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Single-photon test of hyper-complex quantum
theories using a metamaterial
Lorenzo M. Procopio1,*, Lee A. Rozema1,*, Zi Jing Wong2,3,*, Deny R. Hamel1,4, Kevin O’Brien2,3, Xiang Zhang2,3,

Borivoje Dakić1,5 & Philip Walther1

In standard quantum mechanics, complex numbers are used to describe the wavefunction.

Although this has so far proven sufficient to predict experimental results, there is no

theoretical reason to choose them over real numbers or generalizations of complex numbers,

that is, hyper-complex numbers. Experiments performed to date have proven that real

numbers are insufficient, but the need for hyper-complex numbers remains an open question.

Here we experimentally probe hyper-complex quantum theories, studying one of their

deviations from complex quantum theory: the non-commutativity of phases. We do so by

passing single photons through a Sagnac interferometer containing both a metamaterial with

a negative refractive index, and a positive phase shifter. To accomplish this we engineered a

fishnet metamaterial to have a negative refractive index at 780 nm. We show that the

metamaterial phase commutes with other phases with high precision, allowing us to place

limits on a particular prediction of hyper-complex quantum theories.
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Q
uantum mechanics is an extremely well-established
scientific theory. Although it has been contested since
its inception, beginning with the famous ‘Bohr–Einstein

debates1,’ quantum mechanics has stood its ground against
competing theories and experimental tests for almost 100 years.
Especially in the past decades, quantum mechanics has
been challenged by a variety of alternative theories, including
various hidden-variable models2–11, non-linear modifications of
quantum dynamics12–17, spontaneous localization models18–23

and generalized probabilistic theories24–30. In generalized
probabilistic theories, sometimes also called ‘post-quantum
theories’, quantum mechanics is just one particular theory in a
vast sea of possibilities. One important class within this sea are
the so-called hyper-complex theories26–31. They differ from
standard quantum theory in the nature of superposition
coefficients (probability amplitudes). Whether nature prefers a
quantum theory based on real, complex, quaternionic or general
hyper-complex amplitudes is an experimental issue. Excitingly,
some predictions of hyper-complex are experimentally testable,
since basing the superposition principle on hyper-complex
probability amplitudes leads to a version of quantum mechanics
wherein simple phases are not guaranteed to commute32,33.
Although this prediction has experimentally been studied in the
past with massive, non-relativistic particles33, in that regime the
quaternionic amplitudes are known to be exponentially
suppressed27,34. Thus it is difficult to place bounds on genuine
post-quantum effects in these experiments. However, new
theoretical calculations have shown that this result does not
necessarily apply to relativistic particles, such as single photons35.
Therefore, any discrepancies between standard complex
quantum theory and its hyper-complex generalization may be
experimentally accessible in the relativistic regime.

The superposition principle states that linear combinations of
wavefunctions are also valid wavefunctions. In textbook quantum
mechanics these weighting coefficients are complex numbers, but
there is no immediate theoretical requirement for this restriction.
For example, it was shown by Birkhoff and von Neumann in
1936 that a mathematically consistent quantum theory can be
constructed using only real numbers36, but such a theory
cannot correctly predict the results of certain experiments. One
well-known example of this failure is that complex numbers are
required to model all physically-realizable two-level systems,
such as the polarization state of a photon. So far ‘complex
quantum mechanics’ (CQM) has proven necessary to describe
most quantum phenomena, but it is not known if it will
remain sufficient.

Just as one can use real numbers, one can use hyper-complex
numbers—such as quaternions37—to construct a quantum
theory26,27. A quaternion is a mathematical generalization of the
complex number with three, rather than one, imaginary
components. Quaternionic quantum mechanics (QQM) has
attracted much attention, in part because it is a natural and
elegant extension of standard quantum theory26–30,32,33,38,39.
Unlike many other post-quantum theories, QQM does not
necessarily modify the postulates of quantum mechanics24,25,40–42.
However, QQM makes certain experimental predictions which are
different from the predictions of complex quantum mechanics—
just as the predictions of a real quantum theory disagree with those
of a complex theory.

One disagreement between CQM and QQM is the (non)
commutativity of phases. In CQM phases commute, since they
are described by complex numbers. However, in QQM phases are
generally described by quaternions, which do not necessarily
commute; thus, in QQM phases will not necessarily commute. On
the basis of this idea, in 1979 Asher Peres proposed several
experimental tests to search for quaternions in quantum

mechanics32. Because of technological limitations at the time,
only a single neutron experiment has tested his ideas33. This work
found a null result, which may not be surprising as it was later
shown that quaternionic effects are likely to decay exponentially
for massive particles27. Thus that experiment did not actually
probe a prediction of quaternionic quantum theories. However,
there is strong theoretical evidence that quaternionic effects
will persist for relativistic particles, such as single photons. In fact,
we recently showed that for relativistic Klein–Gordon scattering
quaternionic effects do indeed persist35. Inspired by this
and Peres’ proposal, here we present an experiment using
relativistic particles, that allows us to precisely search for the
phase non-commutativity predicted by relativistic QQM.

To carry out our search for a hyper-complex effect we
combine photonic quantum technologies, which provide a proven
platform for foundational tests6–11,43–46, with metamaterials47–50

engineered to obtain a negative refractive index at 780 nm. We
apply two different phases to single photons in a Sagnac inter-
ferometer, and perform a high-precision measurement to study
their commutativity. We induce the two phases by very different
optical media to enhance any potential non-commutativity. One
phase is a standard optical phase (induced with a liquid-crystal),
and the other is a negative phase which is induced by an artificial
nanostructured metamaterial. Note that the phase is negative, in
the sense that the Poynting vector points opposite to the
propagation vector51, see Supplementary Notes 2 and 3 for
more details. The combination of a broadband, negative-index
metamaterial with single-photon technology at optical
wavelengths is a technological achievement. In our experiment
we find that the net phase when applying the two phases in either
order (meta-material before liquid crystal or vice versa) is
equivalent to within at least 0.03�, meaning that complex
quantum mechanics suffices to describe our experiment.
To the best of our knowledge, our work places the most precise
bounds on the commutativity of phases within hyper-complex
quantum theories to date.

Results
Experimental proposal. Our experiment is based on a Sagnac
interferometer containing different phases. As illustrated in
Fig. 1a, a perfectly balanced Sagnac interferometer, with an even
number of reflections, results in all of the photons exiting through
the same port that they entered. This results in a ‘bright port’ and
a ‘dark port’. However, this assumes that the phases commute, as
CQM dictates. To be more specific, let A and B be two phase
operators A¼aI , and B¼bI (where I is the identity operator). In
CQM a and b are complex numbers, but in general they could be
quaternions, or other hyper-complex numbers. Then the prob-
ability to detect a photon in the dark port, in an ideal inter-
ferometer with no experimental imperfections, depends on the
commutator of a and b as

Pideal
D ¼ a; b½ �j j2

4
: ð1Þ

In CQM, a¼eifA and b¼eifB are complex numbers, where fA and
fB are real numbers. In this case Pideal

D ¼ 0. On the other hand, in
QQM a and b are quaternions, which do not generally commute;
hence, we expect that Pideal

D can deviate from 0. See the Methods
section, equation (11) for more details.

In practice, photons can also leak into the dark port because
of experimental imperfections. We can quantify the imperfe-
ctions of the Sagnac interferometer by a visibility, defined as
v¼ (PB�PD)/(PBþ PD), that is o1. Here, PD (PB) is the
probability to detect a photon in the dark (bright) port. In the
Methods section we show that, for such an imperfect Sagnac
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interferometer with two non-commuting phases, PD is

PD¼
1
2

1� vþ v
2

a; b½ �j j2
� �

ð2Þ

where v is the visibility of Sagnac interferometer. Equation (2) is
in fact a special case of the general equation presented in the
Methods section (equation (14)), assuming that two phases
commute with the reflection phase of the beamsplitter. Since we
expect any deviation from CQM to be small, we expect PD to be
small. Thus, we measure an amplified signal by interfering
the bright and dark ports of the Sagnac interferometer in
a Mach–Zehnder—like interferometer (Fig. 1b). (This visibility is
amplified, with respect to a direct measurement of PD, by a factor

of
ffiffiffiffiffiffiffiffiffiffiffiffi
1� PDð Þ

PD

q
). If the relative phase Z between these ports is

scanned, the count rate in either output port of the Mach–
Zehnder interferometer will oscillate as PMZ¼ 1

2 þ 1
2 V cos Z,

where V is the visibility of PMZ:

V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2G2

p
: ð3Þ

where G¼1� ½a;b�j j2
2 . Our goal is to measure this visibility

V experimentally when different phases are present in the Sagnac
interferometer, and use this information to draw conclusions
about the commutativity of the phases in our experiment via G.
As we will see, if we perform two different measurements,
each with different phases in the interferometer (two different
values of G), we can altogether avoid needing to know v the
visibility of the Sagnac interferometer. To be clear, to use this fact

one must ensure that the visibility of the Sagnac interferometer is
unchanged by the addition of the phase.

The choice of test phases is important for discovering potential
quanternionic phases. In his proposal, Peres suggested an
interferometry experiment using materials with complex
scattering amplitudes, arguing that such materials would be
more likely to have a quaternionic component. In this vein, we
choose two optical materials with very different phase responses:
one material with a positive refractive index, and one with
a negative refractive index. We use a standard liquid-crystal
phase retarder to provide a uniform, low-optical-loss phase shift
as our first positive phase.

For our second phase we use an artificial nanostructured
metamaterial. These materials have recently been used to probe
several exciting quantum phenomena52,53. We designed our
metamaterial to have a negative refractive index, and thus apply a
negative phase. Achieving this requires both the real part of
permittivity and permeability to be negative. We obtain this at
optical frequencies with a fishnet optical metamaterial which
integrates two types of structures together—one with a negative
permittivity, and one with a negative permeability. See
Supplementary Note 1 for more details.

Interferometer performance. A sketch of our experimental
implementation is presented in Fig. 2. We send heralded single
photons (see the Methods section) into a Sagnac interferometer.
The Sagnac interferometer has two output modes, labelled B and
D in Fig. 2. CQM predicts that B is the bright port, and D is the
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Figure 1 | Experimental schematic and phase characterization. (a) If two different phases A and B are placed inside a Sagnac interferometer and, if the

phases commute, all the incoming light should exit through the ‘bright port’, while there should be no light in the ‘dark port’. If A and B do not commute

the dark port will not be dark. (b) Adding a Mach–Zehnder interferometer to interfere the bright and dark ports allows for a more precise measurement of

the leakage into the dark port. (c) Wavelength dependence of the phase shift of our negative index metamaterial. For the wavelength of our single photons,

790 nm, the measured phase is about �p, which corresponds to a refractive index of the multilayer fishnet of �0.4. Inset: SEM image of the negative

index metamaterial. (d) Phase response of the nematic liquid crystal. The measured relative phase (modulo 2p) between the LC and the air for transmitted

light is about þ p. Inset: representation of a liquid crystal.
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dark port. After exiting the Sagnac interferometer, photons in
mode B reflect off of BS1, and those in mode D reflect off of BS2.
Beamsplitter BS2 is used to reflect mode D so that both modes
experience the same attenuation, as this yields the highest
visibility interference. The two modes then interfere at BS4. To
ensure high-visibility interference, the input light is polarized
with polarizer P1, and two final polarizers P2 and P3 (aligned to
P1) are placed before the fibre couplers. Finally, both modes are
coupled into single-mode fibre for spatial filtering.

To measure the interference between the B and D modes,
BS2 is mounted on a piezo-actuated translation stage to scan
the phase Z. Because the visibility of the Sagnac interferometer is
not perfect (vo1), we observe interference even without any
phases in the Sagnac. This reference signal is shown in the bottom
panel of Fig. 3a. In this plot, the counts registered at detector
D1 are plotted versus the position of the translation stage.
We also collect the photons exiting the other port, at detector
D2 to normalize the data; these normalized data are plotted in the
upper panel of Fig. 3a. We extract the visibility of the normalized
curve by fitting the data, as described in the Methods section, and
we find that the visibility is Vo¼ 0.038±0.001. The error is
determined from the uncertainty of the fit parameters.

Experimental characterization of the phases. After characteriz-
ing our setup with no additional internal phases in the Sagnac
interferometer we must characterize the individual effect of each
of the two phases. We first turn on liquid-crystal phase retarder
(LC) by applying a voltage that results in an effective phase
of p rad (see Fig. 1d for the details of our LC). A resulting
interference signal, when Z the phase of the Mach-Zehnder
interferometer is scanned, is shown in Fig. 3b. On a single run,
turning the LC on does not introduce any measurable effects: the

visibility is still VLC¼ 0.038±0.001. To reduce the influence
of statistical fluctuations, this measurement is repeated
402 times. This minimizes the effects of long term noise,
since each run is faster than any observable fluctuation.
We find that the LC produces an average visibility difference of
DLC¼VLC�Vo¼ 0.002±0.003. This result is consistent with 0,
so we see turning on the LC has essentially no effect on our
experimental apparatus. See Supplementary Fig. 8, for more
details. This confirms that the visibility of the Sagnac inter-
ferometer v is independent of the LC, and we can use this result to
bound the systematic error induced by the LC. Note that these
two measurements (presented in Fig. 3a,b) are only used to
characterize our apparatus.

Next, we study the second phase: a negative phase shift of �p,
which is induced by inserting the negative index metamaterial
(NIM) into the Sagnac interferometer. The results of the negative-
phase characterization are presented in Fig. 1c. Data with the
NIM inserted and the LC phase set to 0 rad are shown in Fig. 3c.
The NIM has a transmission of 13% at 790 nm, which is evident
in the lower count rate of the raw data. We find that inserting
the NIM marginally decreases the visibility of the Sagnac
interferometer, leading to an increased Mach–Zehnder visibility
of VNIM¼ 0.042±0.002. This visibility increase occurs because
inserting the NIM slightly degrades or shifts the spatial modes
inside the Sagnac interferometer. We believe that this increase in
visibility is rather a systematic error (that is, a decrease in the
visibility of the Sagnac interferometer), and not the quaternionic
effect that we are interested in.

Data with both phases. To observe an effect due to potential
non-commutativity we only need study how visibilities change in
response to different phases in the interferometer. Since the

D Detector

Laser dPBS
PPKTP

D
M

Q
W

P

dH
W

P

H
W

P

Periodically-poled potassium titanyl phosphate crystal
Dual-wavelength half waveplate
Dual-wavelength polarizing beamsplitter
Negative index metamaterial

Polarizer
Beamsplitter
Dichroic mirror
Liquid crystal
Long-pass filter
Band-pass filter
Half waveplate
Quarter waveplate
Fibre coupler/collimator

P
BS
DM
LC
LP
BP

BP

BPLP

FC

Coincidence
counter

FC

D1

D2

�

D
B

P3

P2

P1

NIM

BS1 BS3

BS2
BS4 LC

LP

HWP
QWP
FC
NIM
dPBS
dHWP
PPKTP

a

b

Figure 2 | Experimental apparatus. A detailed schematic of experiment to search for a quaternionic contribution to phase shifts. (a) We generate photon

pairs in a separable polarization state. One photon is used to herald while the other one is sent to our interferometers. (b) We couple a Sagnac

interferometer into a Mach–Zehnder interferometer to search for non-commuting phases. We monitor the interference in the Mach–Zehnder

interferometer as its phase Z is scanned. The output photons are detected using single-photon detectors D1 and D2. The detectors are connected to

coincidence logic to herald single photons. Two phases are applied inside the Sagnac which we can controllably ‘turn on’ and ‘turn off’. The liquid crystal

(LC) is controlled by applying voltage to it, and the negative index metamaterial (NIM) is mounted on a motorized translation stage so it can be ‘turned off’

by physically removing it from the interferometer.
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systematic error of the LC phase is much smaller than the error
caused by inserting the NIM, we leave the NIM inserted and
compare the visibility when the LC phase is set to 0 rad and p rad.
This allows us to neglect the larger systematic error of inserting
the NIM.

Data with both the NIM inserted and LC phase set to p are
shown in Fig. 3d, and have a visibility of VBOTH¼ 0.040±0.002.
We need to compare this to the data presented in Fig. 3c.

On a single run the two visibilities are equal within experimental
error, that is, VNIM¼VBOTH. This already indicates that the two
phases commute.

To decrease our statistical errors to the level of the
LC systematic error, we repeat this experiment. We first set
the LC to first to 0 rad and then p rad a total of 761 times,
while leaving the NIM inserted the entire time. In other words, we
generate the data presented in Fig. 3c,d many times. For each run
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we measure DV¼VBOTH�VNIM for the data collected out
of both ports at detectors D1 and D2, yielding a total of 1,522
values for DV. These data are shown in Fig. 4a, and a histogram of
these results is presented in Fig. 4b. Notice that on a given trial,
VNIM can appear larger than VBOTH, leading to a negative value.
However, within error VNIM and VBOTH are equal for most trials.
To be more precise, we examine the mean value of this
distribution DV¼ 0.0006±0.005. This is consistent with zero,
and it indicates that the two phases in our experiment commute
with a very high precision. The statistical error on DV is 0.005,
which is slightly larger than the systematic error coming from
turning on the LC.

Discussion
As a final step we convert our visibility change into a different
figure of merit to provide physical insight into our results:
namely, a net phase difference when the NIM phase is applied
before or after the LC phase. To start this conversion, we extract
the ratio of G when both phases are activated to G when only the
NIM is inside the Sagnac, GBOTH/GNIM, from the following
definition

GBOTH

GNIM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

BOTH

1�V2
NIM

s
: ð4Þ

Here, GBOTH is defined in equation (17), and GNIM is defined
in equation (19) of the Methods section. If this ratio deviates
from 1, then there must be some non-commutativity. We can
further convert this ratio into a phase shift between the
clockwise and counter-clockwise modes of the the Sagnac
interferometer simply as y¼ acos GBOTH

GNIM

� �
. See the Methods

section for more details. We use equation (4) to compute
GBOTH/GNIM for every data point, the resulting distribution is
shown in the inset of Fig. 4b. From the mean of this distribution
we find GBOTH/GNIM¼ 1 with a precision of 2� 10� 7, that is,
GBOTH/GNIM¼ 0.99999999±2� 10� 7. Converting this a phase
shift yields a bound of y¼ 0.03�.

In light of this analysis, our result can be seen as an extremely
high-precision measurement of a phase shift between the two
modes of the Sagnac interferometer. In principle, such a phase
shift could arise from other effects, even in a common-path
Sagnac interferometer such as ours. However, in our estimation,
all of these potential phase shifts are orders of magnitude smaller
than our null result. For example, given the geometry of our
interferometer, the rotation of the Earth could lead to a phase
shift of at most 10� 4 degrees; Faraday effects caused by the
Earth’s magnetic field would be even smaller. Moreover, since
they would be constant, all such phase shifts would present
themselves as a reduced visibility of the Sagnac interferometer.
In our experiment, the visibility of the Sagnac interferometer is
not perfect; we attribute this to a slight mismatch between the
spatial modes of the Sagnac interferometer. Given the polarizers
before and after the interferometer, polarization mismatch
between the two modes, although possible, is very small.
We observed that any effect of the polarization mismatch is
smaller than the spatial mismatch of the two modes.
Again, these effects lead to a systematic decrease in the visibility
of the Sagnac interferometer, and our data analysis accounts
for this.

The phase shift derived here also allows us to compare our result
to a previous neutron interferometry experiment33. Although we
should point out that the deviation from CQM could be different for
neutrons and photons, and thus such tests must be carried out in a
variety of physical systems. In fact, quaternionic effects would likely
decay exponentially for neutrons27. In the neutron experiment it was
found that two interference patterns (each created with two phases

shifters inserted in either order) were shifted by less than 0.3�. Then,
since each phase shifter imparted a phase on the order of 10,000�,
they concluded that any quaternionic contribution must be
o1 part in 30,000. However, this assumes that the quaterionic
phase is linearly proportional to total phase—there is no such
requirement in QQM (see the Methods section). In fact, the
quaternionic phase could be completely independent of
the standard quantum phase. Thus only the absolute deviation
from CQM’s predictions is relevant to the quaternionic
non-commutativity, and relevant bound from the previous work is
0.3�—our bound is one order of magnitude tighter than this.

In our work we directly probe quaternionic quantum
mechanics using relativistic particles38. A previous experiment
used neutron interferometry, but it has been theoretically
predicted that non-trivial quaternionic effects are exponentially
suppressed for non-relativistic particles (such as neutrons).
However, this has not been proven for relativistic particles,
such as single photons. In fact, it was shown that quaternionic
effects for relativistic Klein-Gordon scattering can persist35. This
motivates our work, wherein we directly search for quaternionic
effects within a relativistic framework. Our work was enabled by
the combination of a novel negative-index metamaterial
with standard optical photonic technology, but further tests of
QQM could be performed within optics using other methods to
apply phases, or in other regimes (using, for example, near-field
measurements). Further tests with other massive particles (that is,
using molecular, electron, or other matter-wave interferometers)
could also prove fruitful, but therein the measurements must be
made extremely carefully to probe for exponentially decaying
effects27. Regardless of the physical system, it is essential to
continue to search for effects predicted by post-quantum theories,
as such tests may one day point towards a future theory,
supplanting quantum mechanics.

Methods
Single-photon source. Our single-photon source is based on a Sagnac
interferometer, commonly used to create polarization-entangled photon pairs, but
we generate photon pairs in a separable polarization state. Our Sagnac loop is built
using a dual-wavelength polarizing beamsplitter (dPBS) and two mirrors. A type-II
collinear periodically-poled Potassium Titanyl Phosphate (PPKTP) crystal of
length 20 mm is placed inside the loop and pumped by a 23.7 mW diode laser
centred at 395 nm. This results in photon pairs at a degenerate wavelength of
790 nm. The pump beam polarization is set to horizontal in order to generate the
down-converted photons in a separable polarization state Hj i Vj i. The dichroic
mirror (DM) transmits the pump beam and reflects the down-converted photons,
and the half wave plate (HWP) and quarter waveplate (QWP) are used to adjust
the polarization of the pump beam. Long (LP) and narrow band (BP) pass
filters block the pump beam and select the desired down-converted wavelength.
Polarizers are aligned to transmit only down-converted photons with the desired
polarization. After this, the down-converted photon pairs are coupled into
single-mode fibres (SMF), and one photon from the pair is used as a herald
while the other single photon is sent to the rest of the experiment using a fibre
collimator (FC).

Theoretical treatment of the Sagnac interferometer. Here we derive the
probability of a photon incident on an imperfect Sagnac interferometer to exit
the ‘dark port’ if two phases internal to the Sagnac interferometer do not commute.

We start with a single-photon incident on a 50:50 beamsplitter. Ideally,
given a 50:50 beamsplitter and a reflection phase of p/2, the state of a photon
after reflecting is:

i 1; 0j iCW;CCW þ 0; 1j iCW;CCW

� �
=
ffiffiffi
2
p

; ð5Þ

where CW and CCW refer to the clockwise and counter-clockwise modes in Fig. 1a,
respectively. Next, applying two phases (as in Fig. 1a), represented by operators A and
B, we have

ABi 1; 0j iCW;CCW þBA 0; 1j iCW;CCW

� �
=
ffiffiffi
2
p

: ð6Þ

To be completely general we will assume that the ‘i’ does not commute with A and B.
The operators A and B can be represented as

A¼aI ; B¼bI ; ð7Þ
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where I is the identity operator. In complex quantum mechanics a¼eifA and
b¼eifB , where fA and fB are real numbers. In this case, a and b are complex
numbers so A and B commute. However, in quaternionic quantum mechanics
the phase fA is generalized to vector f1

A;f
2
A;f

3
A

� �
, where f1

A , f2
A, and

f3
A are real numbers. Then ifA is replaced with if1

A þ jf2
A þ kf3

A , where
{i, j, k} is a basis over the imaginary part of the quaternionic space. With these
definitions a and b in equation (7) become unit quaternions

a¼eif1
A þ jf2

A þ kf3
A ; b¼eif1

B þ jf2
B þ kf3

B ð8Þ
Now, the operators A and B of equation (7) no longer commute in general. In fact,
a and b could be even more general hyper-complex numbers, consisting of more
than three imaginary components.

Next, by applying the form of the operators defined in equation (7), we can
write the state in equation (6) as

abi 1; 0j iCW;CCW þba 0; 1j iCW;CCW

� �
=
ffiffiffi
2
p

: ð9Þ

In complex quantum mechanics, ab¼ba and the two complex numbers describe a
global phase, so they have no effect on experimental outcomes. However, if a and b
do not commute, the output state is

1
2

abiþ ibað Þ 1; 0j iB;D þ
1
2

iabiþbað Þ 0; 1j iB;D: ð10Þ

Thus the probability for an incident photon to exit the Sagnac interferometer via
the dark port (the amplitude of the second term) is

Pideal
D ¼ 1

4
iab�baij j2: ð11Þ

This quantifies the degree of commutativity between a, b, and i. If a, b, and i all
mutually commute it is zero. Moreover, if i commutes with a and b it simply
becomes the commutator of a and b, as shown in equation (1) of the main text.

We will next treat the imperfect alignment of our interferometer. We start by
writing the state from equation (9) as a density matrix

1
2

1 abia�b�

� baib�a� 1

� �
; ð12Þ

where the � denotes the conjugate of a quaternion or complex number. Let our
Sagnac interferometer have a visibility of v¼ (PB� PD)/(PBþ PD), where PD and PB

are the intensities of the dark and bright ports, respectively. We can model this by
simply scaling the coherences by v, as

1
2

1 vabia�b�

� vbaib�a� 1

� �
: ð13Þ

This reduced coherence can be derived by coupling the CW and CCW modes to
additional modes, and then tracing out those additional modes. This is a very
general method to model imperfections since it does not require any assumptions
on the types of imperfections: the CW and CCW modes could couple to additional
spatial modes, temporal modes, etc.

Again, we can compute the probability to find the photon in the dark port by
applying the beamsplitter transformation. Doing so yields

PD¼
1
2

1� vþ v
2

iab� baij j2
� �

; ð14Þ

Then the probability of the photon to exit the bright port is simply PB¼ 1�PD.
Notice that PD defined here differs slightly from the equation (2) of the main text,
in that |iab� bai| replaces |[a, b]|. However, a non-zero value of this new quantity
would also signify a deviation of QQM from CQM, and is, thus, also interesting to
study.

Theoretical treatment of the Mach-Zehnder interferometer. After the Sagnac
interferometer, the bright and dark ports are interfered in our Mach–Zehnder
interferometer (Fig. 1b). Interfering two optical fields, with intensities of PB and PD,
on a 50:50 beamsplitter results in a signal with a visibility of.

V¼2
ffiffiffiffiffiffiffiffiffiffiffi
PBPD
p

; ð15Þ
The same result holds if PB and PD are instead the probabilities of finding a photon
in either path. Thus, the visibility of the Mach–Zehnder interferometer with both
phases inserted in the Sagnac interferometer, can be computed from PD

(equation (14)). After simplifying, we arrive at

VBOTH¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2G2

BOTH

q
; ð16Þ

where

GBOTH¼1� 1
2

iab� baij j2 ð17Þ

This visibility VBOTH is a function of both the degree of commutativity |iab� bai|
and the visibility of the Sagnac interferometer v. To compare to our experimental
procedure imagine that we turn off the liquid–crystal phase (which we represent
by a) and leave the negative-index metamaterial inserted. Then a drops out and the
degree of commutativity becomes the commutator of i and b, so equation (16)

becomes

VNIM¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2G2

NIM

q
; ð18Þ

where

GNIM¼1� 1
2

i; b½ �j j2: ð19Þ

This visibility that depends on the commutation of the negative-index metama-
terial with the reflection phase inside the Sagnac interferometer, and on the
visibility v of the Sagnac interferometer.

By combining equations (16 and 18) we arrive at a result which does not
depends only on two measurable visibilities of the Mach-Zehnder interferometer,
and not on the visibility v of the Sagnac interferometer:

1� 1
2 iab� baij j2

1� 1
2 ½i; b�j j2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

BOTH

1�V2
NIM

s
� GBOTH

GNIM
; ð20Þ

Thus we can experimentally determine the ratio GBOTH/GNIM from two visibilities
of the Mach–Zehnder interferometer with and without the liquid–crystal phase
turned on. The left-hand side of equation (20) simplifies to the G defined after
equation (3) in the main text if i commutes with both a and b. Notice also
that if |iab� bai|¼ |[i, b]|a0 this ratio will be one. Thus this parameter is
insensitive to a very specific type of non-commutativity between a, b, and i where-
in |iab� bai|¼ |ib� bi|. Physically this would be the case, for example, if
a commutes with b and i, but b and i do not commute. The reason for defining
the quantity GBOTH/GNIM will become clear in the next section.

Converting the visibility change into a phase change. In this section we will
derive a figure of merit which provides additional physical intuition into our
results. Namely, a difference in the net phase between the NIM phase being applied
before the LC phase, and vice versa. In our experiment we measure the visibility of
an interference signal which is proportional to the commutator of the two phases.
This signal arises from interference between the dark and bright output ports of the
Sagnac interferometer. As we show above, if two phases inside the Sagnac do no
commute, light will leak into the dark port. Then interfering the bright and dark
modes leads to an interference signal which has a visibility given by equation (15).

Imagine that leakage into the dark port arises from of a phase shift y between
the clockwise and the counter-clockwise modes of the Sagnac. Physically, this
means that there is a different phase shift if the photon sees the metamaterial
before or after the liquid-crystal. It is straightforward to show, within CQM, that if
the two modes of a Sagnac interferometer experience a phase shift y the
probabilities of the photon exiting either port become

PB¼
1
2
þ v

2
cos y;

PD¼
1
2
� v

2
cos y;

ð21Þ

where v is the visibility of the Sagnac interferometer. Now substituting
equation (21) into equation (15) we arrive at the visibility of the Mach-Zehnder
interferometer as a function of the phase inside the Sagnac interferometer

VðyÞ¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2cos2y
p

: ð22Þ
Experimentally, we measure two visibilities of the Mach–Zehnder

interferometer, which we now attribute to a phase change in the Sagnac
interferometer. In the present picture, V(y) and V(0) are the visibilities of the
Mach-Zehnder interferometer with and without a phase difference between the
clockwise and counter-clockwise modes. Thus, we will equate V(0) to the visibility
when only one phase is inside the Sagnac interferometer VNIM�V(0), and V(y) to
the visibility when both phases are in the Sagnac interferometer VBOTH�V(y).
Then we will substitute equation (22) into (20), simplifying and solving for y.
Doing this yields

y¼ acos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

BOTH

1�V2
NIM

s" #
¼ acos

GBOTH

GNIM

� �
: ð23Þ

We can then understand this y as an effective phase shift between the clockwise
and counter-clockwise modes, arising from the non-commutativity of the phases.
So we see that measuring these two visibilities allows us to use equation (23) to
convert our result into this phase. Doing this, and using Gaussian error
propagation on equation (23) results in yo0.03�.

Fitting to extract visibility. To extract the visibility from the normalized data we
fit a sinusoid to the data, and calculate the visibility from the fit parameters. The
explicit form of our fitting equation is

e sin2 fxþ pð Þþ k; ð24Þ

where e, k, f, and p are all free parameters. The visibility of this curve in
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equation (24) in terms of the fit parameters is

e
eþ 2k

: ð25Þ

We compute the error on each visibility using Gaussian error propagation, starting
with the fitting uncertainties.

Negative-index metamaterial. We use a fishnet metamaterial to achieve an
optical medium with a negative refractive-index. Our fishnet negative index
metamaterial (NIM) consists of seven physical layers of silver (Ag, 40 nm) and
magnesium fluoride (MgF2, 50 nm), with a 15 nm capping layer of MgF2.
The metamaterial is suspended to avoid any positive phase contribution from
the substrate. Figure 1c shows the resulting negative phase shift of our NIM as
a function of the wavelength of the light, and the inset shows an SEM image of the
surface of our NIM. Supplementary Notes 1–3 contains complete details of the
design, fabrication, and characterization of our NIM.

In our experiment, the NIM is mounted on an automated translation stage so
that it can be reliably and repeatably removed and inserted. It has a clear aperture
of approximately 20mm, thus we focus the beam sufficiently to pass through it. To
find the optimal position of the NIM, we scan the translation stage, while
monitoring the transmission of both the clockwise and counter-clockwise
modes of the Sagnac interferometer. We align the sample, relative to the focus of
the lenses, such that the transmission of both modes is maximized at the same
position. Another point of concern is the significant back reflection (E50%) of the
NIM for our wavelength range. Since this back reflection can couple to our
detectors, we slightly tilt the NIM, by 0.44�, to reduce this background signal. We
tilt the NIM along a carefully chosen axis so as to keep the polarization parallel to
the thinner lines of the fishnet nanostructures, it has be shown that in this
configuration such metamaterials still work optimally54.

Liquid crystal retarder. We use a commercial nematic liquid crystal cell whose
molecules orient to an applied electrical field. We characterize the LC by placing it
between two polarizing beamsplitter cubes with its optical axis at an angle of 45�.
We then measure the light intensity transmitted through the second PBS as we vary
the voltage applied to the LC. Since the transmitted intensity is proportional to
1
2(1þ cos z), where z is the relative phase imparted by the LC, this measurement
allows us to determine the relative phase (modulo 2p) effected by the LC as
a function of the applied voltage. The measured relative phase of the LC is shown
in Fig. 1d.

Data availability. The data that support the findings of this study and the
computer code to analyse it are available from the corresponding authors on
request.
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