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Single-Phase On-Board Integrated Battery Chargers

for EVs Based on Multiphase Machines
Ivan Subotic, Student Member, IEEE, Nandor Bodo, and Emil Levi, Fellow, IEEE

Abstract—The paper considers integration of multiphase (more
than three phases) machines and converters into a single-phase
charging process of electric vehicles (EVs) and, thus, complements
recently introduced fast charging solutions for the studied phase
numbers. One entirely novel topology, employing a five-phase
machine, is introduced and assessed jointly with three other topolo-
gies that use an asymmetrical nine-phase machine, an asymmet-
rical six-phase machine, and a symmetrical six-phase machine. In
all topologies, both charging and vehicle-to-grid (V2G) mode are
viable. Moreover, all are capable of unity power factor operation. A
torque is not produced in machines during charging/V2G process
so that mechanical locking is not required. Hardware reconfigu-
ration between propulsion and charging/V2G mode is either not
required or minimized by using a single switch. Theoretical analy-
sis of operating principles is given, and a control scheme, applicable
to all topologies and which includes current balancing and inter-
leaving strategy, is developed. Finally, operation of all topologies
is compared by means of experiments in both charging and V2G
mode, with a discussion of influence of current balancing and in-
terleaving strategy on the overall performance.

Index Terms—Battery chargers, electric vehicles (EVs), inte-
grated on-board chargers, multiphase machines.

I. INTRODUCTION

E
LECTRIC vehicles (EV) drivetrain and charging equip-

ment are never used simultaneously. This allows inte-

gration of drivetrain power electronics, primarily an electric

machine and an inverter, into the charging process, as an alter-

native to nonintegrated wired or wireless battery charging [1],

[2]. The accomplishments of the integration are savings on cost,

weight and space in the vehicle. Although three-phase machines

are a preferable choice for propulsion [3], they cannot be easily

integrated into fast (three-phase) charging process. The major

obstacle is that a rotating field gets produced when three-phase

currents flow through the machine. This demands various tech-

niques in order to avoid torque production [4]–[6], which always

include additional nonintegrated elements. Hence, the cost and

complexity of the system are increased.
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On the other hand, multiphase machines are not characterized

with these problems. They have additional degrees of freedom

that can be utilized to transfer excitation (or a part of it) from the

first (torque-producing) into other (passive) planes that do not

yield torque production. At present, a nine-phase machine [7],

an asymmetrical six-phase machine, a symmetrical six-phase

machine [8]–[11], and a five-phase machine [12] have been

proposed for integration into fast three-phase charging process.

Topology of [13], which uses the machine as a three-phase one

in propulsion mode, is also based on, in essence, a symmetrical

six-phase machine in the charging/V2G mode.

Unlike three-phase chargers, single-phase chargers are only

capable of slow charging. Nevertheless, if an EV is already

equipped with a fast integrated three-phase charger, single-phase

charger can complement it and serve as a great asset due to the

wide spread of single-phase mains. Therefore, it is essential

to provide single-phase charging option in addition to the fast

three-phase integrated charging. Various proposals for integra-

tion of a three-phase machine into single-phase charging pro-

cess already exist [14]–[18]. Compared to integrated chargers

with multiphase machines, discussed here, they provide com-

parable performances. However, as already noted, integration

of a three-phase machine into a three-phase charging process

demands additional nonintegrated elements in order to avoid

torque production. Therefore, in what follows the focus is on

integrated single-phase chargers employing machine types that

can also be easily integrated into three-phase charging process,

namely, multiphase machines.

In the past, integration of a six-phase machine into a single-

phase charging process received a lot of attention. It is patented

in [19] and considered at a simulation level in [20] and [21].

Current balancing between phases of the same set is not con-

sidered, and experimental results are not provided. However,

experimental results are available for a similar case of a set of

two three-phase machines [22]. In [23], the integration of a nine-

phase machine into a single-phase charging process is proposed

at a theoretical level. Only basic control with simulation results

is provided, and there are no experimental results. Until now,

integration of a five-phase machine into a single-phase charging

process has not been considered at all.

This paper provides an extensive analysis of single-phase

chargers incorporating: an asymmetrical nine-phase machine, an

asymmetrical six-phase machine, a symmetrical six-phase ma-

chine, and a five-phase machine. It is important to emphasize

that, for each considered multiphase topology, a correspond-

ing fast charging (three-phase) scheme has already been de-

veloped. Hence, the paper complements the work described in

[7] for a nine-phase machine; in [10], for six-phase machines

0885-8993 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Topologies of integrated single-phase battery chargers employing: (a) a nine-phase machine, (b) a six-phase machine, and (c) a five-phase machine.

(asymmetrical and symmetrical); and in [12], for a five-phase

system architecture, all enabling fast charging with zero aver-

age torque production and full integration of the machine and

the power electronic converter into the charging/V2G process.

In simple terms, solutions of [7], [10], and [12], when com-

bined with the topologies and control schemes described in this

paper, give simultaneously means for achieving both slow and

fast battery charging for a given phase number. In this paper,

a two-level multiphase inverter is used at all times. However,

the operating principles are equally applicable to correspond-

ing systems based on three-level inverters, which are currently

considered for use in future EVs [24], [25].

The paper is organized as follows. In Section II, a theoret-

ical analysis of the charging process and operating principles

is given. The complete control algorithm, including the cur-

rent balancing and interleaving strategy, is presented in Section

III and is valid, with minor variations, for all the considered

topologies. In Section IV, experimental results for charging and

V2G modes are given for all four considered cases and the in-

fluence of current balancing and interleaving strategies on the

performance is discussed. Section V provides preliminary effi-

ciency evaluation of the charging/V2G process, while Section

VI concludes the paper.

II. THEORETICAL ANALYSIS

The investigated topologies are presented in Fig. 1. A dc–dc

converter, shown on the right-hand side of Fig. 1(a), may or

may not be required, depending on the battery and grid voltage

levels. Its presence or absence has no impact on the principles

of operation of the considered topologies, and similar to [7],

[10], and [12], it is not used in the experimental setup. Meeting

safety regulations with nonisolated charging could be achieved

by various techniques, one of which is described in [26].

TABLE I
CORRELATIONS BETWEEN MACHINES’ AND GRID CURRENTS

Topology Correlations

Fig. 1(a) ia = id = ig = i+ g /3 ib = ie = ih = i−g /3

ic = if = ii = 0

Fig. 1(b) ia = ic = ie = i+ g /3 ib = id = if = i−g /3

Fig. 1(c) ia = ib = i+ g /2 ic = id = ie = i−g /3

In integrated chargers employing a nine-phase machine [ei-

ther asymmetrical or symmetrical, see Fig. 1(a)], an asymmet-

rical six-phase machine, and a symmetrical six-phase machine

[see Fig. 1(b)], the grid is connected directly between the two

machine’s neutral points. Therefore, a hardware reconfiguration

is not required between propulsion and charging/V2G opera-

tion. On the other hand, the integrated charger employing a

five-phase machine requires hardware reconfiguration. For the

charging/V2G mode switch S1 , which forms the neutral point

of the machine in the propulsion mode, has to be opened [see

Fig. 1(c)].

The machines’ behavior in charging and V2G modes can

be assessed by considering the decoupling transformation

(Clarke’s) matrices. For this purpose, equal current sharing be-

tween machine phases connected to the same grid terminal is

assumed. Decoupling matrices for asymmetrical nine- and six-

phase machines can be found in [7] and [11], respectively, while

for symmetrical six-phase and five-phase machines, they are

given in [27].

Grid currents are in all topologies governed by

i+g =
√

2Icos(ωt), i−g = −
√

2Icos(ωt). (1)

Simple observation of connections from Fig. 1(a)–(c) is suf-

ficient in order to determine correlations between machines’
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TABLE II
EXCITATION MAPPING INTO MACHINES’ PLANES

Topology Excitation in Torque Producing Plane Excitation in Nontorque Producing (Passive) Plane(s) Excitation of Zero Sequence

Fig. 1(a) iα β = 0

ix 1 y 1 = I (0.33 − j0.577)cos(ωt)
ix 2 y 2 = 0
ix 3 y 3 = 0

i0 = (
√

8/3)I cos(ωt)

Fig. 1(b) (asymmetrical) iα β = 0 ix y = 0
i0− = −

√
6(I /3)cos (ωt)

i0 + =
√

6(I /3)cos (ωt)

Fig. 1(b) (symmetrical) iα β = 0 ix y = 0
i0− = (

√
12/3)I cos (ωt)

i0 + = 0

Fig. 1(c) iα β = (0.9757 + 0.7089j ) · I · cos(ωt) ix y = (0.1424 + 0.4381j ) · I · cos(ωt) i0 = 0

Fig. 2. Equivalent charging/V2G scheme (without a dc–dc converter).

currents and grid currents in all topologies. The correlations

are summarized in Table I. It should be noted that correlations

related to Fig. 1(b) are valid both for asymmetrical and sym-

metrical six-phase topologies.

By taking into account (1), substitution of correlations from

Table I into decoupling matrices for asymmetrical nine-phase,

asymmetrical six-phase, symmetrical six-phase, and five-phase

topologies (available in [7], [11], and [27]) provides information

on excitation mapping into machines’ planes. The results are

summarized in Table II. Derivation of results given in Table II

is illustrated in Appendix I.

From Table II, it can be seen that for an asymmetrical nine-

phase topology, an asymmetrical six-phase topology, and a sym-

metrical six-phase topology, the first plane is without excitation.

The whole excitation is transferred into the second plane and/or

zero-sequence component(s), none of which is capable of torque

production. In these topologies, there is no field production in

the rotor and machines’ act as sets of passive components. As

there is no field production in the rotors, machines’ stator resis-

tance and leakage inductance play a role of a current filter.

On the other hand, in the five-phase topology, the first plane

is excited (see Table II). However, the excitation pulsates along

single direction (spatially shifted from phase a axis by 36°).

Therefore, it is incapable of producing a torque. Hence, the

machine naturally stays at standstill during the charging process,

and does not have to be mechanically locked. Thus, similarly

as in the previous cases, the machine can be observed as a

set of passive components. This fact is of great importance

for the control algorithm, as it allows a great simplification of

the machines’ equivalent model during charging/V2G process,

which is considered in the next section.

III. CONTROL ALGORITHM

The equivalent scheme of single-phase chargers utilizing mul-

tiphase machines is relatively straightforward. From Section II,

Fig. 3. Control algorithm for the single-phase charging/V2G mode.

Fig. 4. Single-phase PLL algorithm.

it follows that machines in this process act as pure resistive–

inductive elements. The chargers’ equivalent scheme is given in

Fig. 2. While in a physical system both terminals of a single-

phase grid are attached to machine phases, in Fig. 2 machine

parameters from both grid branches are lumped together. Thus,

the filter Lf , Rf in Fig. 2 consists of a series connection of

two R–L elements and has the value of their sum. The resulting

scheme is a well-known single-phase full-bridge converter. It is

applicable to all topologies of Fig. 1, and the difference may

only appear in the R–L parameters of the filter.

The control algorithm for the single-phase full-bridge con-

verter of Fig. 2 is given in Fig. 3. Measurements of grid and dc-

bus voltage and machine currents are required. The grid voltage

position is found by a single-phase phase-locked loop (PLL),

shown in Fig. 4. It differs from the one for three-phase systems

[7], [10] because there is no decoupling transformation applied

to the grid voltages. An additional difference when compared

to three-phase systems is that rotational transformations are not

applied to machine currents. As it is shown in what follows,

unlike in three-phase systems, α–β current components are
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Fig. 5. Current controllers.

kept at zero, while zero-sequence current is utilized for energy

transfer.

The input of the system is a reference for the current ampli-

tude |ig |∗. The reference could be obtained as an output of a

battery charging current controller or dc-bus voltage controller.

It should be multiplied by a sine function in order to obtain

phase current reference. In order to achieve unity power factor,

that sinewave should follow the phase of the grid current. In

Fig. 3, it is obtained from grid voltage position angle θg by find-

ing its cosine. The resulting sinusoid has two functions. When

multiplied with the grid current amplitude reference |i∗g |, the

reference i∗g for the grid current is obtained. The other function

is that, if multiplied with the grid voltage amplitude |vg |, from

PLL, it produces filtered grid voltage signal vg . This signal is

then summed with the output of the current controller block v′∗
0

in order to prevent high current at the start-up of the charging

process.

A. Grid Current Control

Although only two inverter legs are shown in Fig. 2, they rep-

resent sets of legs working in parallel. Therefore, an additional

sensor for measuring grid current can be avoided by obtain-

ing this information from sensors of paralleled inverter legs.

In Fig. 3, this is accomplished by finding the zero-sequence

component of currents belonging to the same set.

The subsequent multiplication with
√

3 is required only

if power invariant three-phase decoupling transformation is

utilized.

When grid current ig is obtained either from the first or the

second set (information from the other set is disregarded), it is

controlled to its reference i∗g in the block “current controllers.”

The block is shown in detail in Fig. 5, and its middle part is

utilized for this purpose. Unlike in standard drives, it can be seen

that the reference is subtracted from the measured current. It is a

consequence of the fact that when inverter voltage increases the

charging current decreases and vice versa. The difference is then

fed into resonant vector proportional–integral (VPI) controllers.

Fig. 6. Resonant VPI controller (n denotes the harmonic number).

They have the same form as in [7], [10], which is shown in Fig. 6.

Each controller zeroes the current component at the frequency

to which it is tuned. Therefore, the first one in Fig. 5, with n = 1

(fundamental frequency) controls the grid current fundamental.

However, grid current also contains odd low-order harmon-

ics, caused by converter dead time. Thus, the control should

compensate all odd low-order harmonics produced by the con-

verter dead time. These are predominantly the 3rd, 5th, 7th,

9th, 11th, 13th, and 15th. Unlike in systems with three-phase

supply, all odd harmonics are present. Each of these harmonics

can be controlled by a resonant VPI controller that is tuned to

a specific harmonic that it attempts to eliminate. Conveniently,

these controllers can be placed in parallel in order to suppress a

wide range of harmonics. In Fig. 5, it is shown how the parallel

connection of resonant VPI controllers zeroes all harmonics up

to the 15th. It should be noted that harmonics even higher than

15th can be controlled in the same manner. However, the con-

trol up to 15th harmonic is chosen here since it is believed to

provide satisfactory results. Signal v′∗
0 is obtained by summing

controllers’ outputs.

Sum of signals v′∗
0 and v′

g is multiplied by
√

3 (see Fig. 3), in

order to cancel the effect of power invariant inverse decoupling

transformations. The modulation strategy is application of the

same carriers and mutually inverse modulation signals to the two

sets of phases; thus, factors 0.5 and −0.5 are utilized. Finally,

after inverse decoupling transformations, voltage references for

both sets are obtained. They enter the pulsewidth-modulation

(PWM) unit, which has the same form as for the propulsion

mode, only without zero-sequence injection.

B. Current Balancing

The control described in the previous section is sufficient

if machine phases have identical impedances to current flow.

Then, by placing machine phases (of the same set) in parallel, it

is accomplished that the same currents flow through them. How-

ever, in practice, ideal symmetry is never the case. This results

in higher currents in phases with lower equivalent impedances

and causes slight phase shifts between currents belonging to the

same set. Since machine currents are no longer in phase, there is

an increased risk of a torque production. In order to avoid these

problems, performing current balancing is essential.

The set imbalance manifests through appearance of α–β com-

ponents of the current in the machine. These are separated from

the useful (zero sequence, i.e., grid) current by means of two

decoupling transformations (see Fig. 3). Once isolated, they are

controlled to zero by resonant VPI current controllers, shown in

Fig. 5, under the name “current balancing of 1st/2nd set.” Only

fundamental component is controlled.
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Fig. 7. Experimental rig.

Fig. 8. Nine-phase machine in charging mode: (a) grid voltage vg , grid current
ig , machine current ia , and battery charging current iL ; (b) spectra of grid
current ig (upper graph) and machine current ia (lower graph).

It should be noted that charger employing a five-phase ma-

chine [see Fig. 1(c)] requires a slightly modified control. While

the control of the second set is identical as elaborated above,

the first set has only two phases. Therefore, a decoupling matrix

should have the form of

[C] =

√

1

2

[

1 −1
1 1

]

. (2)

Now, the first component represents the difference of the two

currents, and it should be controlled to zero. Unlike in the pre-

vious cases (where two controllers were required), it can be

accomplished with single resonant VPI controller, tuned to the

first harmonic. The second component represents scaled grid

Fig. 9. Asymmetrical six-phase machine in charging mode: (a) grid voltage
vg , grid current ig , machine current ia , and battery charging current iL ; (b)
spectra of grid current ig (upper graph) and machine current ia (lower graph).

current, and this information can be disregarded since the same

information is obtained from the second set.

Outputs of balancing current controllers (vα1β1
∗ and vα2β2

∗),

together with outputs of grid current controllers (v0+
∗ and v0−∗),

enter the inverse decoupling transformations and create final

voltage references for each set ([v∗
set1 ] and ([v∗

set2 ]), Fig. 3. A

final remark is that, if a five-phase machine is used, the factor of

0.5 in front of the first inverse decoupling transformation should

be multiplied with
√

2/3, since a different inverse decoupling

matrix is used [transpose of (2)].

C. Interleaving Strategy

The single-phase charging topologies employing multiphase

machines have an additional advantage that can facilitate
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Fig. 10. Symmetrical six-phase machine in charging mode: (a) grid volt-
age vg , grid current ig , machine current ia , and battery charging current iL ;
(b) spectra of grid current ig (upper graph) and machine current ia (lower
graph).

meeting of grid standards and regulations, namely, a simple

way of using interleaving strategy. Interleaving is a modulation

strategy with which converter legs connected to the same grid

terminal, and which have the same reference, are not switched

simultaneously. Instead, carriers are shifted by 360° divided

by the number of inverter legs sharing the same grid terminal.

In the case of a nine-phase and a six-phase machine there are

three inverter legs sharing a common grid terminal at each side.

Thus, the phase shift between carriers is 120°. In the case of a

five-phase machine, the positive grid terminal has two machine

phases attached [see Fig. 1(c)], while the negative has three.

Therefore, carriers of the first two phases are mutually shifted

by 180°, while the mutual shift of carriers of the remaining

three phases is 120°.

The same control algorithms (see Figs. 3–6), including cur-

rent balancing and interleaving strategy, can be used for V2G

operation. The only difference is that a minus sign should be

placed in front of the reference for the grid current amplitude.

IV. EXPERIMENTAL RESULTS

In order to verify the theoretical concepts and control, ex-

periments are performed for the four discussed topologies. The

experimental rig is given in Fig. 7, while the data are given in

Appendix II. It should be noted that the utilized machines are

all of induction type and are not optimized for vehicular appli-

Fig. 11. Five-phase machine in charging mode: (a) grid voltage vg , grid
current ig , machine current ia , and battery charging current iL ; (b) spectra of
grid current ig (upper graph) and machine current ia (lower graph).

cations. The grid is 240 V, 50 Hz. An amplifier, “Spitzenberger

& Spies,” is employed to emulate a battery and an optional

dc–dc converter. DC-bus voltage is set to 600 V. A resistor of

0.5 Ω is placed between the amplifier and the inverter in order

to emulate battery’s internal resistance. The inverter operates at

10 kHz, with asymmetrical PWM; thus, the control frequency

is 20 kHz. The dead time is 6 µs.

As already noted, an equivalent scheme and control of all

four configurations is essentially the same (with the exception

of the first set balancing of a five-phase machine). Therefore,

in what follows experimental results are presented in parallel

for the four topologies. This is particularly useful in order to

observe influence of filter (i.e., machine phases) impedance on

the charging/V2G process.

A. Charging Mode

Experimental results of the charging process are given in

Figs. 8–11, for the asymmetrical nine-phase, the asymmetrical

and symmetrical six-phase, and the five-phase machines, re-

spectively. The grid current amplitude reference is set to 3 A.

It is evident that all topologies perform charging at unity power

factor, since grid currents are in phase with grid voltages. If

grid currents are compared, it can be seen that although their

amplitudes are the same, the ripple varies significantly. It is the

highest in Fig. 10(a), which employs the symmetrical six-phase
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Fig. 12. Excitation of the α–β planes of the first and the second set of the
nine-phase machine in the case when: (a) the current balancing is disabled and
(b) the current balancing is enabled. Experimental data retrieved from dSpace.

machine, since its stator leakage inductance is three to five times

smaller than in any other machine (see Appendix II). The other

three machines have comparable stator leakage inductances; the

five-phase one has the highest leakage inductance; thus, its grid

current ripple is the lowest [see Fig. 11(a)]. However, from the

grid current spectra of all machines, shown in upper parts of

Figs. 8(b)–11(b), it can be seen that the difference is just in the

switching ripple. They show no low-order harmonics of more

than 0.5% of the fundamental. This is a result of proper opera-

tion of the current control algorithm (see Figs. 3 and 5), which

manages control of the first 15 harmonics.

The same oscilloscope recordings include the machines’

phase a currents ia . It can be seen that they are in phase with

grid currents. Moreover, the spectra, shown in Figs. 8(b)–11(b)

below grid current spectra, exhibit great similarity with grid

current spectra. This is an obvious consequence of the fact that

the same currents flow through them, only scaled. In the case

Fig. 13. Nine-phase machine in charging mode employing interleaving pro-
cess: (a) grid voltage vg , grid current ig , machine current ia , and battery
charging current iL ; (b) spectra of grid current ig (upper graph) and machine
current ia (lower graph).

of asymmetrical nine-phase and asymmetrical and symmetrical

six-phase machines, sets of three machine phases are paral-

leled together; thus, the machines’ phase a currents ia are three

times lower than grid currents ig , as is evident from the oscillo-

scope recordings. On the other hand, in the case of a five-phase

machine, on one side three machine phases are paralleled, while

on the other side, there are only two. This is why this machine’s

phase a current is only two times lower than the grid current

ig . If machine current ripple is examined, it can be seen that it

is proportionally the same as the one of the grid current. Thus,

again, the ripple of the symmetrical six-phase machine is the

highest.

The effect of current balancing between paralleled machine

phases is illustrated for the nine-phase machine in Fig. 12. Sim-

ple hard paralleling of phases gives excitation in the α–β plane of

each set, as is obvious from Fig. 12(a) that is valid when current

balancing control is disabled. This is a reflection of asymmetry

between current sharing among the phases. On the other hand,

when balancing control is turned on, the first harmonic gets

zeroed, as is clear from Fig. 12(b). Now, the only current com-

ponent of each set is the zero sequence, which represents grid

current. Therefore, machine currents are balanced. Indeed, the

rms values of the first set are now 0.7039, 0.7040, and 0.7041 A,

in contrast to the values 0.7452, 0.6655, and 0.7023 A, which

they have if current balancing control is switched off. In the
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Fig. 14. Asymmetrical six-phase machine in charging mode employing inter-
leaving process: (a) grid voltage vg , grid current ig , machine current ia , and
battery charging current iL ; (b) spectra of grid current ig (upper graph) and
machine current ia (lower graph).

case of all the other topologies, the α–β plane excitations are

very similar; thus, in order to avoid repetition, they are omitted

here.

The final trace in the oscilloscope recordings is the battery

charging current. It is interesting to note that this current has

the highest ripple in the case of a symmetrical six-phase ma-

chine. This is a direct consequence of the fact that input power

ripple is the highest for this machine, which than reflects on the

output power ripple, which is determined only by the battery

charging current ripple. At instants when input power drops to

zero, the battery is charged by the energy that is accumulated in

the system. When that energy is utilized, the battery has to pro-

duce some power to cover the losses; thus, the charging current

changes sign. This phenomenon is evident from oscilloscope

recordings. However, the dc component of this current deter-

mines how long the charging will take place, and it can be seen

that it has a significant value for all topologies.

B. Charging Mode Employing Interleaving Strategy

The effect of applying interleaving modulation strategy on

the four studied topologies during the battery charging process

is shown in Figs. 13–16. Since the operating conditions re-

mained the same as for the process without the interleaving, a

comparison can be made. At first, it is clear that grid current

ripple reduced significantly in all topologies. This is obvious

Fig. 15. Symmetrical six-phase machine in charging mode employing inter-
leaving process: (a) grid voltage vg , grid current ig , machine current ia , and
battery charging current iL ; (b) spectra of grid current ig (upper graph) and
machine current ia (lower graph).

if Figs. 8–11 are compared to Figs. 13–16 in terms of the grid

current total harmonic distortion (THD), the value of which

is given just above the grid current spectra in these figures. It

should also be noted that the absolute value of current switch-

ing ripple would not be significantly affected if the charging is

performed at higher powers. Again, the symmetrical six-phase

machine has the highest and the five-phase machine has the

lowest grid current ripple. The reduction is a consequence of

the fact that a major part of the machine’s phase current ripple

flows through other machine phases and does not penetrate the

grid.

On the other hand, if machine currents are inspected, it can

be seen that their ripples increase significantly. Switching har-

monics can now circulate in the three paralleled phases (or two

and three in the case of a five-phase machine), which was not

the case when they had simultaneous carriers. The increase of

the current ripple in all machines is around three times. It is

important to note that a conclusion cannot be made about grid

current ripple on the basis of the machine current ripple (as the

case was when interleaving was not employed), since a major

part of the ripple does not enter the grid. It should also be noted

that the asymmetrical six-phase machine that is used in the ex-

periment has different parameters in different planes [28], due

to specifics of its design. Therefore, a somewhat modified inter-

leaving strategy is employed, specifics of which are, however,

beyond the scope of this paper.
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Fig. 16. Five-phase machine in charging mode employing interleaving pro-
cess: (a) grid voltage vg , grid current ig , machine current ia , and battery
charging current iL ; (b) spectra of grid current ig (upper graph) and machine
current ia (lower graph).

Finally, some conclusions regarding the effect of interleaving

process on charging efficiency can be drawn based on the bat-

tery charging current iL . It can be seen that it has a lower ripple

in all topologies. However, this current’s dc value determines

the charging power and, therefore, the efficiency. From oscillo-

scope traces, it can be seen that in the case of the asymmetrical

nine-phase, asymmetrical six-phase, and five-phase machines,

the value remains similar as before interleaving strategy was

applied. Since in this case the interleaving strategy does not

significantly influence the efficiency of the charging process, its

utilization is recommended in order to comply with grid stan-

dards and regulations. However, in the case of the symmetrical

six-phase machine, the dc value of the battery charging current

is substantially reduced. Thus, a considerable part of energy

that is taken from the grid is used to cover the losses in the

machine’s windings. Therefore, the interleaving strategy in this

case should be avoided.

C. V2G Mode

The interleaving strategy has the same effect on V2G process

as on the charging process. Therefore, in Figs. 17–20 exper-

imental results of V2G operation are given only for the case

when interleaving strategy is not employed. The current refer-

ence is set to −3 A, and the same four topologies are studied.

Unity power factor operation is again obvious. If compared with

Fig. 17. Nine-phase machine in V2G mode: (a) grid voltage vg , grid current
ig , machine current ia , and battery charging current iL ; (b) spectra of grid
current ig (upper graph) and machine current ia (lower graph).

Fig. 18. Asymmetrical six-phase machine in V2G mode: (a) grid voltage vg ,
grid current ig , machine current ia , and battery charging current iL ; (b) spectra
of grid current ig (upper graph) and machine current ia (lower graph).
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Fig. 19. Symmetrical six-phase machine in V2G mode: (a) grid voltage vg ,
grid current ig , machine current ia , and battery charging current iL ; (b) spectra
of grid current ig (upper graph) and machine current ia (lower graph).

Fig. 20. Five-phase machine in V2G mode: (a) grid voltage vg , grid current
ig , machine current ia , and battery charging current iL ; (b) spectra of grid
current ig (upper graph) and machine current ia (lower graph).

the charging mode (see Figs. 8–11), it can be seen that grid cur-

rents have almost the same ripple and spectrum; however they

are now in phase opposition with the voltage. The same is valid

for machines’ currents. The only difference can be seen in the

battery charging currents, since they do not change the sign

during the operation. They are always negative. This is a con-

sequence of the fact that, even when the output power, which

gets injected into the grid, drops to zero, still some energy has to

be provided from the battery to cover the losses, mostly on the

filter. Therefore, the battery current never reaches zero value.

D. Transient From V2G Into Charging Mode

Finally, by changing the current reference from −3 to 3 A

in a step-wise manner, a transient from V2G into the charging

process is initiated. The obtained results are shown in Fig. 21.

Although fast transient is not a major concern in vehicular charg-

ing applications, it is obvious that in all four topologies grid cur-

rents reach their references quickly. Some low-order harmonics

appear during the transient. However, the energy flow almost

instantly changes its direction as can be seen from the battery

charging/discharging currents.

V. PRELIMINARY INVESTIGATION OF THE EFFICIENCY

Efficiency is considered as one of the crucial attributes of

integrated chargers, and it can be estimated from the given ex-

perimental results. The battery power is Pbat = VdcIL , while

the grid power is Pg = VgIg (unity power factor operation at all

times). The experimental results contain waveforms of battery

charging current, grid voltage, and grid current, and the battery

emulator dc voltage is 600 V in all cases. Using these data, it is

possible to estimate the efficiency. Efficiencies in charging and

V2G modes are assessed and compared. The results are given

in Tables III and IV for the control of the systems without in-

terleaving strategy. Below each value, a figure from which the

value is obtained is indicated. It can be seen that the efficien-

cies of topologies in the charging mode are between 79% and

86%. In V2G mode, they are slightly higher, between 81% and

89%.

The obtained efficiencies are of course lower than one would

hope for in a real-world scenario. However, the following

caveats should be noted. All the machines used here are of very

small power rating, so that stator winding resistances are inher-

ently high. None of the machines has been designed specifically

for vehicular applications. Three out of four were obtained by

rewinding stator of a three-phase machine (the exception being

the five-phase one, where new stator laminations with 40 slots

were manufactured). Further, the power ratings of the machines

are mutually different. Last but not least, the inverters used are

not matched to the machines in terms of the power rating and are

of much higher power. Thus the obtained efficiencies, typically

over 80%, should only be taken as indicative. It is reasonable to

expect that, with a multiphase machine optimized for vehicular

applications and of substantially higher rated power, as well as

with a converter that matches the machine’s ratings, substan-

tially higher efficiencies would result.



SUBOTIC et al.: SINGLE-PHASE ON-BOARD INTEGRATED BATTERY CHARGERS FOR EVS BASED ON MULTIPHASE MACHINES 6521

Fig. 21. Transient from V2G into charging mode of operation. Graphs depict grid voltage vg , grid current ig , machine current ia , and battery charging current
iL . Results are given for the following machine types: (a) nine-phase, (b) asymmetrical six-phase, (c) symmetrical six-phase, and (d) five-phase.

TABLE III
CHARGING-MODE EFFICIENCIES

Topology Vg (rms) (V) Ig (rms) (A) Vd c (V) IL (A) Input power (Pg = Vg Ig ) (W) Output power (Pb a t = Vd c IL ) (W) Efficiency (Pb a t /Pg )

Nine-phase 240 2.13 600 0.73 510.7 439.4 0.86

(see Fig. 8) (see Fig. 8) (see Fig. 8)

Asymmetrical six-phase 240 2.13 600 0.67 510.7 404 0.79

(see Fig. 9) (see Fig. 9) (see Fig. 9)

Symmetrical six-phase 240 2.20 600 0.72 527.8 429.5 0.81

(see Fig. 10) (see Fig. 10) (see Fig. 10)

Five-phase 240 2.15 600 0.70 517 421.9 0.82

(see Fig. 11) (see Fig. 11) (see Fig. 11)

TABLE IV
V2G-MODE EFFICIENCIES

Topology Vg (rms) (V) Ig (rms) (A) Vd c (V) IL (A) Output power (Pg = Vg Ig ) (W) Input power (Pb a t = |Vd c IL |) (W) Efficiency (Pg /Pb a t )

Nine-phase 240 2.06 600 −0.96 495.4 578.9 0.86

(see Fig. 17) (see Fig. 17) (see Fig. 17)

Asymmetrical six-phase 240 2.06 600 −1.01 493.9 605.4 0.82

(see Fig. 18) (see Fig. 18) (see Fig. 18)

Symmetrical six-phase 240 1.96 600 −0.97 470.6 583.7 0.81

(see Fig. 19) (see Fig. 19) (see Fig. 19)

Five-phase 240 2.08 600 −0.93 498 561.1 0.89

(see Fig. 20) (see Fig. 20) (see Fig. 20)

VI. CONCLUSION

The paper provides comprehensive analysis of single-phase

battery chargers incorporating multiphase machines. One enti-

rely novel topology, based on a five-phase machine, is proposed.

A complete control algorithm, applicable to all investigated

structures, is introduced next. The control includes machine

current balancing algorithm.

All topologies are experimentally assessed in both charging

and V2G mode in the laboratory conditions. The necessity of

machine current balancing among machine sets is illustrated

using experimental data and the improvement, obtained with

the current balancing algorithm, is experimentally verified. The

influence of interleaving modulation strategy on all studied ma-

chines is investigated and it is shown that, while interleaving

always improves the grid current, deterioration in the machine’s

current waveform may overweigh the improvement of the grid

current making interleaving undesirable.

All experiments are performed at unity power factor and,

as demonstrated using experimentally obtained grid current
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spectra, grid currents are almost completely free of low-order

harmonics.

As noted already, battery charging integrated on-board solu-

tions, developed and verified in this paper, enable slow charging

and complement the corresponding fast charging solutions for

the studied phase numbers, described in recent papers. Thus

multiphase machines and power electronics offer means for re-

alizing both slow and fast integrated on-board battery chargers

with zero average torque development, with either no or with a

minimum hardware reconfiguration.

APPENDIX I

DERIVATIONS OF EQUATIONS FROM SECTION II

A derivation process of equations listed in Table II is given

here. With derivations of all topologies’ excitation mapping

being similar to each other, it is sufficient to provide a derivation

of a general case. A symmetrical six-phase topology is utilized

for this purpose.

Decoupling matrix of symmetrical six-phase systems, given

in [27], can be written in space vector form as

f
αβ

=
√

2/6
(

fa + afb + a2fc + a3fd + a4fe + a5ff

)

(A1)

f
xy

=
√

2/6
(

fa + a2fb + a4fc + a6fd + a8fe + a10ff

)

. (A2)

Here, a = exp (jδ) = cosδ + jsinδ, where δ = 2π/6, and f

stands for any variable that is being transformed. From [27], the

relevant zero-sequence components are given with

f0− =
√

1/6 (fa − fb + fc − fd + fe − ff ) (A3)

f0+ =
√

1/6(fa + fb + fc + fd + fe + ff ). (A4)

Substitution of the corresponding column of Table I [see

Fig. 1(b)] into (A1) leads to the following expression:

iαβ =

√

2

6
·
{

i+g

3
+ ej 2 π

6 · i−g

3
+ ej 4 π

6 · i+g

3

+ej 6 π
6 · i−g

3
+ ej 8 π

6 · i+g

3
+ ej 1 0 π

6 · i−g

3

}

. (A5)

Grid currents can be taken in front of the brackets so that (A5)

[by taking into consideration (1)] gives

iαβ =

√

2

6
· I ·

√
2 · cos (ωt) · 1

3
·
{

1 − ej 2 π
6 + ej 4 π

6 − ej 6 π
6

+ej 8 π
6 − ej 1 0 π

6

}

=

√

2

6
· I ·

√
2 · cos (ωt) · 1

3
· 0 = 0.

(A6)

With the same type of derivation, excitation in the x--y plane

can also be obtained as ixy = 0. If zero sequence is considered,

substitution of (1) and the corresponding column of Table I into

(A3) gives

i0− =

√

1

6
·
{

i+g

3
+

i+g

3
+

i+g

3
+

i+g

3
+

i+g

3
+

i+g

3

}

=

√

1

6
· I ·

√
2 · cos (ωt) · 1

3
· 6 =

√
12

3
· I · cos (ωt) .

(A7)

In the same manner, the second zero-sequence component

can be obtained as i0+ = 0. By employing derivation principles

given here for the case of a symmetrical six-phase machine,

values in Table II can be obtained for all the other considered

topologies.

APPENDIX II

MACHINE AND OTHER DATA

DC sink/source: “Spitzenberger & Spies”—two DM 2500/

PAS single-phase mains emulation systems are connected in

series. An additional resistive load (RL 4000) is connected to

the supply, enabling power sinking of up to 4 kW.

Controller: dSPACE DS1006 processor board. DS2004 high-

speed A/D board is used for the A/D conversion of the measured

machine currents and grid voltages. DS5101 Digital Waveform

Output Board is used for the PWM.

Converters: Two two-level eight-phase inverters with EUPEC

FS50R12KE3 IGBTs. Each has a continuous rating of approxi-

mately 28 kVA.

Asymmetrical nine-phase induction machine: 2.2 kW, 230 V

(phase-to-neutral), 50 Hz, one pole pair, Rs = 6.5 Ω, Rr =
1.3 Ω, Lγs = 25 mH, Lγr = 9 mH, and Lm = 1.3 H.

Asymmetrical six-phase induction machine: 1.1 kW, P = 3,

Rs = 12.5 Ω, Rr = 6 Ω, Lγs = 36 mH, Lγr = 36 mH, and

Lm = 0.6 H.

Symmetrical six-phase induction machine: 1.1 kW, P = 3,

Rs = 3.6 Ω, Rr = 1.8 Ω, Lγs = 8 mH, Lγr = 11 mH,

Lm = 0.2 H.

Five-phase induction machine: Two pole pairs, Rs =
2.9 Ω, Rr = 2.2 Ω, Lγs = 43 mH, Lγr = 17 mH, and

Lm = 0.5 H.

REFERENCES

[1] J. Lee and B. Han, “A bidirectional wireless power transfer EV charger
using self-resonant PWM,” IEEE Trans. Power Electron., vol. 30, no. 4,
pp. 1784–1787, Apr. 2015.

[2] S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for
wireless stationary EV chargers with large lateral tolerance by dominant
field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406–
6420, Dec. 2014.

[3] J. D. Santiago, H. Bernhoff, B. Ekergård, S. Eriksson, S. Ferhatovic,
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