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Abstract. We consider a one-dimensional body and assume that the total stored
energy functional depends not only on the local strain field but also on the spatial
average of the strain field over the body, weighted with an influence kernel. We
investigate the problem of minimizing the total stored energy subject to given end
displacements. The general existence theory for this problem is reviewed. Then, we
narrow our study and concentrate on certain fundamental aspects of nonlocal spatial
dependence by restricting our consideration to the case of a convex local energy
and an exponential-type influence function for the nonlocal part. We find explicit
solutions and show their characteristic properties as a function of the parameter that
measures the extent of influence in the nonlocal kernel. We then study in detail
the behavior that results when the total stored energy functional loses its coercivity.
In this case, issues concerning the local and global stability of extremal fields are
considered.
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1. Introduction. Consider a one-dimensional body 3§ represented in its reference
configuration by the point set

38 := (0, /) c R,
where R represents the set of all real numbers. Let xe J denote a material point of
38 and let a deformation of 38 be given by a continuous mapping >>(•) e ^{38, R).
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Then, u(x) y(x) — x is the associated displacement field for all x G 38 and we let
e(-) := u (■) denote the strain field. A common hypothesis in the theory of materials
is to assume that 38 supports a certain total stored energy functional E(-) : 3 —♦
R U {oo} where 3 is a given class of continuous displacement fields in %?{38, R).
In such theories, the stable equilibrium states of the body 38 are then supposed to
be those displacement fields that minimize E(-) over 3 subject to given boundary
conditions. In this work we are interested in the fixed displacement problem, for
which A G R+ {x G R : x > 0} is given, and we seek a displacement field
m0(-) g sal' {38) such that

E{un) = min E(u), (1)
U u£stA&)

where

:= jw(-) g 3 : J e(x)dx = A and e(x) > -1 for a.e. x G 38^ . (2)
Here, we require e(x) > -1 to ensure the invertibility of the deformation y(-). The
particular functional form of the total stored energy functional E(-) will invariably
affect the class of displacements 3 over which the minimum is sought.

A variety of forms for the total stored energy functional E(-) have been considered
in recent years. In [6, 8]1, the body 38 is assumed to be elastic and the total stored
energy functional consists of the integral over 38 of a sole nonconvex integrand
composed with the strain field e(-). In that case, the set 3 may be taken to be
the Sobolev space Wx'p{38) ,1 < p < oo, and the problem (1) generally leads to
highly nonunique minimizers. In fact, for certain A > 0 there are minimizers that
oscillate wildly between two different values of strain on subsets of the body 38
that are fixed only in measure. A method of removing such indeterminateness is to
modify the total stored energy functional so as to include a penalty regularization
that participates in the minimization and, in a sense, forms the basis of a selection
criterion. This approach has been employed in two different, but related, attempts by
Gurtin, Slemrod, and Carr [3] and by Walter [13]. In the first, higher-order gradients
are introduced into the total stored energy functional, thereby creating a penalty
(through increased energy) for the formation of regions where rapid changes in the
strain field occur. In the second approach, the dependence of the total stored energy
on a localized gradient is generalized and replaced by dependence on the spatial
average of the strain field weighted with an influence kernel. This approach requires
less hypotheses on the local smoothness of admissible strain fields and, in a first-
order approximation for smooth fields, is arguably reducible to the gradient model.
We shall adopt the nonlocal approach here.

Specifically, we suppose that the total stored energy functional for 38 is of the
form

£>-("):=/' lw{e{x))-e{x) f fs{x - z)e(z) dz\dx, (3)
  J £8 I J 38 J
1 The work of [6] concerns the question of coexistent phases in Gibbsian thermostatics and thermodynamics
and is more general than implied here. In particular, it addresses the elementary thermoelastic bar problem
for nonconvex energies.
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Fig. la. The bulk stored energy fV(e)
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Fig. lb. The derivative W\e) of the bulk stored energy JV(e)

where e(x) := u'(x) for every x e SB . Here, W(-) represents the local pointwise
contribution of the strain field to the total stored energy of 3§. This portion of
Es{-) usually is referred to as the bulk ox local energy (Figs, la and lb). In general,
W(-) : R -* R+ U {oo} is assumed to satisfy

Hypothesis 1 (Bulk Energy). W(-) : R —>2R+U{cxo} is a continuously differen-
tiable function such that

(i)
lim W(e) = lim W'(e) = 00, (4)

e—*oo c—> 00

(ii) 3: a, be (0, 00) such that 0 < a < b < 00 and W(-) is convex on (-00, a]
U [b, 00).

The second term in (3) represents the nonlocal part of the constitutive assumption
and expresses the spatial strain dependence via an influence function fs{-). Given
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. {((x/rf)2-]) }
Fig. 2. A possible influence function: fAx) := ie V /
for |jc| < <5 = 0.3, 0.8.

x g 38 , the function fg(x - z) in (3) serves as a weight on the relative influence of
the material strain e(z) at a point z in a ^-neighborhood of x. Specifically, fs(-)
behaves as a weighted identity approximation and is assumed to satisfy

Hypothesis 2 (Spatial Energy). For 2 < p < oo, fs{-) e Lq{R) is a nonnegative,
monotonically decreasing even function with the following properties:

(i) 3a> 0 such that J fs(x) dx = a, Vd > 0 (fixed total spatial influence),

(ii) V</»(-) G Lp{3§), [,-g fs(x - y)<t>(y) dy -* 0 in Lq(&) as 5 — oo ,

(iii) V0(-) G Lp{&), f fs(x - y)<f>(y) dy —> a<j>(x) in Lq(&) as S -+ 0 ,

where 1 < q < 2 satisfies 1 /q + 1 /p = 1 .
The requirement that fg(-) is monotonically decreasing in Hypothesis 2 reflects the
idea that the ability of a point z G 38 to affect the local stored energy at a point
x G 38 decreases as the distance between the two points increases. The parameter
d G (0, oo) is a measure of the localization of the influence; a particular choice for
the influence function should reflect the view that for small d, a large percentage
of the mass of the function fs{-) is concentrated at the origin. Figure 2 illustrates
a possible influence function that is compatible with this hypothesis. This is the
essence of statement (iii) in Hypothesis 2.

To more clearly distinguish the difference between the local and nonlocal parts of
the total stored energy functional, it is instructive to introduce an alternative form
of (3). For this, we let fs(-) be as in Hypothesis 2, define

as(x) := f fs(x — z)dz, (5)
Jss

and suppose that e(-) G L''(&). Then a simple application of the Fubini-Tonelli
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theorem and the evenness of fs(-) allows us to rewrite Eg(-) as

Es(u) = [ {W{e{x)) - as{x)e2(x) + ~ [ fs{x - z)(e(x) - e{z))2 dz } dx. (6)
J <2 1 Jg&

The spatial kernel in (6) now is clearly seen to be zero on any strain field that is
constant. In fact, the nonlocal convolution in (6) is exactly that portion of the energy
functional that penalizes the total stored energy for strain fields that exhibit noncon-
stant behavior. Moreover, if «(•) e Wx'p(£g) is given, independent of <5, then it
follows from the total stored energy (3) and Hypothesis 2, (ii) and (iii), that

lim EAu) = [ W(u'(x)) - au'(x)2 dx (7)

and
lim EAu) = [ W(u'(x))dx. (8)

<5->oo J<%

We wish to consider the following fixed displacement minimization problem:
Given A e R+ and p € [2, oo), determine uJ-) £ srfX'p {38) such that

Es{ uQ) = min Es(u), (9)
ues/J-"(SB)

where

s/J 'p(&) :={«(•) e W1 p(&): f u (x) dx - A and e(x) >-1 for a.e. x e

(10)
and W 'p (38) is the usual Sobolev space of functions such that for some p € [2, oo),
both the function «(•) and its generalized derivative u {■) = e(-) are elements of
Lp(£8). We say that a displacement field u(-) : 38 -> R is admissible if u(-) e
J*1''' (38). In order to assure that there exists a minimizing sequence for (9) that
possesses a weak limit in "(&), we must make two assumptions. The first is
a coercivity hypothesis on the total stored energy functional Eg(-). This hypothesis
provides for a uniform bound on any minimizing sequence {w„}„6iV C Wl'"[&),
and thereby ensures that such a sequence is precompact in Wx ~p (38). In that case,
there is a subsequence {un }ke^ that converges weakly to some u0(-) e WXp(38)
[5, 9], Specifically, we require Es(-) to satisfy

Hypothesis 3 (Coercivity). 3 p e [2, oo), ax > 0 and dx e R such that Ve e R

W(e)-p\e\2> ox\e\p + d{, (11)

where
P := sup as(x).

In order to guarantee that a solution of (9) is also locally invertible (i.e., e(x) >
-1 for a.e. x e 38 ), and consequently residing in s/J 'p(38), we also assume the
following hypothesis.
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Hypothesis 4 (Stiffness). The bulk energy function W(-) : 1R —> IR+ U{oo} has the
form

W{e)eR+ : ee(-l,oo)IW(e)={ } , (12)
oo : e £ (—oo, — 1]

where, in particular,
lim W(e) = - lim W (e) = oo. (13)
f|-l CJ.-I

The stiffness hypothesis penalizes a deformation y(-) by assigning an infinite amount
of bulk energy when distinct points in the reference configuration 38 occupy iden-
tical positions in the deformed configuration y{38). Therefore, if W(•) satisfies
Hypothesis 4, any displacement field «(•) e w' p(38) that satisfies \Eg(u)\ < oo,
necessarily has the property that u'(x) > -1 for a.e. x e 38 . In the remainder of
this section, we require W(-) to have the form as given in (12).

The question of existence of a solution to (9) is difficult to answer if the bulk en-
ergy fV(-) is nonconvex. This is because, in this case, the first portion of the energy
functional (3) is not generally weakly lower-semicontinuous (w.l.s.c.) on Wl 'p{3?).
However, since fg{-) € Lq(,^), it follows from slight modifications of known theo-
rems [5, 9, 14], that the nonlocal portion of Eg(-) is weakly continuous on Wx'p{38).
This observation, and an awareness of classical approaches in existence theory [5, 7],
directs us to consider the auxiliary relaxed problem. Let

fV*(e) := sup(g(e) : g(e) < W(e) Ve e 1R and g(-) is convex},

and define

E*{u) := ^W*{e(x)) - e(x) f fs(x - z)e(z)dz^dx. (14)

The relaxed problem associated with (9) is then to determine uQ e such
that

E*s(u0) = min E*(u). (15)
p{3?)

Regarding (15), since W/*(-) is convex, the local portion of (14) is now w.l.s.c. on
Wx,p{38) [5, 9], and therefore, the relaxed energy E*g(u) is as well. Consequently,
we may prove [9] the following

Theorem 1 (Relaxed Existence). 2 Let (4), (11), and (12) hold for some p 6
[2, oo) and let fs(-) e Lq(R) satisfy Hypothesis 2. Then,

(i) inf £»=:/; = /:= inf Es(u)eIR,

"We note that the hypothesis on fs(-) is only a sufficient condition; it may be weakened. In particular,
aside from evenness, all that is needed from Hypothesis 2 is that fd(-) e Lq(1R) fl Ll(R) . Moreover, if
we relax definition (10) to include noninvertible deformations, replacing 'p(£§) by

j/1 'P{3S) :={«(•) e : f u'(x)dx = A},

then Theorem 1 also holds as stated, provided we drop the stiffness Hypothesis 4.
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(ii) 3 u0(-) e s/J 'p{38), and a sequence uk{-) G ~p{38) such that
(a) uk uQ in Wx'p{38),
(b) E*{u0) = lim Ed(uk) = / .

k—* oo

The derivation of the classical Euler-Lagrange equations as necessary conditions
for problems (9) and (15) becomes a nontrivial matter when the stiffness Hypothesis
4 is assumed. Two difficulties are encountered in the classical derivation. The first is
that given a function «(•) G.tf^'p{3&) and a possible variation u{-, e) := u{-) + erj{-)
for tj{-) € W]'°°{38), it is not immediate that u{-, e) e ^ 'p{38) when e is suf-
ficiently small. In particular, it is not clear that e{- , e) > -1 for a.e. x G 38 holds
for e —> 0. Fortunately, this problem can be circumvented with a clever choice of
variations [1]. The second problem is more serious. Since we do not know that e{-)
is bounded below away from -1, there is no reason to believe that W'{e{-, e)) €
l){38) as e —► 0. This presents a serious obstacle to the necessary step of inter-
changing the differentiation of (3) with respect to e and the first integral operation.
For the purely local problem with no spatial dependence, this difficulty was circum-
vented in [1, 2], and in [9] we determine necessary and sufficient conditions, similar
to those in [1], to ensure that this process may be undertaken. These conditions are
given in the following

Theorem 2 (Euler-Lagrange).3 Let (4) and (12) hold for some p G [2, oo).
Let fs{-) satisfy Hypothesis 2, and assume that 3M, C >0 such that \ W{e)\ <
C\e\p, Me G [M, oo). Suppose m0(-) g sf^'p{38) is such that Es{u0) = lp . Then,
the following three conditions are equivalent:

(i) 3 e0 > 0 such that

I \w'{u'0(x))\dx < oo,
{ —1<Mo<— 1+co>

(ii) 3 a e IR such that for a.e. x € 38

W{e0{x)) - 2 [ fs{x-z)eQ{z)dz = o, (16)
J.®

(iii) ess inf eJx) > -1 and ess sup eJx) < oo.

Observe that if the hypotheses of Theorem 2 hold and «0(-) is a solution of
either (9) or (15), then, because of (16), e0{-) must necessarily be nonconstant. This
property is an immediate and obvious departure from solutions of problem (1) when
the energy functional is purely local, even including higher-order gradients [3, 6, 8].

3As in Theorem 1, the stated hypotheses may be relaxed. Specifically, regarding (4), (12), and Hypothesis 2,
we essentially need fs(-) € Lq(R)(~)L\R), and W(-) : IR —» KU{oo} to be continuously differentiable to
guarantee the truth of the theorem. Also, if we relax definition (10) to include noninvertible deformations,
replacing by srfX'p(38) (see footnote in Theorem 1), then conclusion (iii) , does not apply
and conclusions (ii) and (iii) 2 in Theorem 2 follow as direct implications of the stated hypothesis, except
that in the formal statement of Theorem 2 we should require | W (e)| < C\e\p for every |e| € [M, oo),
and exclude (12).
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In these works, it is shown that when A// &[a, b], the global minimizer for (1) is a
constant.

In solving (9), we have found [9] that a further necessary condition for minimizers
of Es(-) results as a direct consequence of (i) in Theorem 1:

Corollary 1 (Weierstrass Condition). Let m0( ) be as in Theorem 1 and sup-
pose that the hypotheses of that theorem hold. Then, for a.e. x e £8, VA e
(0, 1) and Ve,, e2 e R such that e0(x) = Ae, + (\ - X)e2,

W(e0(x)) < XW{ex) + (1 -X)W(e2). (17)

In particular, the Weierstrass condition requires that any solution of (9) must
possess a strain field e0(-) whose range nontrivially intersects (-1, a] U [b, oo)
almost everywhere in the body 38 (see Figs, la and lb). This places a restriction
on the type of strain discontinuities a solution m0( ) may support. These restrictions
are called jump conditions and, for simple discontinuities, are summarized in

Corollary 2 (Weierstrass Jump Conditions). Let the hypotheses of Theorem 2
and Corollary 1 be satisfied. Suppose that x0 e 38 is such that

e0(x0 - 0) = / e2 = e0{x0 + 0)

holds. Then,
(i) W'(e,) = W'(e2)=:a,

(ii) a(e,-e2) = W(ei)-W(e2).
This corollary implies that a simple discontinuity in a minimizing strain field must

occur at the Maxwell stress, denoted by o here and in Figs, la and lb.
In the remainder of this paper, we shall restrict ourselves to a specific convex bulk

energy W(-) and an exponential influence function This approach isolates
the nonlocal properties of the body from any effects that could be attributed to a
nonconvexity in W(-), and allows us to solve problem (9) explicitly. We believe
that this opens a clear pathway to understanding the fundamental effects of nonlocal
spatial dependence.

2. The reduced model: A necessary differential equation. We now focus on the
minimization problem (9) in the case that the bulk energy W(-) is a positive-definite
quadratic form with minimum at zero. We also assume an exponential form for the
nonlocal influence function fg{-) that satisfies Hypothesis 2. Thus, in the remainder
of this work we take W(e) = ke2, where k > 0, and define

fsil) = ~5e~Vm (18)

for all t] € 1R, and nonzero a, S € IR+ . Since W(-) does not exhibit any sin-
gular behavior at x = -1, we will take the class of admissible displacement fields
for the minimization problem (9) to be as in (10) except that the condition of
e{x) > -1 for a.e. x e 38 is omitted. In this case, the stiffness hypothesis (12)
is not relevant, and in the remainder of this work we replace (9) by the following
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■1 ,P(minimization problem: For p e [2, oo), determine uJ-) £ stf {38) such that

Es(u0) = min Eg{u), (19)
u€£f x "(£g)

where
~/1<p := {«(•) € WX-P{^) : J u{x)dx = ^. (20)

Since \W'(e)\ < 2ke2 for every \e\ > 1, and f5{-) € Lq(R) for every q e (1, oo),
Theorem 2 then implies that if «(■) 6 sf1 'p {38) is a solution of (19) for p = 2, then
«(■) e and there exists a € JR such that the following Euler-Lagrange
integral equation holds:

T{x) := 2ke(x) - 2 [ fAx - z)e(z) dz = a for a.e. x e 38. (21)
J 38

It is clear that any solution u(-) of (19) may be adjusted on a set of Lebesgue
measure zero so that it still solves (19) and satisfies (21) for every point x e 38.
Thus, for all x e 38 , it follows that

*(*) = l jo ~ ZMZ)dz +1J - ZMZ) dz + jk> (2T>
and because of the form of fs{-) in (18), we see that w(-) must be at least of class
C^{38), thereby justifying the following argument: Observe that by differentiating
(21) and use of (18) we readily obtain

T\x) = 2ke\x) + | J fs(x - z)e(z) dz - | J fs(x - z)e(z) dz.

Again, by use of (21) we see that

T\x) + -^T(x) - 2 ke'(x) + ^2 ke{x) - ^ J fs(x - z)e(z) dz (23)

and

T\x) - \t{x) - 2ke'(x) - \2ke{x) + 4 / L(x ~ z)e(z) dz. (24)
O O O Jq

Finally, by adding (23) and (24) together and differentiating once more, we find

^{T\x)) = 2ke'\x) + lfs(0)e(x) - ~ J fs(x - z)e{z) dz, (25)

which, because of (18), (21), and the fact that T = a, produces the following
ordinary differential equation for e(-) :

//. , 1/2a - k\ . . o ....
e[x) + k{—= <26)

This ordinary differential equation represents a necessary condition on any solu-
tion of (21), and has a two-parameter family of solutions. These parameters combine
with a to give three free constants at this stage in the solution to the minimization
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problem (19). In the next section, this nonuniqueness will be removed by returning
to the original Euler-Lagrange equation (21) to gain sufficient conditions for its solv-
ability. Of course, it is also essential to note that any solution «(•) 6 of
(21) is required to satisfy the fixed displacement condition

/Ja
e(x)dx = A. (27)

If we apply the standard Taylor expansion argument of "approximation", as was
proposed and advanced by van der Waals f 12], to the nonlocal part of the functional
(6) we are guided to replace the functional in (6) by the gradient model

£*(") := [ {W(e(x)) - as(x)e2{x) + bs{x)[e\x)f}dx (28)
Jss

at the lowest nontrivial order of approximation, where

bAx):=\ f {z-xff5(x-z)dz. (29)z J<%

If 8 is sufficiently small it can be shown from (5), (18), and (29) that as(x) ~ 2a
2 2and bs{x) ~ lad except near the boundary of 38 . In any case, for W(e) = ke ,

the Euler-Lagrange equation associated with the minimization of (28) subject to the
constraint (27) is a regular second-order ordinary differential equation for e(x) con-
taining an unknown Lagrange multiplier constant. The natural boundary conditions
will require e'(x) = 0 on d38 , and these, along with (27), will determine the three
constants of this theory. Since the more complete nonlocal theory does not require
e'(x) to vanish at the boundary '6,38, we expect that at least in a neighborhood of
d38 the "approximation" will break down. Moreover, if W(-) is nonconvex, there
is strong evidence [ 10] to suggest that similar breakdowns of the boundary layer type
occur even in the interior of 38 . Later, we give examples of the nonlocal theory for
convex JV(-) which show that large strain gradients do occur at the boundary d& .
If, in (28), as(x) and bs(x) are simply replaced by constants then for convex fV(-)
the strain field that minimizes (28) subject to (27) is constant.

3. The structure of admissible extremals. The differential equation introduced in
(26) has solutions whose form depends on the sign of the expression 2a - k . Here,
we show that in each of the three cases k > 2a , k — 2a , and k < 2a , the solutions
of (26) are compatible with the Euler-Lagrange equation (21), if and only if a certain
2x3 system of linear equations for three arbitrary constants is satisfied. These
equations, coupled with the fixed displacement condition (27), yield a 3 x 3 linear
system whose solutions are guaranteed to solve the Euler-Lagrange equation (21).

For the remainder of this work, it is convenient to introduce the material parameter
co > 0 defined by

2a>
k -2a

(30)kSz '
and to let c, , c, e 1R denote the arbitrary constants that are contained in the general
solution of (26).
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Case (1) k > 2a . Here, (26) implies that

/ \ COX , -COX O /"> i \
( ) ' +c'e + l{k-2ay <31)

and this, with (18) and (21), yields

. ( 2 ac{ 2 ac2 a a \ -x/s
T{X) + T~^d + k^Ya)e

f 2ac^ col 2 a c2 —col a ex \ (x—i)/s (32)
\ 1 - ^ 1 + cod 6 k -2a) e

= a.

Here, we note that cod - 1 / 0 since a > 0. Now, since (32) must hold for
every x € 38, it follows that the coefficients of e~x^s and e(x~l)/s must vanish.
This provides two of the three equations we are seeking, and the fixed displacement
condition (27), when applied to (31), yields the third. Thus, we have the following
linear system for determining c,, c2, and a :

2 a 2 a a
C. + i =-<7 = 0,1 + cod 1 1 - cod 2 k -2a

~ (ol ~ —col2ae 2ae a
+ 1 J_ r.,A °2 + Ir-->na 0'1 - cod 1 1 + cod 2 k -2a

ewl - 1 1 - e~wl I
c, h c-, +  — a = A.co 1 co 2 2 (k — 2a)

Any solution (c, ,c2,a) of this system, when coupled with (31), necessarily solves
(21) and the associated fixed displacement condition (27).

Case (2) k = 2a. When k = 2a, (26) reduces to a trivial form which has the
general solution

e(x) = —^x2 + c. x + c7. (34)
4 kd2 12

Upon substituting (34) and (18) into (21) and simplifying as in Case (1) above, we
get

T(x) - a + ^-2 adcl + 2 ac2 - e X/S

+ ({2al + 2a6)cx + 2ac2 - (/2 + 251 + 2<*2)^ e(x~'),S

= o.
(35)

Again, by recognizing that the coefficients of e~x^ and e(x in (35) must vanish,
and by applying the fixed displacement condition (27), we find the following linear
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system for determining ct, c2, and a :

2aSc{ + 2ac2 - -j-a = 0,

(2al + 2aS)c. + 2ac, - f/2 + 281 + 2<52) =0, (36)2k S v '
12 /3
— c. + / c2 -   j a = A.
2 1 2 \2kd

Any solution (c, ,c2, a) of this system, when coupled with (34), necessarily solves
(21) and the associated fixed displacement condition (27).

Case (3) k < 2a. Proceeding as before, we see that when k < 2a, the general
solution of (26) is

a
2{k~ 2a)'

Upon substituting (37) and (18) into (21) and performing a significant amount of
tedious integration and simplification, we get

e{x) = c, sin owe + c2 cos cox + (37)

T(x) =a + | kcx - kcoSc2 + Jk~~~Ya) (T) 6

(38)
+ (k cos co I - k d co sin co I) c, e

a \ -x/si a) 6

(x-i)/s

(x-l)/S+ (fc sino>/ + kcod cos col) c, +  t—-a eV 2 {k ~ 2 a) J
= a.

As in the previous two cases, it follows that the coefficients of e~x/s and e{x~l)/s in
(38) must vanish. This, together with the fixed displacement condition (27) applied
to (37), then gives the following system for determining c,, c2, and a :

kc. - kcodc-, + J-. ^—r£T = 0,
1 2 (k - 2 a)

(k cos co I - k S o) sin co I) cx
(39)

(k - 2a)+ (k sin a> I + kcod cos co I) c2 + a = 0,

sin co I 1 - cos col I
 c\ +  C1 + T77 =A-co 1 co L 2(k - 2 a)

As in the Cases (1) and (2), any solution of this system, when coupled with (37), nec-
essarily solves the Euler-Lagrange equation (21) and the fixed displacement condition
(27).

For easy reference, it will be convenient to denote the coefficient matrices of the
linear systems (33), (36), and (39) for the Cases (1), (2), and (3), respectively, as At
where / = 1, 2, 3 . Then, by defining

ci
c := | c2 | , (40)
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the relevant linear systems for the respective Cases (1), (2), and (3) may be written
in the compact form

Aic = d for i= 1,2,3. (41)
In view of (41), if we wish to exhibit a unique solution of (21) and (27), then we

must be assured of the existence of the inverse matrices A~1 for i = 1, 2, 3. In
the next section, we see, unequivocally, that A~' exists for the Cases (1) and (2),
i.e., i — 1,2. However, some interesting existence and stability questions arise for
the Case (3), i.e., i = 3 . These issues will be considered in Sec. 5.

4. Analysis of minimizers in the Cases (1) and (2): k > 2a. In this section we
study the existence and uniqueness of solutions to the minimization problem (19)
for the Cases (1) and (2). To begin, we note that in these two cases the coercivity
hypothesis (11) is satisfied, for p = 2, by the stored energy functional (3) with
W(e) — ke and fg(-) given by (18). To see this, we first observe that (5) and (18)
yield

as(x) = 2a - a(e~x/S + e{x~l)/S). (42)

as(x) = (k - 2a) 4- a{e x/S + e{x /)/<5), (43)

2that for W(e) = ke the coercivity hypothesis (11) holds for p = 2 . Further, since

Thus,

and since a(e~x/s + e^x~l)/s) is bounded below away from zero on 38, it follows
that for W(e) = ke the coercivity hypothesis (11) holds for p - 2 . Further, since
W(-) is convex and fs{-) e Lq(38) for every q e (1, oo), Theorem 1 implies that

1 2there exists a solution «(•) e sf "(38) of the minimization problem (19) if k >2a .
Theorem 2 then implies that u(-) € 1'°°(38), and also that u(-) satisfies the Euler-
Lagrange equation (21); thus it must have one of the smooth forms generated in
Sec. 3. To determine whether any of these forms actually solves the minimization
problem (19) for Cases (1) and (2), we must then solve (41) for i = 1,2. From
Theorem 2, we note that since any solution u(-) € 'p(38) of (19) must necessarily
reside in 00(38), and sfx '°°(^) c p(3$) when p e (0, oo), then lp =
for every p e [2, oo). Therefore, any solution u(-) of (19) for p = 2 actually solves
(19) for every p e [2, oo]. Thus, for the remainder of this work we will assume
without loss of generality that p e [2, oo], keeping in mind that our initial analysis
required p = 2.

Case (1) k > 2a (i = 1). In this case, a straightforward calculation using Ax as
defined in (41), and inferred from (33), gives

det^4, = 2a (-1 + el'° + S a> + eU°d wj

(2. - 2e,a) + I a) + e1 (01 co - 15 co2^j

elw (2a-k) oj(-l+d(o)2(l+daj)2 (44)

/ I to 1 r 2 ^ s2 2 , rs I co «?2 2\le loco —25 co +2e o co J

e/M (2a-k) 0) (-1 + 5 co)2 (1 + 5 &>)2
+
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Then, because of (30) and the inequalities a > 0, k > 0, we see that Sco / 1, and
it follows that the denominator of (44) is strictly negative. Also, since co > 0, the
first term of the product in (44) is nonzero as well. Now, let G(co) be defined as the
numerator in the second term of the product in (44), and note that, equivalently,

G(a>) = (e'°J - l)(la>2S + lo/d1) + i//(co), (45)

where y/{oj) := (Ico - 2)elw + Ico + 2. Then, it follows that ^(0) = i//'(0) = 0,
and that y/"((o) > 0 for every co > 0; thus, i//(co) > 0 on (0, oo). Combining
this with the positivity of G(co) - y/((o), we see that G(co) > 0 for every co > 0.
Therefore, the determinant of Ax is nonzero for every co > 0 and A~' exists and
is unique for every co > 0 when k > 2a. Thus, c = A~'d uniquely solves (41),
and with (40) we conclude that (31) generates the unique solution of (19) for every
p € [2, oo]. Specifically, while the computation of A\1 is long and tedious, because
of the simple structure of d, it is straightforward to determine c, i.e., cv c2, and a .
We find

ci
2cico A

k G(co)
^ Id)2 acoe

°2 kG(co)A' (46)
2 (k - 2a) co (l +elw -6co + elwda))

° =  V r( , L*.G{co)
When (46) is substituted into (31) and simplified, we obtain the following mini-

mizing field for (19) in the Case (1):

, . 4coaA iu/2 ,, , /,, , o ....
e'-»M:=~kG^)e i + 2(t_2a)- (47)

Clearly, ex a(-) is smooth and symmetric about x = 1/2 for all 5 > 0, and it follows
from (30), (46)3, and (47) that e{ <5(-) > 0 on 3§ if and only if A > 0.

It is of interest to consider the asymptotic behavior of (47) as S -* 0; i.e., as the
spatial dependence of the material becomes more locally concentrated. To do this,
we first recall from (30) that co'1 — O(S) as <5 —> 0. Then, (45) yields

G{co)co~le~wl = 1(1 + Sco) + 0(w"'), (48)

and with (30) and (46) we obtain

-2a ^
c\ = —r 

^ —l(i)-2ae
k (/(1 + Sco) + 0(w"'))

C2 k{l{l + Sco) + 0(w-|))A' (49)
2 (k - 2a) ^1 + + S oo(\ -

° ~ /(I + Sco) + 0{co~') A'
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Then, using (31), we find
4
/ x g (0, /)

*i,o(*) := = 1 f' (50)
f8co : x = 0, /

which, of course, also follows from (47). We note, from (30), that the discontinuity
exhibited in (50) at the boundary points is nontrivial, approaching a maximum of
A/l as k J. 2a and a minimum of 0 as k —> oo . In order to manifest this behavior
as 8 —► 0, the strain field e{ s(-) of (47) supports high gradients in localized regions
near d£$ while exhibiting nearly a constant value of A/l in the interior of 33 for
small positive 5. These high gradient boundary layers become sharply focused in
the limit 5 —♦ 0 as seen in Fig. 3.

It is straightforward to show [9, 14] that fs(-) given in (18) satisfies Hypothesis 2
with a = 2a . Therefore, using (7), for u(-) e sfl ~p(&), we observe that

EJu) := \imEAu) = [ (k - 2a)u'(x)2 dx. (51)
J SB

The unique solution of the minimization problem (19) for the functional E0(-) is
well known for the case k > 2a ; it is the constant strain field A/l [6, 8]. Thus, we
conclude that the limit of ex a(-) as 8 —* 0 coincides with the minimizer of E0(-)
over sfl'p(£&) everywhere except for x e 838. This assertion also holds if we
replace E0(-) with the analogous gradient model of Gurtin, Slemrod, and Carr [9],

Now, we wish to show that the asymptotic behavior of the minimizing displace-
ment field m, (•) e s/'''' {3) associated with (47) respects that of the functional
Eg in the limit as 8 —► 0, in the sense that

lim EJu.
<5—*0 SK 1

A

x_
I

Fig. 3. The minimizing strain field of (47) for k = 3a and for
various values of the influence parameter 3
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To do this, we first observe, from Theorem 2, that if «(•) e 'p{&) solves the
Euler-Lagrange equation (21), we have

EAu) — f {ku (x)2 - u\x) [ fg(x-z)u\z)dz}dx

= ~ [ u'(x) dx (53)
L

Then, recalling (49),,
.2

\imnEs(u 1 s) = (k - 2fl) T ' (54)
<)—►(J ' I

which allows us to conclude (52).
Note, from (46)3, that for a given displacement A the stress a is linear in the

gross displacement A. If we temporarily rewrite (46)3 as

a = <j>(S)A, (55)

for a fixed /, k, and a, then it readily follows that d(f>/dd > 0. Thus, for a
given gross displacement A > 0, if the material is replaced by one of lesser spatial
influence (i.e., if S is decreased) then the level of stress necessary for equilibrium
is decreased. We conclude that a focusing of the spatial dependence through the
influence function fg(-) by reducing the value of d acts as a softening agent in the
effective stiffness modulus of the material4 (see Fig. 4). The limiting value of a as
d —> 0 is 2(k - 2a)A/1, exactly the value predicted by solving (19) for E0(-).

In the limiting case 8 —» oo, the identity approximating property of the spatial
influence function fs(-) is essentially nullified by (ii) of Hypothesis 2 on the spatial
energy. This asymptotics identifies the limiting form of the minimizing displacement
field as the effect of spatial dependence is "turned off'. Analogous to the previous
discussion, we find

lim e, s(x) = j (56)
O—>00 ' /

and
lim Es(u{ s) = E (j), (57)

0—>00 ' /

where, according to (8), we have defined

E (u) := [ ku'(x)2 dx (58)

for «(•) e 'P[3S). In this case, no discontinuity appears at the boundary points
of 38 in the limit. This is due to the diminishing magnitude of the nonlocal spatial
term in Es(-) as S —> oo .

4SimiIarly, for a fixed /, a, and <5, we have that d<t>/dk > 0, and therefore when the material is
replaced by one of greater elastic stiffness k the level of stress necessary for equilibrium is increased.
This hardening effect is illustrated in Fig. 4 by the uniform raising of the stress-influence graphs as k is
increased relative to a .
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Case k = 3 a
Case k = 5a

Case k — 10a

10

6
I

Fig. 4. The normalized effective stiffness modulus <j>(8) of (55) for
the cases k = 3a , k = 5a , and k = 10a

Case (2) k = 2a (i = 2). Here, we recall A2 as defined in (41), and inferred from
(33), to obtain

det^ = -";'(/ + M'"23+6" + 'M;). (59)

Clearly, det A0 / 0 and A2' exists and is unique for every d > 0. Hence, as in
Case (1), c = A?1 d uniquely solves (41), and with (40) we find that (34) generates
the unique solution of the minimization problem (19) for every p £ [2, oo]. We find
that c, i.e., c, , c,, and a , is given by

c\ = ^5   vA ,1 I2 + 6 IS + 12 S2

6SV + 2<J) aC-, =  5 tA , (60
2 /3 + 6/(5 + 1218

24A:S2a = ^ -A.
/3 + 6/<5 + 12 Id2

When this is substituted into (34) and simplified we find that

is the minimizing strain field for (19). Because A > 0, it is clear from (61) that
e2 g(-) > 0 on the entire body 38. As in Case (1), we note that e2 <5(-) is smooth,
symmetric, and even about x = 1/2.

The asymptotics for this case behave somewhat differently than in the previous
case. First, the limiting strain field in 38 as S —► 0 is not a constant field as it is
in Case (1), but rather it is a positive, inverted parabola, symmetric about x = 1/2.
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e1 /x)l

1.6

1.2

0.8

0.4

t

S = 0.5
6 = 0.05

6 = 0.005

0.5
x
I

Fig. 5. The minimizing strain field of (61) for k = 2a and for
various values of the influence parameter 8

Specifically, we have from (61) that

/x 3/2 - 12(* - i)2Ae2 0(x) := hme2 d(x) =  —2 2—j. (62)

From (61), we see that the maximum strain for any given S > 0 is achieved at
x = 1/2 and, according to (62), this value increases to 3A/(2/) at <5 = 0. Similarly,
the minimum positive strain is achieved for x e 838 and this value decreases to
0 at 5 = 0 (see Fig. 5). Recalling (7), we note that in this case E0(u) = 0 for all
m(-) G Thus, every displacement field u(-) e is a solution to
the minimization problem (19) for EQ(-), including the constant solution A/1 as in
Case (1). In this case (k = 2a), the effect of localizing the spatial influence by letting
<5 —► 0 produces a negating effect on the coercivity of the functional Eg(-) that is
induced by the bulk energy W(-). This competition appears to act as a selection
mechanism in choosing the particular limiting strain field e-, 0(-) • The fact that
E0(-) = 0 is respected in the energy asymptotics is seen via (53) and (60), i.e.,

lim Ed(u2j) = E0(hmu2S) = 0. (63)

To continue, we observe from (60)3 that the stress a is linear in A. Moreover,
similar to the behavior as found in Case (1), here we find the same softening behavior
in 38 due to the localization as 5 —► 0 of the nonlocal influence. In this case,
however, the limiting effective modulus is zero.

In the alternative limit S —► oo of zero spatial dependence, the limiting strain field
and total stored energy are identical to those recorded in (56) and (57) for Case (1).

5. The minimization problem in the Case (3): k < 2a. Contrary to the straight-
forward analysis in Cases (1) and (2) given above, this case presents a number of
difficulties to determining a minimizer of problem (19), if, in fact, one exists. The
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most pressing problem is that for k sufficiently less than 2a, an unavoidable vio-
lation of the coercivity hypothesis (11) occurs, thereby disallowing the application
of Theorem 1 and its consequential conclusion of existence. Moreover, due to the
highly transcendental nature of the elements of the coefficient matrix A}, as defined
in (41) and inferred from (39), even the determination of an extremal field of the
form (37), that solves the Euler-Lagrange equation (21) becomes problematic. In
fact, when k < 2a , we shall obtain a positive, strictly decreasing sequence {<5„}„efV >
of values of the influence parameter 8, corresponding to certain zeros of det^3,
such that for each n, lim(j^ |Es(u3 a)| = oo, where w3 *(•) e srfx'p(&) is any

n ' '

extremal field that solves (21). Moreover, when 8 = 8n, we show that there does not
exist a field «(•) e s/1 'p{£@) that satisfies (21). Also, by studying (21) as a Fredholm
integral equation of the second kind, we shall identify a second sequence of values of
the influence parameter 8 , corresponding to other zeros of det A3, which completely
characterize the extremal fields u(-) e £f''p(&) that do solve (21).

5.1. General extremal fields: Existence and asymptotics. First some remarks con-
cerning coercivity which, according to the coercivity hypothesis (11), is related to the
aggregate sign of k - as(-) on the body .31. Recalling (43), we see that k - as(-)

is bounded below away from zero on (0, /) whenever 2a - k < 2ae2S . This is
equivalent to the condition that

■r'^O.^lnO-A)) =: (64)

Thus, 8* is the greatest lower bound to the set of all <5 > 0 such that the functional
Ed(-) is coercive. It follows that when 8 < 8*, the coercivity Hypothesis 3 fails
and, as a consequence, the existence theorem, Theorem 1, cannot be applied to such
a situation. This, of course, does not mean that a solution of (19) does not exist
for 8 < 8*, but rather, the loss of coercivity motivates a more delicate and detailed
analysis of the existence question. We begin with some preliminary asymptotic limits.

From (39) and (41), we easily find that det A3 has the form

? i 4cil ?det A, = 8a" - (8a' H j-(2a — k)) cos col - (4alco(k - a) - 8a~8a>) sin col. (65)
J o

Of course, the system (41) has a unique solution c = A^d for c,, c2, and a when
the above expression is nonzero. To explore this possibility, we note from the defini-
tion of co in (30) that det/l3 has an infinite number of zeros in any neighborhood
of 8 = 0, and that these zeros possess a limit point at 8 = 0. Further, we note that
for r := 1/8 ,

d(det A3)
dr - 16a2 (- + - 4) , (66)

r=o \a k

which is strictly positive for 0 < k < 2a. Since (det/l3)r=0 = 0, we then may
conclude that whenever 0 < k < 2a there exists a 8 > 0 such that for any 8 e
{8, oo), det^l, > 0. Hence, for 8 sufficiently large and finite, (41) is uniquely



180 ROGER L. FOSDICK AND DARREN E. MASON

solvable for c. In any case, when det/l3 ^ 0, we find

2aAco(2adco(\ + cos col) + 2a sin col)
C| det A3

4aAco sm(^f)(2adcocos(^) + 2asin(^))
=   2 deM,  ^' |6?»

2k(2a - k)coA(4adco cos col - 2a(S a> - l)sin<y/)
cr =      .

det/43

We denote the resulting extremal strain field of (37) by e} (5( ) and its associated
displacement field in s>/x'p(£§) by m3 (5(-).

In the limiting case S —> oo, we know from (30) that co — 0( 1 /8), and from (65)
and (66) we obtain

det A ̂  ^ ( a. 3; ] (o + 0(a). (68)
/ (d (det^3) \

4(jl)8 \ dr\ / r=0

This, with (67) and the form for e3 t5( ) given in (37), then justifies the conclusion
that for every xeJ1,

^3 ooM := -lim ^3 d(X) = T- (69)
o—>oo ' I

While this result follows the same pattern as that observed earlier in the Cases (1)
and (2) corresponding to k > 2a, when an attempt is made to evaluate the limit
of e3 a(-) as S —> 0, we encounter problems. One complication is due to the large
number of zeros for det^3 present in any neighborhood of zero, and another is
that lim^Qfo* = oo. These two facts, coupled with (67) and (37) indicate that the
extremals of (21) will possess a highly oscillatory spatial behavior and unbounded
character with respect to S as d approaches 0. This is what we see in Fig. 6.

With a view toward obtaining a complete characterization of the fields w( ) €
sf' p(&) that solve (21) in the present case when k < 2a , we observe that (21) is a
Fredholm integral equation of the second kind, which naturally suggests that we first
analyze the associated homogeneous problem. For this purpose, let </>(•) e
and define

50(x) := [ fd{x - z)<p(z)dz. (70)

Then, for a = 0, (21) becomes

eix) = ' (71)

and from (37) and (39) we see that the general solution of (71) is of the form

e(x) = c,coso>jc + c2sin<yx (72)

where the pair (c, , c,) must nontrivially solve the system

c, - (o5c1 = 0,
(cos col - coS sin a>l)c{ + (cod cos a)l + sin col)c2 = 0. (73)
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. 1^- -

e^s(x)l

A

7 0.20

Fig. 6. Solution of the Euler-Lagrange equation (21) and the fixed
displacement condition (27) for k = a

Clearly, a necessary and sufficient condition that this be the case is that det ,4 = 0,
where A is the coefficient matrix for (73). Since

det A = (2.5a) cos 0)1 - (S2ao2 - l)sina>/), (74)
it follows that det A = 0 if and only if

{col = (n - j)7i : k = a ; n e IN
tan col = j ^a>— : k / a | '

8~o)~ - 1 >
Recalling (30), we see that (75) places a restriction on the parameters k, a, 8 , and /
in order for (71) to be solvable; we say that the ordered set A := {k, a, 8, 1} e R4
is an eigenset if its elements combine so as to satisfy det A = 0. It will be convenient
to separate the possible eigensets into the following two types: A is a Type I eigenset
if

A e { {k, a, 8, /} : sinw/ = and cos col = _ > (^6)

A is a Type II eigenset if

Ae{{t a, 8, /} : sina>/ — and cos 0)1 = ~ 1) }• (77)

Note that in the case k - a, where 8o) = 1 according to (30), this separation
corresponds, respectively, to the choice n = even or n = odd in (75).
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In general, then, (71) is solvable if and only if A is an eigenset. In that case, (73)
requires kervl = span{(<5<y, 1)} , and so the solution (72) must have the form

e(x) = c7(Sco cos cox + sincux). (78)

Moreover, we see from (76)-(78) that

/
Q

e(x)dx = — {dcosincol - cos col + 1 }■ CO

e3 s(x) = ^-(<5a>cos<y.x + sin tux). (80)

e(x) = T£se(x) + ^ , (81)

0 : A is a Type I eigenset ) (79)

2^ : A is a Type II eigenset
Let us now require e(-) to satisfy the fixed displacement condition (27). It is clear

from (79) that when A is of Type II, (71) has a unique solution which satisfies (27)
for every A e 1R and that solution is identically zero if and only if A = 0. Explicitly,
we have

co A,
T

When A is a Type I eigenset, we conclude from (79) that there is a one-parameter
family of solutions of (71), all satisfying the zero fixed displacement condition (i.e.,
A = 0), of the form given in (78). We note, from (53) and the fact that here we are
setting a = 0, that the total stored energy of the family (78) is zero, independent of
c2 ■

Having completely solved the homogeneous problem, (21) with a = 0, and char-
acterized those fields that satisfy the fixed displacement condition (27), we now use
these results to completely analyze the case a / 0. Thus, we now consider

\_
' 2k

coupled with the associated fixed displacement condition (27). Recalling the expres-
sion for det Ai in (65), we see that

(0 : A is a Type I eigenset "J
> . (82)

16a2 : A is a Type II eigenset J
Thus, if A is a Type II eigenset, there is a unique solution of (81) of the form (37),
(67), which satisfies the fixed displacement condition (27) for every A e R', that
solution is nonconstant, and is identically zero if and only if A = 0. In any case,
however, by (67)3 it follows that a = 0, and this reduces (81) to the homogeneous
case (71). Unfortunately, when {k , a, d, /} is not an eigenset, the general problem
of determining whether or not det A3 is zero is algebraically complicated and not
readily solvable. Recalling the general form for A} as implied by (39) and (41), we
instead have the following

Lemma 1. The linear equation
A3c= d, (83)

as defined in (39) and (41), has a solution c = (c,, c2, a) for d = (0, 0, A) / 0 if
and only if either A = {k, a, S, /} is a Type I eigenset or det^3 ^ 0.
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JProof. Let A / 0 and suppose that x = (x, , x-,, x3) e ker^3 . Then, (d, x) =
Ax3 and (83) will have a solution if and only if x3 = 0. Here (•, •) is the usual

3 Tinner product on IR . Thus, with A} x = 0 it readily follows that

x, = 0 & x, + x2 = 0, (84)

and, if x ^ 0, that

and

Scj + sin<y/ + Sa> cos col = 0 (85)

1 - cos col + Scj sin oil = 0. (86)
But, according to (76), this implies that A is a Type I eigenset. On the other hand,
if ker^l} = {0}, then x = 0, and we must have det^3 / 0. Thus, we conclude that

Td-Lker^43 <£> {A is a Type I eigenset or det^3 ^ 0} (87)

to complete the proof. □
Since we are interested here in the situation a / 0, and since a must vanish if

A is a Type II eigenset, then according to this lemma, we need only consider the two
possibilities: Either det/*3 / 0 and A is not an eigenset, in which case the unique
solution of (81) and the fixed displacement condition (27) is given by (37) and (67),
or A is a Type I eigenset. For the latter case, we know that det A3 = 0 and we see
from the definition of A3 in (39) and (41), and co in (30) that

( k ~kSco \

^3 k -kdco 2a
kd kS2co  /

(88)

V a a 2(k-2a)J
Performing a standard Gaussian reduction and simplifying we arrive at two results for
the case when A is of Type I. First, by (37), (39), (41), and (88), the general solution
of (81) and the fixed displacement condition (27) is given by the one-parameter family

e(x) = c7(Sa>coscox + sincox) - , g, cos cox + , P. (89)v 2 k{l + 2S) I + 25 v '

Secondly, we find = 2{ki + IT- (90)
Recalling that k < 2a, we see that the stress is of opposite sign to the displacement,
which is contrary to physical reasoning and suggests that such an equilibrium state
would be unstable. It is of interest to observe from (53) and (90) that when A is a
Type I eigenset, the total stored energy Eg(u) for an extremal «(•) 6 srfx'p{38), as
implied by u'(x) = e(x) and (89), is nonpositive, finite, and independent of c2.

5.2. Stability analysis. In order to better understand the instabilities in the ma-
terial model for k < 2a, we next observe the following elementary properties of
Type I eigensets. Suppose that the three parameters 0 < k < 2a and /> 0 ap-
pearing in the ordered set A = {k, a, 5, 1} are given and fixed. Then, a brief
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inspection of the definition in (75) and (76) implies that there is a strictly de-
creasing sequence p, := {^(„)},I€W °f positive, real numbers such that each col-
lection {k, a, d{n), /} is a Type I eigenset. Moreover, p; is bounded above, and
lim^oo d[n) = 0. Thus, <5(1) e pt is the largest member of the sequence. Similarly,
if instead we hold k , a , and 6 fixed in the ordered set A, then there is a strictly
increasing sequence := {l[n)}neN of positive, real numbers such that each collec-
tion {k, a, 8, l(n)} is also a Type I eigenset. In this case, is bounded below by
/(1) with = oo. Identical observations based upon (75) and (77) also

hold for Type II eigensets, whose relevant sequences we denote by PlI ■= {^<")}„6|V
and K/7 := {/respectively. It so happens that for every n e IN, we have
S{n) e (^("+l), S["]) and l{n) e (/(,i), /("+l)), which roughly stated says that "between"
any two Type I eigensets there is a Type II eigenset.

It is clear from (82) that det^43 vanishes at Type I eigensets but not at the eigensets
of Type II. On the other hand, it follows from (30), (65), and (76) that

1 d(det/l3)
a2 dS 4A1T^\2 + J-) >0- (91)%) V <")/

Thus we see that for each n e IN there must be a 5{n] e (<J(n+)), S{n]) such that

detv43(<5(w)) = 0. By (53), (67)3, and (74) we know that if u} #(■) e j/1 'p{38) is an
extremal such that det^3 / 0, then

2akcoA2(2a - k)delA
=  "deEi^ ' (92)

Since detA is continuous in d and det^(5(n)) ^ 0, we may conclude from (91) and
(92) that for every n e IN,

lim EAu-, ,,) = ±oo. (93)

This highly irregular behavior of an extremal field, and our earlier conclusion con-
cerning the boundedness of E(j(-) on extremals when A is a Type I eigenset, suggests
that there is a d0 € (0, <5(1)) such that for every s < sQ, the functional E$(-) will
cease to be bounded below in s/ 1 'p{£$). If this is the case, then the material will
be globally unstable when d<S0. This is the essence of

Theorem 3. Let 0 < k < 2a and / > 0 be given. Then, 3<50 e (0, <5(1)) such that
V<Je(0,<J0),

inf EAu) = -oo. (94)

Proof. Let 0 < x{ < x1 < x3 < / be given. Define

x e [x,, x2]
ex(x) := <( <j>{X) : x e (x2, x3] } , (95)

xeJ-JjCp x3]
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where X e R, and (f>{X) is determined so that (95) satisfies the fixed displacement
condition (27), i.e.,

X{x2 - jc,) + c/){X){x3 — x,) = A. (96)

Hence, if we let wA(-) e J/1 'p(^') be such that u'-(-) = e\{-), then with the aid of
(95) and (6), for the particular model of Sec. 2, we find that

E3(ux) = (k - 2a)aX2 + (k - 2a) p[<j){X)]2

(A\e~a/d - 1) + m)f{e-p'S - 1)) - 2aSkmPs,- 2aS

where a := x2 — xx, ft := x3 — x2 and Ps := (1 - e - e p/s + e (a+^/<5).
Upon using (96) we see that

E5{ux) = c(k,a,a,p,d,A)+f^j^(e-'-l) - 2a{k ~ 2a)A - j A

+ {Ik - 2a)a + - - 2ad(e"- 1)

- ^(«.-'"-1) + ^}A2 (98)

where c(k, a, a, fi, d, A) is a real constant. Now, for simplicity, we assume that
a = p — 1/2 . Then, the coefficient of X in (98) reduces to the form

h{8) := al {(| - 2) - - 1) + ^(e~^ - l)2} , (99)

and we see that

lim h{8) = kl > 0, lim h(S) = (— - 2^ al < 0, (100)
S—>oo (5—^0 y CI J

for every 0 < k < 2a , and that h'(S) > 0 for every d e (0, oo).
In the remainder of this proof, we shall show that there is a single positive root

S0 of h(S) = 0 which is less than <J(|) and such that for any S e (0, SQ), h(S)
is negative. Then, for any such 5 it will follow from (98) that Es(ux) is un-
bounded below in the limit as X —> oo, as claimed in (94).5 Specifically, let us
consider h(S)/(al) from (99) as a continuous function g(-, •) of the two variables
{k/a, l/S) e fi := (0, 2) x (0, oo) c JR2 . Then, it follows from (100) that the point
set fi0 := {{k/a, l/S) : h{8) = 0} consists of a single curve that separates fi into
two disjoint, connected, open sets, namely fi+ := {{k/a, l/S) : g{k/a, l/S) > 0}
and fi_ := {{k/a, l/S) : g{k/a, l/S) < 0}, where fi = fi0 U fi+ U fi_ . The point

5Certainly, for k and a such that 0 < k < 2a and a , p > 0 , one may use (98) to numerically
determine the maximum value of <50 such that (94) holds for a field of the form (95). This computation
is easily completed when k and a are given. We performed a number of numerical computations for
various choices of the parameters a and fi , all of which indicated that the value of <S0 is maximized
when a = P = 1/2 . We have no formal proof of this, however.
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J,
6

a
Fig. 7. Admissible values of 1/5 and k/a for (i) the curve £20
defined by h(d) = 0 from (99); (ii) the curve f2,h which defines
the maximal Type I eigenset {k, a, <5(1), /} from (30) and (76);
(iii) the curve determined by the coercivity condition (64) for
S* .

set Q0 is determined by a simple numerical computation, and this is shown in Fig.
7. For fixed parameters 0 < k < 2a and I > 0 and 8 e (0, <50), the function
h(8) is indeed negative. Similarly, we may use (30) to write (76) in terms of the
variables (k/a, 1/8) e Q and obtain the curve Q(|) that corresponds to the eigenset
{k, a, <5(|), /} of Type I which contains the largest member <5(1) in the decreasing
sequence p}. We also have shown this in Fig. 7, where it is clear that for fixed
parameters 0 < k < 2a and / > 0 we have 50 e (0, <5(1)) . □

Given k, a, and / such that 0 < k < 2a and / > 0, Theorem 3 provides
sufficient conditions on the parameter S > 0 to ensure that the total stored energy
functional Eg(-) is unbounded below on srfx'p(38). Superimposed on Fig. 7 is a
graph, which we denote by , of 1/8* vs. k/a from the coercivity condition
(64). Recall, 8* is the greatest lower bound to the set of all positive <5 where the
functional Eg(-) is coercive. From this figure we see that for fixed k, a, and I, as
<5 runs through a decreasing sequence, the functional Eg(-) first loses its coercivity
at 8 = 8* and then, after passing 8 = 80 < 8(l) < 8*, it is unbounded below on
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In the remainder of this work we shall investigate the sign of the second
variation of Es(-) in an attempt to determine the stability character of Es{-) in the
"stability gap" [(50, <T], i.e., between D.0 and in Fig. 7. We begin by considering
this question for the case when A = {k , a, 8 , /} is a Type I eigenset corresponding
to either the maximal 8 — <J()) in pt or, equivalently, the minimal / = /(() in .
These values lie on the curve fi(, ( in Fig. 7.

First, suppose u(-) e is a solution of the minimization problem (19),
and introduce the set of null fields

:={>/(•) : A = 0}. (101)
Then, for every e > 0 and null field ?/(•), we see that uf(-) := «(•) + et](-) e

~p' . Necessary conditions for «(•) to solve (19) are

dEJu
de

= 0 d2Es(u
-o ' de2

> 0. (102)
e=0

The first condition in (102) reduces essentially to the statement of Theorem 1 and the

%necessity of the Euler-Lagrange equation (21). Given rj(-) e we observe
that the second condition in (102) reduces to

= 2 [ {kri'2(x) - t]'(x)£st/(x)}dx > 0, (103)
J.%

S%iu
de2 e=0

2where the expression 3 Eg(u\ rj) denotes the second variation of the functional
Es(-) at u(-) in the direction //(•). We say that a solution «(•) e srfx'p{38) of
the Euler-Lagrange equation (21) is locally stable if for every t](-) e s/Ql'p(&) we

2 2have S Es(u\ rj) > 0. If instead S~Ed{u \ rj) < 0, then we say that the given dis-
placement field is unstable. We emphasize here that the positivity of the second
variation of Es{-) at a field w( ) does not necessarily guarantee that the field «(•) is
globally stable in the sense that it is a solution of the complete minimization problem
(19). "

To determine those 5 > 0 for which there is a null field rj(-) with the property
that S2Es(u; rj) < 0, we minimize the second variation (103) over the class of null
functions sf0>'p(&). Since S2Eg(u \ rj) is a positive scalar multiple of the original
total stored energy Es(-), we have, by Theorem 2, that if rj(- ) £ ,p[3§) is an
extremal of the second variation, then there exists a fi £ R such that

n\x) = ^ f fs{x - z)rj'(z) dz + (104)
Now suppose A = {k, a, 3,1} is a Type I eigenset. Then, by our previous
discussion concerning (71)—(80) we know that there is a nontrivial null function
tj(-) € 'p{&) such that tj(-) solves (104) when fi = 0. It is then immediate from
(103) that in this case 3 Es(u\ tj) = 0. This extremal function rj(-) can now be
used as the building block for a classical "Jacobi-type" stability argument. Recalling
the sequences and N, = {/(n)}„eW corresponding to Type I eigensets,
we have the following theorem.
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Theorem 4 (Jacobi). Let 0 < k < 2a and d > 0 be given. Let /(|) > 0 be
the minimal element of X,, so that {k, a, S, /(1)} is a Type I eigenset, and let
/>/„). Suppose that Eg(-) denotes the total stored energy functional for the body
38 := (0, /), and that u(-) e s/' 'p{3?) satisfies the Euler-Lagrange equation (21).
Then, 3 ?/(•) 6 Jt?0' 'p (38) such that

S%(u-,ri)< 0- (105)

Proof. From the previous discussion concerning (71), there is an //(■) e P(3?{1))
such that

l\x) = \ f fsix-zWtfdz (106)
(i)

for every x e 38^, where 38[X] := (0, /(|)) c 38. Let fj(-) e ji/01'p(3&) be defined
such that .

( rj(x) : x g (0, /(l)) ]
f}\x):={ (107)

{ 0 : xe [/<„,/) J
Then, using (103), (106), and (107) we see that

52Ed{u- fj) = 2 [ {kr]2(x) - rj'(x) [ fg(x - z)rj\z) dz } dx = 0. (108)
J 11, J , |

While (108) shows that d2Eg(u; ■) evaluated at fj(-) e s/q '"{£&) is zero, we will
now show that S2Eg(u] •) is not minimized at fj(-) over the set s/q'p{3B). This
will establish (105).

To carry this out, we suppose, for contradiction, that fj(-) is a minimizer of
S2Eg(w, •) over s/q'p(3S). Then, the first variation condition (104) requires fj(-)
to satisfy

= I f fs(x- z)fj'{z)dz + p (109)
K J SB

for all x € 38 and for some real constant p. Because of (107), this yields the
following necessary conditions:

r\\x) = ^ f fg(x - z)tj'(z) dz + p (110)

and
fg{x-z)T]\z)dz + p = 0 Vx £ [/(,)' /)• (HI)

'wL
Using (106), we then see that p - 0, so that if fj(-) is to be a minimizing field,
then (111) must hold with p = 0. But, by analogy between (71) and (106), and
the general solution (78) of (71), we know that //'(•) must be of the form rj'(x) =
c(Sa> cos cox + sinwx), where c is an arbitrary constant. Thus, carrying out the
relevant integration using (18), we find that

f fg(x - z)r\(z)dz = -kScoce <x l,^S ̂ 0. (112)
•%>
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Since this contradicts (111) for p = 0, we conclude that fj(-) does not satisfy the
first variation condition (109), and therefore it cannot minimize d2EAu; •) over

'"(&). In light of (108), the proof is completed. □
In physical terms, Theorem 4 says that when all other parameters are fixed with

k < 2a, if the length / of 38 is large enough (> /(1)) then an extremal of Es{-)
in sz?x ~p{&) is unstable. Alternatively, if all other parameters except the influence
parameter S are fixed, as above, then such an extremal is unstable if d is small
enough ( < <S( ](). This is the content of

Corollary 3. Let 0 < k < 2a and / > 0 be given. Let <5(1) >0 be the maximal
element of the sequence p!, so that {k, a, <5(1), /} is a Type I eigenset, and let
0 < 5 < <5(I). Suppose that «(•) € stfx'p(3S) satisfies the Euler-Lagrange equation
(21) for Es(-). Then, 3 tj(-) e 'p{38) such that

S2Es(u-ri)< 0. (113)

Proof. Let y e (0, 1) be such that 5 = yd(X) and observe from (21) that u (■) =
e(-) is supposed to satisfy

e(x) = y f fAx - z)e(z) dz + a ~ix^38, (114)
k J/g

for some a e R. Let x := x/y and z := z/y and define e(x) := e(yx). Then,
recalling (18), we may rewrite (114) in the form

£(•*) = T f fs {x-z)e{z)dz + a (115)

for every x e {0,1), where I I/y and ^(/) := (0,7) D 38 . Thus, by applying
Theorem 2 we see that e(-) satisfies the Euler-Lagrange equation for the functional

Es (u) := f {ke2{x) - e(x) [ L (x - z)e(z) dzj dx , (116)
"> Jatl) Ja{l) <"

defined for all m(-) g j/1 ,p{38^) . Since {k, a, <J(1), /} is a Type I eigenset and, in
the present case, c •%) for y e (0, 1), we may conclude using Theorem 4 that

there is an rj(-) € 'p(38(l)) such that

82Es (u-ri)< 0, (117)°(0

where «(•) e -rJ1 'p{38, with u {■) = e{-), satisfies the Euler-Lagrange equation
(115). Finally, by recalling (18) and making a standard change of variables of inte-
gration in the expression

S2Eg (m; t]) — 2 f \krj'2{x) - t]'{x) [ fs {x - z)t)\z)dz 1 dx, (118)H> I ^/) J
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we observe that

[ \kfj'2{x) - fl'(x) [ fgl
J3S I J 3$

82E^ (it; rj) = ^ / \kfi"(x) - r)'{x) j fs(x - z)fj'(z) dz \ dx,
(119)

where ?/'(x) := rf(x/y) for every x e 38. Then, since it is clear that //(•) e
'/,(<^), we see from (117), (119) and the fact that y > 0, that (113)

holds. □
The previous theorem and corollary prove that if k , a , and / are given such that

0 < k < 2a and / > 0, and if 0 <8<8(X) , where <5(1) is uniquely determined from
(75) and (76) as the largest element of p,, then the extremal strain fields derived in
Sec. 3 and given by (37) cannot correspond to local minima of Es(-) over stf1 (38).
Similarly, if the material parameters k , a and 8 > 0 are given such that 0 < k < 2a
and <5 > 0, then the model becomes unstable if the reference length / of the body 38
is chosen sufficiently large (/ > /(1)). Given such suitable arbitrary values of k, a,
and /, we observe from Fig. 7 that <5(1) is strictly less than 3*. Thus, as S runs
through a decreasing sequence of values, the functional Es(-) first loses coercivity at
8* and then for all d < <J(1) we now know, according to Corollary 3, that the model
is unstable. The value of S = d0, corresponding to the curve Q0 in Fig. 7 where
the model shows global instability, is less than S(]) and the ordering <50 < <5(1) < S*
is natural. The "stability gap" referred to above in which the stability character of
Es(-) is unknown has now been narrowed to those 8 in the interval [<5(1), <5*], i.e.,
between Q(|) and in Fig. 7. In fact, we will now narrow this gap further and

show that the maximal member <S(I) of the sequence pn corresponding to Type
II eigensets {k, a, 8["', 1} provides a lower bound such that for all 8 > e)1'1 the
second variation 82Ei)(w, •) at the solution «(■) e of the Euler-Lagrange
equation (21) is positive. Moreover, we will see that <S!l) is below 8* and above
8,, ;i so that the remaining "stability gap" is again narrowed to those 8 that belong

to the interval [<S( j}, 8{").
We observed earlier, following (104), that the second variation 8~Es(u \ •) van-

ishes in a particular direction at 8 — 8{V], and that there is a direction in which it
is negative for every Based upon an approach discussed in a remark at
the end of this paper, it is possible that the "stability gap" can be further narrowed
and, in fact, possibly eliminated. For arbitrary k , a, and / such that 0 < k < 2a
and / > 0, we show that there is a 8 e (J([), <5(l)) such that the second varia-

tion is strictly positive on s/0i'p(£8) for every 8 e (8, oo), thereby narrowing the
"stability gap" to [<5(n, <5] c [<5(|), <5(l)]. To proceed, we examine the eigenvalue
problem for the homogeneous problem (21) (i.e., a = 0), with a goal toward us-
ing the equivalency between the eigenvalue problem and its associated minimization
problem to conclude the positivity of the second variation 8~Es(u; •) on an extremal
field w(-) es/1-"'



Consider, for X e IR and </>(•) e L

SINGLE PHASE ENERGY MINIMIZERS 191

2,

X
cf>(x) = f£s4>(x) (120)

for all x e 38. By analogy with the Euler-Lagrange equation (21) in Sec. 2, we
conclude that a necessary condition for </>(■) to solve (120) is that </>(•) satisfy

4>"(x) + ~(2aX - k)4>(x) = 0 Vx € 38. (121)
kS~

The general solutions of (121) contain two arbitrary, real constants c, and c7, and
separate into three classes depending upon the sign of 2aX - k . Let C; denote the
upper left 2x2 submatrix of , as inferred from Eqs. (33), (36), and (39), and
defined in (41), except that everywhere in A; we replace a by aX. Then, by the
discussion in Sec. 3, it is clear that solutions of (121) solve (120) if and only if the
coefficient matrix C( has a nontrivial kernel, where here the subscript / = 1, 2, 3
refers to the cases 2aX < k, 2aX = k , and 2aX > k, respectively. We easily see
from the linear systems (33) and (36) that if 2aX < k , then kerC, = kerC2 = {0}.
Therefore, a solution of (120) is possible only if 2aX > k. Thus, by introducing
k > 0 through

k2:=?(t-')' (122)

we recall from (73) and (74) that kerC3 7^ {0} if and only if

23k coskI = (<52/c2 — l)sin/c/. (123)

In this case, similar to our analysis in the first half of this section, we infer that there
is a strictly increasing sequence of eigenvalues S := {^„}„G/V , having a minimum
element, denoted by A, , and satisfying lim^^ Xn = 00 . Moreover, we may separate
the members of 3 into two distinct classes depending upon whether n is odd

|sinkI = ; cos«r/ = ~ l)j > (124)

or whether n is even

jsin/c/ = ~^k6\ cos kI = ^ ~ (125)

The eigenfunctions for (120), which we denote by <!>„{•), are therefore of the form

</>n(x) := cn(Kn8cosKnx + sin/crtx) (126)

where Kn has the obvious definition from (122). Also, we conclude from (122),
(124), (125), and (126) that

/J&

n is even
tH(x)dx={ c }. (127)

: n is odd

Since 2 aXn > k > 0 for every n e IN, it follows that 3c (0, 00), and therefore,
the linear Hilbert-Schmidt operator £s(-) is symmetric and positive definite [4], We
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may assume without loss of generality that for every n e IN, the eigenfunctions
<pn(-) have been normalized so that \\<f>n\\2 = 1 > and in this case we have cn =
(lakn/k + 5)~' . Consequently, since the eigenvalues kn are distinct, we have that
(0, > 4>j) — 8t], where S:j is the usual Kronecker delta, and (•, •) denotes the usual
inner product on L {38) [4], Then, if we define

2>n := {/>(•) e L\^) : {p, <j>k) = 0 for k = 1, ..., n - 1}, (128)
it follows from the extremal properties of eigenvalues for operators of this type [4,
11] that for every n e IN and nontrivial /?(•) e 2>n , '

0 < (£SP,P) < Up\\l (129)
where equality holds if and only if p(-) oc <£„(•) • Now, we recall the sequences
p, and pn which characterized, respectively, the Type I and Type II eigensets
{k, a, d{n), 1} as defined in (30), (75), (76), and (77) for n e IN. Then, according
to (122) and (123) the sequence of eigenvalues 3 possesses the following elementary
properties relative to p7 and pu , which we state without proof.

Lemma 2. Let 0 < k < 2a and / > 0 be given, and choose d(m) e p, and d(n] e pu .
Then,

(i) if n e IN is fixed, kn strictly increases as a function of d ,
(ii) d = 5(m) <£=> X2m = 1 ,

(iii) <5 = <5(,!) ̂ = 1.

Then, using (129), we have the following

Theorem 5. Let 0 < k < 2a and / > 0 be given, and suppose that «(•) € ~p(&)
is a solution of the Euler-Lagrange equation (21) for 5 > d{l). Then, for every
>,(•)

d2Eg(u;t])> 0. (130)

Proof. Suppose S > <5(l), choose rj(-) e £/Ql'p(£$), and assume without loss of
generality that \\rj'\\2 = 1 . Then, by (103), (128), and (129), we observe that

S2Es(u ; t]) = 2 f {kt]'2(x) - rj\x)£sr]\x)} dx
J 38

2 [ {kt]'2{x) - rj'{x)^ri\x)}dx
J.% a.

>

= 2*(l-i). (131)

By Lemma 2, we may then conclude that S'Es(u; t]) > 0. However, by (129), we
see that the inequality in (131) is strict unless '/'(•) = </>,(•) > and this cannot happen
since (/(•) 6 j/0',p( J) and </>.(•) satisfies (127) 2. □
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40

Fig. 8. Stability diagram showing loss of coercivity , the stability
gap bounded by the dotted curves £2(1j and Q(" , the loss of local
stability , and the loss of global stability £20 .

In Fig. 8 we show all of the information contained in Fig. 7 and in addition we
illustrate a graph, denoted by Q(1),of //<5(l) vs. k/a for the Type II eigenset which
corresponds to the maximal value of <5 = <5( 1'. Earlier, we observed that <J(|) < <5*11
and this is certainly confirmed in Fig. 8. More insightful, however, is the observation
that (5(l) < <5* , where, recall, S* defines the coercivity limit in the sense that Es(-)
is coercive only if S > d*. Because of Theorem 5, this means that for k, a, and
/ given such that 0 < k < 2a and / > 0, and for any S > J1" the solution
u(-) € j/1 p(£$) of the Euler-Lagrange equation (21) is locally stable, even though
for S e [<5,l), <5*] the existence theorem, Theorem 1, for the minimum problem (19)
does not apply. With this result, we have narrowed the "stability gap" to those d in
the interval [<5( 1}, <5(l'), as is shown in Fig. 8. In this gap we have not determined
the stability character of Es{-).

Remark in closing. A possible approach to the remaining problem of charac-
terizing the "stability gap" is to use the eigenfunction theory developed above in an
attempt to either increase from <S(|) the threshold for local instability, or to decrease
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from S111 the threshold for local stability. In particular, suppose «(•) G s/{'p
is a solution of the Euler-Lagrange equation (21), and define null functions tj(-) e

by

rj(x):= [\bjtf) + w(£)}dZ, (132)
Jo

where e JR, (/>,(•) is the eigenfunction associated with A, , and w(-) e .
Then, the definition of coupled with (122) and (127) implies that w(-)
has nonzero mass, and that

bx = ~^K\ + J w(x)dx (133)

holds. By substituting (132) and (133) into the second variation (103), and recalling
(120) and (129), we observe that

w(x)dx^j + k\\w\\l - (&gW, w), (134)

> (T/l| w{x)dx^j + k ^1 - ||ryII2, (135)

where
A2/

It then follows from Lemma 2 that, given k, a, and I such that 0 < k < 2a and
I > 0, the expression ax given by (136) is nonpositive for all 8 e [<5(1), <5(l)]. In
this case, we conclude from (135) and the Cauchy-Schwarz inequality that

82Es(u\ ij) > (o^l + k ^1 - -0^ \\w\\22 (137)

must hold for every S e [<5(1), <5(1)] and w(-) e . Moreover, with the aid of
Lemma 2, we see that there is a S e (<5(1), <5<'1) with the property that for every

•2"'.

3)| © {a0,( ) : a e R}, we may conclude from Theorem 5 that

S2Es(u;r,)> 0 (138)

holds for every rj(-) e s/Ql'p(&) and S e {S , 00), and therefore, the extremal field
«(■) G s/['p(&) of (21) is locally stable. For the particular choice of material pa-
rameters k — a and / = 1, this analysis yields a marked improvement on d"1 as a
lower bound for local stability. For this case, we have

S* = (2ln2)~l ~ 0.7213,

<5(1) J ~ 0.6366, (139)

sm = £ = 0.2122,

S G (5, <5("] the expression ax I + k(l — k2') is positive. Therefore, since L
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and, by numerical analysis of the expression oxl + k( \ - in (135), we find that

5 ~ 0.35. This means that for any 8 > 0.35 the extremal field u(-) £ stfx'p{38)
that solves the Euler-Lagrange equation (21) is locally stable. Earlier, we had found
this to be true for any 8 > 5(l) and so an improvement has been accomplished. To
completely answer the question of stability for the remaining "stability gap" [<5(, ), <5],
a more thorough study of (134) should be completed, but we do not attempt this here.
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