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Abstract: SPAD-based solid state CMOS image sensors utilising analogue integrators have attained 11 

deep sub electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new 12 

method is proposed to determine the read noise in DSERN image sensors by evaluating the peak 13 

separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The 14 

technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based 15 

pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold 16 

quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal 17 

oversampling techniques are reviewed. 18 

Keywords: Single Photon Avalanche Diode, SPAD, CMOS Image Sensor, CIS, Single Photon 19 

Counting, SPC, Quanta Image Sensor, QIS, Spatio-Temporal Oversampling. 20 

 21 

1. Introduction 22 

Imaging a few photons per pixel, per frame, demands pixels operating in the single photon 23 

counting regime. This challenge is encountered in either low-light or high-speed imaging; at long 24 

integration times (ms to s) and low photon flux, or short integration times (µs or less) and high photon 25 

flux, respectively. Examples are high-speed cameras for engine and exhaust combustion analysis, 26 

low-light or night-vision cameras for defence [1] , staring applications in astronomy and many 27 

scientific applications such as, spectroscopy, fluorescence lifetime imaging microscopy (FLIM) [2][3], 28 

positron emission tomography (PET) [4], fluorescence correlation spectroscopy (FCS) [5], Forster 29 

Resonance Emission Tomography (FRET) [6], and in automotive applications for LIDAR [7].  30 

For true photoelectron (or photon) counting to be reached, the ratio of the input sensitivity or 31 

signal to the noise of the imaging system must be sufficiently high to allow discrete and resolvable 32 

signal levels for each photoelectron to be discriminated. Referring the readout noise to the input 33 

sensitivity in photoelectrons, the single photon counting regime is theoretically entered below 0.5e- 34 

input referred read noise (RN)[8], but practically there is a 90% accuracy of determining the number 35 

of photoelectrons at 0.3e- RN, and approaching 100% accuracy at 0.15e- RN [9]. These probability 36 

figures, assume RN is Gaussian distributed and the discrimination thresholds between one 37 

photoelectron signal, to the next, are set precisely mid-way and do not take into account fixed pattern 38 

noise (FPN) or gain variations in photo-response non-uniformity (PRNU). Such sensors in this 39 

photon-counting regime with approximately <0.3e- RN may be referred to as deep sub-electron read 40 

noise (DSERN) image sensors [10]. 41 

With high charge to voltage factor (CVF) sensitivity (or conversion gain (CG)), DSERN pixels 42 

have limited photoelectron or photon counting capability (full well capacity), and therefore restricted 43 
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dynamic range (DR). DR may be extended by a range of techniques: exposure control with the capture 44 

of multiple sequential images [11], pixel design with dual integrations (e.g. lateral overflow 45 

integration capacitors (LOFIC) [12]), or by combining multiple pixel samples through spatio-46 

temporal oversampling [13], [14]. In the latter the number of oversampled frames is traded off against 47 

the frame rate. 48 

This paper evaluates the single photon counting and noise characteristics of our recent work on 49 

SPAD-based image sensors [15]–[17] and analyses the benefits, tradeoffs and noise performance of 50 

various spatio-temporal oversampling techniques [18], [19]. A new method of determining RN, CVF 51 

and other imaging measurements of DSERN image sensors is described. 52 

 53 

2. Solid-state Single Photon Counting Imaging Background 54 

Since the late 1980’s, single photon counting (SPC) and time-gated imaging have been 55 

dominated by photo-cathode based intensifier techniques achieving high signal amplification 56 

through the ‘photo-intensification’ of the generated electron cascade through the photo-electric effect 57 

using existing charge-coupled device (CCD) and CMOS image sensors (CIS) [1]. However, there are 58 

a number of drawbacks which limit their usage dependent on the application. Namely, the 59 

wavelength (colour) and spin properties of the photons are lost. Systems have high cost and are 60 

physically bulky due to the requirement of operation in a vacuum. Furthermore, photo-cathodes are 61 

sensitive to magnetic fields, they have high (kV) operating voltage and also cannot be used in-vivo. 62 

Solid-state photon counting image sensor technologies, developed over the last 16 years, address 63 

some of these issues. 64 

The electron-multiplying CCD (EMCCD) was first demonstrated in 2001 [20], and has recently 65 

achieved 0.45e- RN[21]. However, dark current is amplified through the electron multiplication 66 

process, and therefore external cooling is employed [22]. The first solid-state CIS pixel array with 67 

DSERN appeared in 2015, achieving best-case 0.22e- RN in a remarkable 1.4µm pixel pitch (PP) with 68 

403 µV/e- CVF [10]. Later, the first photon-counting CMOS imager achieved 0.27e- RN, by external 69 

cooling and a high CVF of 220 µV/e- was realised by removing the reset transistor [23]. Oversampling 70 

ADCs have been employed in CIS to reduce all sources of readout noise (1/f, systematic temporal, 71 

source follower thermal, etc.) by correlated multiple sampling (CMS). The lowest published CIS RN 72 

in voltage (estimated by the author as CVF multiplied by RN) through four sample CMS is 31.7µV 73 

RMS [24]. Therefore, with CVF surpassing 400µV/e- and RN as low as 31.7µV RMS, CIS with sub 74 

0.15e- RN appears not an unreasonable assumption in the near future. 75 

Single photon avalanche diode (SPAD) image sensors emerged in 2002 with bump-bonded 76 

SPADs [25] onto a digital counter or time-to-digital converter (TDC) per SPAD device recording the 77 

time of arrival of single photons. High temporal resolution (≈50ps [26]) permits time resolved 78 

imaging such as capturing light-in-flight [27], and seeing round corners [28]. These time correlated 79 

single photon counting (TCSPC) sensors have favoured the temporal precision of the photon’s arrival 80 

over spatial resolution (>44µm) and fill-factor (<4%) which has, so far, restricted the wider adoption 81 

of these sensors. The digital circuit providing photon counting or timing occupies the majority of the 82 

pixel area to the detriment of photon detection. Chip stacking technology and the use of advanced 83 

digital CMOS process technologies are two methods that pitch reduction and fill factor increase will 84 

be achieved for SPAD-based image sensors in the future. Regardless of the technology, to realise high 85 

fill factor SPAD pixels, a trade-off is made between optical efficiency versus in-pixel functionality or 86 

the number of in-pixel transistors; low-transistor count analogue circuits will always be more 87 

compact than digital circuits. Our recent research has focused on time resolved photon counting 88 

applications using alternative analogue pixel designs that achieve higher fill factor and smaller pixel 89 

pitch, namely analogue counters [15], time-to-amplitude converters (TAC) [29], [30] and single bit 90 

binary memories [17]. 91 
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Binary SPAD-based imagers, with the capability of recording one SPAD avalanche within an 92 

integration time, were first published in 2011 [31] and have recently been published at 65k binary 93 

pixels [32] and in our work at 77k binary pixels [17]. Binary black and white imaging is not inherently 94 

practical for many imaging applications, therefore spatio-temporal oversampling is employed to 95 

create gray levels [14], [19]. SPAD-based image sensors based on analogue counting techniques first 96 

appeared in [33] and have recently been demonstrated with 8 to 15µm PP commensurate with CCD, 97 

EMCCD and sCMOS image sensors, and fill factor (FF) as high as 26.8% [15], [16], [34]. These sensors 98 

achieve time-gating comparable to gated photo-cathodes in the nanosecond [18] and sub nanosecond 99 

range [34]. Analogue-based SPAD imagers employ conventional CIS readout techniques and so, to 100 

aid comparison with CCD and CIS, equivalent metrics may be applied such as: 101 

 Sensitivity, of the counter circuit to one SPAD avalanche event in mV/SPAD event, 102 

equivalent to CVF (or CG).  103 

 Maximum number of SPAD events equivalent to full well. 104 

 Input referred RN normalising voltage RMS RN to one SPAD event instead of one 105 

photoelectron.  106 

 107 

These equivalencies are used throughout this paper. SPAD-based image sensors are the first 108 

solid-state imaging technology to have demonstrated sub 0.15e- RN, and as such provide a look-109 

ahead to the signal and noise characteristics of DSERN image sensors in CMOS and other 110 

technologies. 111 

 112 

3. Single Photon Counting Noise Modelling and Analysis 113 

The first part of this section details a model of read noise and sensitivity (or CVF) developed to 114 

characterise our recent work in SPAD-based imaging. The second part discusses three noise 115 

measurement methods for DSERN image sensors based on the photon counting histogram (PCH). 116 

The use of single photon counting histograms are not new to the imaging community but the analysis 117 

presented here seeks to model and quantify the noise measurements that may be obtained from the 118 

PCH.  A discrete Poisson probability density function (PDF) may represent photoelectrons (or 119 

photons) either from multiple reads of a single pixel or a single read of multiple pixels. For a single 120 

pixel ‘i’, the PDF for the captured photoelectrons k may be represented as:  121 

   122 

(1) 123 

Where 𝜆 = mean number of photoelectrons in the integration period. PRNU may be modelled 124 

to first order as a normal distribution with mean CVF µCVF and variance σCVF2. For each electron k, the 125 

ideal voltage domain input signal SIN is created with the signal from each electrons at a separation 126 

v(i,k) equal to the CVF for that pixel ‘i’: 127 

 128 

(2) 129 

  130 

(3) 131 

𝑃(𝑖, 𝑘) =  
𝜆𝑘 𝑒𝑥𝑝(−𝜆)𝑘!       :    𝑘 ∈  ℤ  

𝑆𝐼𝑁(𝑣𝑘,𝑖) = 𝑃(𝑖, 𝑘) 

𝑣(𝑖, 𝑘) = 𝑘 .   𝐶𝑉𝐹(𝑖) 
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For each electron k, assuming the read noise is dominated by thermal noise it follows a Gaussian 157 

distribution. Read noise σRN is applied on each electron’s output signal Sk for the range v=0 to (n.CVF): 158 

where n is the maximum number of electrons in the Poissonian PDF in Eqn.(1): 159 

  (4) 160 

 161 

 162 

Figure 1. Photon counting histogram (PCH) generated by the read noise model with CVF equivalent of 10mV/e, 163 

mean λ = 5e- exposure and 0.1e- equivalent RN.  164 

 165 

The voltage domain output signal is then represented as the summation of each of the 166 

constituent signals for each electron within the PDF: 167 

(5) 168 

Figure 1 provides a photon counting histogram (PCH) example of the output of the model given 169 

by Eqn. 5 with 10mV/SPAD event (or 10mV/e- equivalent) and 0.1e- equivalent RN. As seen in the 170 

figure, discrete peaks are visible in the PCH. The RN distribution around each photon counting peak 171 

can be determined using three recent methods:  172 

 173 

3.1. Valley to Peak Ratio Method 174 

Fossum et al. proposed the Valley to Peak ratio Method (VPM) detailed in [10], [35]. This 175 

measures the peak height and the neighbouring valley height (or dip between photon peaks) in the 176 

PCH. The VPM has an upper and lower RN measurement limit. Although theoretically possible, it is 177 

difficult in practice to obtain peaks and valleys in PCHs in the region of 0.5e- to ≈0.45e- RN giving an 178 

upper limit to VPM. At the lower limit, below 0.15e- RN, the VPM is inherently restricted as the valley 179 

has reached the ‘floor’ of the PCH (zero counts in more than one adjacent bin), and a companion 180 

method is needed. 181 

𝑆𝑘(𝑣) =  
1𝜎𝑅𝑁√2𝜋  .  𝑒𝑥𝑝 (− (𝑣 − 𝑆𝐼𝑁(𝑣𝑘))22𝜎𝑅𝑁2 ) 

𝑆𝑂𝑈𝑇(𝑣) =  ∑ 𝑆𝑘𝑛
𝑘=0 (𝑣) 
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3.2. Peak Separation and Width Method 227 

The Peak Separation and Width (PSW) method is proposed in this paper, and has been used in 228 

this paper to measure the SPAD-based image sensors in our recent work [15], [16]. The previous VPM 229 

measurement evaluates vertically in the PCH, whereas this PSW method operates in the voltage 230 

domain or horizontally in the PCH. By determining, the centroid of each single photon counting peak 231 

(whether by taking the peak position, or using a centroid weight algorithm, or similar), the peak 232 

separation data may provide a number of measurements: 233 

 The sensitivity or CVF per pixel (‘i’) is established by mean peak separation in a per-pixel 234 

PCH. 235 

 The PRNU and the average CVF of the sensor are evaluated through a histogram of the 236 

compiled peak separation data from step 1 above, taking RMS and mean respectively. 237 

 Vertical, horizontal and pixel to pixel FPN (VPFN, HFPN, PPFPN) are exhibited as horizontal 238 

offsets to the peaks, in the set of per pixel PCHs. 239 

 240 

The width of each peak is measured to deduce the noise characteristics of the sensor. The full 241 

width half maximum (FWHM) of each peak is captured (preferably using interpolative fitting 242 

between PCH bins to lessen errors from quantisation and non-linearity in calculations). Assuming 243 

the noise around each peak is normally distributed, the FWHM may be converted to standard 244 

deviation using the conventional expression: 245 

 (6) 246 

The interested reader may create a more complete noise model by expanding equations (4) and 247 

(6) to take into account other read noise sources (reset, flicker, etc.). Ideally the peak width remains 248 

constant across the full signal range, and RN is determined by the mean of the peak width data. 249 

However, if a signal dependent noise source is present then the peak widths will increase (and peak 250 

heights decrease) for increasing signal. There is no lower limit to the PSW method. However, the 251 

upper limit is set by the height of the valley between two peaks: by definition this valley must be 252 

lower than half of the two adjacent peak heights which evaluates at < 0.3e- RN approximately.  253 

 254 

3.3. Regressive Modelling and Fitting Method 255 

The third method fits and scales the noise model described above, against a PCH (whether a 256 

single exposures of a full sensor or multiple exposures per pixel). This method has been used in [23] 257 

to graphically confirm the correct evaluation of RN and mean exposure. This method is expanded 258 

here to encompass the previous two methods. First the VPM and PSW are used (as appropriate given 259 

their respective limits) to obtain an estimate of RN and CVF to restrict the scaling and fitting ‘search’ 260 

domain. Next the iterative process begins, recording the goodness of fit of the recorded PCH to the 261 

modelled PCH and continuing the regression analysis (by whichever chosen fitting method).  262 

Like the PSW method, this regression analysis should be performed per pixel to obtain the CVF, 263 

PRNU and FPN distributions of the image sensor. Furthermore, as in PSW, ADC non-linearity will 264 

affect the regression analysis so some method of interpolation between PCH bins may be necessary. 265 

The downside to this method, is its computationally intensive nature and the requirement to have a 266 

consistent mean number of photons for exact fitting. The Poisson distribution in Eqn. (1) assumes a 267 

constant mean number of photoelectrons (i.e. constant light level) through successive reads of a single 268 

pixel, and a constant light level across the array with equal sensitivity (0% PRNU). The advantage of 269 

the method is that the model can be expanded to account for known converter non-linearity or other 270 

noise sources, such as described in the following sections. 271 

𝜎 = 𝐹𝑊𝐻𝑀2 √2 ln 2  

 → 𝜎 ≈  
𝐹𝑊𝐻𝑀2.3548  
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4. Analogue Counter and Photon Counting Performance 293 

Single photon counting is achieved in the analogue domain with a SPAD avalanche pulse 294 

triggering an integrator circuit based on the principle of the charge transfer amplifier (CTA) whose 295 

operation is briefly described here, and in further detail in [15], [16].  296 

In reference to Figure 2, the CTA is reset by pulling the main capacitor ‘C’ to the high reset 297 

voltage VRT. The CTA operates by the input gate voltage (in this case the SPAD anode voltage) 298 

increasing above the threshold voltage of the input source follower. Charge flows from the main 299 

capacitor ‘C’ to the parasitic capacitor ‘CP’ and the voltage rises on the parasitic node. The rising 300 

voltage pushes the source follower into the cut-off region and the charge flow halts, causing a discrete 301 

charge packet to be transferred from the main capacitor for each input pulse. The voltage step 302 

sensitivity (CVF equivalent) of CTA pixels is determined by the fixed capacitor ratio (parasitic 303 

capacitance ‘CP’ divided by integration capacitor ‘C’) scaling down the input voltage spike. The CTA 304 

voltage step (‘∆𝑉𝐶𝑇𝐴’) is bias controllable by ‘VSOURCE‘ and given to a first order by the equation: 305 

 (7) 306 

Where VEB is the excess bias of the SPAD above the breakdown voltage VBD, VSOURCE is the global 307 

CTA source bias voltage, and VTH is the threshold voltage of the CTA input transistor. 308 

 309 

 310 

 311 

Figure 2. Charge transfer amplifier (CTA) analogue integrator pixel with active pixel sensor (APS) 312 

readout for global shutter or time-gated SPAD-based photon counting imaging. 313 
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  314 

Figure 3. (a) Measured PCH of the analogue counting pixel test structure in [15], (b) Modelled PCH 315 

with mean λ = 3 SPAD events, CVF equivalent of 10mV/SPAD event and equivalent 0.02e- RN. 316 

 317 

 318 

Figure 4. Measured mean peak separation from a set of PCHs, (a) The relationship of counter 319 

sensitivity to SPAD operating voltage, (b) The relationship to CTA VSOURCE voltage. 320 

 321 

 322 

VSOURCE Bias 

Voltage 

(mV) 

Linear Full Well 

Voltage (mV) 

Sensitivity from 

Linear Fit 

(mV / SPAD 

Event) 

Input Referred 

Read Noise 

(SPAD events ) 

Equivalent 

Linear Full 

Well (SPAD 

Events) 

200 802.8 14.26 0.064 56 

300 722.1 11.23 0.082 64 

400 651.4 8.21 0.113 79 

500 648.3 5.19 0.178 125 

Table 1. Photon counting performance of 320x240 SPAD-based image sensor [16]. 323 

 324 
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Figure 3 (a) illustrates an example of the output of one test structure pixel recorded with 1,000 325 

repetitions of 30μs integration time and ADC conversion from [15]. 1,000 repetitions was chosen to 326 

give an adequate number of data samples versus experimental time. The SPAD is biased at 2.7V VEB 327 

above breakdown voltage VBD ≈ 13.4V. The discrete peaks under a classical Poisson distribution are 328 

clearly evident indicating the photon counting in this example is shot noise limited. Fig 3(b) is the 329 

side-by-side modelled PCH from a manual regressive modelling and fitting method analysis. The 330 

parameters were chosen for the closest found fit, although an offset in the x-axis is still present. In 331 

Fig.3 (a), there is a slight ‘in-filling’ of some data values between the peaks. This is attributed to a 332 

distortion mechanism in the passively operated CTA circuit due to the imperfect reset, or incomplete 333 

discharge, of the parasitic capacitance CP for short inter-arrival times of two SPAD avalanche events 334 

less than 100 ns apart.  335 

The PSW method is performed for the image sensor in [16] to determine the response of the 336 

analogue counter to the SPAD excess bias and the source bias voltage. Fig.4 illustrates the relationship 337 

of the mean peak separation or image sensor sensitivity to both the SPAD excess bias and the CTA 338 

source voltage. The absolute value of the linear gradient fitting parameter indicates the capacitor ratio 339 

whilst the offset parameter indicates the other terms in the CTA equation. 340 

The linear full well (defined as a deviation of 3% in sensor output from an ideal linear response) is 341 

measured against the CTA VSOURCE bias, and the data are presented in Table 1. This demonstrates the 342 

trade-off of increasing full well against lower sensitivity and increasing RN. 343 

 344 

4. Analogue Counter Cumulative Noise 345 

Through noise measurement and iterative modelling, it is established that the analogue 346 

integrator circuits employed in SPAD-based counting pixels suffer from cumulative noise. For each 347 

SPAD event, noise affecting the counter circuit modulates the circuit sensitivity, and as the pixel 348 

integrates, the noise cumulates. Although the passive CTA pixel suffers from the ‘in-filling’ distortion 349 

mechanism described in the previous section, all analogue integrator structures such as CTAs or 350 

switched current sources (SCS) [36] [37] circuits will suffer from cumulative noise to a certain degree. 351 

The two main sources of cumulative noise are thermal noise through the switched path (which 352 

exhibits as a kT/C noise on the in-pixel capacitor, with the SPAD dead time, or counter switch time, 353 

controlling the thermal noise bandwidth) and systematic temporal noise on the common supplies. Of 354 

course, for long integration times, 1/f noise in the counter circuit and low frequency temporal noise 355 

on the common supplies will also modulate the integrator sensitivity and contribute cumulative 356 

noise.  357 

The PSW method is employed on one pixel in the test array in [15] to evaluate for this cumulative 358 

and signal dependent noise source. Multiple experiments were captured (each with an individual 359 

PCH as seen in Figure 3), and for each experiment the integration time (from 1µs to 100 µs) was 360 

increased to obtain greater number of SPAD events. An example of the combined PCH is modelled 361 

in Figure 5(a). Figure 5(b) extracts the increasing peak width indicating the presence of a cumulative 362 

noise source (σC) from measured data. A linear fit (solid black line) identifies an σC = 86.9 µV RMS 363 

noise increase per SPAD event. The model shown in Fig.5(a) is matched with 86.9 µV RMS noise per 364 

counter step and the modelled FWHM response is shown alongside (dashed red line) in Fig 5.(b).  365 

The cumulative noise modelled response SN after N steps can be modelled to first order by 366 

expanding equation 4 into an iterative expression assuming the cumulative noise is Gaussian. The 367 

initial reset level S0 (N= 0) is assumed constant with no FPN and no noise terms (a Dirac function). 368 

The first modelled counter step S1 has σC cumulative noise applied. The second step S2 is the 369 

convolved response of the first counter step with the same Gaussian cumulative noise, and so on, as 370 

an iterative convolution for subsequent counter steps as shown in Equation 8.  371 
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  (8) 394 

Where the vN represents the voltage range of interest. 395 

The same PSW procedure is performed for the full 320x240 image sensor in [16]. The imager has 396 

700 µV RMS noise per SPAD event, an increase of approximately 8 times. This is attributed to an 397 

increase of kT/C noise due to both the main and parasitic capacitors decreasing in size between the 398 

sensors, the capacitance ratio increasing from approximately doubling from 0.013 to 0.03, and an 399 

increase in temporal noise due to many more pixels active on the same supplies. Although it is noted, 400 

that some fraction of the increase may also be attributed to ≈1% PRNU which would manifest 401 

similarly with a ≈ 100μV RMS broadening of the peaks per counted photon.  402 

Figure 6(a) gives an example PCH from the imager. Fig. 6 (b) is the PCHs of the noise model 403 

applying 700 µV RMS cumulative noise and 0.06e- RN, and Fig. 6 (c) applying only RN. Fig. 6(b) has 404 

a much closer fit to the captured PCH, whereas Fig.6(c) indicates the shape of a PCH that a CIS 405 

DSERN sensor with 0.06e- RN should achieve. With such a cumulative noise source, the equivalent 406 

input referred read noise increases depending on exposure. Table 2 presents the signal against the 407 

equivalent input referred noise figures for both the imager and test structure. 408 

 409 

 410 

Figure 5. (a) Modelled multiple exposure PCH of a signal dependent cumulative noise source in the 411 

SPAD-based analogue counter structure [15]. (b) Measured and modelled peak FHWM, the first order 412 

linear fit has parameters: offset 204.7µV with cumulative noise FWHM 225.9µV / SPAD event = 413 

86.9µV / SPAD event RMS. The modelled data has cumulative noise 86.9µV / SPAD event applied. 414 

 415 
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𝑆𝑁(𝑣𝑁) =  
1𝜎𝐶√2𝜋  .  𝑒𝑥𝑝 (− (𝑣𝑁 − 𝑆𝑁−1(𝑣𝑁−1))22𝜎𝐶2 ) 
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 416 

Figure 6. (a) Measured PCH for all pixels in the 320x240 image sensor in [16]. (b) Modelled PCH (mean 417 

λ = 1.5e-) accounting for both cumulative noise and read noise showing close fit to the measured PCH 418 

(c) Modelled PCH with read noise only showing a different response. 419 

 420 

Equivalent Input Referred Total Noise 
No. of SPAD Avalanche Events 

Image Sensor [16] Test Structure [15] 

0.15e- 2 19 

0.3e- 5 45 

1e- 19 160 

Table 2. Equivalent noise at a range of SPAD events. 421 

 422 

5. Spatio-Temporal Oversampling of Photon Counting Pixels 423 

As analogue SPAD pixels suffer from increasing cumulative noise at higher photon counts and 424 

the effective full well is restricted, oversampling individual frames at low photon counts provides a 425 

means to create an image of high dynamic range with low overall noise. This section addresses trade-426 

offs, and details different methods, of spatio-temporal oversampling of photon counting pixels. The 427 

Quanta Image Sensor (QIS) framework proposed by Fossum [38], extrapolates the imaging trends of 428 

pixel shrink, increasing CVF, decreasing RN, decreasing full well and spatio-temporal oversampling 429 

to a concept of a SPC image sensor where a ‘pixel’ is the spatio-temporal sum of multiple integrations 430 

of multiple sub-pixels (‘jots’). 431 

  432 

 433 

Figure 7. Per-pixel spatio-temporal oversampling techniques. (a) Intensity image using IIR with 434 

periodic reset [17]. (b) Time-resolved image: four IIR per pixel [18]. (c) High frame rate intensity image 435 

using first-order FIR per pixel [19]. 436 
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The small full well of photon counting pixels, in the order of magnitude of 100’s of 438 

photoelectrons or photons, limits a sensor’s dynamic range. Spatio-temporal oversampling of 439 

multiple pixels may be performed to increase the full well past a single pixel’s limit. Furthermore, for 440 

DSERN photon counting pixels with cumulative noise such as the SPAD-based analogue pixels 441 

described in this paper, the level of the photon counting oversampling threshold (i.e. if pixel output 442 

>1 photon or if > 2 photons, etc.) sets the noise of the oversampled output image; a higher 443 

oversampling threshold induces greater noise in the output frame image. However, this threshold is 444 

traded off against the frame rate and the oversampled full well. A signal level of N photoelectrons 445 

can be reached with less oversampled frames (and greater output frame rate) with a higher 446 

oversampling threshold of the pixel signal. By setting the threshold above the thermal and 1/f noise 447 

floor, the oversampled is truly shot noise limited as little or no thermal and 1/f noise accumulates. 448 

 449 

5.1. Single Photon Binary Quanta Imaging 450 

Using SPAD-based single photon image sensors with binary response, a variety of oversampling 451 

techniques have been evaluated in our recent work [16][17][18][19] and in the work of others [14], 452 

[39]. ‘Field’ images are individual reads from the image sensor and the oversampled frame is a 453 

summation of fields. The simplest technique in order to oversample a set of binary single photon field 454 

images, is to temporally or spatially sum a set of input binary pixel (or ‘jot’) values, to create an output 455 

‘macro’ pixel with grey levels. This is the equivalent operation of a first-order low-pass infinite 456 

impulse response (IIR) filter with a periodic filter reset operation as shown in Figure 7 (a). 457 

Considering temporal oversampling only (as demonstrated in [17]), to achieve a certain output frame 458 

rate in FPS, with oversampled ratio OSR and input binary field rate f, the output rate is: FPS = f/OSR 459 

and inversely the IIR reset period = OSR/f, thus attaining an output bit depth of B= Log2(OSR), 460 

increasing the image bit depth by a factor of OSR or 2B. It is clear that to attain frame rates >30FPS, at 461 

bit depths B > 5 bit, a high field rate f > 1k fields/s is required from the sensor. In [17], we demonstrated 462 

7b bit depth at 40FPS, and 8b at 20FPS with 5.12k global shutter fields per second. 463 

SPADs with picosecond temporal precision enable Indirect Time of Flight (ITOF) imaging to be 464 

performed. Previous examples are pulsed ITOF using analogue pixels [33] and continuous wave 465 

ITOF using digital pixels [40]. However, both approaches had very large pixel pitch and low fill 466 

factor. A similar oversampling technique was applied in [18] with compact binary SPAD pixels, to 467 

investigate time-gated binary image oversampling to produce a high resolution QVGA Indirect Time 468 

of Flight (ITOF) output image as shown in Fig.7(b). Two primary gated field images (A & B) are 469 

sequentially captured in interleaved fashion synchronous to a pulsed laser. Two secondary gated 470 

images (A’ & B’) are set with the same time-gate without the laser for background removal. With four 471 

field images, the output time-resolved frame rate is therefore a quarter of the previous intensity-only 472 

technique (assuming a pipelined division operation).  473 

A third technique in [19], addresses the low frame rate, and evaluates a continuous-time moving 474 

average operation by applying a first-order low-pass finite impulse response (FIR) filter. As shown 475 

in Fig.7(c), the FIR is implemented as a shift-register of length equal to the over-sampling ratio (i.e. a 476 

FIR with number of taps = OSR) and a tracking counter. The benefit of this technique is the output 477 

frame rate has no relationship with the OSR and is equal to the input field rate of the sensor. The 478 

frame rate increase over the IIR technique is at the cost of the shift register per pixel. Longer 479 

integration time increases temporal blur, therefore, higher OSR increases image lag of fast moving 480 

scene elements. On the other hand, an increased bit depth (from greater OSR) decreases quantisation 481 

noise in areas of slow movement in an imaged scene.  482 

 483 

 484 
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Reference [41] [42] [16], [17] 

Sensor Name QIS Pathfinder SwissSPAD SPC Imager 

Process Technology 180nm CMOS 0.35µm HV CMOS 130nm Imaging 

CMOS 

Array Size 1376x768 512x128 320 x 240 

Photo-detector ‘Pump-gate Jot’ PD SPAD SPAD 

NMOS Pixel Transistors 3 11 9 

Fill Factor (%) 45 5 26.8 

Pixel Pitch (µm) 3.6 24 8 

Microlensing N Y (12x concentration 

factor) 

N 

Shuttering Rolling Global Global 

CDS True CDS None None 

Parallel Data Channels 32 128 16 

Max. Field Rate (fPS) 1,000 150,000 20,000 

Sensor Data Rate 1Gbps 10.24Gbps 1.54Gbps 

Pixel CVF or Equivalent 120µV / e- >1V per SPAD Event >1V per SPAD 

Event 

Bit Error Rate Not Reported Not Reported 1.7 x 10-3 BER 

Read Noise (e-) or Equivalent Not Reported Not Reported 0.168e- 

Power During Operation 20mW 1650mW 40.8mW 

Power FOM† 2.5pJ/b (ADC only) 

19pJ/b (Full Sensor) 

168pJ/b  

(Full Sensor + 

SPADs) 

104pJ/b  

(Full Sensor + 

SPADs) 

Table 3. Binary capture, oversampled output, quanta image sensor comparison table. †FOM=Sensor 485 

power/ (No. of Pixel x FPS x N), where N = ADC resolution = 1b for these sensors. 486 

 487 

We compare our recent work in this area, to two others demonstrating high binary field rates 488 

with column parallel single bit flash ADCs for single bit QIS in Table 3. In a 3T CIS implementation 489 

[41], amplification and CDS is employed and suitable for pixels with low signal swing (i.e. CVF ≤ 490 

input-referred offset and read noise). In our work [16] and another SPAD-based example [42], no 491 

CDS or column amplifier circuits are required as the pixel sensitivity is >1V/SPAD event which is 492 

much greater than offsets and RN. The RN and non-linear exposure characteristics of such 493 

oversampled binary imagers are theoretically described in [9] and experimentally confirmed in our 494 

work in [16], [18]. The measured bit error rate is 0.0017 providing an equivalent DSERN of 0.168e-. 495 

Without CDS timing and increased column current, the field rate more than doubles [16]. 496 

 497 

5.2. Multi-photon Binary Quanta Imaging 498 

As previously discussed, setting the oversampling threshold greater than a single counted 499 

photon provides a benefit to output frame rate assuming the sensor output data rate remains the 500 

same. By setting the oversampling threshold at two photons rather than one, half number of field 501 

readouts are required to reach a certain oversampled signal level as each binary bit now represents 502 

more than one photon. However, for the SPAD-based analogue counting pixel this is at the cost of 503 

oversampling greater cumulative noise, FPN or PRNU with each successive field image.  504 

An experiment is performed on the image sensor [16] recording the ‘bit density’ (the number of 505 

pixels outputting a logical high indicating the multi-photon counting threshold is reached) against 506 
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increasing integration time for a fixed light level. The pixel array in configured in analogue counting 507 

CTA mode with VSOURCE = 0.15V. Figure 8 highlights the normalized bit density (D) to normalized 508 

exposure (H), where 1.0H=5µs integration time, for an incrementing comparator threshold capturing 509 

2 to 8 photons. The theoretical curves from [9] are plotted alongside for comparison. As no CDS is 510 

implemented, the high FPN due to column comparator mismatch and source follower threshold 511 

variation will effectively induce a PRNU in the measured data for all pixels which is seen as the 512 

discrepancy between ideal and measured data particularly in the plotted line for the 4 photon 513 

threshold. The closest fit in terms of photon number (2 to 8) is listed in the legend alongside.  514 

Figure 9 is the measured normalized RMS noise which has the characteristic shape from Fossum’s 515 

theoretical Quanta Image Sensor paper in [9]. There are a number of remarkable characteristics of 516 

multi-photon threshold binary imaging that are experimentally verified in this noise plot. The rising 517 

slope of each of the noise plots indicates the shot-noise dominant region. The 2-photon line 518 

demonstrates the “soft-knee” shot noise compression with a smooth roll-off after the peak after H=1.0 519 

as expected in 1-photon or 2-photon threshold QIS. The subsequent increasing thresholds show a 520 

horizontal shift in the exposure x-axis as a higher number of photons (or equivalent SPAD events) 521 

are required to trigger the binary output. This can also be observed in the horizontal shift in the D-522 

LogH plot in Fig.8. The maximum noise in the 8-photon threshold is measured as 1.52 times higher 523 

than the 2-photon threshold where the theory [9] suggests it should be no more than square root of 524 

two higher (1.412 times).  525 

 526 

6. Discussion 527 

Table 4 provides a comparison table highlighting a selection of state of the art solid-state photon 528 

counting image sensors in the three different technologies (CIS, EMCCD and SPAD). This section 529 

discusses and compares the performance of SPAD-based image sensors based on analogue 530 

integration. SPAD based image sensors have the highest CVF of solid-state SPC image sensors. 531 

Moreover, the pixel size of the SPAD analogue-based imagers is commensurate with EMCCD and 532 

sCMOS scientific imagers, although FF is lower. With the exception of the LOFIC pixel which has 533 

dual CVF’s, like the recent CIS DSERN pixels, the increase in CVF of SPAD pixels yields a reduced 534 

full well in the order of 100’s photo-electrons or integrated SPAD events.  535 

SPADs have the advantage of picosecond temporal resolution. Analogue pixels with low 536 

transistor counts permit nanosecond and sub-nanosecond time-gated SPC imaging to be realized 537 

where digital pixels further permit TCSPC imaging with 10’s ps time resolution at the cost of low 538 

spatial resolution. 539 

In terms of RN, SPAD analogue integrators share a similar noise characteristic with 3 transistor 540 

(3T) CIS pixels in that the integration node is not fully depleted and so suffers from kT/C noise. Our 541 

test structure [15] cancels the kT/C noise by implementing 3T-pixel true CDS timing and furthermore 542 

implemented 4,096 sample CMS to yield <0.01e- equivalent RN in the best case. However, both 3T 543 

timing and >1k sample CMS is very restrictive in an image sensor design preventing, for example, 544 

the global shutter or global time-gated operation that our recent work and [37] implements. Therefore 545 

delta-reset sampling CDS [43] is implemented in our SPAD analogue counter image sensor which 546 

adds a noise component of 100’s μV RMS kT/C to the RN. However, the equivalent CVF of the SPAD-547 

based analogue pixels in the 10mV range is high enough to compensate, as demonstrated by the 548 

0.06e- RN figure which is the lowest in the published SPC image sensor literature. 549 

In comparison to other works, analogue integrators suffer from cumulative noise limiting the 550 

photon number resolution. Spatio-temporal oversampling, at a few photons per pixel level, mitigates 551 

the noise integration whilst extending the photon number resolution although high frame rates are 552 

required. 553 
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 554 

Figure 8. Multi-photon threshold oversampled binary imaging normalised bit density to exposure. 555 

Ideal curves from [9] are presented alongside measured results. 556 

 557 

 558 

Figure 9. Measured RMS noise in multi-photon threshold oversampled binary imaging. 559 

 560 
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Reference [12] [10] [23] [21] [44] [15] [16] [26] 

Photodetector PIN PD 

+ LOFIC 

‘Pump-

gate Jot’ 
PIN PD 

PIN PD EMCCD SPAD SPAD SPAD SPAD 

Pixel Circuit 5T 

+LOFIC 

4T 4T CCD Active 

CTA 8T 

Passive 

CTA 11T 

Passive 

CTA 9T 

7b 

Counter 

>100T 

Array Size 1280x960 1 35x512 1920x108

0 

160x120 3x3 320x240 32x32 

Pixel Size (µm) 5.6 1.4 11.2 x 5.6 5.5 15 9.8 8 50 

Fill Factor (%) 30.4 - - 50 21 3.12 26.8 1 

Pixel CVF or 

Equivalent 

240µV/e- 403µV/e- 220 Gain 

depende

nt from 

44µV/e- 

16.5mV/ 

SPAD 

event 

13.1 to 

2mV 

/SPAD 

Event 

17.4mV 

to 8.4mV 

/SPAD 

event 

1 DN  

/ SPAD 

Event 

Full Well or 

Equivalent 

200ke- 210e- 1500e- 20ke- to 

160e- 

41 80 to 360 56 to 125 127 

Read Noise (or 

Equivalent) 

0.41e- 0.22e- 0.27e- 0.45e-  0.08e- <0.01e- 

to 0.22e- 

0.06e- to 

0.18e- 

0 

Excess Noise - - - Y - - - - 

Cumulative 

Noise 

- - - - Y* Y Y - 

Measured 

Cumulative 

Noise  

- - - - Not  

Measure

d 

86.9 µV 

RMS / 

SPAD 

Event 

700 µV  

RMS /  

SPAD 

Event 

- 

Time Gating 

Width or 

Temporal 

Resolution 

- - - - 0.75 ns 100 ns 30 ns 52ps 

Table 4. Solid state single photon counting image sensor comparison table. *As based on a CTA analogue 561 

integrator structure, the presence of cumulative noise is assumed by the author. 562 

 563 

7. Conclusion 564 

Our recent work on SPAD-based photon counting image sensors is analysed for photon 565 

counting performance and deep sub electron equivalent noise characteristics. A noise model is 566 

developed to include both CIS RN and the cumulative noise specific to analogue integrator circuits. 567 

When combined, the three new methods (VPM, PSW and regressive analysis) of determining RN 568 

form a new powerful set of tools for the measurement of most SPC and DSERN image sensor 569 

characteristics alongside the existing techniques such as photon transfer curve analysis. 570 

These single-photon and multi-photon methods of binary image capture have the attractive 571 

quality of similar noise and signal characteristics of photographic film. Future development of these 572 

binary photon-counting image sensors is an interesting and new avenue of research. The tradeoff 573 

between in-pixel cumulative and spatio-temporal oversampling is examined. Analogue SPC pixels 574 

have DSERN but exhibit cumulative noise limiting photon number resolution. As a result they are 575 

best operated at low photon number in combination with digital oversampling. A very large dynamic 576 

range is conceivably possible, combining the multi-photon counting with an oversampled frame 577 

store, which would extend the limited dynamic range of the analogue counter. Furthermore, the 578 

frame rate penalty of oversampling is addressed by a continuous-time moving average technique. 579 
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The capability of an image sensor to capture the arrival of a single photon, is the fundamental 580 

limit to the detection of quantised electromagnetic radiation. Each of the three solid-state SPC image 581 

sensor technologies, CMOS SPAD, EMCCD and DSERN CIS have specific advantages that will 582 

individually serve a variety of photon counting applications. 583 
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Abbreviations 598 

The following abbreviations are used in this manuscript: 599 

CG: Conversion Gain 600 

CIS: CMOS Image Sensor 601 

CTA: Charge Transfer Amplifier 602 

CVF: Charge to Voltage Conversion Factor 603 

DSERN: Deep Sub Electron Read Noise 604 

EMCCD: Electron Multiplied Charge Coupled Device 605 

FIR: Finite Impulse Response Filter 606 

IIR: Infinite Impulse Response Filter 607 

PCH: Photon Counting Histogram 608 

PSW: Peak Seperation and Width method 609 

QIS: Quanta Image Sensor 610 

RN: Read Noise 611 

SPAD: Single Photon Avalanche Diode 612 

SPC: Single Photon Counting 613 

TCSPC: Time Correlated Single Photon Counting 614 

VPM: Valley to Peak method 615 

 616 
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