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Abstract 
 
The characteristics of tunnel junctions formed between n- and p-doped graphene are 
investigated theoretically. The single-particle tunnel current that flows between the two-
dimensional electronic states of the graphene (2D-2D tunneling) is evaluated. At a 
voltage bias such that the Dirac points of the two electrodes are aligned, a large resonant 
current peak is produced. The magnitude and width of this peak are computed, and its use 
for devices is discussed. The influences of both rotational alignment of the graphene 
electrodes and structural perfection of the graphene are also discussed.  
 
 
I. Introduction 
 
Two-dimensional (2D) electron systems have played a very important role in the 
development of electronic devices, including metal-oxide-semiconductor field-effect 
transistors (MOSFETs) made from silicon and high electron mobility transistors 
(HEMTs) made from III-V semiconductor heterostructures.1 One lesser-known device 
utilizing 2D electron gases (2DEGs) is a tunnel junction between two such gases, i.e. 2D-
2D tunneling. Prior investigations of 2D-2D tunneling have been carried out on coupled 
electron gas systems in closely placed quantum wells in AlGaAs/GaAs heterostructures.2, 
3,4,5,6,7,8 Considering the case of unequal doping between the 2DEGs, it was demonstrated 
experimentally that, at a voltage bias corresponding to aligned band structures of the 2D 
systems, a large, sharp peak in the tunnel current occurs. We refer to this peak as a 
resonant peak in the tunneling. It was argued in the prior work that the width of this peak 
was temperature independent2,3,4 (except possibly from inelastic effects).  
 
     With the advent of a new 2D electronic system, graphene, it is worthwhile to consider 
how 2D-2D tunneling could be employed in this system. In this work we theoretically 
investigate that question, examining graphene-insulator-graphene (GIG) tunnel junctions. 
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We focus in particular on the situation when the graphene sheets have unequal doping, 
e.g. one is n-type (electron doped) and the other is p-type (hole doped). We derive 
formulas for the voltage-dependence of the current, results that were not obtained, to our 
knowledge, in any prior 2D-2D tunneling work (although Ref. [3] provided a step in this 
direction). A large current peak occurs at the voltage when the band structures of the 
graphene sheets are energetically aligned (and also the graphene sheets are rotationally 
aligned in real space), and this peak is characterized in terms of its magnitude and width. 
We consider finite-size areas for the graphene sheets, as might occur physically due to 
the limited size of structurally perfect regions in the graphene, something that we denote 
by a "structural coherence length" L. We find that the magnitude of the resonant current 
peak is proportional to the electrode area times L and its width is proportional to L/1 . 
Compared to other nonresonant aspects of the current, very high degrees of nonlinearity 
in the current-voltage (I-V) relationship remain even for values of L as low as 100 nm or 
less.  
 
     Clearly this sort of highly-nonlinear I-V relationship has potential applications for 
electronic devices. The sharp resonant current peak at small voltages presents a 
compelling case for being integrated into a three-terminal device where the third terminal 
(a capacitive gate) can move the effective bias on and off the resonance condition, 
thereby enabling logic operations. In fact, precisely this sort of device, a BiSFET utilizing 
a graphene bilayer, has been recently proposed as a low-power building block for logic 
operations.9,10  The operation of that device however is based on many-body excitonic 
condensate effects, which will be observed only below a certain characteristic critical 
temperature.6,8,9,10 Our work is for single-particle tunneling, where the condensate is not 
required and hence there is no critical temperature. On the other hand, devices utilizing a 
single-particle tunneling resonance do require, at least for optimal performance, rotational 
alignment of the graphene electrodes and a well-ordered insulating layer (to minimize 
momentum scattering), things that are not needed for the excitonic mechanism of the 
BiSFET.  Both types of devices are quite impervious to effect of thermal broadening, and 
both devices are also intrinsically fast since they rely on tunneling. 
 
     In Section II we present our general theoretical method using the Bardeen transfer 
Hamiltonian approach, followed by applications of that to both undoped and doped GIG 
junctions. The contributions to the current are described analytically, with finite-size 
effects being considered in particular. Numerical results for the current are provided in 
Section III, and in Section IV we discuss the results and briefly consider possible 
fabrication of GIG junctions and extension to three-terminal devices. The paper is 
summarized in Section V. 
 
 
II. Theory 
A. Qualitative considerations 
 
The nonlinear I-V characteristic of a GIG junction with complementary doping in the 
graphene electrodes is easily seen by considering the states available for tunneling, as 
illustrated in Fig. 1. We assume that the left-hand electrode is n-doped and the right-hand 
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electrode is p-doped, with chemical potentials (Fermi levels) LDLL EE Δ+=μ  and 

RDRR EE Δ−=μ  for specific LEΔ  and REΔ , where DLE  and DRE  are the respective 
Dirac points. For simplicity we assume 0>Δ≡Δ=Δ EEE RL . For applied voltage bias V 
between the electrodes we have eVRL =− μμ . It is important to note that, for our 
situation of graphene electrodes, the value of EΔ will depend not only on the doping of 
the electrodes but also on the applied bias V and the geometric capacitance C of the GIG 
junction (due to the quantum capacitances of the graphene electrodes).11 This dependence 
of EΔ  is described in Section II(E) below, and for the present discussion we take EΔ  to 
be a fixed quantity.  
      
     Let us first consider the nonresonant case when the band structures are not aligned, 

EeV Δ≠ 2 , as in Figs. 1(a) and 1(b) for voltage ranges of EeV Δ< 2  and EeV Δ> 2 , 
respectively. Then, given the requirement of momentum conservation (for large area, 
rotationally aligned graphene electrodes, and neglecting scattering in the insulator), there 
is only a single ring of k-points that can satisfy that, located at an energy midway 
between the Dirac points as shown in Figs. 1(a) and 1(b). The circumference of these 
rings varies linearly with voltage, producing a linear dependence of the current on voltage 
as pictured in the I-V curve of Fig. 1(d). 
 
          Now we turn to the resonant situation, with  EeV Δ= 2 . As pictured in Fig. 1(c), 
there are states existing over all energies that satisfy the requirement of k-conservation. 
The resulting current is relatively large, scaling superlinearly with the area of the 
electrodes (since the number of states involved increases with the area). This current is 
pictured as the upwards pointing arrow in Fig. 1(d). As will be shown in the following 
Sections, this resonant peak in the current has an amplitude that scales as the area of the 
electrode times a "structural coherence length" L, with L being just A  for a perfectly 
crystalline graphene sheet with area A, or a typical length between defects in the sheet, 
whichever is less. The width of the resonance peak scales as L/1 . 
 
B. Formalism 
 
We compute tunnel currents using the Bardeen transfer Hamiltonian approach,12,13 
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where α  and β  label states in the left- (L) and right-hand (R) electrodes with energies of 

αE  and βE  respectively, 2=Sg  is the spin degeneracy and Vg  is the valley 

degeneracy, 1−
αβτ  and 1−

βατ  are the tunneling rates for electrons going RL →  or LR →  

respectively, and Lf  and Rf  are Fermi occupation factor for the left and right-hand 

electrodes, [ ]{ } 1/)(exp1)( −−+= TkEEf BLL μ  and [ ]{ } 1/)(exp1)( −−+= TkEEf BRR μ . 
The tunneling rates are given by 
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is the matrix element for the transition with m being the free electron mass and  
),( zrαΨ and ),( zrβΨ being the wavefunctions of the left- and right-hand electrodes, 

respectively. The surface integral in Eq. (3) is evaluated over a plane located midway 
between the two electrodes. The current thus becomes 

[ ]∑ −−=
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2
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h
.   (4) 

 
     We consider the situation for graphene, with two identical atoms, labeled 1 and 2, per 
unit cell. The wavefunction for wavevector k can be written in terms of basis functions 

kjΦ  ( 2,1=j ) on each atom as ),()(),()(),( 2211 zzz rkrkr kk Φ+Φ=Ψ χχ . The basis 

functions themselves have Bloch form, Azuiz jj /),()exp(),( rrkr kk •=Φ  where 

),( zu j rk   is a periodic function and A is the area of the electrode. These periodic 

functions are of course localized around the basis atoms (i.e. as zp2  orbitals) of each 
graphene electrode, but in the plane midway between the electrodes the functions are 
spread out. Thus, as a function of the 2D radial coordinate r in this plane, the ),( zu j rk  
functions will vary only weakly and that dependence will not largely affect the integral. 
(Importantly, nodes in the wavefunction are included in the )(1 kχ  and )(2 kχ  factors, 
specified below).  
 
     We therefore approximate the tunneling matrix element, incorporating the small 
influence of the radial dependence of the ),( zu j rk  into numerical constants, and 

assuming for the z-dependence the usual tunneling form De d /2 κκ −  where d is the 
separation of the electrodes, κ  is the decay constant of the wavefunctions in the barrier,14 
and D is a normalization constant for the z-part of the wavefunctions in the graphene, i.e., 
approximately equal to an interplanar separation in graphite.13,15 (For very thin barriers 
this form for the z-dependence may not be so appropriate, but its order of magnitude 
should still be correct). For example, for a term in Eq. (3) involving the ),(1 zu

L
rk  part 

of ),( zrαΨ  and the ),(1 zu
R

rk  part of ),( zrβΨ  we assume 
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where 11u  is a constant of order unity. This constant is also taken to have no dependence 
on Lk  or Rk , i.e., employing an effective-mass approximation in which the periodic 
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functions are evaluated at the band extrema. In the same sense, we replace the total 
wavevector by kk +0  where 0k  is the wavevector of the band extrema and k  is the 
component of the wavevector relative to that. The term involving ),(2 zu

L
rk  and 

),(2 zu
R

rk  is approximated in an identical way, yielding constant 22u  but with 

1122 uu =  since the atoms in the unit cell are identical. Cross terms yields constants 

2112 uu =  which also have order unity (though with magnitude likely to be less than 11u ). 
For the )(1 kχ  and )(2 kχ  factors, they have the values well known for graphene in a 
nearest-neighbor tight-binding approximation16 
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where kθ is the angle of the relative wavevector, the upper sign is for a band extremum at 
the K point of the Brillouin zone and the lower for a K' point, and with 1+=s  for the 
conduction band (CB) or 1−  for the valence band (VB).  
 
     For rotationally misaligned graphene electrodes, we consider tunneling between bands 
in the respective electrodes with extrema that differ by a vector Q, i.e. Qkk += LR ,0,0  

with a Q vector such that aLRL 3/4,0,0,0 π=+== Qkkk  (the magnitude of the 
wavevector at the K and K' points) where nm2464.0=a  is the graphene lattice constant. 
The matrix element is then found to be  
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with the upper sign used for tunneling between like valleys (i.e. K to K, or K' to K') and 
the lower sign for unlike valleys (K to K', or K' to K), where ωθθ +≡′ RR  with =ω  

)8/3(sin2 1 πaQ−  being the misalignment angle between the electrodes, and where we 
have defined 

LL kθθ ≡  and 
RR kθθ ≡ . For the case of nonzero Q (nonzero ω ), the 

values of the iju constants will change, but as argued above these constants have little 
effect on the resulting current (at least for moderately thick barriers) so we do not 
explicitly consider that change. We note that the ωg  factor of Eq. (8) has only a 
relatively small influence on the final results for the tunnel current, but it is nevertheless 
included in our analysis for completeness. 
 
     For rotationally aligned electrodes we have 0Q = , so that the integral on the right-
hand side of Eq. (7) approaches the delta-function )( LR kk −δ  for ∞→A . Of particular 
interest in our discussion below is the situation for finite-area tunnel junctions, in which 
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case we will want to evaluate this integral for moderate-sized values of A. It is convenient 
to work in terms of the square of the integral from the right-hand side of Eq (7),  
 

21)( ∫ •≡Λ rΔkΔk iedS
A

    (9) 

with LR kkΔk −= , and where for large A,  
RLRL kkkkΔk ,

2
,)( δδ =→Λ . In Section 

II(D) we consider other formulas and/or approximations to )(ΔkΛ  as appropriate to the 
case when A is not so large. Incorporating Eqs. (7) and (8) into (4), and with 2=Vg  for 
graphene, we arrive at the expression for the current (with states labeled by Lk  or Rk ) 
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where ),(0 RLg θθ  is defined by Eq. (8) with 0=ω .  
 
     The sum over B in Eq. (10) indicates the different regimes of relative band alignments 
between the electrodes, labeled I, II, or III in Fig. 2, that must be considered in evaluating 
the current. For example, in region I we have LFDL kvEE

L
h+=k  and 

RFDR kvEE
R

h+=k where Fv  is the Fermi velocity ( 300/c≈ ), so that the argument of 

the energy δ-function in Eq. (10) becomes RFLFDRDL kvkvEEEE
RL

hh −+−=− kk   

)(2 RLF kkvEeV −+Δ−= h . In evaluating Eq. (10) this energy δ-function can be used to 
eliminate the sum over the Rk  magnitude, with =Rk  FL vVek h/′+  where we have 
introduced EeVVe Δ−≡′ 2  (for 0<′V , the constraint that 0≥Rk  must explicitly be 
applied). The current from region III is identical to that from region I. In region II we find 

LFR kvVek −′= h/  with FL vVek h/0 ′≤≤ .  
 
     Considering Eq. (10) in the limit of large A, we have kkk ≡= RL  since 

RL kkΔk ,)( δ→Λ , so that the equation becomes 
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where we have added indices L and R to the energies to make it clear which electrode 
they are associated with. We note that for tunneling between like valleys and unlike 
bands, )sin(2),( 2

12 kkk θθθ ug = , with the term involving 2
11u  having been eliminated.  

This cancellation occurs because of orthogonality between the lateral portions of the VB 
and CB wavefunctions, but nevertheless nonzero tunnel current is still produced by the 

12u  cross-term.  
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     In the following Section we evaluate Eq. (10) for large-area rotationally aligned 
electrodes, and in the Section after that we consider finite-area rotationally aligned 
electrodes. The case of rotational misalignment is considered in the numerical results of 
Section III. 
 
C. Tunneling current for large-area graphene sheets 
 
In this Section we focus our discussion to large electrode areas with no misorientation 
between the electrodes ( 0Q = ). We first consider an undoped GIG junction,17 the band 
structure for which is pictured in Fig. 3. Given the requirement of k-conservation as 
enforced by Eq. (9) for large A, there is only a single ring of k-points that satisfy that, 
located at an energy midway between the Dirac points as shown in Fig. 3. Thus for 0>V  
we need only consider VB states for the left electrode, kvEE FDLL h−=k, , and CB 
states for the right electrode, kvEE FDRR h+=k,  (or vice versa for 0<V ). Thus, 

kveVkvEEEE FFDRDLRL hh 22,, −=−−=− kk . Substituting into the δ-function of  
Eq. (11), and evaluating the sum over k as an integral in the usual way, yields the current 
for tunneling between like valleys,  
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where FvVek h/max = . For tunneling between unlike valleys the term 2
12u  is replaced 

by 2
11u . The integral is easily evaluated using the δ-function, yielding for zero 

temperature 
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     Now let us turn to a doped GIG junction. We first consider the nonresonant case when 
the band structures are not aligned, i.e. EeV Δ≠ 2 , as in Figs. 1(a) or 1(b). The situation 
then is similar to the undoped junction, with a single ring of k-values satisfying 
wavevector conservation for each particular voltage. The derivation of the tunnel current 
is very similar to the undoped case. For example, for the situation pictured in Fig. 1(a) we 
have for the relevant states that kvEE FDLL h+=k,  and kvEE FDRR h−=k,  so that 

=− kk ,, RL EE  =+− kvEE FDRDL h2  kvEeV Fh22 +Δ− . Thus, in Eq. (11) we have, 
=− )( ,, kk RL EEδ  )22( kvEeV Fh+Δ−δ . Therefore the current at zero temperature is 

given by 
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for EeV Δ<< 20 , and by the negative of that for 0<V (since the sign of RL ff −  
changes). Similarly, for voltages of EeV Δ> 2  we have for the relevant states 

kvEE FDLL h−=k,  and kvEE FDRR h+=k,  so that =− kk ,, RL EE  
kvEeVkvEEEE FFDRDLRL hh 222,, −Δ−=−−=− kk and =− )( ,, kk RL EEδ  

)22( kvEeV Fh−Δ−δ . Therefore the current is 
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Both Eqs. (14) and (15) apply to tunneling between like valleys; for unlike valleys, the 
term 12u  is replaced by 11u . 
 
     Now we turn to the resonant situation, with  EeV Δ= 2  in the doped GIG junction. As 
pictured in Fig. 1(c), there are states existing over all energies that satisfy the requirement 
of k-conservation. We have EeVEEEE DRDLRL Δ−=−=− 2,, kk  for each pair of 
states, leading to )0()( ,, δδ =− kk RL EE  in Eq. (11) which is not well defined. In the 
following Section we demonstrate how this current can be evaluated, first by performing 
the sums for finite-area graphene sheets using Eq. (10) together with Eq. (9), and then 
taking the limit of large area. We find an approximate (but fairly accurate) expression for 
the current as 
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This equation applies to tunneling between like valleys; for unlike valleys, the 11u  and 

12u  terms are interchanged. 
 
     The occurrence of L in Eq. (16) is worth examining. As derived in the following 
Section, the value of L is simply the lateral extent of a graphene sheet (i.e. area of 

2LA = ). However, it is also of interest to consider the effect of structural imperfections 
in the graphene. Let us say that the graphene can be decomposed into small structurally 
perfect areas, each with area a 2l= , and say that there are M such areas in the entire 
sheet so that MA = a. The tunnel current from a single perfect section of the film would 
be given by Eq. (16), but with =A a  and l=L . The current from the entire sheet would 
then be given by M times that, yielding a result identical to Eq. (16) but with l=L . Thus, 
we can take Eq. (16) to apply to the general case, but with L in that equation interpreted 
as the lateral extent of perfect areas (i.e. grains) in the graphene. We refer to this lateral 
extent as a structural coherence length in the graphene. For a small, perfect graphene 
flake, L would be the total lateral extent of the flake, but in a larger defective sheet of 
graphene, L is the lateral extent of structurally perfect grains in the sheet. 



9 

 
D. Finite-size effects 
 
We consider the situation for finite-sized areas of graphene, extending over 

2/2/ LxL <<−  and 2/2/ LyL <<− . The factor )(ΔkΛ  introduced in Eq. (9) is easily 
evaluated to be 
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where xxx /)sin()sinc( ≡ . This expression for )(ΔkΛ  is of course peaked when 

RL kk = . Substituting this form into Eq. (10), and converting the sums over kL and kR to 
integrals, permits numerical evaluation of the tunneling current (both resonant and 
nonresonant). It is this method that we use for all of the numerical results presented 
below.  
 
     However, with the goal of obtaining analytical formulas for the tunnel current, use of 
Eq. (17) for )(ΔkΛ  is inconvenient since it does not permit explicit evaluation of the 
integrals. To achieve this goal, we replace )(ΔkΛ  by another function that is also peaked 
when RL kk = , 
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The factor of π/1  in the exponents here is chosen such that the area under )(~ ΔkΛ  when 
integrated over xkΔ  or ykΔ  is identical to that under )(ΔkΛ . Using )(~ ΔkΛ  rather than 

)(ΔkΛ  now allows us to explicitly evaluate the sums (integrals) over Lk  and Rk  in Eq. 

(10). Expressing θcos2222
RLRL kkkk −+=Δk  where RL θθθ −=  is the angle between 

Lk  and Rk , the angular part of the integrals is given by 

( ) .cos
2

1exp),(
4

1exp

)(~),(

2
0

2

0

2

0

22

2

0

2
2

0

⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧ +−

=Λ

∫∫

∫∫

θ
π

θθθθ
π

θθθθ

ππ

ππ

RLRLRLRL

RLRL

kkAgddkkA

gdd Δk

   (19) 

For tunneling between like valleys, the double integral over Lθ  and Rθ  on the right-hand 

side equals )]2/()2/()[(8 2
4
110

4
12

4
11

2 πππ RLRL kkAIukkAIuu ±+  where nI  is a 
modified Bessel function of the first kind of order n and the upper (lower) sign holds for 
tunneling between like (unlike) bands. For tunneling between unlike valleys the result is 
the same but with 11u  and 12u  interchanged. Substituting into Eq. (10) we have 
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     Let us initially consider the resonant case, so that the region II of the band alignment 
has zero size. The current from regions I and III are equal so that we need only evaluate 
only one of them, and we use the CBs. The band structures are aligned, so that 

FRLRFLF vkkkvkvEE
RL

hhh /)()()( −=−=− δδδ kk  and the current reduces to 
(including a factor of 2 to account for both regions I and III) 
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For zero temperature the integrals involving the Bessel functions can be explicitly 
evaluated. Introducing the integration variable π2/2Akx = , we note that 
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with ππ 2/)/(2/ 22
maxmax FvEAAkx hΔ==  and where 22 F  is a generalized 

hypergeometric function. By numerical inspection, we find that the quantities on the 
right-hand side of the equals sign for both Eqs. (22) and (23) approach, for large maxx , 
(0.399...) maxx , which we express simply as 0.4 maxx . We thus obtain a formula for the 
peak resonant current ( )/2 eEV Δ=  at zero temperature of 
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This expression applies to tunneling between like valleys; for unlike valleys, 11u  and 12u  
are interchanged. In the following Section we compare this result to the numerical 
evaluation of the current from Eqs. (10) and (17), and we find that they agree fairly well.  
 
     Finally, for the current away from the resonant peak, we return to Eq. (20) and 
evaluate it in the various energy regions of band alignment shown in Fig. 2. In region I 
we have FLR vVekk h/′+=  with 02 <Δ−≡′ EeVVe . In the integrand of Eq. (20) there 
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is the term ]4/)(exp[ 22 πRL kkA +− , which, with FLR vVekk h/′+= , will be sharply 

peaked at 222 )2/( FRL vVekk h′== . For these Lk  and Rk  values the argument of the 0I  
Bessel function will be 1>  for /LV nm)V3(>′ , which corresponds to 0.03 V for L=100 
nm or 0.003 V for L=1000 nm. For these cases we can replace the Bessel function by its 
asymptotic limit, RLRL kAkkAk /)2/exp( π . Combining with the 

]4/)(exp[ 22 πRL kkA +−  term, and expressing the exponent as =−+ RLRL kkkk 222  
22 )/()( FRL vVekk h′=− , we are left with a term ]4/)/(exp[ 2 πFvVeA h′−  which gives 

the dependence of the current on V ′ . The same term arises when we consider the energy 
region III, and similar arguments can be made for the 2I  Bessel function (albeit for larger 
V ′ ).  In both these regions the tunneling occurs between like bands, so the term 

4
12

4
112 uu +  in Eq. (24) is appropriate. Therefore, to provide an approximate analytic 

expression for the entire (broadened) resonant peak of the current, we simply take the 
peak value from Eq. (24) and multiply that by ]4/)/(exp[ 2 πFvVeA h′− . The final 
expression is then listed above in Eq. (16). As shown in the following Section, this 
approximate expression for the current actually provides quite good results even for V ′  
values that are nearer to zero than by the bounds just stated. For the off-resonance 
contribution from region II we maintain our usage of Eqs. (14) and (15), with the term 

4
11

4
12

4
11

4
12 )( uuuu −+=  being appropriate for the unlike bands. It should however be noted 

that, close to 0 V, Eq. (14) does not properly describe the linear current-voltage 
relationship that occurs for finite electrode area, as illustrated in the following Section.  
 
E. Charging of the Graphene Electrodes 
 
In the derivations of the previous Sections we treated EΔ  (the separation of the Fermi 
level and Dirac point) as if it were a fixed quantity. However, for any physical GIG 
junction EΔ  will actually vary with the voltage V  between the electrodes due to 
charging of the graphene electrodes. To illustrate this effect, we consider initially the 
situation for nominally undoped electrodes as pictured in Fig. 4. If the electrodes were 
metallic, then a surface charge would form on each electrode in response to the electric 
field across the junction. For the case of graphene electrodes, this "surface charge" 
becomes a 2D charge within each electrode. The GIG junction has associated with it a 
geometric capacitance per unit area, dC R /0εε= , where Rε  is the relative dielectric 
constant and d  is the thickness of the insulating layer.11 For a voltage across the insulator 
of iV , the charge density in the electrodes is given by 

)()( RRLLi npepneVC −=−==σ     (25) 
where n  and p  are the 2D carrier densities in the respective electrodes. Here, iV  is the 
same as V ′  defined above; we use this new symbol to signify that it is the voltage across 
the insulator with the graphene electrode quantum capacitance considered.11 The applied 
voltage V  between the electrodes is given by RLeV μμ −= . 18 Thus, referring to Fig. 4, 
we have 



12 

)()( RDRDLLi EEeVeV μμ −+−+=    (26) 
where for the undoped electrodes EEE RDRDLL Δ≡−=− )()( μμ . A general expression 
for the carrier densities is 
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which depends only on DEE −=Δ μ . Thus, substituting the expression for iV  from Eq. 
(25) into Eq. (26), we are left with a single equation for EΔ  that can easily be solved 
numerically. 
 
     Moving to the case of doped electrodes, Eq. (25) becomes generalized to read  

])[(])[( ARRDLLi NnpeNpneVC −−=−−==σ    (28) 
where 2D substitutional doping concentrations of DN  (n-type) in the left-hand electrode 
and AN  (p-type) in the right-hand electrode are assumed. We consider equal 
concentrations in both electrodes, NNN AD == , so that )()( RRLL nppn −=−  and 

EEE RDRDLL Δ≡−=− )()( μμ . Equation (26) still applies, and substituting Eq. (28) 
into that we arrive at the single equation 

ENpn
C
eeV LL Δ+−−= 2])[(

2
    (29) 

where )( LL pn −  is given by Eq. (27). Given V, C, and N, this equation can be solved 
numerically for EΔ . For zero temperature this solution is easily expressed, with 

])(/[)( 22
FLL vEpn hπΔ±=−  where the upper sign if used for LL pn >  ( 0>ΔE ) and 

the lower sign for LL pn <  ( 0<ΔE ). Equation (29) then forms a quadratic equation for 
EΔ , with the solution 
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This solution is valid for all values of V , with 0>ΔE  for CeNV /−>  (upper sign), 
0=ΔE  for CeNV /−= , and 0<ΔE  for CeNV /−<  (lower sign). 

 
     Using the value of EΔ  deduced from the above procedure, the tunneling current in the 
GIG junction can be computed using the formulas of the previous Sections.19 As an 
example of the influence of the electrode charging, we consider the variation in EΔ  as a 
function of V for two situations: one for a thin insulating layer, taking 4=Rε  and 

nm5.0=d  which gives a capacitance of 2F/cm1.7 μ=C , and another for a relatively 
thick insulator with ten times smaller capacitance. Figure 5 shows the resulting EΔ  
values, assuming a doping concentration of 212 cm1074.0 −×  corresponding to a value of 
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eV1.0=ΔE  for 0=C . As can be seen from the plot, the variation in EΔ  for the thick 
insulator is not particularly large, and as will be seen in the following Section it produces 
only a modest broadening of the resonant peak in the current. For the thin insulator the 
variation of EΔ  is much greater, leading to a substantial broadening of the resonant peak 
in the tunnel current. 
 
III. Results 
 
In this Section to consider numerical results for the single-particle tunnel current in doped 
GIG junctions, assuming initially a fixed value of EΔ  for the electrodes (i.e. zero 
capacitance of the junction). Figure 6 shows results for eV1.0=ΔE , as given by Eq. (10) 
for the exact (numerical) solution, at temperatures of 0=T K and 300 K. Also shown are 
the predictions of our approximate (analytic) formulas for the current, at 0 K, as given by 
the sum of Eq. (16) with Eq. (14) or (15). These formulas provide a reasonably good 
description of the current, although they do not capture the asymmetry of the resonance 
peak (this asymmetry arises from regions I and III of the band alignment, Fig. 2, the 
current from which has different magnitude for eEV /2Δ>  or eEV /2Δ< ). There is 
little temperature dependence in the width of the resonant peak, as already noted in prior 
work,2,3 although the height of the peak increases somewhat with temperature since 
greater numbers of states are accessed at the higher T (temperature dependence of the I-V 
curve is also apparent close to 0 V, with the slope of the I-V curve there being affected 
both by T and L). As discussed in Section II(B), the height of the resonant peak is 
proportional to the structural coherence length L, with the width being proportional to 

L/1 . The nonlinearity of the I-V curve is large in Fig. 6, and for larger coherence lengths 
(and/or larger EΔ ) it becomes larger still.  
 
     The results in Fig. 6 are applicable to graphene electrodes that have perfectly aligned 
crystal orientations. For the case of rotational misalignment between the electrodes, we 
still evaluate the current using Eq. (10), but we now include the )exp( rQ •i  term in the 
definition of )(~ ΔkΛ  [i.e. as in the integral of Eq. (7)]. Results of that type of computation 
are shown in Fig. 7. As the misalignment angle increases, the intensity of the resonant 
peak at eEV /2Δ=  rapidly decreases; the peak shifts to higher voltages and a related 
peak appears at lower (negative voltages). For the situation of nm100=L  being 
considered, it is apparent from Fig. 7 that only the graphene grains in the opposing 
electrodes that are misoriented by less than about ±0.15° will contribute significantly to 
the resonant peak. Compared to a total angular range of °−30  to °+ 30  (beyond which a 
resonance between the next-nearest valleys, i.e. K and K', must be considered), it is 
apparent that only 0.5% of the area if each electrode contributes to the resonant peak (i.e. 
for randomly oriented grains in the electrodes). The other, surrounding graphene grains 
do nevertheless play an important role of laterally transporting the current. For the larger 
grain size of nm1000=L , only areas of the opposing electrodes that are misoriented by 
less than about ±0.015° contribute significantly to the resonant peak, corresponding to 
0.05% of the electrode areas. 
 



14 

     For the I-V characteristics of misaligned electrodes ( o15.0>ω ) displayed in Fig. 7, it 
is apparent that they also have peak currents, but ones that are smaller and at a different 
voltages than for the aligned case ( o0=ω ). These peaks for the misaligned situation arise 
due to a locus of points in k-space where both the wavevectors and the energies of states 
in the two electrodes are matched, as illustrated in Fig. 8 for 0>′V  where 

eEVV /2Δ−≡′ . By inspection, it can be seen that the voltages at which these peaks 
occur are given by eQvV F /h±=′ . The peak currents for the misaligned case become 
smaller, relative to the peak aligned current, as the structural coherence length L increases. 
However, the range of ω  that contributes to the peak current for aligned electrodes also 
falls with L. The net result is that the peak-to-valley ratio of the angle-averaged current 
increases sublinearly with L, being 1.9 for the L=100 nm case of Fig. 7, and 3.7 for 
L=1000 nm. Of course, as L increases the total electrode area required such that well-
aligned portions of the opposing electrodes will occur also increases, being ≈L3/(1 nm) 
with the assumption of randomly oriented grains in one or both electrodes. 
 
     Considering now the effect of the nonzero capacitance of the GIG junction, Fig. 9 
displays the resonant peak at zero temperature for the values of capacitance already 
defined in regard to Fig. 5. The 0=C  case pictured there is the same as for Fig. 6 (exact 
computation). The situation with a relatively thick barrier, having 2F/cm71.0 μ=C , 
differs only slightly from the 0=C  case. However, for the thin barrier with 

2F/cm1.7 μ=C , the resonant peak is now substantially broadened and also shifted to 
higher voltages. Nevertheless, a large nonlinearity in the I-V characteristic remains, and 
qualitatively the behavior is the same as for the cases with lower capacitance. 
Approximate solutions for the tunnel current as given by Eqs. (14) – (16) together with 
Eq. (30) are not shown in Fig. 9, but they do follow the exact curves quite closely for all 
values of C. 
 
IV. Discussion 
 
The nonlinear I-V curves predicted in this work for GIG junctions occur only when the 
graphene electrodes have differing chemical potentials, arising from different doping 
concentrations (i.e. in the same manner as for prior work on 2D-2D tunneling).2,3 Doping 
of graphene can be accomplished by a variety of means,20,21,22,23 and chemical potentials 
shifted by 0.1 eV or more from the Dirac point, both n-type and p-type, are not 
uncommon. In this respect the simulations presented here appear to be applicable to 
physically realizable situations. 
 
     It is apparent by comparing Figs. 6 and 7 that a much greater nonlinearity of the I-V 
curve for a doped GIG junction occurs when the electrodes are perfectly rotationally 
aligned (or with misalignment angle of 60°). This rotational alignment imposes a 
significant constraint on the devices (one that is not present for the BiSFET devices, as 
discussed in Section I).9 The manner in which a rotationally aligned GIG junction will be 
achieved is not clear at present, since it seems to be incompatible with the exfoliation and 
transfer type of techniques commonly used in handling graphene flakes.24 A method 
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more consistent with the requirement of rotational alignment would be direct epitaxy of 
the graphene electrodes and the insulator. Recent works with BN (an insulator with band 
gap of 6.0 eV),25 which can be grown epitaxially,26 provide key steps in this direction but 
much work on the epitaxy of 2D materials remains to be done. 
 
     Even in the absence of perfect rotational-alignment of the electrodes, a moderate 
degree of nonlinearity of the I-V curve  (peak-to-valley ratio ≳2) can still be achieved so 
long as one or both electrodes consist of small, randomly oriented graphene domains with 
domain size ≳100 nm. The resonant portion of the current will flow through the small 
portions of the opposing electrodes that are rotationally aligned, with the remainder of the 
electrodes serving to connect these "hot spots" and also contributing their own 
background (non-resonant) current. Graphene grown epitaxially on metal substrates 
consists typically of micrometer-size constant-thickness domains, 27,28,29 with grain size 
>50 nm and considerable rotational disorder of the grains,27 although further quantitative 
evaluation of that is needed. Graphene grown in vacuum on the C-face of SiC{0001} has 
≈50 nm size domains also with considerable rotational disorder, although this disorder 
only extends over about 10% of the total possible range of rotational angles (judging 
from the width of the diffraction streaks that extend over ≈3° of a 30° sector). 30,31 
 
     To fully exploit the nonlinear I-V curve found for the doped GIG tunnel junction, it is 
desirable to fashion it into some sort of three-terminal device. This can be accomplished 
simply by putting the GIG junction between two additional gate electrodes, in a geometry 
identical to that used in the BiSFET9 (or, with chemical doping of the GIG electrodes as 
described above, then just a single gate electrode above or below the GIG junction would 
likely suffice). With the voltage bias in the GIG junction set to the resonance, then a 
voltage difference across the gate electrode(s) will swing the current off resonance and 
thus achieve amplification of the signal to the gate.  
 
     Further comparing the BiSFET operation with the single-particle tunneling effects 
considered here, we note that the BiSFET, in addition to having a critical temperature 
below which it must be operated, also relies upon a critical current for its nonlinear 
response.9 This critical current would presumably require rather tight tolerances on the 
insulating layer separating the electrodes in order to achieve good device-to-device 
reproducibility in the operating voltage. The single-particle tunneling does not have that 
sort of requirement; the tunnel currents will of course scale with the thickness and barrier 
height of the tunneling layer, but the operating voltage is only weakly dependent on that, 
being determined primarily by the relative doping of the two GIG electrodes for low 
capacitance of the junction and varying slightly (Fig. 9) for high values of the capacitance. 
It is important to also note that the BiSFET type mechanism is relevant to thin tunneling 
barriers (e.g. single atomic layer), whereas the single-particle effects computed here 
apply to weak tunneling, i.e. relatively thick barriers. 
 
V. Summary 
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In summary, we have computed the single-particle tunneling characteristic for a 
graphene-insulator-graphene junction with complementary doping in the graphene 
electrodes. A highly nonlinear I-V characteristic is found, with a resonant peak whose 
width is independent of temperature. The dependence of the tunneling current on both the 
lateral graphene size of the graphene and the relative rotational orientation of the 
electrodes is considered. The greatest amount of nonlinearity in the I-V characteristic is 
achieved with nearly perfect rotational orientation of electrodes, which presents a 
significant challenge in fabrication of such devices. A three-terminal device can be 
fashioned using additional gate electrode(s) above and/or below the GIG junction, in the 
same geometry as for the recently proposed BiSFET device.9 
 
Acknowledgements 
 
This work was supported by the National Science Foundation, grants DMR-0856240 and 
ECCS-0802125, and the SRC NRI MIND project. 



17 

 

 
 
FIG 1. (Color online) (a) – (c) Band diagrams for a doped GIG junction, at voltages of (a) 

eEV /2Δ< , (b) eEV /2Δ> , and (c) eEV /2Δ= . In (a) and (b), states satisfying k-
conservation (i.e. in limit of large electrode area) are shown by the rings located at an 
energy midway between the Dirac points for the two electrodes. In (c), states at all 
energies satisfy k-conservation. (d) Qualitative current-voltage (I-V) characteristic. 
 
 
 

 
 
FIG 2. (Color online) Various energy ranges I, II, and III in a doped GIG junction that 
must be considered when computing the tunnel current. 



18 

 

 
 
FIG 3. (Color online) (a) Band diagram for an undoped GIG junction, with states 
satisfying k-conservation (i.e. in limit of large electrode area) shown by the rings located 
at an energy midway between the Dirac points for the two electrodes. (b) Qualitative I-V 
curve. 
 
 
 

 
 
FIG 4. (Color online)  Band diagram for GIG junction with undoped electrodes, including 
consideration of the capacitance of the insulator layer. Charging of the electrodes results, 
so that the voltage drop across the insulator iV  is different than the applied voltage V  
between the electrodes. 
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FIG 5.  (Color online) Dependence of EΔ  (the separation of the Fermi level and the 
Dirac point) on the capacitance of the junction C and the applied voltage V  between the 
graphene electrodes, for a doping concentration corresponding to eV1.0=ΔE  at zero 
capacitance. 
 
 

 
 
FIG 6. (Color online) Current vs. voltage in a doped GIG junction, for an energy 
difference EΔ  between the Fermi-level and the Dirac point in each electrode of 0.1 eV 
(zero capacitance of junction), and for a structural coherence length of nm100=L . 
Values of 111 =u  and 112 =u  are assumed, and the graphene lattices in the two 
electrodes are rotationally aligned. 
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FIG 7. (Color online) Current vs. voltage in a doped GIG junction with rotationally 
misaligned electrodes. Individual curves with misalignment angles ω  spaced by 0.15° 
are shown, with the angular average shown by the thick curve. Results are for an exact 
computation at 0 K, with other parameters being the same as in Fig. 6.  
 

 
 
FIG 8. (Color online) Schematic energy vs. wavevector band structures, illustrating the 
source of the main component of the tunnel current for rotationally misaligned electrodes. 
The bands of the right-hand electrode are shifted by a wavevector Q (assumed to be in the 
x-direction) compared to those of the left-hand electrode. The points indicated by solid 
dots on the respective band structures have matching wavevector and energy, hence 
making a relatively large contribution to the current.  
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FIG 9. (Color online) Current vs. voltage in a doped GIG junction, for an exact 
computation at zero temperature with rotationally aligned electrodes and using a doping 
concentration that corresponds to eV1.0=ΔE  at zero capacitance. Various values of the 
capacitance are considered, with the EΔ  values at each voltage computed as shown in 
Fig. 5. 
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