the result in eq.(47) of ref.[10]. This discrepancy may have the following origin. The

local body force of the colloidal particle on fluid elements is equal to −∑
α ραzα∇Φc, where Φc is the

potential that is generated by the surface charges of the colloidal sphere (here, the sum ranges over all ions

of species α with valency zα and number concentration ρα). In ref.[10], however, the potential is taken

equal to the total electric potential, which arises from surface charges of the colloid and from charges within

the double layer. Since the total force on the double layer in a temperature gradient is not necessarily
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zero, this might explain the discrepancy.

In short, within the approaches taken in refs.[2]-[6], the temperature-induced deformation of the double

layer is neglected. In approaches where the temperature-induced deformation of the double-layer structure

and the resulting flow within the double layer is accounted for [7]-[11], only thin double layers and often very

small colloids have been considered (with the exception of ref.[10]). In the present paper we consider finite

sized colloidal particles with an arbitrary double-layer thickness, where spatial variations of the fluid flow

and charge distribution in all three dimensions within the double layer are analyzed. The three dimensional

temperature-induced asymmetry of the double layer is systematically derived from an extended Debye-Hückel

theory.

Experimental results on polystyrene colloids [3] and a micellar system [12] are shown in ref.[2] to agree

with the irreversible-thermodynamics prediction (1). This seems to indicate that the forces Fel and Fsol

due to double-layer deformation are of minor importance. The electric force Fel results from forces on the

surface charges of the colloidal sphere while the solvent-friction force Fsol is due to electric body forces on

double-layer charges. Since free surface charges and ion charges within the double layer are dielectrically

screened through polarization of the solvent, these forces are small for highly polarizable solvents like water.

As will be shown, these two forces are typically by a factor ε0/ε smaller than the internal force FW due to

dielectric screening (with ε0 and ε the dielectric constants of vacuum and the solvent, respectively). Since

ε0/ε ≈ 1/78 for water, this explains the good agreement of the irreversible-thermodynamics prediction in

eq.(1) with experiments. The additional contributions to thermal diffusion are therefore only relevant in

relatively apolar solvents. However, as will be shown, the internal force vanishes for very thin double-

layer thickness, while the forces due to the asymmetry of the double layer remain finite. This is due to

the temperature dependence of the dielectric constant, leading to an asymmetric dielectric screening of

charges. The contribution of the asymmetric double-layer structure to the thermal diffusion coefficient can

thus be dominant in case of very thin double layers even in highly polarizable solvents.

The additive contribution ΔST to the Soret coefficient related to the forces Fel and Fsol, is found in

the present paper to be equal to,

T ΔST =
ε0

ε

β Q 2

16 π εR

[
χ κ R − d ln ε

d ln T

(
1

2
− 3 κ R

) ]
, (2)
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for thick double layers, where κ R � 1, up to order O((κ R)2 ln{κ R}), and,

T ΔST =
ε0

ε

β Q 2

24 π εR

d ln ε

d ln T

(
1 − 1

2 κ R

)
, (3)

for thin double layers, where κ R � 1, up to order O((1/κ R)2). Here, χ is a parameter that describes the

effect of thermal diffusion of the co- and counter ions. In case the ions reached their thermal stationary

state during the measurement of the Soret coefficient of the colloidal sphere, the parameter χ is equal to 2.

In the other extreme case where such a stationary state is not reached, and the ion concentration outside

the double layer is uniform, the parameter χ is equal to 1. The latter is the case when thermal diffusion of

the small ions has not been effective during a measurement of the Soret coefficient of the colloidal sphere.

The expression for ΔST that is valid for arbitrary double-layer thickness is somewhat more involved and

is given in section 8. As mentioned above, ΔST is proportional to ε0/ε, due to dielectric screening of free

charges.

This paper is organized as follows. The various forces that act on a single charged colloidal sphere

are discussed in more detail in section 2. The fundamental equations and the corresponding boundary

conditions which govern the temperature-induced asymmetry of the double-layer structure are formulated

in section 3. On the basis of these governing equations, the well-known Debye-Hückel theory for the double

layer structure is generalized in section 4 to include a temperature gradient. Here the temperature-gradient

induced asymmetric charge distribution and potential are calculated to leading order in temperature

gradients. From the double-layer potential and charge distribution, the forces FW , Fel and Fsol will be

calculated explicitly in sections 5, 6 and 7, respectively. The Soret coefficient is computed from the total

force in section 8 and is compared to experiments.

We will assume an externally imposed, time-independent temperature profile T (z) that varies in the

z-direction. The thermal conductivity of the solvent and the core of the colloidal sphere is supposed to be

not very different, so that the externally imposed temperature gradient in the z-direction is essentially not

affected by the presence of the colloidal sphere. Differences in thermal conductivity between solvent and

colloid core material results in a more complicated temperature profile in the vicinity of the sphere, which

complicates the analysis considerably, especially for extended double layers. Furthermore we will assume

that the charges on the surface of the colloidal sphere originate from fully dissociated chemical groups, so
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that the free surface charge is independent of temperature. The effects arising from differences in thermal

conductivity and variable surface charge density can be included in the present theory, but is outside the

scope of the present paper.

Throughout this paper we will use the following notation convention : when a z-dependence is not

denoted explicitly, the quantity is meant to denote its value at the ambient temperature. For example,

ε(z) is the dielectric constant which is z-dependent due to the temperature gradient that extends in the

z direction, and ε denotes its constant value in the absence of the temperature gradient at the ambient

temperature (like in the above expressions (1)-(3)) . Similarly T is the homogeneous temperature in the

absence of gradients in temperature.

2 Forces Acting on the Charged Colloidal Sphere

There are three forces acting on a charged colloidal sphere in a temperature gradient. The origin of these

forces is schematically depicted in Fig.1.

First of all, the temperature dependence of the internal electrostatic energy W of the double layer and

surface charges gives rise to a force FW , which is referred to as the internal force. The origin of this force

can be understood as follows. A particle that moves under the action of an external field, where the energy

of the particle is specified by an external potential Φext(r), experiences a force equal to −∇Φext(r). The

common assumption here is that the internal degrees of freedom of the particle on which the external field

acts are not affected by the field (like a permanent dipole in an electric field). The expression −∇Φext(r)

for the force, however, remains valid also when the external field does affect internal degrees of freedom

(like a non-permanent, electric-field induced dipole in an electric field). In this case, the potential energy

Φext(r) must include the change in energy that complies with the changes of the internal degrees of freedom

(in case of an induced dipole, the strength of the dipole is affected by the external electric field, which leads

to a change of the potential energy of the dipole). In the present case of thermodiffusion there is a change

of the internal energy of the colloid when it is displaced, due to the change of the local temperature (see

Fig.1a). The internal degrees of freedom of the ”colloidal complex” respond to a change in temperature.

The role of the external potential Φext is now played by the internal energy W of the ”colloidal complex”.
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Since forces are related to work, the change of the internal energy on displacement of a colloidal particle

is actually the work that is involved to achieve that displacement. The work to achieve this displacement,

in turn, is equal to the difference in the work to build up the ”colloidal complex” after and before its

displacement. Hence, the force FW is equal to −∇W , with W the work that is necessary to build up

the ”colloidal complex”, starting from a given, temperature-independent reference state. To within linear

order in gradients, this work is reversible work since then local equilibrium can be assumed. As far as the

double-layer contribution is concerned, this is the reversible work to build up the double layer and the

surface charge distribution (see also reference [2]). The reversible work to build up the double layer and

surface charge distribution can be calculated through a quasi-static ”charging process” [13], where the free

charge surface density on the sphere is build up from 0 to its final value σ. The work involved to charge

the ”colloidal complex” is nothing but the electrostatic energy that is stored in the double layer and the

surface charges. Hence,

FW = −dW

dT
∇T , (4)

where W is the internal electrostatic energy W of the double layer and surface charges. The charging

process for the calculation of W is described in detail in section 5.

Secondly, the temperature gradient will induce an asymmetry in the double-layer charge distribution.

This is due to the temperature dependence of the double-layer thickness. On the colder side of the

colloidal sphere the Debye screening length is larger as compared to the warmer side. As a result, the

center-of-charge of the double layer does no longer coincide with the center-of-charge of the surface-charge

distribution of the colloidal sphere. This results in an electric force Fel of the double layer on the surface

charges of the sphere (see Fig.1b). Due to the asymmetry of the double-layer potential, the electric field

inside the core of the colloidal sphere is non-zero. Electric forces on the charged surface of the colloid

therefore arise from both the electric field just outside the sphere, within the solvent, and inside the core

of the colloidal sphere. As shown in appendix A, the resulting electric force on the surface charges of the

colloidal sphere is equal to,

Fel =
1

2

∮
∂V

dS σt(r)
[
E+(r) + E−(r)

]
, (5)
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Figure 1: The three forces acting on a charged colloidal sphere in a temperature gradient. (a) The internal
force FW due to the change of the double-layer structure on displacement of the sphere. The dashed lines
indicate the extent of the unperturbed double-layer at the ambient temperature, that is, the temperature
at the origin of the colloidal sphere. (b) The electric force Fel that is due to the non-spherically symmetric
double-layer structure. The dashed line indicates the asymmetry of the double layer. (c) The solvent-
friction force Fsol is due to the solvent flow that is induced by electric body forces arising from the
asymmetry of the double-layer structure. The lines indicate solvent flow lines.

where the integration ranges over the surface area ∂V of the sphere (with dS an infinitesimally small

surface area element) and σt is the total surface charge density, including both free- and polarization-

induced charges. Furthermore, E+ is the limiting electric field on approach of the surface of the colloidal

sphere from outside the sphere, and E− is the limiting field on approach of the surface from inside the

sphere.

The total surface charge density σt includes the charges near the surface of the colloidal sphere which

arise due to polarization of solvent molecules in the direct vicinity of the ionized surface groups of the

colloidal sphere. The electric force in eq.(5) is thus actually the force on the sphere plus the solvation layer

(excluding salt ions contained in it). The assumption therefore is that the electric forces on the solvation

layer are fully transmitted to the colloidal sphere.

Thirdly, due to the asymmetry of the charge distribution, electric body forces will set the solvent in

motion. Without a temperature gradient, the radial electric body forces are counter balanced by pressure

gradients, and no flow is induced. In case of an asymmetric double layer, however, pressure gradients

alone can not balance electric body forces within the double layer. Shear forces due to (low Reynolds-

number) flow are now necessary to counter balance the electric body forces. This solvent flow acts with a
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solvent-friction force Fsol on the surface of the sphere (see Fig.1c). This force is equal to,

Fsol = −
∮

∂V

dS f(r) , (6)

where f is the force per unit area that the surface of the colloidal sphere exerts onto the solvent.

The total thermophoretic force FT can thus be written as,

FT = FW + Fel + Fsol . (7)

The explicit calculation of the electric force Fel and friction force Fsol requires a detailed analysis of the

temperature-gradient induced asymmetry of the charge distribution and potential, which will be discussed

in subsequent sections.

There is an additional electric force due to the flow-induced deformation of the unperturbed potential

and charge distribution within the double layer. This force can be neglected, since flow-induced dis-

placements of ions are small in comparison to their diffusive displacements. The double-layer structure is

therefore essentially unaffected by convective perturbations as a result of fast relaxation of the double-layer

structure. A more detailed argument for the neglect of this force is given in the beginning of section 8.

3 The Fundamental Equations and Boundary Conditions

In subsection 3.1 we will discuss the fundamental equations that describe the double-layer structure in the

presence of a temperature gradient. The boundary conditions to these differential equations are formulated

in subsection 3.2.

3.1 Fundamental equations

The flux jα = ρα vα of ions of species α (with ρα the number density and vα the thermally averaged

velocity) consists of two parts : a convective part due to solvent flow (of which the origin will be discussed

later) and a part due to the force Fα that the surroundings exert on an ion,

vα(r, t) = vs(r, t) +
1

γα

Fα(r, t) , (8)

where vs is the solvent velocity and γα is the friction coefficient of an ion with solvent. The force Fα on

an ion of species α has two contributions. The force due to the electric potential Φ that is set up by the
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charges on the surface of the sphere as well as the charge distribution within the double layer. This force

is equal to −zα e∇Φ(r, t), where zα is the valency of the ions of species α and e > 0 is the elementary

charge. The second force is the Brownian force FBr
α . In the presence of a temperature field T (r), this force

is equal to −kBT (r)∇ ln{T (r) ρα(r, t)} [6],[14]. From eq.(8) one thus finds,

jα(r, t) =

{
ρα(r, t)vs(r, t) − ρα(r, t)

γα

[ zα e∇Φ(r, t) + kBT (r)∇ ln{T (r) ρα(r, t)} ]

}
. (9)

The equation of motion for the ion densities therefore reads,

∂ρα(r, t)

∂t
= −∇ · jα(r, t)

= ∇ · 1

γα

{− γα ρα(r, t)vs(r, t) + zα e ρα(r, t)∇Φ(r, t) + kB ∇ [ T (r) ρα(r, t) ] } . (10)

The interest here is in stationary solutions of this equation of motion, where all quantities are independent

of time. In one dimension, a solution exists for which the fluxes in eq.(9) are zero (such solutions are

discussed by van Kampen in ref.[6]). In higher dimensions, however, it is easily verified that no stationary

solutions exist for which the fluxes vanish. In the present case we therefore have to solve the full stationary

form of the equation of motion (10),

0 = ∇ · {− γα ρα(r)vs(r) + zα e ρα(r)∇Φ(r) + kB ∇ [ T (z) ρα(r) ] } , (11)

where the temperature dependence of the ion-friction coefficients γα has been neglected. The temperature

is assumed to vary only along the z direction with constant spatial increments,

T (z) = T + CT z , (12)

where CT is the constant temperature gradient dT/dz, and T is the temperature at the origin of the

sphere. The spatial temperature variation in the vicinity of the sphere is more complicated when there is a

substantial difference between the thermal conductivity of the solvent and the core material of the colloidal

sphere. Such a temperature variation complicates the analysis considerably, especially for thick double

layers. As already mentioned in the introduction, we will assume here that the thermal conductivity of the

solvent and the sphere are essentially equal. The effects of different thermal conductivities need additional

consideration and is outside the scope of the present paper.
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The fluid flow velocity vs in eq.(11) has two distinct contributions. The flow is set in motion due to

electric body forces that are active within the double layer and there will be a flow around the colloid due

to its thermophoretic drift velocity. These flows will distort the structure of the double layer and therefore

contribute to the total force on the core of the colloidal sphere. In the beginning of section 8, however, it is

argued that the resulting forces can be neglected. Without these convective distortions of the double-layer

structure eq.(11) reduces to,

0 = ∇ · { zα e ρα(r)∇Φ(r) + kB ∇ [ T (z) ρα(r) ] } , (13)

This equation describes the temperature-induced deformation of the double layer.

Without a temperature gradient, eq.(13) is solved by setting fluxes jα equal to 0. This immediately

leads to the classic Boltzmann connection between the density and the potential [13],

ρα, 0(r) = ρα, 0 exp{−zαe Φ0(r)/kB T} , no temperature gradients , (14)

where ρα, 0 is the concentration of ion species α outside the double layer. The indices ′0 ′ on ρα, 0(r)

and Φ0(r) are used to indicate the absence of a temperature gradient. The analog of the Boltzmann

relation (14) between ion concentrations and the potential in the presence of a temperature gradient will

be obtained from eq.(13) in subsection 4.1.

To derive a closed expression for the ion concentrations and electric potential, the relation between ion

concentrations and potential must be used in the Poisson equation,

∇ · { ε(z)∇Φ(r) } = − ρ(r) , for r > R , (15)

where ε(z) is the dielectric constant of the solvent, which is z-dependent due to its temperature dependence.

Furthermore, ρ is the charge density, which is connected to the ion concentrations as,

ρ(r) =
∑

α

zα e ρα(r) , (16)

where the summation ranges over all ion species.

Contrary to the spherically symmetric case in the absence of a temperature gradient, the potential

inside the colloidal sphere is non-zero, both due to the temperature dependence of the dielectric constant
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εc of the core material of the sphere and due to the asymmetry of the potential outside the sphere. Since

the bulk-core material of the colloid contains no free charges, the potential Φ(i) inside the sphere follows

from the Poisson equation (15) with ρ = 0,

∇ · { εc(z)∇Φ(i)(r)
}

= 0 , for r < R , (17)

This potential should be well-behaved also at the origin.

The integration of the two Poisson equations and matching to the appropriate boundary conditions (as

will be discussed in section 4), constitute an extension of the classic Debye-Hückel theory to include the

effect of temperature gradients.

3.2 Boundary conditions

Without a temperature gradient, where the potential is spherically symmetric, the relevant boundary

condition relates to the discontinuous jump of the normal component of the electric field across the surface

of colloidal sphere due to its surface charges,

ε [ n̂ · ∇Φ0(r) ]r=R = −σ , no temperature gradient . (18)

Here, n̂ = r/r is the unit normal to the surface of the sphere, pointing away from the origin, and σ is the

free surface charge density. The potential in this boundary condition is the potential just outside the core

of the sphere, within the solvent. When the dielectric constant of the core of the sphere is constant, the

potential inside the core is identically equal to zero, and therefore plays no role in the boundary condition

(18). In the presence of a temperature gradient, however, the potential inside the sphere is non-zero. This

is due to the non-spherically symmetric potential outside the sphere as well as the spatial variation of the

dielectric constant of the sphere due to its temperature dependence. The generalized boundary condition

is found from eqs.(15,17),

n̂ · ∇ [
ε(z) Φ(r) − εc(z) Φ(i)(r)

]
= −σ , at r = R , (19)

If the free surface charge is due to fully dissociated chemical groups, it is independent of temperature and

thus independent of position.
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A second boundary condition relates to the continuity of the tangential component of the electric field

across the surface of the sphere,

t̂ · ∇ [
Φ(r) − Φ(i)(r)

]
= 0 , at r = R , (20)

where t̂ is a unit vector tangential to the surface of the colloidal sphere.

The third boundary condition involves a zero normal component of the flux of ions through the surface

of the colloidal sphere. From the stationary form of eq.(9) with a z-dependent temperature it follows that,

n̂ · [ zα e∇Φ(r) + kBT (z)∇ ln{T (z) ρα(r)} ] = 0 , at r = R . (21)

The conditions (20,21) play no role in the standard Debye-Hückel theory, but are important when a

temperature gradient is present.

4 Double-Layer Structure within Debye-Hückel

Approximation

In this section we extend the well-known Debye-Hückel theory for the double-layer structure to include

effects of a small temperature gradient, where the thermal conductivity of the solvent is assumed to be

essentially equal to that of the core material of the colloid.

We shall require that the relative temperature change over distances of the order of the extent R+κ−1

of the ”colloidal complex” is small, where R is the radius of the colloid and κ−1 is the Debye-screening

length, which is given by [13],

κ2 =
e2

kB T ε

∑
α

ρα, 0 z2
α , (22)

with ε the dielectric constant of the solvent and ρα, 0 the ion concentration outside the double layer in the

absence of a temperature gradient. The dimensionless parameter,

Γ ≡ CT

(R−1 + κ) T
=

κ R

1 + κ R

CT

κ T
, (23)

is thus assumed to be a small. An expansion with respect to Γ is equivalent to an expansion in terms of

temperature gradients.
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Within the Debye-Hückel approach taken in the present paper, the second small parameter is the value

of the potential energy of a small ion in comparison to its kinetic energy, that is, the parameter,

Λ ≡ | zm e Φs

kB T
| , (24)

is the second small parameter in our analysis, where |zm | is the largest ion valency and Φs is the surface

potential of the colloidal sphere.

The theory presented here is valid up to leading order in these two small parameters.

In subsection 4.1 we formulate the relation between the ion concentrations and the electric potential,

which extends the Boltzmann formula (14) to include temperature gradients. In subsection 4.2 the Poisson

equations are integrated.

4.1 Relation between ion densities and potential

The analog to the Boltzmann relation eq.(14) between ion densities and the electric potential in the

presence of a temperature gradients must be obtained from ∇ · jα = 0 instead of simply setting jα = 0 as

for a homogeneous temperature. The ion flux is now non-zero, and can be written as,

jα(r) = ∇× A(r) , (25)

where A is a vector field. This field can be expressed in terms of the flux by standard methods [15],

A(r) =
1

4π

∫
dr′

∇′ × jα(r′)
|r − r′ | , (26)

provided that ∇·A = 0, which can always be achieved by addition of an irrelevant term of the form ∇f(r)

to A. Combining eqs.(25) and (26) gives,

jα(r) =
1

4π
∇×

∫
dr′

∇′ × jα(r′)
|r − r′ | . (27)

Substitution of eq.(9) for the flux, with the neglect of the small convective contribution, leads to the

following integro-differential equation that connects the ion densities with the electric potential,

zα e ρα(r)∇Φ(r) + kB∇ [ T (z) ρα(r) ] =
zα e

4π
∇×

∫
dr′

[∇′ρα(r′)] × [∇′Φ(r′)]
|r − r′ | . (28)
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The square brackets in the integrand are used to indicate the limitation of the action of the gradient

operators ∇′ on r′. This is an integro-differential equation that replaces the Boltzmann connection eq.(14)

when temperature gradients are present.

As an Ansatz for the relation between the density and potential we write,

ρα(r) = ρα, 0 exp

{
−zα e Φ(r)

kB T (z)

}
exp {F (r)} . (29)

A non-zero value for F describes the deviation from local equilibrium, where the form (14) that is valid

in the absence of a temperature gradient would hold locally. Equation (28) can be rewritten as,

∇RF (R) = −
(

1 +
T

T (Z)
ζα(R)

)
∇R ln T (Z)

+
1

4π

T

T (Z)

1

ρα(R)
∇×

∫
dR′ ρα(R′)

[
∇′

RF (R′) + T
T (Z′) ζ(R′)∇′

R ln T (Z ′)
]
× [∇′

R ζ(R′)]

|R − R′ | , (30)

where ζα(r) = zαeΦ(r)/kBT , and where the dimensionless distances R = κr and R′ = κr′ are introduced

with κ the inverse Debye-screening length in the absence of a temperature gradient. Furthermore, Z and

Z ′ are the z-components of R and R′, and ∇R and ∇′
R are the gradient operators with respect to R and

R′, respectively. Since | ζα | is equal or smaller than the small parameter Λ in eq.(24), and κ−1 | ∇ ln T |
is of the order of the small parameter Γ in eq.(23), while F is of the order Γ, it follows that the two terms

in the integrand on the right hand-side are O(Γ Λ) and O(Γ Λ2), respectively. To linear order in both Λ

and Γ, the integral on the right hand-side in eq.(30) can therefore be neglected. The first term on the

right hand-side simply reduces to −∇R ln T (Z) up to O(Λ Γ). Hence, in terms of the original coordinates

we have,

∇F (r) + ∇ ln T (z) = 0 , (31)

to linear order in Λ and Γ, so that F (r) = C − ln T (z), where C is an integration constant. Since for

a uniform temperature, Φ takes the form (14), and outside the double layer where Φ = 0 the density

ρα(r) must be equal to ρα, 0, it follows from eq.(29) that C = ln T , and hence exp{F (r)} = T/T (z). To

leading order in temperature gradients and for small potentials, the connection between the ion density

and electric potential thus takes the form,

ρα(r) =
T

T (z)
ρα, 0 exp {−zαe Φ(r)/kB T (z)} . (32)
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This in the analogon of the Boltzmann relation (14) between ion densities and the potential in case of a

small temperature gradients and small potentials.

The prefactor T/T (z) of the local Boltzmann exponential in eq.(32) has the following interpretation.

Thermodiffusion of the small ions outside the double layer is described, within the present framework, by

eq.(13) with Φ set equal to 0. It follows from that expression for the flux of ions, that in the stationary

state,

ρα(r) =
T

T (z)
ρα, 0 . (33)

This reproduces eq.(32) for Φ = 0, as it should. The conclusion is that the prefactor T/T (z) in eq.(32)

is the result of thermal diffusion of the small ions, which are supposed to have achieved their stationary

state during the measurement of the thermal diffusion coefficient of the colloidal sphere.

Under certain experimental conditions, the small ions may not achieve a stationary state during a

measurement, in which case the concentration of the small ions outside the double layer is not given by

eq.(33) but is constant and equal to ρα, 0. In that case, the prefactor T/T (z) in eq.(32) should be omitted.

A possible reason that the stationary state for the small ions is not achieved during a measurement is that

the sample container is relatively large, so that is takes a long time for the small ions to reach a stationary

state. In a Thermal Diffusion Forced Rayleigh Scattering (TDFRS) experiment, the small ions reach a

stationary state on a time scale that is very small as compared to the time it takes for significant colloid

displacements. The typical pitch of the temperature grating is about 10 μm, and small-ion displacements

of this order are very fast as compared to sub-micron displacements of the colloids. This is different for

particle-tracking microscopy experiments. Here the linear dimensions of the sample volume is of the order

of mm’s, so that small ions need a relatively long time to establish thermal equilibrium. During the

measurement of sub-micron displacements of the colloids, the small ions will not have established thermal

equilibrium. In an experiment where only the stationary state is probed, the parameter χ is of course

equal to 2. To distinguish between the two cases, the parameter χ is introduced as,

ρα(r) =

(
T

T (z)

)χ−1

ρα, 0 exp {−zαe Φ(r)/kB T (z)} . (34)
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According to the above discussion we have,

χ = 1 homogeneous ion concentrations outside the double layer ,

= 2 small ions reached their thermal stationary state . (35)

Note that in case χ = 1, eq.(34) corresponds to a local equilibrium Boltzmann distribution of ions.

For larger temperature gradients and/or larger potentials, the integro-differential equation (28) must

be solved together with the Poisson equations. This seems a formidable task that is probably not amenable

to analytical treatment.

4.2 The temperature-induced asymmetric part of the potential

The charge density and electric potential within the double layer follow from eq.(34) and the Poisson

equation (15). The z-dependence of the dielectric constant ε(z) is due to the temperature gradient, so

that ∇ε = (dε/dT )∇T (z) and hence, from eqs.(12,23),

ε(z) = ε

[
1 + Γ

1 + κ R

κ R

d ln ε

d ln T
κz

]
, (36)

to leading order in temperature gradients. Using eqs.(34,16) gives, to leading order in temperature gradi-

ents and the potential zαeΦ/kBT ,

∇2Φ(r) = κ2

(
T

T (z)

)χ

Φ(r) − Γ
1 + κ R

R

d ln ε

d ln T

[
κ2

(
T

T (z)

)χ

z Φ(r) +
∂ Φ(r)

∂z

]
. (37)

We now write Φ = Φ0 + Φ1, where Φ0 is the potential for a constant temperature T and where Φ1 is the

contribution due to the temperature gradient, which is of the order Γ as compared to Φ0. The leading order

potential Φ0 satisfies the Poisson-Boltzmann equation for a homogeneous temperature (this is eq.(37) in

the absence of temperature gradients),

∇2Φ0(r) = κ2 Φ0(r) . (38)

The solution of eqs.(38,18) that tends to zero outside the double layer is the well-known Yukawa potential,

Φ0(r) =
Q

4 π ε

exp{κ R}
1 + κ R

exp{−κ r}
r

(39)
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where Q = 4πσR2 is the total free charge on the surface of the colloidal sphere.

Equation (37) can now be expanded to leading order temperature gradients to obtain the following

inhomogeneous differential equation for Φ1,

(∇2 − κ2
)

Φ1(r) = Γ
Q

4 π εR
exp{κ R} ∂

∂z

{ [
χ +

d ln ε

d ln T

]
κ exp{−κ r} − d ln ε

d ln T

exp{−κ r}
r

}
. (40)

We approximated here, (
T

T (z)

)χ

− 1 ≈ −χ
CT

T
z = −χ Γ

1 + κ R

κ R
κ z , (41)

to leading order in temperature gradients, that is for small values of Γ.

The potential Φ(i) inside the core of the sphere satisfies the Poisson equation (17). Noting that Φ(i) is

first order in Γ, a similar expansion with respect to temperature gradients as above leads to,

∇2Φ(i)(r) = 0 , for r < R . (42)

Since this potential should be well-behaved at the origin, the solution of the Poisson equation that is

appropriate to the present problem is,

Φ(i)(r) = C(i) z , for r < R , (43)

where C(i) is an integration constant.

The solution of the differential equation (40) for Φ1 and the determination of integration constants are

discussed in appendix B. The temperature-induced asymmetric part of the potential is most conveniently

written as,

Φ1(r) =Γ
Q

16 π εR
exp{−κ (r−R)}

{
χ+

d ln ε

d ln T

(
1 − 2

κ r

)
−A

(
R

r

)3

(1+κ r)

}
κ z , ( r ≥ R ) , (44)

where the constant A is equal to,

A =
χ

(
κ R − 1 + εc

ε

)
+ d ln ε

d ln T

{
1 + κ R + εc

ε

(
1 − 2

κ R

)}
2 + 2κ R + (κ R)2 + εc

ε
(1 + κ R)

. (45)

The potential inside the core is written as,

Φ(i)(r) = Γ
Q

16 π εR
B κ z , ( r ≤ R ) , (46)
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Figure 2: The asymmetric part of the electric potential (44-47) in the xz-plane. The thick lines are plots of
the potential as a function of κz (as indicated by the number on the horizontal axis) for various values of
κx (as indicated by the numbers on the vertical axis). Each curve corresponds to a fixed value of κx from 0
to 3 in steps of 0.5. The temperature increases with z. Here, κR = 1, Γ = 0.1, χ = 2, d ln ε/d ln T = −1.34
and εc/ε = 1.

where B is a constant equal to,

B =
χ ( 3 + 2κ R ) − d ln ε

d ln T

(
3 + 2κ R + 4

κ R

)
2 + 2κ R + (κ R)2 + εc

ε
(1 + κ R)

. (47)

It is easily confirmed that the potential is continuous across the surface area of the sphere, that is,

Φ(r) = Φ(i)(r) for r = R.

The above expressions (44-47) constitute the extension of the well-known Debye-Hückel approximation

for the double-layer potential when a small gradient in temperature is present. The asymmetric part of

the potential is plotted in xz-plane in Fig.2 for κR = 1, Γ = 0.1, χ = 2, d ln ε/d ln T = −1.34 and εc/ε = 1.

5 The Internal Force FW

The internal electrostatic energy W is calculated by means of a charging process, where the free surface

charge density of the colloidal particle is quasi-statically build up from 0 to its final value σ. During

charging, the surface charge density is equal to λ σ, where λ varies from 0 to 1. The change in electrostatic

energy by increasing the surface charge density by an infinitesimal amount dσ = σ dλ is equal to,

δW = σ

∮
∂V

dS Φ(r | λ) dλ , (48)
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where Φ(r | λ) is the electric potential at point r when the surface charge density is equal to λ σ. The free

surface charges are assumed here to be uniformly distributed over the surface of the sphere. Inhomogeneous

charge distributions can arise when chemical groups are not fully dissociated and the dissociation constant

is temperature dependent. Here we assume the chemical groups to be fully dissociated. To within the

Debye-Hückel approximation for small potentials, the potential Φ(r | λ) corresponding to a surface charge

density λ σ is equal to λ Φ(r), with Φ(r) the electrostatic potential of the fully charged sphere. Hence,

from eq.(48),

W = σ

∫ 1

0

dλ λ

∮
∂V

dS Φ(r) =
1

2
σ

∮
∂V

dS Φ(r) . (49)

In case of a system containing free bulk charges instead of free surface charges, this charging procedure,

in combination with Poisson’s equation and a partial integration, leads to the classic expression W =

1
2

∫
dr ρ(r) Φ(r) = 1

2

∫
dr ε(r) | ∇Φ(r) | 2, where ρ is the free charge density and ε is the dielectric

constant. For dielectric media, this result is generally valid also for high potentials due to the linearity of

the Maxwell equations. The fundamental difference with the present case of double layers is that charges

within the double layer are induced during charging of the surface of the colloidal sphere in a way that

is governed by Boltzmann statistics, in addition to electrostatics. This statistical-mechanics aspect of the

charge density within the double layer destroys the linear relation ship between surface charge density

and surface potential, except when potentials are low enough to linearize the Boltzmann exponent. The

result (49) is therefore only valid within the Debye-Hückel approximation. To leading order in temperature

gradients, the potential in eq.(49) can be taken equal to the surface potential Φ0, s of the unperturbed,

spherically symmetric double-layer. It thus follows from eqs.(4,49) that,

FW = − 1

2
∇T

d

dT
[ Q Φ0, s ] , (50)

to leading order in temperature gradients. Here, Q = 4πR2σ is the total free charge on the sphere with

radius R. This expression for the force reproduces the irreversible-thermodynamics prediction in ref.[2].

The well-known Debye-Hückel connection between the total free charge Q of the sphere due to disso-

ciated chemical surface groups and the unperturbed surface potential follows from eq.(39) as,

Φ0, s =
Q

4 π εR

1

1 + κ R
, (51)
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For a fixed free surface charge density, independent of temperature, eq.(50) for the internal force thus

gives,

FW = − ∇T (z)

T

Q2

24 π εR

{
HW

1 (κ R) − d ln ε

d ln T
HW

2 (κ R)

}
, (52)

where the functions HW
1 and HW

2 are equal to,

HW
1 (x) =

3 x

2 ( 1 + x )2 ,

HW
2 (x) =

3 ( 2 + x )

2 (1 + x)2
. (53)

These functions are plotted in Fig.3a,b. In the derivation of this result it is used that (see eq.(22) for the

inverse Debye length),

d κ

dT
= − κ

2 T

{
1 +

d ln ε

d ln T

}
. (54)

For water, d ln ε/d ln T = − 1.34, so that the Debye length increases with decreasing temperature. This

is why in Fig.1b the distorted double layer has a larger extent at lower temperatures and why in Fig.1a

the dotted circle, which marks the thickness of the double layer, is larger for the displaced sphere towards

lower temperatures.

The expressions (52,53) reproduce the irreversible-thermodynamics prediction for the thermophoretic

force [2], provided the total free charge Q is independent of temperature.

6 The Electric Force Fel

In order to calculate the electric force in eq.(5), the total surface charge density σt which includes free

surface charges and solvent polarization charges, is expressed in terms of the electrostatic potential as (as

before, ε0 is the dielectric constant of vacuum),

σt(r) = −ε0 n̂ · { ∇Φ(r) −∇Φ(i)(r)
}

= σ
ε0

ε
− ε0 n̂ · { ∇Φ1(r) −∇Φ(i)(r)

}
, (55)

where in the second equation the boundary condition (18) for the unperturbed potential is used. Further-

more, n̂ is the unit normal on the surface of the colloidal sphere pointing into the solvent. To first order
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in temperature gradients, the electric force (5) is thus equal to,

Fel = −σ
ε0

2 ε

∮
∂V

dS
{ ∇Φ1(r) + ∇Φ(i)(r)

}
+

ε0

2

∮
∂V

dS n̂ · { ∇Φ1(r) −∇Φ(i)(r)
} ∇Φ0(r) , (56)

where it is used that ∇Φ0 ∼ r/r, so that the corresponding surface integral vanishes. The first term

on the right hand-side is the force on the free surface charges where the polarization shielding of the

charge is accounted for by the factor ε0/ε, while the second term is the force on non-uniformly distributed

polarization charges. From the expressions (44-47) for the potentials and using that ∇Φ0(r) = −(r/r) (σ/ε)

on the surface of the sphere, it is found with some effort that,

Fel = − ∇T

T

ε0

ε

Q2

24 π εR

{
χHel

1 (κ R) − d ln ε

d ln T
Hel

2 (κ R)

}
, (57)

where the functions Hel
1 and Hel

2 are equal to,

Hel
1 (x) =

x ( 3 + 2x )
{

2 + εc

ε

}
2 (1 + x)

{
2 + 2x + x2 + εc

ε
( 1 + x )

} ,

Hel
2 (x) =

8 − 2x − 4x2 − 4x3 + εc

ε
( 4 − x − 2x2 )

2 (1 + x)
{

2 + 2x + x2 + εc

ε
( 1 + x )

} . (58)

The interpretation of the prefactor ε0/ε in eq.(57) for the electric force is that the total charge on which

the potential acts is dielectrically screened. Free charges are effectively diminished by a factor ε0/ε due to

polarization of the solvent.

The functions Hel
1 and Hel

2 are plotted in Fig.3c,d (for εc/ε = 0, 1 and 10). As can be seen, Hel
1 = 0

both for very thin and thick double layers, while Hel
2 = 2 for thick double layers and Hel

2 = −2 for thin

double layers. For very thin double layers there is an asymmetry in the total surface charge density due

to the temperature dependence of the dielectric constant, resulting in a non-zero thermophoretic force.

7 The solvent-friction force Fsol

Since fluid elements within the double layer are charged and experience an electric field, a body force

acts on these volume elements. If the mechanical coupling between the individual small ions and fluid

molecules is complete, the body force on a fluid element at position r′ is equal to −ρt(r
′)∇′Φ(r′), where ρt

is the total charge density. This charge density includes both free charges due to different concentrations
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of small ions and charges due to polarization of the solvent. Once a fluid flow is set up, friction with the

surface of the colloidal sphere leads to forces with which surface elements act onto the fluid. Let f(r′)

denote the force per unit area with which a surface element on the sphere’s surface at r′ acts on the fluid.

For the small Reynolds numbers under consideration here, and on the diffusive time scale, the fluid flow

velocity at a point r (with r > R) in the stationary state is given by,

v(r) = −
∫

r′>R

dr′ T(r − r′) · [ ρt(r
′)∇′Φ(r′) ] +

∮
∂V

dS ′ T(r − r′) · f(r′) , r ≥ R , (59)

where T is the Oseen tensor,

T(r) =
1

8 π η0 r

[
Î +

r r

r2

]
, (60)

with η0 the shear viscosity of the solvent, Î is the identity and r r is the dyadic product of r. This expression

for the solvent flow velocity can be regarded as the ”integral form of the Navier-Stokes equation”, since

the friction forces f are functions of velocity gradients (at the surface of the colloid). The variation of the

solvent viscosity due to temperature variations can be neglected to leading order in temperature gradients,

since all the forces are already of first order in temperature gradients. For the same reason, the variation

of the viscosity due to spatial variations of ion-concentration can be neglected.

The force Fsol that the solvent exerts on the sphere is given in eq.(6). The integral over the surface forces

f can be obtained directly from eq.(59), without having to calculate the full velocity profile, as follows.

We follow here a different route to calculate the friction force as compared to Teubner [16] in connection

with electrophoresis, where a generalization of the hydrodynamic reciprocal theorem has been employed to

cast the total solvent-friction force into a tractable form. Here, we use a convenient mathematical identity

that involves a surface integral of the Oseen tensor. Since for stick boundary conditions we have v(r) = 0

for r ∈ ∂V , it follows from eq.(59) after integration with respect to r over ∂V , that,∮
∂V

dS ′
∮

∂V

dS T(r − r′) · f(r′) =

∫
r′>R

dr′
∮

∂V

dS T(r − r′) · [ ρt(r
′)∇′Φ(r′) ] . (61)

The integral of the Oseen tensor over the surface area of the sphere with its center at the origin is equal

to [17],

M(r′) ≡ 3 η0

2 R

∮
∂V

dS T(r − r′) =
3

4

[
R

r′
+

1

3

(
R

r′

)3
]

Î +
3

4

[
R

r′
−

(
R

r′

)3
]

r′ r′

r′ 2
, for r′ ≥ R . (62)
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Note that ”monopole terms” ∼ 1/r′ appear in this expression. These monopole terms are due to the

non-zero hydrodynamic force on the core of the particle. Hence, from eqs.(6,61),

Fsol = −
∫

r>R

dr ρt(r)M(r) · ∇Φ(r) . (63)

Note that this force vanishes when the charge density and potential are spherically symmetric. Without

temperature variations, pressure gradients are set up in the solvent that compensate the electrical forces.

In the presence of temperature gradients, the asymmetry of the double-layer structure requires friction

forces, and hence solvent flow, to compensate the electric forces.

In order to obtain the force due to friction with the solvent, it is not necessary to calculate the entire

flow field v(r) around the sphere. It would be interesting to calculate the full flow field and measure it,

for example by trapping a large colloidal sphere in an organic solvent (in order to obtain extended double

layers) and using small fluorescent colloidal probes to visualize the flow field.

Using that ε0∇2Φ = −ρt and ∇ · (ε∇Φ) = −ρ, it follows that,

ρt(r) = ρ(r)
ε0

ε
+ ε0 [∇ ln ε(z)] · [∇Φ(r)] . (64)

To first order in temperature gradients and within the Debye-Hückel approximation, it follows from

eqs.(34,22) that this equation can be written as,

ρt(r) = −ε0 κ2 [ Φ0(r) + Φ1(r) ] + z
CT

T

[
ε0 κ2 χ Φ0(r) + ε0

d ln ε

d ln T

1

r

dΦ0(r)

dr

]
. (65)

Substitution of eqs.(39,44,45,62) into eq.(63) gives, after a lengthy calculation,

Fsol = − ∇T

T

ε0

ε

Q2

24 π εR

{
χHsol

1 (κ R) − d ln ε

d ln T
Hsol

2 (κ R)

}
, (66)

where the functions Hsol
1 and Hsol

2 are equal to,

Hsol
1 (x) = − x

(1 + x)2

[
3

2
E(x) +

x
{

4 + x + 2 εc

ε
( 1 + x )

}
2

{
2 + 2x + x2 + εc

ε
( 1 + x )

}
]

,

Hsol
2 (x) =

x

(1 + x)2

[
3

2
E(x) − 10 + 30x + 17 x2 + 4 x3 − 4 x4 + εc

ε
( 5 + 15x + 10 x2 )

4 x
{

2 + 2x + x2 + εc

ε
( 1 + x )

}
]

, (67)

with,

E(x) = 2 x exp{2x}
∫ ∞

x

dz
exp{−2 z}

z
. (68)
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The functions Hsol
1 and Hsol

2 are plotted in Fig.3e,f (for εc/ε = 0, 1 and 10). As for the corresponding

function Hel
2 for the electric force, the function Hsol

2 asymptotes to a finite value, equal to 1, for thin

double layers. Again, this is due to the temperature dependence of the dielectric constant, which results in

an asymmetric dielectric screening of free charges. Note that the solvent friction force is typically opposite,

but smaller in magnitude, as compared to the electric force.

8 The Soret Coefficient

The velocity vc that the colloidal particle attains on average due to the temperature-gradient induced

force FT = Fel + FW + Fsol is equal to FT /γc, where γc is the friction coefficient of the colloidal sphere

with the solvent.

Electrolyte friction effects are known to be less than 5% as compared to friction of the solvent with the

core of the colloidal sphere, both experimentally [18] and theoretically [19],[20]. The friction coefficient

γc is therefore to a good approximation equal to the Stokes friction coefficient γc = 6πη0R of the core,

where η0 is the shear viscosity of the solvent. This approximation neglects the force that results from

the convection-induced deformation of the double layer where flow is due to motion of the sphere. As

discussed in sections 2 and 3, the deformation of the double layer due to the temperature-gradient induced

solvent flow is similarly neglected. The corresponding force that adds to the thermophoretic force FT is

expected to be equally small, since, just as for the well-known electrolyte friction effect, this force is due

to convection-induced deformation of the double layer.

To within linear response to temperature gradients, the total force can be written as FT = −A∇T ,

where the amplitude A has been specified in previous sections for each of the separate forces that contribute

to the total force. Hence, vc = −(A/γc)∇T . According to the continuity equation ∂ρc/∂t = −∇·(ρc vc) for

the colloidal concentration ρc, it follows that the contribution of temperature gradients to the continuity

equation reads ∂ρc/∂t = D
(dl)
T ∇2T (z), where D

(dl)
T = D0 ρc β A is the double-layer contribution to the

thermal diffusion coefficient (here D0 = kBT/γc is the Einstein mass diffusion coefficient and β = 1/kBT ).

In the derivation of this result it is assumed that both gradients and deviations from average values are

small, so that terms like [∇T ] · [∇γc] can be neglected, being of second order in deviations from average
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values. When such deviations from spatially independent average values are not small, the velocity of the

colloids can not be directly connected to the Soret coefficient, as discussed by Bringuier in ref.[21]. In

that case, terms of the form [∇T ] · [∇γc] can not be neglected. The expression that we obtain here for the

thermal diffusion coefficient, however, can be used to study situations where such deviations are not small.

In such cases, however, the concentration and temperature dependence of both the mass-diffusion and

thermal diffusion coefficient should be accounted for in the divergence of the flux. The Soret coefficient

ST = D
(dl)
T /ρcD0 = β A is thus found from eqs.(57,58) for the electric force, eqs.(52,53) for the internal

force and eqs.(66,67) for the solvent friction force, to be equal to,

T ST = T SW
T +

ε0

ε

β Q 2

16 π εR

κ R

(1 + κ R )2

[
χ G1(κ R) − d ln ε

d ln T
G2(κ R)

]
, (69)

where SW
T is the contribution to the Soret coefficient due to the temperature dependence of the internal

energy W of the double layer,

T SW
T =

β Q 2

16 π εR

κ R

(1 + κ R )2

[
1 − d ln ε

d ln T

(
1 +

2

κ R

) ]
. (70)

The functions G1 and G2 in eq.(69) describe the contribution to the Soret coefficient due to the temperature-

induced deformation of the double layer. These functions take the relatively simple form,

G1(x) = −E(x) + 1 ,

G2(x) = E(x) − 2

3
x − 2 +

1

2
x−1 , (71)

where E is defined in eq.(68). The functions G�
j ≡ xGj/(1 + x)2 are plotted in Fig.4. Note the rather

satisfying and surprisingly simple result for the total contribution of the double-layer deformation to the

Soret coefficient. The functions in eq.(71) are quite simple as compared to the complicated expressions (58)

and (67) for the separate contributions stemming from the electric and solvent-friction force, respectively.

In particular, the dependence of the Soret coefficient on the dielectric constant εc of the core material of

the colloidal sphere drops out.

To make the dependence of the Soret coefficient on the radius of the colloidal sphere explicit, one could

rewrite,

β Q 2

24 π εR
=

1

6

(
4 π l2B σ

e

)2 (
R

lB

)3

, (72)
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Figure 4: The functions (a) G�
2(x) ≡ xG1(x)/(1 + x)2 and (b) G�

2(x) ≡ xG2(x)/(1 + x)2 that determine
the contributions to the Soret coefficient in eq.(69) due to the temperature-induced deformation of the
double layer.

in eqs.(69,70), where lB = e2/4πεkBT is the Bjerrum length (0.71 nm for water at room temperature).

It has been shown in ref.[2] that the internal, ”irreversible-thermodynamics” contribution to the Soret

coefficient describes experimental data for aqueous systems quite accurately. Both the dependence of the

Soret coefficient on salt concentration and the radius of the colloids are well described by SW
T . The obvious

reason for this is the high polarizability of water (for which ε0/ε = 1/78 at room temperature), which leads

to small contributions ΔST due to the double-layer deformation (the second term on the right hand-side

in eq.(69)). However, for very thin double layers, the internal Soret coefficient SW
T tends to zero for very

thin double layers (see Fig.3a,b), whereas the deformation contribution ΔST remains finite (see Fig.4b).

The experiments in ref.[3] are on carboxylated-modified polystyrene spheres, which are indeed very large

in comparison to their double-layer thickness. The reason that SW
T nevertheless describes these data

accurately is due to the fact that ΔST is almost independent of the Debye length when the Debye length

is small. This can be seen from the three left figures in Fig.5, where SW
T and ΔST are plotted as functions

of the Debye length for the three radii of the particles used in experiments in ref.[3]. A comparison of the
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Figure 5: Left three figures : the two contributions to the Soret coefficient, SW
T (the internal contribution)

and ΔST (the contribution due to the temperature-induced double-layer deformation), as a function of
the Debye length for three radii of the colloidal spheres, as indicated in the figures. The variables chosen
here correspond to the experimental system of carboxyl-modified polystyrene spheres from ref.[3] : lB =
0.71 nm, 4πl2Bσ/e = 0.029 and T = 298 K. Most right figure : comparison of the Soret coefficient
SW

T + ΔST in eqs.(69-71) to experimental results. Here, ε0/ε = 1/78. Soret coefficients are in units 1/K.

theory to experimental data involves a single adjustable parameter, which is the intercept at zero Debye

length. The whole theoretical curve can be shifted up or down for each Debye length equally, as a result of

the essential salt-independent contributions due to the solvation layer and the core of the colloidal sphere.

Since ΔST is almost independent of the salt concentration for thin double layers, this contribution results

essentially in a different value for the adjustable intercept. The most right figure in Fig.5 indeed shows

a perfect agreement of the experimental data with eqs.(69-71). A similar good agreement is found when

only the internal contribution SW
T is used, but the adjustable intercept is different.

9 Summary and Outlook

The single-particle thermal diffusion coefficient arising from the presence of a double layer has two distinct

contributions : a contribution that is due to the temperature dependence of the internal electrostatic

energy of the double layer and a contribution that is due to the temperature-gradient-induced deformation

of the double layer. The former contribution can be calculated on the basis of irreversible-thermodynamics

arguments, while the latter contribution requires extension of double-layer theory to include a temperature
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gradient. The deformation of the double layer gives rise to two thermophoretic forces : a force with which

the deformed double layer acts on the surface charges of the colloidal sphere and a force arising from

friction with the solvent that is set into motion by electrical body forces. In the absence of a temperature

gradient, these body forces are counter balanced by gradients in pressure, which do not set the solvent into

motion. For a deformed double layer, however, the electrical body forces can not be counter balanced by

pressure gradients alone, and flow will be induced, giving rise to viscous friction forces that are essential to

balance the electrical body forces. The electrical forces are dielectrically screened, so that the forces due to

the asymmetry of the double layer are typically a factor ε0/ε smaller than the internal force (with ε0 and

ε the dielectric constant of vacuum and the solvent at the ambient temperature, respectively). In a highly

polarizable solvent like water, experimental results can therefore be explained on the basis of irreversible

thermodynamics only (see, however, the discussion at the end of section 8). The effects of the temperature-

gradient induced asymmetry of the double layer are relevant in less polar solvents. Experiments on such

systems have not yet been performed. For a quantitative comparison with experiments, the present theory

probably needs to be extended in order to include the temperature-induced variation of the surface charge

density of the colloidal sphere as a result of partial dissociation of surface groups. It would also be

interesting to probe the solvent flow around a charged colloidal sphere in a temperature gradient.

Appendix A : Derivation of eq.(5)

Consider a spherical shell of thickness δ, within which there is a total charge density ρt(r) (see Fig.6).

This shell represents a continuum description of the interfacial layer between the bulk core material of the

colloidal sphere and the bulk solvent. The total charge density ρt includes both free charges arising from

deionized groups on the colloidal sphere and charges due to polarization of the dielectric material inside

the sphere and the solvent. The electrical force on this layer is,

Fel =

∫
V

dr ρt(r) E(r) , (73)

where V is the volume occupied by the shell. We assume that the force on the shell is completely transferred

to the colloidal sphere, so that Fel is indeed the electric force on the sphere. The shell therefore includes

the adhered solvation layer, which contributes to the total charge through its dielectric polarization. That
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Figure 6: The charged, thin shell around the colloidal sphere that contains the surface charges from ionized
chemical groups and the polarization charges from the solvation layer. The surfaces ∂V + and ∂V − are
the spherical surfaces within which these surface charges are contained. The distance between these two
bounding surfaces is the thickness δ of the shell. The plot is a sketch of the spatial variation of the total
charge density.

the hydration shell is ”mechanically attached” to the colloidal particle is reminiscent of hydrodynamic

stick-boundary conditions. Stresses induced by flow around the colloidal particle are not able to set the

hydration shell in motion relative to the colloidal core. We will take the limit of eq.(73) where the thickness

δ of the layer tends to zero, and show that this leads to eq.(5).

Since ∇ · E = ρt/ε0 (with ε0 is the dielectric constant of vacuum) and ∇× E = 0, the integrand can

be written as the divergence of the Maxwell stress tensor,

ρt(r) E(r) = ε0 ∇ ·
{

EE − 1

2
Î |E | 2

}
, (74)

which allows to rewrite the force (73) in terms of two surface integrals ranging over the outer spherical

surface ∂V + and inner surface ∂V − as sketched in Fig.6,

Fel = ε0

∮
∂V +

dS n̂ ·
{

EE − 1

2
Î |E | 2

}
− ε0

∮
∂V −

dS n̂ ·
{

EE − 1

2
Î |E | 2

}
, (75)

where n̂ is the unit normal on the spherical surface pointing away from the origin. When the thickness δ

vanishes, the normal components En of the electric fields develop a singularity,

E+
n (r) − E−

n (r) = σt(r)/ε0 , (76)

where the superscripts + and − refer to the limit of the electric field on approach of the surface of the

colloidal sphere from outside and inside the sphere, respectively. Here, the total surface charge density σt
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is defined such that the charge σt dS on an infinitesimal surface element dS at r is equal to total charge of

the corresponding volume for finite thickness δ. The tangential component Et of the electric field remains

continuous,

E+
t (r) − E−

t (r) = 0 , (77)

Decomposing the electric fields in normal and tangential components and using eqs.(76,77) gives (with t̂

the unit tangential vector and Et = E+
t = E−

t ),

n̂ · {E+E+ − E−E− }
=

{
t̂Et + n̂

(
E+

n + E−
n

) }
σt/ε0 ,

(E+
n )2 − (E−

n )2 =
(
E+

n + E−
n

)
σt/ε0 . (78)

Substitution into eq.(75) in the limit that the shell thickness vanishes thus gives (with Et = Et t̂ and

En = En n̂),

Fel =

∮
∂V

dS σt(r)

{
Et(r) +

1

2

[
E+

n (r) + E−
n (r)

]}
. (79)

Noting that Et = 1
2 [E

+
t + E−

t ] and E± = E±
t + E±

n reproduces eq.(5).

Appendix B : Solution of the Poisson equations

The solution of eq.(40) can be written as ∂Ψ(r)/∂z, where Ψ is a function of the magnitude r =| r | only.

Substitution of this Ansatz into eq.(40) leads to the following ordinary differential equation for Ψ,

1

r2

d

dr

(
r2 d Ψ(r)

dr

)
−κ2 Ψ(r) = Γ

Q

4 π εR
exp{κ R}

{ [
χ +

d ln ε

d ln T

]
κ exp{−κ r} − d ln ε

d ln T

exp{−κ r}
r

}
.

(80)

The particular solution Φpar
1 of this differential equation is,

Φpar
1 (r) =

∂ Ψ(r)

∂z
=

1

4
Γ

Q

4 π εR
exp{κ R} ∂

∂z

{
−χ (1 + κ r ) +

d ln ε

d ln T
(1 − κ r )

}
exp{−κ r} . (81)

The general solution to eq.(40) is obtained by adding to this particular solution the corresponding ho-

mogeneous solution where the right hand-side of eq.(40) is set equal to zero. According to eq.(38), all

derivatives of the form ∂nΦ0(r)/∂zn, for any n ≥ 0 are homogeneous solutions of eq.(40). As will turn
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out, in order to satisfy the boundary conditions, we only need the homogeneous solution with the same

symmetry as the particular solution in eq.(81), that is, a solution of the form z H(r), where H(r) is a

function of the length r of r only. The only homogeneous solution that has this type of symmetry is the

one with n = 1. Hence,

Φhom
1 (r) = C1

∂

∂z

exp{−κ r}
r

, (82)

where C1 is an integration constant. The total potential Φpar
1 + Φhom

1 is thus given by,

Φ1(r) = z exp{−κ r}
{

1

4
Γ

Q

4 π εR
exp{κ R}κ2

[
χ +

d ln ε

d ln T

(
1 − 2

κ r

) ]
− C1

1 + κ r

r3

}
. (83)

Substitution of the form (34) into the boundary condition (21) shows that this boundary condition is

of second order : a term that is first order in temperature gradients multiplied by a term that is first

order in the small dimensionless electric potential. To within the present linear approximations in both

temperature gradients and potential, the boundary condition (21) is therefore trivially satisfied. This is

in accordance with the analysis in subsection 4.1, where the right hand-side of eq.(27) is shown to be of

second order as well. The two unknown integration constants C1 and C(i) are determined from the two

boundary conditions (19) and (20). The boundary condition (19) can be expanded to leading order in

temperature gradients as,

εc

ε
n̂ · ∇Φ(i)(r) − n̂ · ∇Φ1(r) = Γ

1 + κ R

κ R
κ

d ln ε

d ln T
n̂ · ∇ [ z Φ0(r) ] , at r = R , (84)

where it is used that ε(z) = ε+zCT dε/dT for z not much larger than the Debye-screening length, and that

Φ(i) is of first order in Γ. As before, the dielectric constants for which the z-dependence is not denoted are

their values at the ambient temperature T . Similarly, the boundary condition (20) reads,

t̂ · ∇ [
Φ1(r) − Φ(i)(r)

]
= 0 , at r = R , (85)

since the unperturbed potential Φ0(r) does not play a role here because ∇Φ0(r) ∼ n̂ and t̂ · n̂ = 0.

The integration constants C1 and C(i) are obtained from the boundary conditions (84) and (85). After a

somewhat lengthy calculation it is found that,

C1 = Γ
QκR 2

16 π ε
exp{κ R} χ

(
κ R − 1 + εc

ε

)
+ d ln ε

d ln T

(
1 + κ R + εc

ε

[
1 − 2

κ R

])
2 + 2κ R + (κ R)2 + εc

ε
(1 + κ R)

, (86)
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and,

C(i) = Γ
Qκ

16 π εR

χ ( 3 + 2κ R ) − d ln ε
d ln T

(
3 + 2κ R + 4

κ R

)
2 + 2κ R + (κ R)2 + εc

ε
(1 + κ R)

. (87)

This concludes the determination of the integration constants, which leads to eq.(44-47) for the asymmetric

part Φ1 of the potential
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