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Abstract—In this paper, a frequency-based analytical approach
is presented for dynamic analysis of three-phase balanced systems
in the presence of harmonic distortion based on single-phase analy-
sis. By providing mathematical foundation, this study proves that a
three-phase balanced system (linear or non-linear, supplied by pe-
riodic balanced sinusoidal or non-sinusoidal sources) is completely
balanced during both transient and steady-state conditions. This is
done by utilizing Dynamic Harmonic Domain (DHD) and defining
a phase-shift matrix in frequency domain. As the most noteworthy
application of the proposed methodology, single-phase modeling
approach is put forward. Therefore, during the transient period,
one can analyze only one phase of a three-phase balanced system
and calculate exact quantities of the other phases without perform-
ing extra simulations, which is not possible through time domain.
The introduced concept has been applied to different test cases
including three-phase transformer inrush current. In addition, the
proposed approach has been utilized to obtain a single-phase model
of VSC-based power electronic devices for dynamic harmonic anal-
ysis, followed by discussion on results.

Index Terms—Dynamic harmonic domain, single-phase
modeling, transients analysis, three-phase balanced system.

I. INTRODUCTION

M
ODERN power systems are complex in nature which

leads to several challenges for power system designers

and operators. High penetration of power electronics and non-

linear loads into electrical power systems can be addressed as

a critical issue since analyzing these systems is essential to de-

sign and verify the developed energy systems [1]. With the great

advancements in the power electronic field and the daily increas-

ing of the non-linear loads, modeling and analysis of harmonic
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sources have been essential for power quality assessment during

both transient and steady states [2], [3].

Dynamic analysis can be performed by means of different

methods in both time and frequency domains [4]–[7]. Due to

small integration time steps in time domain methods, usually

these approaches require long simulation run time even if the

steady state response is desired. In comparison to time do-

main approaches, frequency domain methods use time-varying

Fourier series coefficients which are constant or slow-varying

quantities under both balanced and unbalanced conditions;

therefore, as the main salient feature of these approaches, big

time steps can be used during the simulation process.

A review of the literature in this area shows that one of the fre-

quency domain based approaches is dynamic phasor which has

been widely used in modeling of electrical power systems such

as electrical machines [8], power system dynamics and faults

[9], [10], flexible AC transmission systems (FACTS) [11], [12],

sub-synchronous resonance [13], unbalanced radial distribution

systems [14], and high-voltage direct current (HVDC) systems

[15]. In [16], a shifted frequency analysis model which uses

dynamic phasor variables instead of instantaneous time vari-

ables has been put forward to model synchronous machines

for transients around 60 Hz frequency. In [17], application of

dynamic phasor concept has been further extended in two ma-

jor areas. The first was dynamic phasor modeling of frequency

varying systems, and the second was dynamic phasor modeling

of multi-frequency, multi-generator systems.

Dynamic Harmonic Domain (DHD) is an approach which is

basically developed by extension of harmonic domain and dy-

namic phasor methodologies; it is able to efficiently incorporate

dynamic analysis of harmonics during the transient state. This

approach employs time-dependent Fourier series and provides

the calculation of harmonic evolution in the time domain [18].

Combining the DHD and companion circuit modeling leads to

a powerful analytical technique called dynamic companion cir-

cuit modeling [19]. The DHD has been successfully applied to

FACTS devices, synchronous machines and transmission lines

[18]–[21]. An extended harmonic domain model of a wind tur-

bine generator system based on doubly fed induction generator

has been presented in [22], which includes both electrical and

mechanical subsystems. Moreover, a modified harmonic domain

has been proposed in [23] in order to incorporate interharmon-

ics. In [24], a major issue of current implementation of DHD

models has been addressed. It is shown that spurious oscillations
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of individual harmonics appear when including a step change

either in input variables or in circuit parameters. However, it

has been established that the total response resulted from DHD

models, under step changes, is accurate.

An interesting methodology for steady and dynamic states

harmonic analysis of power systems has been put forward in

[25]. It employs a decomposition framework so that harmonic

producing devices are considered as separate subsystems which

are solved via the Extended Harmonic Domain (EHD) tech-

nique. An approach to reduce a non-linear system in both har-

monics and states has been proposed in [26]. The reduced-order

model achieves computational savings while preserving accu-

racy. In the development of the methodology, the authors have

taken into account experience and state of the art methods in

linear systems theory to yield leaner frequency equivalents than

those reported in the power systems literature. Application of

DHD for investigating the effect of the source phase angle on

harmonic content and time domain response during both tran-

sient and steady states has been presented in [27]. As shown,

shifting all the sources does not affect the harmonics’ magnitude

and only harmonics’ phase angles are linearly shifted according

to their harmonic order.

Steady-state analysis of a three-phase balanced system can be

performed based on single-phase representation by calculating

each harmonic magnitude and angle for one phase and shifting

the results for other phases. From the time domain point of

view, however, it is not possible to analyze only one phase of

a three-phase balanced system during the transients and obtain

exact results of two other phases without solving them directly

since exact phase-shift calculation during the transients cannot

be done.

This paper aims to establish a foundation for analyzing three-

phase balanced systems under dynamic non-sinusoidal condi-

tions based on single-phase modeling approach. In this paper, by

providing mathematical foundation, it is shown that in any pe-

riodical balanced three-phase system, linear or non-linear, sup-

plied by periodic balanced sinusoidal or non-sinusoidal sources,

during transient or steady-state conditions, harmonic h in the

three-phases, at any time, has the same magnitude, but angles

are displaced from one another by h120˚. To such aim, by us-

ing Matlab software, a phase-shifting matrix is defined which

provides exact phase-shift calculation during both transient and

steady states considering each harmonic order; moreover, it has

been used to calculate dynamic response of three-phase sys-

tem based on single-phase analysis. By using the proposed

concept of this paper, non-linear loads and three-phase trans-

formers, with different connections, can be described based on

single-phase models for dynamic analysis under non-sinusoidal

conditions.

II. DYNAMIC HARMONIC DOMAIN

The main idea behind the DHD is that a periodical or quasi-

periodic function x(τ) with period of T, can be presented by

means of complex Fourier series with time variant coefficients

as follows [17], [18]:

x (τ) =

∞
∑

h=−∞

Xh (t) ejhωτ (1)

where, τǫ[t, t + T ), the coefficient Xh (t) is a time-varying com-

plex number and ω is equal to 2π/T . Eq. (1) can be rewritten

in the matrix form as follows:

x(τ) = E (τ) X (t) (2)

where,

X(t) = [· · · X−2(t) X−1(t) X0(t) X1(t) X2(t) · · ·]T

E(τ) =
[

· · · e−j2ωτ e−jωτ 1 ejωτ ej2ωτ · · ·
]

A. State-Space Equation

Considering the general expression of the state-space

equation

ẋ(t) = a (t) x(t) + b (t) u (t) (3)

where, a(t) and b(t) are periodic functions with period of T
and the state variable x(t) is in the form of (1). Then, the new

state-space equation in the DHD is represented as follows [18]:

Ẋ(t) = (A − D) X(t) + BU (4)

where, D is the differentiation matrix and A and B are Toeplitz

matrices formed by the harmonics of a(t) and b(t), respectively

[18]. U is a vector formed by the harmonics of u(t). Eq. (4) is the

transformation of (3) into the DHD, where the state variable in

(3) is x(t) and in (4) are the harmonics of x(t). The steady-state

response of (4) is given by the following equation [18]:

X = −(A − D)−1
BU (5)

By comparing (3) and (4), it can be observed that the DHD

transforms a linear time periodic (LTP) system to a linear time

invariant (LTI) system. A particular case of (4) is the steady-state

condition given by (5), which is reduced to a set of algebraic

equations. Eq. (5) can be used to establish the steady-state con-

dition of the state-space equation.

B. Phase-Shift of Periodic Signals

If a dynamic periodic signal u(τ) in the form of (1) is time

shifted by t0 , i.e. u(τ − t0), then we have [27]:

u (τ − t0) =

∞
∑

h=−∞

Uh (t) ejhω (τ−t0 )

=

∞
∑

h=−∞

Uh (t) e−jhωt0 ejhωτ (6)

This yields a new harmonic coefficient Uh (t − t0) =
Uh (t)e−jhωt0 , which clearly shows that rotation of the coef-

ficient Uh(t) is the only effect of the frequency domain. This

rotation is a linear function of the harmonic h which can be in-

terpreted as addition of a linear phase to the original component.

By assuming that ωt0 is equal to α, (6) in the matrix form can

be rewritten as follows:

u(τ − t0) = E (τ) SU (t) (7)

where, S is called the phase-shift matrix which is a diagonal

matrix of the following form [27]

S = diag
{

· · · ej2α ejα 1 e−jα e−j2α · · ·
}



According to (7), it can be observed that the har-

monics vector of u(τ − t0) is given by the following

equation:

U(t − t0) = S U (t) (8)

Eq. (8) presents the harmonics of a phase-shifted func-

tion obtained from a non-phase-shifted function. Derivative of

U(t − t0) for dynamic analysis is given by the following equa-

tion [27]:

U̇ (t − t0) = SU̇ (t) (9)

According to (9), it can be concluded that the harmonics of the

derivative of u(τ − t0) is equal to the harmonics of the derivative

of u(τ) multiplied by a phase-shifting matrix. In [27], it is

shown that by using properties given in (8) and (9), the dynamic

harmonic response of the system to the input u(τ − t0) can be

directly obtained considering the dynamic harmonic response

to input u(τ) by means of phase-shifting property, and there is

no need to perform extra simulation.

III. HARMONICS RESPONSE IN A THREE-PHASE BALANCED

SYSTEM UNDER TRANSIENT AND STEADY-STATE

NON-SINUSOIDAL CONDITIONS

Consider a balanced linear or nonlinear three-phase system

which is supplied by balanced periodic, non-sinusoidal sources.

At any time, during transient or steady-state, the magnitudes of

harmonic h in three-phases are the same, but their phase angles

are displaced from each other by h120˚. These two character-

istics are well-known for balanced systems in steady-state, but

under the transient period these two conditions have not been

addressed so far. This section shows that these two characteris-

tics are also established under transient conditions by employing

the DHD. It is worth noting that since the system is balanced,

only positive and zero components are present in the wave-

forms. Moreover, generalized positive sequence component is

made only by the first, 5th, 7th . . . harmonics; and in this case,

generalized zero component is only made by multiples of third

harmonic [28].

In a general form, assume that each phase contains n state

variables. For instance, state variables in phase “a” can be

written as follows:

ẋa (t) = fa (xa , xb , xc , ua , ub , uc , t) (10)

where, fa can be a general non-linear, time-varying function of

state variables (xa , xb and xc with period of T), the system inputs

(ua , ub and uc ), and time (t). Moreover, the state variables and

inputs in (10) are defined as:

xa(t) =

⎡

⎢

⎢

⎢

⎣

x1a(t)
x2a(t)

...

xna(t)

⎤

⎥

⎥

⎥

⎦

, ua(t) =

⎡

⎢

⎢

⎢

⎣

u1a(t)
u2a(t)

...

uma(t)

⎤

⎥

⎥

⎥

⎦

(11)

where, m is the number of input sources. Expanded form of (10)

for phase “a” is as follows:

ẋa (t) = a1 (t) xa (t) + a2 (t) xb (t) + a3 (t) xc (t)

+ b1 (t) ua (t) + b2 (t) ub (t) + b3 (t) uc (t) (12)

here, ai(t) and bi(t) (for i = 1, 2 and 3) are periodic functions

of period T. It should be noted that in this representation it is

assumed that non-linearities are included by using dependent

sources. In a three-phase balanced system, the same equation

as shown in (12) can be obtained for phase “b” by changing

“a” to “b”, “b” to “c” and “c” to “a”. By applying the same

transformation to equation of phase “b”, equation of phase “c”

can be achieved. Since the three-phase system is balanced, by

applying this transformation the state-space equations of phases

“b” and “c” are as follows:

ẋb (t) = a1 (t) xb (t) + a2 (t) xc (t) + a3 (t) xa (t)

+ b1 (t) ub (t) + b2 (t) uc (t) + b3 (t) ua (t) (13)

ẋc (t)=a1 (t) xc (t)+a2 (t) xa (t)+a3 (t) xb (t)+b1 (t) uc (t)

+ b2 (t) ua (t) + b3 (t) ub (t) (14)

Transformations of (12), (13) and (14) into the DHD are as

follows:

Ẋa(t) = (A1(t) − Dd)Xa(t) + A2(t)Xb(t) + A3(t)Xc(t)

+ B1(t)U a(t) + B2(t)U b(t)

+ B3(t)U c(t) (15)

Ẋb (t)= (A1(t)−Dd) Xb(t)+A2(t) Xc (t)+A3 (t) Xa (t)

+ B1 (t) U b (t) + B2 (t) U c (t)

+ B3 (t) U a (t) (16)

Ẋc(t)=(A1(t)−Dd) Xc (t)+A2(t) Xa (t)+A3 (t) Xb(t)

+ B1 (t) U c (t) + B2 (t) U a (t)

+ B3 (t) U b (t) (17)

Here,

Dd = diag {· · · D D D D D · · ·} (18)

and Ai(t) and Bi(t) (for i = 1, 2 and 3) are Toeplitz matrices

formed by the harmonics of ai(t) and bi(t), respectively; and

U j (t) (for j = a, b and c) is a vector formed by the harmonics

of uj (t). According to the phase-shifting property, if all the

inputs are shifted by α then all the outputs will be shifted by α
as well. If both sides of (15) are multiplied by a phase-shifting

matrix Sd in which α is equal to −120˚, noting that Sd is a

diagonal matrix and Ṡd is zero, then:

SdẊa (t) = (A1 (t) − Dd) SdXa (t) + A2 (t) SdXb (t)

+ A3 (t) SdXc (t) + B1 (t) SdU a (t)

+ B2 (t) SdU b (t) + B3 (t) SdU c (t) (19)

Comparing (16) and (19), it is clear that Xb (t) = Sd Xa(t)
(according to the phase-shifting property described in [27]) and

one can conclude that the dynamic response of phase “b” can

be directly obtained by dynamic response of phase “a”. The

same procedure can be followed to obtain dynamic response

of phase “c”. According to this concept, it is concluded that

the dynamic response of a three-phase balanced system can be

obtained from the dynamic response of one phase, which is



Fig. 1. STATCOM connected to the grid.

not possible through time domain. This principle is used in the

following sections.

IV. SINGLE-PHASE MODEL OF STATCOM

In this section, the principle of balanced three-phase sys-

tems under dynamic non-sinusoidal conditions is used to ob-

tain a single-phase STATCOM model. Fig. 1 shows the three-

phase STATCOM circuit scheme with state-space equations as

follows [18]:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

dia
dt
dib
dt
dic
dt

dvdc

dt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−R/L 0 0 −
Sa

L

0 −R/L 0 −
Sb

L

0 0 −R/L −
Sc

L
Sa

C

Sb

C
−Sc

C 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ia
ib
ic
vdc

⎤

⎥

⎥

⎦

+
1

L

⎡

⎢

⎢

⎣

va

vb

vc

0

⎤

⎥

⎥

⎦

(20)

where, the switching functions sa , sb , and sc are time-varying

functions which represent the operation of the VSC. Eq. (20)

has its representation in the DHD by:
⎡

⎢

⎢

⎢

⎢

⎣

İa

İb

İc

V̇dc

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−R
L UI − D 0 0 − 1

L Sa

0 −R
L UI − D 0 − 1

L Sb

0 0 −R
L UI − D − 1

L Sc

1
C Sa

1
C Sb

1
C Sc −D

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

Ia

Ib

Ic

Vdc

⎤

⎥

⎥

⎥

⎥

⎦

+
1

L

⎡

⎢

⎢

⎢

⎣

Va

Vb

Vc

0

⎤

⎥

⎥

⎥

⎦

(21)

where, UI is the identity matrix. From Fig. 1 and (20), the

current in the DC-side is given by:

C
dvdc

dt
= sa ia + sbib + sc ic = idc (22)

Considering that the system is balanced, then:

sa ia =
∑

h

Shejhδa

∑

h

Ihejhδa =
∑

h

∑

k

SkIh − kejhδa

sbib =
∑

h

Shejhδb

∑

h

Ihejhδb =
∑

h

∑

k

SkIh − kejhδb

sc ic =
∑

h

Shejhδc

∑

h

Ihejhδc =
∑

h

∑

k

SkIh − kejhδc

Then:

sa ia +sbib +sc ic =
∑

h

∑

k

SkIh − k

(

ejhδa + ejhδb + ejhδc
)

(23)

since δa = ωt, δb = ωt − 120◦ and δc = ωt + 120◦, (23) can

be rewritten as follows:

sa ia +sbib +sc ic =
∑

h

∑

k

SkIh−kejhωt
(

e0 +e−jh120◦

+ejh120◦)

(24)

Note that e0 + e−jh120◦
+ ejh120◦

= 3 when h = 3k for

k = 0, 1, · · · and zero otherwise. Consequently:

idc = sa ia + sbib + sc ic =
∑

h=0,±3,±6,...

∑

k

3SkIh − kejhωt

=
∑

h

Idch
ejhωt (25)

Note that idc contains the DC-term and triplen harmonics of

sa ia . As an example, the DC-term of idc is given by Idc0
=

∑

3SkI−k . Now the state-space equations for phase “a” and

DC side of the STATCOM are given by:

dia
dt

= −
R

L
ia −

1

L
savdc +

1

L
va (26)

dvdc

dt
=

1

C
idc (27)

Note that (26) and (27) represent a single-phase model of the

STATCOM. These equations in the matrix form are as follows:

[

dia

dt

dvd c

dt

]

=

[

−R
L − sa

L

0 0

] [

ia

vdc

]

+

[

1
L va

1
C idc

]

(28)

Eq. (28) in the DHD is given by:

[

İa

V̇ dc

]

=

[

−R
L U I − D − 1

L Sa

0 −D

] [

Ia

V dc

]

+

[

1
L V a
1
C Idc

]

(29)

here, Idc contains the DC-term and triplen harmonics of SaIa

and rest are zero. It is worth noting that (29) can be easily

obtained by following the procedure that will be described in

the next section. However, expanded equations in this section

provide a better interpretation.

V. SINGLE-PHASE MODELING OF LOADS AND TRANSFORMERS

Utilizing the proposed concept results in accurate single-

phase modeling of different equipment appropriate for dynamic

harmonic analysis under non-sinusoidal conditions. Loads and

transformers can be connected by different methods, and based

on these connections, harmonic content and time domain re-

sponse during both steady and transient conditions are greatly

affected. In order to show the benefits of the proposed method

in incorporating phase-shift caused by transformer connec-

tion, consider the ideal transformer bank connected in ∆-Y as

shown in Fig. 2. Primary and secondary voltages are related as

follows:

( V1a − V1b)/n = V2a/1 (30)



Fig. 2. Transformer connected in ∆-Y.

Since the system is balanced, it is concluded that V1b = SV1a ;

then, (30) can be rewritten as follows:

V1a = n × (UI − S)−1V2a (31)

By following the same procedure and noting that I1c =
S2 I1a , primary side current of phase “a” in terms of I2a can be

rewritten as 1
n × (UI − S2)I2a . These equations for voltage and

current, provide a connection between primary and secondary

sides phase quantities and can be used for nodal analysis in a

very efficient manner. By using similar equations for both volt-

age and current, the proposed concept of this paper can be easily

extended to incorporate different loads with different connection

styles. This representation for transformers and loads, appropri-

ate for dynamic analysis, is not possible through time domain

since an exact phase-shift calculation of harmonic components

cannot be performed.

VI. TESTS AND RESULTS

In order to illustrate the concept of a three-phase balanced sys-

tem under dynamic non-sinusoidal conditions, three test cases

are considered and studied. In the first test case, a three-phase

transformer is used to investigate the three-phase inrush cur-

rents. In the second test case, the obtained single-phase model

for STATCOM in Section IV is used to verify the concept in a

more elaborated system. In the third test case, exact single-phase

modeling of transformers and loads is included to demonstrate

the applicability of the proposed method in analyzing three-

phase balanced systems under non-sinusoidal conditions based

on the single-phase modeling.

The computer used for the presented simulations is Intel

2.10 GHz central processing unit (CPU) with 8 GB of random

access memory (RAM).

A. Transformer Inrush Current

To conform to a three-phase balanced system, consider a

three-phase transformer connected in delta-wye and fed with a

balanced voltage with a magnitude of 100 V and 60 Hz as shown

in Fig. 3. The transformer parameters are the same as reported

in [27]. It should be mentioned that in this test case, time step

for both DHD and EMTP is equal to 1 µs. Fig. 4 shows the

time domain response of current waveform of the inrush current

in the transformer by using Electromagnetic Transient Program

(EMTP) and DHD which depicts the results are completely

Fig. 3. Three-phase transformer equivalent circuit in delta-wye connection.

Fig. 4. Inrush currents of three-phases.

Fig. 5. Harmonic content of inrush currents by using DHD.

matched. However, elapsed time by EMTP is 5.078 s while

required time for DHD is 5.139 s. The waveforms are visibly not

the same in the three phases and it is not simple to conclude that

it is a three-phase balanced system until the transients die out.

Fig. 5 shows the harmonic content of three-phase inrush cur-

rents obtained by the DHD. According to Fig. 5, it can be es-

tablished that the harmonics magnitude in the three phases are

identical, which means that three-phase currents have the same

THD and RMS. However, this result cannot be observed in



Fig. 6. Angles of harmonic components of three-phase inrush currents by
using DHD.

TABLE I
HARMONIC CONTENT OF THREE-PHASE INRUSH CURRENTS AT t = 7.4 ms

Phase Harmonic Order Time Domain Response (A)

h = 1 h = 5 h = 7

“a” 7.5219 ∢

−121.6423°

3.2074 ∢

−72.8857°

1.3083 ∢

43.0354°

18.4509

“b” 7.5219 ∢

118.3577°

3.2074 ∢

47.1144°

1.3083 ∢

−76.9646°

0.4068

“c” 7.5219 ∢

−1.6424°

3.2074 ∢

167.1144°

1.3083 ∢

163.0354°

−18.8577

Fig. 4. In addition, Fig. 6 depicts the phase angles for each

harmonic component of the three-phase inrush currents which

are obtained through DHD. It should be mentioned that angles

are displayed in the range of [−180°, 180°]; hence, when angle

reaches −180° or 180°, ±360° is added to the phase angle.

Fig. 6 shows that angles vary in a same way but with a 120°

phase-shift regard to a harmonic sequence behavior. Figs. 5 and

6 reveal that despite the significant differences between time-

domain waveforms (as shown in Fig. 4), the three-phase inrush

currents are balanced during the transient period.

Results of Windowed Fast Fourier Transform (WFFT) are

included in Appendix I in order to show that the magnitude of a

specific harmonic in each phase is different by using WFFT. In

order to show that the time domain responses shown in Fig. 4 for

three-phase inrush currents are corresponding to the harmonic

content depicted in Figs. 5 and 6, each harmonic response in

different phases for t = 7.4 ms (associated to peak value of

phase “a” shown in Fig. 4) has been presented in Table I. In

this table, time domain response of each phase is calculated by

(1) as follows:

ia = (7.5219∢121.6423◦) e−jω0 ×0.0074

+ (7.5219∢ − 121.6423◦) ejω0 ×0.0074

+ (3.2074∢72.8857◦) e−j5ω0 ×0.0074

+ (3.2074∢ − 72.8857◦) ej5ω0 ×0.0074

+ (1.3083∢ − 43.0354◦) e−j7ω0 ×0.0074

+ (1.3083∢43.0354◦) ej7ω0 ×0.0074 = 18.4509A

Fig. 7. Harmonic content of phase “a” current with PMW technique.

Fig. 8. Waveforms of STATCOM terminal currents and DC-side voltage.

The same procedure can be followed to obtain results of

phases “b” and “c”. According to Table I, it is clear that

time domain responses are greatly affected by angles of har-

monic components. With these results, it can be concluded that

with the dynamic harmonic content of phase “a”, waveforms

of phases “b” and “c” can be easily obtained by appropriate

phase-shifting according to the harmonic order.

B. Single-Phase Model of STATCOM

In this case, STATCOM of Fig. 1, utilizes a PWM-VSC station

with switching frequency of 1 kHz, modulation ratio of unity and

with a phase-shift angle δ = 5◦ in order to achieve to active and

reactive power exchange [18], [29]. In order to provide power

factor correction, STATCOM is connected to a local linear load

connected in Y with RL and LL equal to 0.98 p.u. and 0.785 p.u.,

respectively. The STATCOM and local load are then connected

to the main source with an impedance of 0.001 + j0.031 p.u., and

this combination is supplied through a sinusoidal voltage source

with magnitude and frequency of 1 p.u. and 50 Hz, respectively.



Fig. 9. Single-phase modeling of non-linear components and phase-shifting of transformers in a balanced system.

Fig. 10. Current of the source (a) phase “a”, (b) phase “b” and (c) phase “c”.

STATCOM parameters R, L and C are 0.015 p.u., 0.340 p.u. and

4.19 p.u., respectively. For this test system, 50 harmonics are

used and steady-state initialization is performed by (5).

In this test system, it is assumed that a disturbance is applied

at t = 30 ms and lasts for 10 ms during which the magnitude of

input voltage source reduces to 80 percent of its value. Fig. 7

shows the harmonic magnitude in the current of phase “a”

calculated by the single-phase model, using (29), and the three-

phase model, using (21). Time domain waveforms of the three-

phase STATCOM currents and the DC-side voltage are shown

in Fig. 8. Note that current in phase “b” and “c”, using the

single-phase model, are directly obtained based on the proposed

approach and the phase-shift matrix. In this case, elapsed time

by DHD for three-phase model is 5.211 s, while required time

by using DHD for single-phase model is 2.012 s.

C. Single-Phase Model of Loads and Transformers

In this test case, the power system shown in Fig. 9 is used

in which two loads are connected to buses 4 and 6. One load

is grounded Y and the other one is connected in ∆. In this

test system, the transformers are assumed to be ideal. Phase-

shifting property is successfully applied to achieve single-phase

models for non-linear loads. The same procedure is used to

incorporate transformers; see Section V. In this test system,

associated equations are expanded for phase “a”, which means

phase-shifting of transformers is fully considered in the single-

phase model for each harmonic component without solving the

associated three-phase equations. Current/flux equation of each

non-linear load is described by iφ = 0.05φ + 105φ5 . Moreover,

each non-linear load is in parallel with a linear load with a

value of 100 Ω. Further details regarding this test case including



Fig. 11. Harmonic content of source current of phase “a”.

steps required to obtain single-phase equations are provided in

Appendix II.

Each transformer is comprised of three ideal transformers

with unity transformation. It should be noted that in this test

case, all initial conditions are set to zero, and for the sake of

simplicity current responses are shown in p.u. with base value

of 25 A. Fig. 10(a) shows the phase “a” current of the source

obtained by both DHD and EMTP. It should be mentioned that in

this test case, time step for both DHD and EMTP is equal to 200

µs. Since the system is balanced, phase “b” current can be cal-

culated according to the phase-shifting property which is shown

in Fig. 10(b). The same procedure can be followed to obtain

results of phase “c” which is shown in Fig. 10(c). According to

Fig. 10, it is clear that results of EMTP and DHD completely

matched. However, elapsed time by EMTP is 2.635 s while re-

quired time for DHD is 1.013 s. In EMTP, three-phase currents

are calculated while DHD solves only one phase and calculates

the results of other phases by appropriate phase-shifting during

both steady and transient states. Harmonic content of phase “a”

current at bus 1 is depicted in Fig. 11. As one would expect,

there is no third harmonic or its multiples because of the con-

nections of the transformers (∆) and load connected to bus 6.

In order to verify that phase-shifting of transformers is consid-

ered in the proposed method, the harmonics’ angle of phase “a”

current in both sides of the transformer which connects buses

1 and 2 are depicted in Fig. 12 where angles are showed in the

range of [−180°, 180°]. From Fig. 12 which presents the gen-

eralized positive sequence, it can be concluded that there is 30°

phase-shift according to the harmonic sequence. Therefore, the

proposed method easily includes the shifting property of trans-

formers without causing of any complexity. Another property

is that non-linear loads (with different connections) are easily

described.

Obtained results in different test cases prove that the concept

of three-phase balanced system under dynamic non-sinusoidal

conditions can be used for exact analyzing of three-phase bal-

anced systems based on single-phase modeling in the presence

of harmonic distortion.

Fig. 12. Harmonic angle of source current of phase “a”.

VII. CONCLUSION

This paper explained and discussed the concept of three-phase

balanced systems under dynamic non-sinusoidal conditions. In

this study, by providing mathematical foundation, it has been

proven that despite the significant differences between time do-

main waveforms, a three–phase balanced system is balanced

even during the transient period. By using this concept, one can

analyze only one phase of a three-phase balanced system and

calculate exact quantities of the other phases during the transient

period by appropriate phase-shift. Moreover, using this concept

allows obtaining exact single-phase model for both linear and

non-linear loads and transformers with different connections

appropriate for dynamic harmonic analysis in frequency do-

main. In addition, phase-shift caused by transformer connection

type is easily included based on this single-phase representa-

tion. It should be noted that from time domain point of view,

since calculating exact phase-shift is not possible, obtaining dy-

namic single-phase model and computing phase-shift caused

by transformer connection is not possible during the transient

period. In this paper, the concept of three-phase balanced sys-

tems under dynamic non-sinusoidal conditions has been used

and applied in order to obtain a dynamic single-phase model for

STATCOM, non-linear load and transformer. According to sim-

ulation results, it has been proven that the single-phase model

was accurately successful to reproduce the dynamic responses

in phases “b” and “c”.

Further research can be conducted to investigate the ability

of the proposed approach for real-time applications and tran-

sient analyzing of three-phase power systems under unbalanced

operation condition in frequency domain.

1) It is worth noting that computational burden is one of

the main challenges in real-time studies since they must

guarantee the response generation within specified time

constraints. The proposed approach substantially reduces

the matrix scales than the prevalent DHD methods which

can lead to time-efficiency. Therefore, it can be used for

real-time applications.



Fig. 13. Harmonic content of inrush currents by using WFFT.

2) Applying the phase-shifting property of harmonics al-

lows calculating exact values of different sequences of

generalized symmetrical components under dynamic non-

sinusoidal conditions in frequency domain. By combin-

ing the generalized symmetrical components along with

the concept of a balanced system under dynamic non-

sinusoidal conditions (which allows single-phase model-

ing approach), one can analyze a three-phase power sys-

tem under unbalanced operation condition.

APPENDIX I

WFFT allows calculation of harmonic content by sliding a

Fast Fourier Transform (FFT) window over a signal. However,

fast variations in a time domain waveform are difficult to be

detected using WFFT which leads to large errors during the

transients since its best performance is limited to stationary

waveforms. Fig. 13 depicts the obtained results by using WFFT

in order to calculate the harmonic content of the three-phase

inrush currents. In this study, for the sake of simplicity, only first,

fifth and seventh harmonics are included in Fig. 13. However,

WFFT detects all harmonic components in the waveform, such

as DC component, second and third harmonics. According to

Fig. 13, it is clear that by using WFFT magnitude of a specific

harmonic in each phase is different.

APPENDIX II

Single-phase modeling of loads and transformers appropriate

for dynamic analysis in the presence of harmonic distortion has

been put forward in Section V. In this section, single-phase state-

space equations of test case 3 (see Section VI-C) are presented in

more details. It should be noted that in this section, all equations

are expanded and shown based on phase “a” and S represents

a phase-shift matrix in which α is equal to −120˚. Moreover, in

the following equations, I , V and ψ represent harmonic vectors

of i, v and φ, respectively.

1) Non-linear load connected to bus 4:

Since at this bus the non-linear load is connected in grounded

Y, following equations are easily obtained for current and

Fig. 14. Non-linear load connected to bus 6.

voltage (I4 and V4).
{

I4 = V4

RL 4
+ IψL 4

V4 = DψL4
+

dψL 4

dt

Considering the proposed representation for transformers in

Section V, ∆ side current and voltage (I3 and V3) are related to

Y side parameters (I4 and V4) as follows:
{

I3 =
(

UI − S2
)

I4

V3 = (UI − S)−1 V4

1) Non-linear load connected to bus 6:

Fig. 14 depicts detailed representation of this load. Accord-

ing to this figure and by following the procedure explained in

Section V, equations that relate phase current and voltage (I6

and V6) to load quantities can be written as follows:
{

I6 =
(

UI − S2
)

[

(U I −S )V6

RL 6
+ IψL 6

]

(UI − S) V6 = DψL6
+

dψL 6

dt

Since both sides of the transformer that connects busses 5 and

6 are connected in grounded Y, primary side current and voltage

(I5 and V5) in terms of secondary current and voltage (I6 and

V6) can be represented as below:
{

I5 = I6

V5 = V6

Associated equations for describing transmission lines in the

DHD are given by:
{

V2 − V3 = R23 I3 + L23

[

dI3

dt + DI3

]

V2 − V5 = R25 I5 + L25

[

dI5

dt + DI5

]

According to Fig. 9, it is concluded that current of bus 2 (I2)

is equal to I3 + I5 . Considering the transformer connection,

current and voltage of buses 1 (I1 and V1) and 2 (I2 and V2) are

related as given below:
{

I1 =
(

UI − S2
)

I2

V1 = (UI − S)−1 V2

Solving the obtained equations in this section for different

loads and transformers by using a standard numerical integration



method, provides full harmonic analysis based on single-phase

modeling. Finally, dynamic response of phases “b” and “c” can

be easily obtained by using phase-shifting property of harmonics

in which current and voltage of phase “a” are shifted by ±120˚.
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