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Abstract. Classical methods such as A* and IDA* are a popular and
successful choice for one-player games. However, they fail without an
accurate admissible evaluation function. In this paper we investigate
whether Monte-Carlo Tree Search (MCTS) is an interesting alterna-
tive for one-player games where A* and IDA* methods do not perform
well. Therefore, we propose a new MCTS variant, called Single-Player
Monte-Carlo Tree Search (SP-MCTS). The selection and backpropaga-
tion strategy in SP-MCTS are different from standard MCTS. Moreover,
SP-MCTS makes use of a straightforward Meta-Search extension. We
tested the method on the puzzle SameGame. It turned out that our SP-
MCTS program gained the highest score so far on the standardized test
set.

1 Introduction

Recently, Monte-Carlo (MC) methods have become a popular approach for in-
telligent play in games. MC simulations have first been used as an evaluation
function inside a classical search tree [4, 5]. In this role, MC simulations have
been applied to Backgammon [23], Clobber [18], and Phantom Go [6]. Due to the
costly evaluation, the search is not able to investigate the search tree sufficiently
deep in some games [4].

Therefore, the MC simulations have been placed into a tree-search context
in multiple ways [9, 10, 17]. The resulting general method is called Monte-Carlo
Tree Search (MCTS). It is a best-first search where the MC simulations guide
the search. Especially in the game of Go, which has a large search space [3],
MCTS methods are successful [9, 10].

So far, MCTS has been applied rarely in one-player games. The only example
we know of is the Sailing Domain [17]. There, it is applied on a game with
uncertainty. So, to the best of our knowledge, MCTS has not been used in a one-
player game with perfect information (a puzzle1). The traditional approaches to
puzzles [16] are applying A* [14] or IDA* [19]. These methods have been quite
successful for solving puzzles. The disadvantage of the methods is that they need
an admissible heuristic evaluation function. The construction of such a function
1 Although it is somewhat arbitrary, we will call these one-player games with perfect

information for the sake of brevity puzzles [16].
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can be difficult. Since MCTS does not need an admissible heuristic, it may be
an interesting alternative. In this paper we will investigate the application of
MCTS to a puzzle. We introduce a new MCTS variant called SP-MCTS. The
puzzle SameGame [20] will be used as a test domain in the remainder of this
paper.

In Sect. 2 we present the background and rules of SameGame. In Sect. 3
we discuss why classical approaches are not suitable for SameGame. Then we
introduce our SP-MCTS approach in Sect. 4. Experiments and results are given
in Sect. 5. Section 6 shows our conclusions and indicates future research.

2 SameGame

Below, we first present some background information on SameGame, in Subsec-
tion 2.1. Subsequently we explain the rules in Subsection 2.2.

2.1 Background

SameGame is a puzzle invented by Kuniaki Moribe under the name Chain Shot!
in 1985. It was distributed for Fujitsu FM-8/7 series in a monthly personal
computer magazine called Gekkan ASCII [20]. The puzzle was afterwards re-
created by Eiji Fukumoto under the name of SameGame in 1992. So far, the
best program for SameGame has been developed by Billings [24].

By randomly playing 106 puzzles, we estimated the average length of the
game to be 64.4 moves and the average branching factor to be 20.7, resulting in a
game-tree complexity of 1085. Moreover, we computed the state-space complexity
of the game to be 10159.

2.2 Rules

SameGame is played on a rectangular vertically placed 15×15 board initially
filled with blocks of 5 colors at random. A move consists of removing a group
of (at least two) orthogonally adjacent blocks of the same color. The blocks on
top of the removed group will fall down. As soon as an empty column occurs,
the columns to the right of the empty column are shifted to the left. Therefore,
it is impossible to create separate subgames. For each removed group points are
rewarded. The amount of points is dependent on the number of blocks removed
and can be computed by the formula (n− 2)2, where n is the size of the removed
group.

We show two example moves in Fig. 1. When the ‘B’ group in the third
column with a connection to the second column of position 1(a) is played, it
will be removed from the game. In the second column the CA blocks will fall
down and in the third column the ‘C’ block will fall down, resulting in position
1(b). Because of this move, it is now possible to remove a large group of ‘C’
blocks (n=6). Owing to an empty column the two columns at the right side of
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the board are shifted to the left, resulting in position 1(c).2 The first move is
worth 1 point; the second move is worth 16 points.

(a) Playing ‘B’ in the
center column

(b) Playing ‘C’ in the
center column

(c) Resulting position

Fig. 1. Example SameGame moves

The game is over if no more blocks can be removed. This happens when
either the player (1) has removed all blocks or (2) is left with a position where
no adjacent blocks have the same color. In the first case, 1,000 bonus points are
rewarded. In the second case, points will be deducted. The formula for deducting
is similar to the formula for awarding points but now iteratively applied for each
color left on the board. Here it is assumed that all blocks of the same color are
connected.

There are variations that differ in board size and the number of colors, but
the 15×15 variant with 5 colors is the accepted standard. If a variant differs in
scoring function, it is named differently (e.g., Jawbreaker, Clickomania) [21, 1].

3 Classical methods: A* and IDA*

The classical approach to puzzles involves techniques such as A* [14] and IDA*
[19]. A* is a best-first search where all nodes have to be stored in a list. The
list is sorted by an admissible evaluation function. At each iteration the first
element is removed from the list and its children are added to the sorted list.
This process is continued until the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a depth-first
approach in such a way that there is no need to store the complete tree in
memory. The search will continue depth-first until the cost of arriving at a leaf
node and the value of the evaluation function pass a certain threshold. When
the search returns without a result, the threshold is increased.
2 Shifting the columns at the left side to the right would not have made a difference

in points. For consistency, we will always shift columns to the left.
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Both methods are heavily dependent on the quality of the evaluation func-
tion. Even if the function is an admissible under-estimator, it still has to give
an accurate estimation. Classical puzzles where this approach works well are
the Eight Puzzle with its larger relatives [19, 22] and Sokoban [15]. Here a
good under-estimator is the well-known Manhattan Distance. The main task
in this field of research is to improve the evaluation function, e.g., with pattern
databases [11, 12].

These classical methods fail for SameGame because it is not easy to make an
admissible under-estimator that still gives an accurate estimation. An attempt
to make such an evaluation function is by just awarding points to the groups on
the board without actually playing a move. However, if an optimal solution to
a SameGame problem has to be found, we may argue that an “over-estimator”
of the position is needed. An admissible “over-estimator” can be created by
assuming that all blocks of the same color are connected and would be able to
be removed at once. This function can be improved by checking whether there is
a color with only one block remaining on the board. If this is the case, the 1,000
bonus points for clearing the board may be deducted because the board cannot
be cleared completely. However, such an evaluation function is far from the real
score on a position and does not give good results with A* and IDA*. Tests have
shown that using A* and IDA* with the proposed “over-estimator” result in a
kind of breadth-first search. The problem is that after expanding a node, the
heuristic value of a child is significantly lower than the value of its parent, unless
a move removes all blocks with one color from the board. We expect that other
Depth-First Branch-and-Bound methods [25] suffer from the same problem.

Since no good evaluation function has been found yet, SameGame presents
a new challenge for the puzzle research. In the next section we will discuss our
SP-MCTS.

4 Monte-Carlo Tree Search

This section first gives a description of SP-MCTS in Subsection 4.1. Thereafter
we will explain the Meta-Search extension in Subsection 4.2.

4.1 SP-MCTS

MCTS is a best-first search method, which does not require a positional evalu-
ation function. MCTS builds a search tree employing Monte-Carlo evaluations
at the leaf nodes. Each node in the tree represents an actual board position and
typically stores the average score found in the corresponding subtree and the
number of visits. MCTS constitutes a family of tree-search algorithms applica-
ble to the domain of board games [9, 10, 17].

In general, MCTS consists of four steps, repeated until time has run out [7].
(1) A selection strategy is used for traversing the tree from the root to a leaf.
(2) A simulation strategy is used to finish the game starting from the leaf node
of the search tree. (3) The expansion strategy is used to determine how many
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and which children are stored as promising leaf nodes in the tree. (4) Finally,
the result of the MC evaluation is propagated backwards to the root using a
back-propagation strategy.

Based on MCTS, we propose an adapted version for puzzles: Single-Player
Monte-Carlo Tree Search (SP-MCTS). Below, we will discuss the four corre-
sponding phases and point out differences between SP-MCTS and MCTS.
Selection Strategy. Selection is the strategic task to select one of the children
of a given node. It controls the balance between exploitation and exploration.
Exploitation is the task to focus on the move that led to the best results so
far. Exploration deals with the less promising moves that still may have to be
explored, due to the uncertainty of their evaluation so far. In MCTS at each node
starting from the root, a child has to be selected until a leaf node is reached.
Several algorithms have been designed for this setup [9, 10].

Kocsis and Szepesvári [17] proposed the selection strategy UCT (Upper Con-
fidence bounds applied to Trees). For SP-MCTS, we use a modified UCT version.
At the selection of node N with children Ni, the strategy chooses the move, which
maximizes the following formula.

X + C ·

√
ln t (N)
t (Ni)

+

√∑
x2 − t (Ni) ·X

2
+ D

t (Ni)
. (1)

The first two terms constitute the original UCT formula. It uses the number
of times t (N) that node N was visited and the number of times t (Ni) that child
Ni was visited to give an upper confidence bound for the average game value
X. For puzzles, we added a third term, which represents a possible deviation of
the child node [10, 8]. It contains the sum of the squared results so far

(∑
x2
)

achieved in the child node corrected by the expected results t (Ni) ·X
2
. A high

constant D is added to make sure that nodes, which have been rarely explored,
are considered uncertain. Below we describe two differences between puzzles and
two-player games, which may affect the selection strategy.

First, the essential difference between puzzles and two-player games is the
range of values. In two-player games, the results of a game is denoted by loss,
draw, or win, i.e., {−1, 0, 1}. The average score of a node will always stay
within [−1,1]. In a puzzle, an arbitrary score can be achieved that is not by
definition in a preset interval. In SameGame there are positions, which result in
a value above 4,000 points. As a solution to this issue we may set the constants
(C,D) in such a way that they are feasible for the interval [0, 5000]. A second
solution would be to scale the values back into the above mentioned interval
[−1,1], given the maximum score of approximately 5,000 for a position. When
the exact maximum score is not known a theoretical upper bound can be used.
For instance, in SameGame a theoretical upper bound is to assume that all
blocks have the same color. A direct consequence of such a high upperbound is
that the game scores will be located near to zero. It means that the constants C
and D have to be set with completely different values compared to two-player
games. We have opted for the first solution in our program.
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A second difference is that puzzles do not have any uncertainty on the op-
ponent’s play. It means that the line of play has to be optimized without the
hindrance of an opponent.

Here we remark that Coulom [10] chooses a move according to the selection
strategy only if t (N) reaches a certain threshold (we set this threshold to 10).
Before we cross the threshold, the simulation strategy is used. The latter is
explained below.
Simulation Strategy. Starting from a leaf node, random moves are played until
the end of the game. In order to improve the quality of the games, the moves
are chosen pseudo-randomly based on heuristic knowledge.

In SameGame, we have designed two static simulation strategies. We named
these strategies “TabuRandom” and “TabuColorRandom”. Both strategies aim
at making large groups of one color. In SameGame, making large groups of blocks
is advantageous.

“TabuRandom” chooses a random color at the start of a simulation. It is
not allowed to play this color during the random simulations unless there are no
other moves possible. With this strategy large groups of the chosen color will be
formed automatically.

The new aspect in the “TabuColorRandom” strategy with respect to the
previous strategy is that the chosen color is the color most frequently occurring
at the start of the simulation. This may increase the probability of having large
groups during the random simulation.
Expansion Strategy. When a leaf node is reached, the expansion strategy
decides on which nodes are stored in memory. Coulom [10] proposed to expand
one child per simulation. With his strategy, the expanded node corresponds to
the first encountered position that was not present in the tree. This is also the
strategy we used for SameGame.
Back-Propagation Strategy. During the back-propagation phase, the result
of the simulation at the leaf node is propagated backwards to the root. Several
back-propagation strategies have been proposed in the literature [9, 10]. The best
results that we have obtained was by using the plain average of the simulations.
Therefore, we update (1) the average score of a node. Additional to this, we
also update (2) the sum of the squared results because of the third term in the
selection strategy (see Formula 1), and (3) the best score achieved so far for
computational reasons.

The four phases are iterated until the time runs out.3 When this happens,
a final move selection is used to determine which move should be played. In
two-player games (with an analogous run-out-of-time procedure) the best move
according to this strategy will be played by the player to move and the opponent
then has time to calculate his response. But in puzzles this can be done differ-
ently. In puzzles it is not needed to wait for an unknown reply of an opponent.
Because of this, it is possible to perform one large search from the initial position

3 In general, there is no time limitation for puzzles. However, a time limit is necessary
to make testing possible.
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and then play all moves at once. With this approach all moves at the start are
under consideration until the time for SP-MCTS runs out.

4.2 Meta-Search

A Meta-Search is a search method that does not perform a search on its own
but uses other search processes to arrive at an answer. For instance, Gomes et
al. [13] proposed a form of iterative deepening to handle heavy-tailed scheduling
tasks. The problem was that the search was lost in a large subtree, which would
take a large amount of time to perform, while there are shallow answers in other
parts of the tree. The possibility exists that by restarting the search a different
part of the tree was searched with an easy answer.

We discovered that it is important to generate deep trees in SameGame (see
Subsection 5.2). However, by exploiting the most-promising lines of play, the
SP-MCTS can be caught in local maxima. So, we extended SP-MCTS with a
straightforward form of Meta-Search to overcome this problem. After a certain
amount of time, SP-MCTS just restarts the search with a different random seed.
The best path returned at the end of the Meta-Search is the path with the highest
score found in the searches. Subsection 5.3 shows that this form of Meta-Search
is able to increase the average score significantly.

5 Experiments and Results

Subsection 5.1 shows tests of the quality of the two simulation strategies Tabu-
Random and TabuColorRandom. Thereafter, the results of the parameter tuning
are presented in Subsection 5.2. Next, in Subsection 5.3 the performance of the
Meta-Search on a set of 250 positions is shown. Finally, Subsection 5.4 compares
SP-MCTS to IDA* and Depth-Budgeted Search (used in the program by Billings
[2]).

5.1 Simulation Strategy

In order to test the effectiveness of the two simulation strategies we used a test
set of 250 randomly generated positions.4 We applied SP-MCTS without the
Meta-Search extension for each position until 10 million nodes were reached in
memory. These runs typically take 5 to 6 minutes per position. The best score
found during the search is the final score for the position. The constants C and
D were set to 0.5 and 10,000, respectively. The results are shown in Table 1.

Table 1 shows that the TabuRandom strategy has a significant better average
score (i.e., 700 points) than plain random. Using the TabuColorRandom strategy
the average score is increased by another 300 points. We observe that a low
standard deviation is achieved for the random strategy. In this case, it implies
that all positions score almost equally low.

4 The test set can be found at www.cs.unimaas.nl/maarten.schadd/TestSet.txt
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Table 1. Effectiveness of the simulation strategies

Random TabuRandom TabuColorRandom

Average Score 2,069 2,737 3,038
StdDev 322 445 479

5.2 SP-MCTS Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three different
settings were used for the pair of constants (C; D) of Formula 1, in order to
investigate which balance between exploitation and exploration gives the best
results. These constants were tested with three different time controls on the
test set of 250 positions, expressed by a maximum number of nodes. The three
numbers are 105, 106 and 5× 106. The short time control refers to a run with a
maximum of 105 nodes in memory. In the medium time control, 106 nodes are
allowed in memory, and in long time control 5× 106 nodes are allowed. We have
chosen to use nodes in memory as measurement to keep the results hardware-
independent. The parameter pair (0.1; 32) represents exploitation, (1; 20,000)
performs exploration, and (0.5; 10,000) is a balance between the other two.

Table 2 shows the performance of the SP-MCTS approach for the three time
controls. The short time control corresponds to approximately 20 seconds per
position. The best results are achieved by exploitation. The score is 2,552. With
this setting the search is able to build trees that have on average the deepest
leaf node at ply 63, implying that a substantial part of the chosen line of play
is inside the SP-MCTS tree. Also, we see that the other two settings are not
generating a deep tree.

In the medium time control, the best results were achieved by using the
balanced setting. It scores 2,858 points. Moreover, Table 2 shows that the average
score of the balanced setting increased most compared to the short time control,
viz. 470. The balanced setting is now able to build substantially deeper trees
than in the short time control (37 vs. 19). An interesting observation can be
made by comparing the score of the exploration setting in the medium time
control to the exploitation score in the short time control. Even with 10 times
the amount of time, exploring is not able to achieve a significantly higher score
than exploiting.

The results for the long experiment are that the balanced setting again
achieves the highest score with 3,008 points. Now its deepest node on aver-
age is at ply 59. However, the exploitation setting only scores 200 points fewer
than the balanced setting and 100 fewer than exploration.

From the results presented we may draw two conclusions. First we may con-
clude that it is important to have a deep search tree. Second, exploiting local
maxima can be more advantageous than searching for the global maxima when
the search only has a small amount of time.
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Table 2. Results of SP-MCTS for different settings

Exploitation Balanced Exploration
105 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5× 106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20

5.3 Meta-Search

This section presents the performance tests of the Meta-Search extension of
SP-MCTS on the set of 250 positions. We remark that the experiments are time
constrained. Each experiment could only use 5×105 nodes in total and the Meta-
Search distributed these nodes fairly among the number of runs. It means that a
single run can take all 5×105 nodes, but that two runs would only use 2.5×105

nodes each. We used the exploitation setting (0.1; 32) for this experiment. The
results are depicted in Fig. 2.

Fig. 2. The average score for different settings of the Meta-Search
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Figure 2 indicates that already with two runs instead of one, a significant
performance increase of 140 points is achieved. Furthermore, the maximum av-
erage score of the Meta-Search is at ten runs, which uses 5× 104 nodes for each
run. Here, the average score is 2,970 points. This result is almost as good as
the best score found in Table 2, but with the difference that the Meta-Search
used one tenth of the number of nodes. After ten runs the performance decreases
because the generated trees are not deep enough.

5.4 Comparison

The best SameGame program so far has been written by Billings [2]. This pro-
gram performs a non-documented method called Depth-Budgeted Search (DBS).
When the search reaches a depth where its budget has been spent, a greedy sim-
ulation is performed. On a standardized test set of 20 positions5 his program
achieved a total score of 72,816 points with 2 to 3 hours computing time per
position. Using the same time control, we tested SP-MCTS on this set. We used
again the exploitation setting (0.1; 32) and the Meta-Search extension, which ap-
plied 1,000 runs using 100,000 nodes for each search process. For assessment, we
tested IDA* using the evaluation function described in Sect. 3. Table 3 compares
IDA*, DBS, and SP-MCTS with each other.

Table 3. Comparing the scores on the standardized test set

Position no. IDA* DBS SP-MCTS Position no. IDA* DBS SP-MCTS

1 548 2,061 2,557 11 1,073 2,911 3,047
2 1,042 3,513 3,749 12 602 2,979 3,131
3 841 3,151 3,085 13 667 3,209 3,097
4 1,355 3,653 3,641 14 749 2,685 2,859
5 1,012 3,093 3,653 15 745 3,259 3,183
6 843 4,101 3,971 16 1,647 4,765 4,879
7 1,250 2,507 2,797 17 1,284 4,447 4,609
8 1,246 3,819 3,715 18 2,586 5,099 4,853
9 1,887 4,649 4,603 19 1,437 4,865 4,503

10 668 3,199 3,213 20 872 4,851 4,853

Total: 22,354 72,816 73,998

SP-MCTS outperformed DBS on 11 of the 20 positions and was able to
achieve a total score of 73,998. Furthermore, Table 3 shows that IDA* does not
perform well on this puzzle. It plays at human beginner level. The best variants
discovered by SP-MCTS can be found on our website.6 There we see that SP-

5 The positions can be found at www.js-games.de/eng/games/samegame.
6 The best variations can be found at

http://www.cs.unimaas.nl/maarten.schadd/SameGame/Solutions.html
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MCTS is able to clear the board for all 20 positions. This confirms that a deep
search tree is important for SameGame as was seen in Subsection 5.2.

By combining the scores of DBS and SP-MCTS we computed that at least
75,152 points can be achieved for this set.

6 Conclusions and Future Research

In this paper we proposed a new MCTS variant called Single-Player Monte-Carlo
Tree Search (SP-MCTS). We adapted MCTS by two modifications resulting in
SP-MCTS. The modifications are (1) the selection strategy and (2) the back-
propagation strategy. Below we provide three observations and subsequently two
conclusions.

First, we observed that our TabuColorRandom strategy significantly increased
the score of the random simulations in SameGame. Compared to the pure ran-
dom simulations, an increase of 50% in the average score is achieved.

Next, we observed that it is important to build deep SP-MCTS trees. Exploit-
ing works better than exploring at short time controls. At longer time controls
the balanced setting achieves the highest score, and the exploration setting works
better than the exploitation setting. However, exploiting the local maxima still
leads to comparable high scores.

Third, with respect to the extended SP-MCTS endowed with a straightfor-
ward Meta-Search, we observed that for SameGame combining a large number
of small searches can be more beneficial than doing one large search.

From the results of SP-MCTS with parameters (0.1; 32) and with Meta-
Search set on a time control of around 2 hours we may conclude that SP-MCTS
produced the highest score found so far for the standardized test set. It was able
to achieve 73,998 points, meanwhile breaking Billings’ record by 1,182 points.

A second conclusion is that we have shown that SP-MCTS is applicable to a
one-person perfect-information game. SP-MCTS is able to achieve good results
in SameGame. So, SP-MCTS is a worthy alternative for puzzles where a good
admissible estimator cannot be found.

In the future, more techniques will be tested on SameGame. We mention
three of them. First, knowledge can be included in the selection mechanism. A
technique to achieve this is called Progressive Unpruning [7]. Second, this paper
demonstrated that combining small searches can achieve better scores than one
large search. However, there is no information shared between the searches. This
can be achieved by using a transposition table, which is not cleared at the end
of a small search. Third, the Meta-Search can be parallelized asynchronously to
take advantage of multi-processor architectures.
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