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SINGLE-POINT BLOW-UP FOR A DEGENERATE PARABOLIC
PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

By

C. Y. CHAN axp H. Y. TIAN

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana

Abstract. Let g be a nonnegative real number, and T be a positive real number.
This article studies the following degenerate semilinear parabolic first initial-boundary
value problem:

2y (2,1) — uge(2,t) = a®6(z — b) f(u(z,t)) for0<x<1,0<t<T,
w(xz,0) =9(z) for0<x <1,
w(0,t) =u(l,t) =0 for0<t<T,

where () is the Dirac delta function, and f and ¢ are given functions. It is shown that
the problem has a unique solution before a blow-up occurs, u blows up in a finite time,
and the blow-up set consists of the single point b. A lower bound and an upper bound
of the blow-up time are also given. To illustrate our main results, an example is given.
A computational method is also given to determine the finite blow-up time.

1. Introduction. Let a, 0, ¢ and 3 be constants with a > 0, ¢ > 0, ¢ > 0, and
0 < 8 < a. Let us consider the following degenerate semilinear parabolic first initial-
boundary value problem,

Sy — uge = 8(s — B)F(u(s,7)) in (0,a) x (0,0],
u(s,0) = ¥(s) on [0,q], (1.1)
u(0,7) = u(a,y) =0 for 0 < v <o,

where §(x) is the Dirac delta function, and F' and ¢ are given functions. This model is
motivated by applications in which the ignition of a combustible medium is accomplished
through the use of cither a heated wire or a pair of small electrodes to supply a large
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amount of energy to a very confined area. When ¢ = 1. the model may also be used to
describe the temperature u of the channel flow of a fluid with temperature-dependent
viscosity in the boundary laver (cf. Chan and Kong [2]) with a concentrated nonlinear
source at /3; here. ¢ and 5 denote the coordinates perpendicular and parallel to the
channel wall respectively. When ¢ = 0, it can be used to describe the temperature of a
one-dimensional strip of a finite width that contains a concentrated nonlinear source at /3.
The case ¢ = 0 was studied by Olmstead and Roberts [7] by analvzing its corresponding
nonlinear Volterra cquation of the second kind at the site of the concentrated source. A
problem due to a source with local and nonlocal features was also studied by Olmstead
and Roberts [8] by analyzing a pair of coupled nonlinear Volterra equations with different
kernels. When the nonlinear source term in the problem (1.1) is replaced by «”. the blow-
up of the solution was studied by Floater [4] for the case 1 < p < ¢ + 1. and by Chan
and Liu [3] for the case p > ¢+ 1.

Let ¢ = ar. v = a2t 3 = ab, Lu = 2%y — uyp. flu(e.t)) = Flu(c.7)). D = (0,1),
D = [0.1], and Q = D x (0. T]. Then. the above system is transformed into the following
problem:

Lu=a*5(x —b)f(u(r.t)) in €.
u(r.0) = ¢(r) on D. (1.2)
w(0. ) =u(l.t) =0 forO0<t<T.

with0 < b < 1, and T = o /a9"2. We assume that £(0) > 0. f(u) and its derivatives f/(u)
and f”(u) are positive for v > 0. and () is nontrivial. nonnegative, and continuous
such that ¢(b) > 0, ¥(0) = 0 = (1), and

"+ a?5(e=b)f(x) >0 inD. (1.3)

This condition (1.3) is used to show that before u blows up. v is a nondecreasing function
of t. Instead of the condition (1.3), Olmstead and Roberts [7] assumed that 2(t) =
]0 g(b,t:£.0)(€)dE, where g(a.t:£.7) denotes Green's function corresponding to the
heat operator 9/t — 0%/dx? with first boundary conditions. was sufficiently smooth
such that A/(t) > 0, and 0 < hy < h(t) < ho < oc for some positive constants hy and
h; these were used to show that w(b, t) and its derivative with respect to ¢ were positive
for t > 0.

A solution of the problem (1.2) is a continuous function satisfyving (1.2).

A solution u of the problem (1.2) is said to blow up at the point (. ;) if there exists
a sequence {(x,.t,)} such that u(r,.t,,) — oc as (x,.1,) — (F.1).

In Sec. 2. we convert the problem (1.2) into a nonlinear integral equation. We prove
that the integral equation has a unique continuous and positive solution U(b. 1) at the
site of the concentrated source. We then show that U(r.t) is a nondecreasing function of
t. These arc used to prove that the problem (1.2) has a unique solution u. We also show
that w(b,t) blows up if ¥ attains its maxinnun at b and u(b.t) ceases to exist at a finite
time. In Sec. 3, we show that b is the single blow-up point. We then give a criterion
for u to blow up at a finite time, and use the method of Olmstead and Roberts [7] to
establish a lower bound and an upper bound for the finite blow-up time. We remark

that 1 attaining its maximum at b is used as a sufficient condition for u to blow up at
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b. Whether it is a necessary one remains as an open question. To illustrate our main
results, an example is given in Sec. 4. We also give a computational method to find the
finite blow-up time.

2. Existence and uniqueness. Green’s function G(z,t;&,7) corresponding to the
problem (1.2) is determined by the following system: for z and € in D, and ¢t and 7 in
(——OC* OO)*

LG(z, t:€,7) = 6(x — )S(t — 7).
Gz, t;¢,7) =0, t<rT,
G(0.t:¢,7) = G(L, ¢, 7) = 0.
By Chan and Chan [1],

Gla.t:6.7) =Y oi(2)gi(E)e M), (2.1)

i

n

1

where A\; (i = 1,2,3,...) arc the eigenvalues of the Sturm-Liouville problem,
" + 270 =0, ¢(0)=0=4¢(1), (2.2)

and their corresponding eigenfunctions are given by

J. <2,\}/2x(q+2)/2>
oy EIRY  a
oi(x) =(¢+2)/ "z

1/2
J 1 QL_
I+ 55 q+2

with Jj/(g42) denoting the Bessel function of the first kind of order 1/(¢ + 2). From
Chan and Chan [1], 0 < A\; < Ao < A3 < -+ < A; < Aiy1 < ---. The set {¢i(z)} is a
maximal (that is, complete) orthonormal set with the weight function z? (cf. Gustafson

[6, p. 176)).

To derive the integral equation from the problem (1.2), let us consider the adjoint
operator L*, which is given by L*u = —z%u; — u,,. Using Green’s second identity, we
obtain

ot 1
U(a?,t):az/o G(.TZ.t:b,T)f(U(b,T))dT+/O E1G (x, £ £,0)(£)dE. (2.3)

For ease of reference, let us state below Lemmas 1(a), 1(b), 1(d), and 4 of Chan and
Chan [1] as Lemma 2.1(a), 2.1(b), 2.1(c), and 2.1(d) respectively.

LEMMA 2.1. (a) For some positive constant c1, |¢:(z)| < c1z=44 for z € (0, 1].
14 for z € D.

(c) For any zo > 0 and z € [zg, 1], there exists some positive constant ¢z depending
on zg such that |¢}(z)] < c3 /\1/2

(d) In {(x,t;&,7): x and € are in D, T >t > 7 > 0}, G(z,t; €, 7) is positive.

(b) For some positive constant ca, |¢;(x)] < caxl/2A;

LeEMMA 2.2. (a) For (z,t;€,7) € (D x (1,T]) x (D x [0,T)), G(z, t;&,7) is continuous.
(b) For each fixed (¢,7) € D x [0,T), Gt(x,t,f,r) e C(D x (1,7)).
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(c) For cach fixed (£.7) € D% [0.T). G.(x.t:£.7) and Go(z.1:€,7) arc in C((0,1] x
(., T]).

(d) If » € C([0,T]), then ](; G(x.t:b,7)r(7)dr is continuous for € D and t € [0, T].
Proof. (a) By Lemina 2.1(b),

|G(x. t:€,7)] < 2 ZA}/ze‘A'(“T).

=1

which converges uniformly for ¢ in any compact subset of (7. T). The result then follows.
(b) By Lemma 2.1(b),

@: )i (€)™ M)

<Z1<01 ) @4 (€)|Ase™ AT

>
<33 el
i=1
which converges uniformly with respect to @ € D and ¢ in any compact subset of (7, T).

This proves Lemma 2.2(b).
(¢) By Lemma 2.1(b) and (c),

S 0 ; N.e =i (t—T)
3 gtonee

(2.4)

3

Z i |¢z —/\,(t—T)

374 _x(t—
< (:2(32)\/ e~ M=)
i=1
which converges uniformly with respect to z in any compact subset of (0.1] and # in any
compact subset of (7, T].
Since ¢; is an eigenfunction, it follows from Lenina 2.1(b) that

xS
(©e D < ST o ()] [gs(€) e M T

1=1
>

= o ()] | s (€) e M=) (2.6)
=1

>
< %Z N2 itt=),

which converges uniformly with respect to 2 in any compact subset of (0. 1] and ¢ in any
compact subset of (1, T].

Lemma 2.1(c) is then proved.

(d) Let € be any positive number such that t —e > 0. For any » € D, and 7 € [0.t — €],
it follows from Lemma 2.1(a) and (b) that

Z(fh )i (b)e ™ T p(7) < erepb ™ < max_ r( ) Z,\l/4 —Aie
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which converges uniformly. By the Weierstrass M-Test,

t—e

Gz, t;b, 7)r(r)dT = Z /0 B bi(x)i(b)e N (1) dr,
i1

0

By Lemma 2.1(a} and (b),

oC t—e¢ o t—e¢
Z / Gs(2) s (D)e 2T (7)dr < crepb™ 94 ( max 1'(7‘)) Z/ A2t gp
=1" 0

0<7<T
== i=1 70

= cieb 9/ < max 7‘(T)> Z/\;S/4(€—)\'€ — et
i=1

0<r<T
oC
_ —3/4
< c1e2b”9* [ max 7(7) g A; /4
0<T<T —
im

(2.7)

which converges (uniformly with respect to , ¢, and €) since O();) = O(i?) for large i
(cf. Watson [12, p. 506]). Since (2.7) also holds for ¢ = 0, it follows that

S [ sl e

is a continuous function of z, ¢, and € (> 0). Therefore,
t oo t—e
/ Gz, t;b, m)r(1)dr = lin%z / bi(2) i (bYe™ M= p(r)dr
Jo cThi= /o

is a continuous function of x and t. [l
Let us consider the problem,

Lv=0 in,
v(x.0) = ¥(x) on D,
v(0,t) =v(1,)=0 forO<t<T,

which has a unique classical solution

1
v(a:.t):/ﬂ EIG(x, 1, €,0)(&)dE

(cf. Chan and Chan [1]). Since the strong maximum principle holds for the operator L
(cf. Friedman [5, p. 39]). and () is nontrivial, nonnegative and continuous, it follows
that v > 0 in €2, and attains its maximum max 5 ¥(x) (denoted by k1) somewhere in
D x {0}.

From (2.3),

U(b,t):aQ/(; G(b.t;b.r)f(U(b.T))dT+/(; E9G (b, 1 €,0)(€)dE. (2.8)

By Lemma 2.2(d), we can look for a continuous function U(b,#) satisfying (2.8). From
Chan and Chan [1],

1
liy [ €96(b.156,0)0(€)d€ = w(b)
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Thus from (2.8), U(b.0) = (b)) > 0.
Let us show that there exists some ¢ such that

(b)) <UD.1) for 0 <t <ty. (2.9)
Since
Ly —u) < a?6(x = bY(f(¢) — f(u)) in Q.
and ¥ —u = 0 on 082, it follows from (2.8) that

ot
P(b) = U(b.t) < (12/ Gb.t:b, 7Y (n)(w(b) — U(b,7))dr (2.10)

0
for some 1 between ¥(b) and U(b.t). Since G(x,t:£.7) is nonnegative and integrable
over [0.¢], it follows that for any t2, there exists some p such that for any t € (t2.t2 + p),

a® f'(¢(b)) /t G, t:b.m)dr < 1.

We also note that U(b.0) > 0. Suppose therc exists some 3 such that ¢ (b) > U(b.t) > 0
for t € (0,t3]. Let t; = min{p.t3}. From (2.10), we have

[G(b. t b.T)f/(’I])dT> max (y(b) — U(b.1)).

0<t<t)

v(b) = Ulb.n) < o*
0
This gives a contradiction. Thus, we have (2.9).
It follows from (2.8). f(0) > 0. and f(u) being positive for u > 0 that U(b.t) >
v(b.t) > 0 for t > 0.
Let

-1
2(f) :/O EIG (b, t; €. 0)y(€)dE.

We note that z(t) =v(b, t), and hence, 2(t) exists for ¢t > 0. Let ko denote ming<i <t v(b. t).
We have

ko <z(t) <k, for0<t<T.
It follows from /(b) > 0 and v > 0 in Q that ks > 0.
Let
w(t) =Ub.t) — z(t). (2.11)
From (2.8),

w(t) = a? ; G(b.t:b. 1) f(w(T) + z(7))dT. (2.12)

Let
t
Ruw(t) =a® | G(b.t:b,7)f(w(r) + z(7))dr.
0
From (2.12), we have w = Ruw.

LEMMA 2.3. For some given positive constant ks. there exists some £ such that (2.12)
has a unique continuous and nonnegative solution w(t) < k3 for 0 <t < t4.
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Proof. By Lemma 2.2(d), G(b, t; b, 7) is integrable over [0,¢]. Since G(b,t;b,T) is non-
negative, there exists some t4 such that

t
a’f(ks + kl)/ G(b,t;b, T)dT < k3 for 0 <t < ty, (2.13)
0

4
a®f'(ks+ k1) [ Gb.t:;bor)dr <1 for 0 <t <ty. (2.14)
0

From (2.13) and f/(u) > 0 for u > 0,
1
Ruw(t) < a®f(ks + kl)/ G(b.t;b,T)dT < k3 for 0 <t < ty. (2.15)
0

Thus, R maps the space of continuous functions satisfying
0<w(t)<ks for0<t<t,
into itself. For any w1 (t) and wy(t) satisfying (2.12),
t
_ ' < a2t (k. _ £ ‘
Ol%l%}; |Rwy(t) — Rwa(t)| < a®f' (ks + k1) <01%1t2%>§4 |w (t) wg(t)|) ; G(b,t; b, 7)dT
By (2.14),

Rwi (t) — Rwol(t t) — walt f <t <ty.
0r<_nt:2§4| wi () wg()|<01§nta£§4|wl() wa(t)] for 0 <t <ty

Thus, R is a contraction mapping. and we obtain an interval 0 < t < t4 on which a
unique solution w of (2.12) exists and is continuous and nonnegative. ]
By (2.11), U(b,t) exists, and is unique for 0 < t < t4; U(b,t) > 0 for t > 0. Let
ty be the supremum of the interval for which the integral equation (2.8) has a unique
continuous solution U (b, t).
Let 0, = D x(0,t3), and 88, denote its parabolic boundary ({0, 1} x (0,#,))UD x {0}.

THEOREM 2.4. The integral equation (2.3) has a unique continuous solution U(z.?) in
Qp. Furthermore, ¥(x) < U(z,t), and U is a nondecreasing function of ¢t.

Proof. Since the integral equation (2.8) has a unique continuous solution U(b,t), it
follows that the right-hand side of the integral equation (2.3) is determined uniquely,
and hence, the integral equation (2.3) has a unique continuous solution U(z,t). Also
U(z,t) > 0in Q.

Let us construct a sequence {u;} in Q by ug(z,t) = ¥(x), and for i = 0,1,2,...,

Lugyy = a?6(x — b) f(w;) in Q.
uir1(x,0) = ¥(x) on D, ui1(0,t) = uz1(1,8) =0 for0<t <T.
We have
L(u1 — up) > a®5(z — b)(f(uo) — f(¥)) =0 in Q,
uy —ug =0 on 9.
By Lemma 2.1(d) and (2.3}, u; > ug in Q. Let us assume that for some positive integer
Js

Pp<u Sup <o <y Luy in Q.
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Since f is an increasing function. and u; > w;_;. we have
L(uj+1 —uj) = a’(r — b)(f(u;) = fluj=1)) =20 in Q.
ujp1 —u; =0 on Q.
By Lemma 2.1(d} and (2.3). uj41 > u;. By the principle of mathematical induction,
Y<u <us << upoy <u, in (2.16)
for any positive integer n.

We would like to show that U(x.t) > ¥(x) for 0 <t < t,. From (2.9), ©(b) < U(b.t)
for 0 < t < #;, where t; = p. Let t5 be the smallest ¢ (> t1) such that (b) < U(b.1).
Since

L(u— ) > a?6(x — b)(f(u) — f(¥)) in Q.
u—1 =0 ondf,
it follows from (2.3) that

t
U.t) —¢(x) > a® | Gla, t;b,7)(f(UD.T)) — f((b)))dr.
Jo
Thus, U > ¢ on D x [0.t5]. By starting at ¢ = t5 (iustead of ¢ = 0), we repeat
the procedure used in proving (2.9) and the above reasoning to show that U > ¢ on
D x [0, 6] for some tg > t5 + p. In this way, we prove that U(xz,t) > ¢(x) for 0 <t < t5.
Since

Lu —u1) = a®6(x — b){(f(u) — f()) >0 inQ,
w—u; =0 on 0,

it follows from Lemma 2.1(d) and (2.3) that U > w;. Using mathematical induction,
U > u,, for any positive integer n.

Let © denote the closure of Q. For any T € (0.ty). U is bounded on Q. There exists
some positive constant K such that U < K on §. Since

ot 5
U (2.,1) = a® / G t;b.71) f (g1 (b, 7))dT + / E1G(x. t: &, 0)yp(£)dE, (2.17)
Jo Jo

it follows from the properties of f and the Monotone Convergence Theorem (cf. Royden
[9, p. 87]) that lim,, .~ u,, satisfics the integral equation (2.3). From (2.17),

Unr (@, t) — up(z, 1)

, [ (2.18)
=a G(r.t;b, 7)[f(un(b. 7)) — f(un-1(b. 7))]dr.

0
Let S, = maxg(u, — uy,—1) for any T < #,. By using the mean value theorem and
f'(u) > 0 for u > 0, it follows from (2.18) (as in the derivation of (2.7)) that

> of
S71+1 < (l"zfl(1\7)35*”('1(’21)_(1/‘1 Z/\I}M / ﬁ_A’(t_T)dT

i=1

= anl(K)('fl(?b'q/4 lz )‘::5/4(1 - (‘/\'t):l S
i=1

J0
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which converges since O()\;) = (i?) for large i. Let us choose some positive number
a1 (€ T < tp) such that for t € [0,5,],

an/(K)(,’1€2b_q/4 [Z /\1_3/4(1 - e_’\"t)l < 1.

i=1

Then, the sequence {u,} converges uniformly to lim, . u,(z,t) for 0 <t < ;. Sim-
ilarly for o4 <t < T < ty, we use lim, o u,(£,01) to replace ¥(£€) in (2.17); we then
obtain

o
Snt1 < @®f'(K)eregb™* {Z AL - e‘“"“”]} S
=1

For t € o1, min{20,.T}],

a?f'(K)cyepb™ /4 {Z AT - (3_)"“_‘7‘)]} <1

i=1

Thus, the sequence {u,} converges uniformly to lim,_ . un(z,t) for o < t <
min{201,T}. By proceeding in this way, the sequence {u,} converges uniformly for
0 <t < T, and hence lim,,_,~ u, is continuous. Since the integral equation (2.3) has a
unique continuous solution U for 0 <t < t3, we have U = lim,, .~ Un.

To show that U is a nondecreasing function of ¢, let us construct a sequence {w;} such
that for 1 =0,1,2,...,

w;i(z,t) = iz, t + h) — u;(z.t),
where h (< T) is some positive number. Then, wo(z.t) = 0. We have
Lw; =0 inDx (0,7~ h].
From (2.16),
wi(z,0) >0 on D,wi(0,t) =w (1,6) =0 for0<t<T—h.

By (2.3), w1 > 0in Q. Let us assume that for some positive integer j, 0 < w; in .
Then,

Lwji1 = a®6(x — b)f'(¢)w; >0 in D x (0.T — A

for some &; between u;(x, t+h) and u;(x,t). Since wjtq(x,0) > 0on D, and wj41(0,t) =

wit1(l,t) = 0 for 0 < t < T — h, it follows from (2.3) that w,;41 > 0 in Q. By the

principle of mathematical induction, w,, > 0 in € for all positive integers n. Hence, U is

a nondecreasing function of ¢. |
The next result shows that U is the solution of the problem (1.2).

THEOREM 2.5. The problem (1.2) has a unique solution u = U.
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Proof. By Lemma 2.2(d). ](: G(o.t:b.7)f(U(b.7))dr cxists for x € D and t in any
compact subset [t7.ts] of [0.¢,). Thus. for any » € D and any ty € (0.t)

/t Gla.t:b.7) f(U(b.7))dT
J O

t—1/n
= lim / Gl t:b.7)f(Ub.T))dr
n—>oC Jo
~t O (—1/n
= lim / — / G(x,C:o. 1) f(Ub.1))dT } dC
n—x | Ji, 0C \ Jo )

to—1/n
+/ G(I.tg:b.T)f(U(b,T))dT] :
0
Since by (2.4),

Ge(x. Gb.r)fU Z AI2 = SUFUb.T)) for ¢ —T > 1/n.

which is integrable with respect to 7 over (0.¢ — 1/n). it follows from the Leibnitz rule
(cf. Stromberg [11, p. 380]) that

% ¢—1/n
% (A G(.I:.C:b.T)f(U(b.T))dT)
(—1/n
=G (Jr.C:hC - %) f <U <b.C — %)) +/ Gl C:b. ) (U(b 7))dr
0

Let us consider the problem.

Lu=0 forreDO0<t<t<T,
W(0. 6 1)=w(l.t:6&.1)=0 forO<T<t<T.
lim rfw(r.t:£.7) =d(x — &).

t—r+

From the representation formula (2.3),

1
w(x. t:.1) = / dG(r.tam)a 95(a — £)da

Jo
=G(a.t;€,7) fort>T.
It follows that limy; .+ 29G(x.t:b,7) = d(x = b).

Since G(x.(:b,¢ — 1/n) = G(x.1/n:b,0). which is independent of ¢, we have

/t 21G(x. b, ) f(U(b.7))dr

JO

t t pC=1/n
:6(:1:—1))/ FWUb.¢)d¢ + lim / / G (. C b 1) f(U (b, 7))drd(
Jiy n—oc
ty

+/ 29G (2 tg: b ) f(U(b.7T))dT.

JO

ty JO
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Let
t—-1/n
gn(z. 1) :/ 229G (x t:b.7) f(U (b, T))dT.
0

Without loss of generality, let n > [. We have
(—1/n
gn(x, () — qi(z,¢) = / p 2IG(x, G b, ) f(U (b, 7))dT.
Je-1

Since 29G4 (z,t;b,7) € C(D x (7. T]) and f(U(b, 7)) is a monotone function of 7, it follows
from the Second Mean Value Theorem for Integrals (cf. Stromberg {11, p. 328]) that for
any x # b and any ( in any compact subset [t7,tg] of (0, %;), there exists some real number
vsuch that ( —v e (( -1/, —1/n) and

_ 1 Cv
gn<x,<>—gl<x,<>=f<v (b,c—j)) / (e G
g

+f (U( ¢ - —>) /Cl_/% G (x, (b TYdT

From G¢(x,(;b,7) = =G, {(x,(; b, 7), we have

gn(z,¢) — gz

Bl mcscn
) E ) R P )

Since for x # b,
29G(x, (b, — €) = 279G (2, €; b,0)

converges to 0 uniformly with respect to ¢ as e — 0, it follows that for x # b, {g,} is a
Cauchy sequence, and hence {g,} converges uniformly with respect to ¢ in any compact
subset [t7,ts] of (0,¢,). Hence for x # b,

t rC—1/n
lim // 2IGc(x, § b, 7) f(Ub, 7))dTdC
n— fio Jo

¢(—1/n
- / lim / 29G (2, C; b, 7) F (U (b, 7))drd(
te " Jo

t ¢
_ /t /O 29G (. ;b ) F(U (b, 7))drdc.

For x = b,

o«

—Ge(z, b fUBT)) =Y $(0)Ne™ T f(U (b, 7)),

=1
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which is positive. Thus. {—g,} is a nondecreasing sequence of nonnegative functions
with respect to ¢. By the Monotone Couvergence Theorem,

n—oxc

1/n
lim / /g b1Gc (b, ¢ b.m) fF(U(b, T))dTdC
0

¢—1/n
_ / lim / BIG (b, C: b, 7) F(U (b, 7))drdC
ty 0

/ /0 VG (b. ¢ b, 1) f(U(b. 7))drd(.

Thus.

t
%/ P1G(x b)) fLU, 7))dr
- Jo

=6(x = b)fUb, )+ / G (e, b, ) f(U b, 7))dT

JO

By using (2.5), (2.6) and the Leibnitz rule, we have for any « in any compact subset
of (0,1] and ¢ in any compact subsct [t7,tg] of (0,#),

t—e

/ Ga. t:b.1)f(U(b,7))dT = Ge(x . t:0,7)f(U(b,T))dr,

0

da/o Go(a,t: b, T)f(U(b,T))dT:/ Gz b, 1) f(U(b,7))dT.

0
For any x, € D,
t—e¢

lim Glx. t;b. 7)Y f(U(b, 7))dr

e—=0 Jq

x IS t—e
= lim / ( 0 / G(‘I]J:b,T)f(U(b,T))dT) dn
£—0 on Jo

+ lim /t EG(rl,f b, ) f(U(b,7))dr (2.19)

e—0

= hnl/ / Gy(n.t;b,7)f(U(b, 7))drdn
G(rl,t,b.T)f(U(b,T))dT.
Jo

We would like to show that

x t—¢
lim / Gy(n. t:0,7) f(U(b, 7))drdn

e—0

(2.20)

0
x t—e
:/ lin})/ Gu(ntsb,7) f(U(b,7))drdn.
Jap Y0
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By the Fubini Theorem (cf. Stromberg [11, p. 352]),

e—0

lim/ /t ] o (0,6, 7) (U (b, 7))drdn

= lim (f( (b,7)) /G T],th)d’I])dT

e—0 0

t—¢e

= 11m FUG, NGz, t;0,7) — G(zq, 856, 7))dT

/ FUb, )Gz, t;b,7) — Gz, t;b, 7))dT,

which exists by Lemma 2.2(d). Therefore,

/ FUb)(Cla,t:b,7) — Glar, t;b,7))dr = / ’ / G, 135, 7) (U (b, 7)),
0 r; JO

and we have (2.20). From (2.19),

o [t :
£/) G(r,t;b,T)f(U(b,T))dv’:/ Galx, t;b, 7) F(U (b, 7))dr.

0
For any x5 € D,

t—¢e

liH(l) Gz, t;b,7)f(U(b,7))dT
£~V Jo
x a t—e
= 611_% 5 8_77 </0 G,,(n,t;b,r)f(U(b,T))dT) dn
ﬂi’% Gn(mz,t b, T)f(U(b,7))dr (2.21)

e—0

= lim/ / Gon(n, t; 6, 7) f(U(b, 7))drdn

+/ Grlxa, t;b, 7)Y f(U (b, 7))dT
0

We would like to show that

lim /I /Ot_E Gon(n, t;b,7)f(U(b, 7))drdn

e—0 z2

(2.22)

T t—e
:/ lim/ Gon(m, b, 7) F(U(b, 7))dTdn.

2 =0 0
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Since Gz, 6,6, 7) = 29Gy(x. t: €, 7) — d(r — £)d(t — 1), we have

x t—e
lim / / G50, 7) f(U (b, 7))drdn
0

e—0 za

= lim /: At_s(r]th(vz.f;I),T) —6(n—b)o(t — 7)) f(U(b,7))drdn

g0 2

T pt—c
= lim / / n9Gi(n, t; b, 7) f(U (D, 7))drdn
2 J0

e—0 z2

T pt—e
=- lim/ / 791G (n, t; b, 7) f(U (b, T))drdn.
2 /0

e—0

By the Second Mean Value Theorem for Integrals, there exists some real number v €
(0,t — €) such that

- lnn/ / G (n.t:b.7) f(U(b, 7))drdn

e—0

=— hm/ fU (b, O))/O niG-(n. t;b.7)drdn

t—e
- hm/ fUb.t—¢)) / n9G-(n,t; b, 7)drdny

~

= f(U(b,0)) lim /I ni(G(n,t;b,0) — G(n.t:b,v))dn

e—0

+ hm/ FUb =N (G(n, t;b.v) — G(n. t; b, t — €))dn (2.23)
= f(U(b,0)) (/ niG(n,t:b,.0)dn — lln%) / niG(n. t:b, 'y)dn)

+ f(U(b,t)) <lin})/ nIG(n. t;b,v)dn — PII(I)/ niG(n, t;b,t — 5)d7)>

XTo = T

= f(U{b,0)) </ 719G (n, t:b,0)dn — lil’I(l)/ 77"G(77,t:b,7)d17>

L2

+ f(U(b.1)) <Eligg) /I niG(n, t:b,v)dn — /z: 6(n — b)dn>

r2

since lim. g j;z niG(n. t; b, t —e)dn = limg_,g j;z nI1G(b, t;n,t —e)dn = f; 8(n —b)dn (cf.
Chan and Chan [1]).
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Case 1: If lim. g~ = ¢, then lim._, j;z niG(n, t;b,v)dn = f; §(n — b)dn. We have

— lim/ / G (n, t:b, 7) f(U(b, 7))drdn

g—0

— FU, ))(/12 qcmrbo(zn—/ S0 - b))
srwean ([ 0= - [ - byin)

= 1000 ([ 6. t0.0n - [ by seconsb)an)

2

+ f(U(b, 1)) </ lil% 172G (n,t:b,v)dn —/ liII(l) n9G(n, t; b, t — 5)d17>

2

= f(U(b.0)) (/z n"G(n,t:b-O)dn—/ lim 77G (1. t; b, v')dn)

X2

+ /ﬂﬁ Um [f(U(b.t — ) (G(n, t;b.v) — G(n, t:b,t — ¢))]dn

£—

2

:_/I lim [f( (o, 0))/7 9 (.t b,r)dT-i—f(U(b,t—e))/:_E anGT(n.,t;b.T)dr] d

/611 n9G (0, t;b, ) f(U(b, 7))drdn

—»00

- / ti [ G (. :b.7) — (1 - D)S(E — 7)) (U (b, 7))

- 4}
x t—e
= [Cim [ Gt tb )50 0y
xQ S 0

Case 2: If lim. ¢~y < t, then lim, _q f;; niIG(n, t;b,v)dn = f; n9G(n, t; b, lim, .o v)dn
since j;: 179G (n,t;b,v)dn is a continuous function of . From (2.23), we have

T t—e
- lim/ / G- (0. 60, 7) f(U(b, 7))drdn
0

e—0 z2

= f(U(b,0)) (/ n?G(n, t;b,0)dn — / e (n,t; b, lin})y) dn>

2

+ f(U(b,1)) (/I 791G (n,t;b, illl(‘ﬂ) dn — /z 5(n - b)dn>

:_/x lim [f( (b, 0))/7 G (n, t:b, 7)dr + F(U D, t—e))/jvanGT(n.t;b,r)dr dn

/ lim /t ) NGy (n,t;b, 1) f(U(b,7))drdn

e—0

:/ lim /Ot €G,m(n,t;b,7')f(U(b.7'))d7'd77.

T2 e—0

In either case, we have (2.22).
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From (2.21),

/t Gy(x. ;0. 7) f(U(b. m))dr
(

)
x t t
= / / G t:b0.7) f(U(b. 7))drdn + / Gy(ro. t:b. 1) f(U(b. T))dT.
Jro JO S0

Thus,
o gt ot
0% Gola ;b)) fUb. )Y = | Gupla t:bor) f(U(b, 7))dr.
T Jo 0
Thercfore,
82 ot ot
P Gx.t:b.7)f(U(b, 1))dr :/ Gop(x. t:b,7) f(U(b, 7))dT
x Jo 0

for any 2 in any compact subset of (0, 1] and ¢ in any compact subset [t7, tg] of (0,13).
By the Leibnitz rule, we have for any x in any compact subset of (0,1] and any ¢t in
any compact subset of (0.).
1

6 1
.17"0—(1 G(x.t:£,0)69(£)dE = 2IG (2. t:£,.0)ET(£)dE.
0 0

o [ !
I . fe q,7 — . f. 92y
5z | Clrte.0 d(&)dﬁ-./g Gl 1€, 0)E (€ e,

02 ! "
) / Ga.1:£.0)6%(&)dE = / Gar(x. t:£.0)E9(€)dE.
5 Jo Jo
From the integral equation (2.3), we have for € D and 0 < t < ty,

LU = a®6(x = b) f(U(b.t)) + a? /.t LG(a,t:b.7)f(U (b, T))dT
Jo

1
+/ LG(x.t:£.0)EM)(€)de

0

=a?5(x = b)f(U(b.t)) + a®5(x — b) lim /'H 5(t — ) f(U (b, 7))dr
0

e—0

+ao/’am—o@wQMf

JO

= a?5(x — b)f(U(b.1)).

From the integral equation (2.3). we have for z € D,

1
lim U(x.t) = lim [ &G (x, t: £ Q) (€)dE = ¢(x)

t—0 t—0 0

(cf. Chan and Chan [1]). Since G(0.t;€,7) = 0 = G(1.t:£.7), we have U(0,t) = 0 =

U(1,t). Thus, the solution U of the integral equation (2.3) is a solution of the problem

(1.2). Since a solution of the latter is a solution of the former, the theorem is proved. O
The next result gives a sufficient condition for « to blow up.

THEOREM 2.6. If 1 attains its maximum at b, then the solution u of the problem (1.2)
attains its maximum at b. If in addition, #, < oo, then w(b.t) is unbounded in [0,1;).




BLOW-UP DUE TO A CONCENTRATED NONLINEAR SOURCE 379

P7'00f. Let D()b = (O.b). 5Ob = [O*b]v Dbl = (b71)7 Ebl = [b,]-], (2()1) = D()b X (0~fb)
and €y = Dy x (0,¢p). Since u(b,t) is known, let us consider the problems:

Lu=0 in Qg u{x,0) =¢(x) on Dg, (2.24)
w(0,8) =0 and wu(b,t) =u{b,t) for 0 <t <t, '

Lu=0 inQ,u(2,0)=vy(x) on Dy, (2.25)
u(b,t) =u(b,t) and u(l,t) =0 for 0 <t <ty. o

Because 1 attains its maximum at b, it follows from the strong maximum principle and
Theorems 2.4 and 2.5 that the solution of the problem (2.24) attains its maximum at b.
Similarly, the solution of the problem (2.25) attains its maximum at b.

By Theorem 2.4, u is a nondecreasing function of t. Thus, if u blows up, it is at b. If
in addition, ¢, < oo, then let us assume that u{b,t) is bounded above by some constant
ks in [0,%,). We consider (2.8) for ¢t € [t,, T) with the initial condition u(z,0) replaced
by lim;—; u(z,t), which we denote by u(z,tp):

-1

t
u(b, t) :aQ/ G(b,t;b,r)f(u(b,r))dT—f—/ EIG (b, t; & ty)ulE, tp)dE. (2.26)
ty, 0
Let
1
2 = [ €GOt 6.tuyute. e
0

and W(t) = u(b,t) — Z(t). An argument analogous to the proof of Lemma 2.3 shows
that there exists some ¢, such that W exists and is unique for ¢, < t < #19. Thus, (2.26)
has a unique solution for ¢, <t < t10, and hence, (2.8) has a unique solution (b, t) for
ts <t < ty9. This contradicts the definition of ¢, and hence the theorem is proved. [

3. Single blow-up point. From (2.1), we obtain the following result.
LeMMA 3.1. G(b,t;b, 7) is a strictly decreasing function of ¢.

THEOREM 3.2. If ¢ attains its maximum at b, and u blows up, then b is the single
blow-up point.

Proof. Since i attains its maximum at b, it follows from Theorem 2.6 that if u blows
up, then it blows up at b. To show that b is the only blow-up point, let us consider
the problem (2.24). By the parabolic version of Hopf’s lemma (cf. Friedman [5, p. 49]),
uz(0,%) > 0 for any arbitrarily fixed ¢ € (0,t,). For any = € (0,b), 1z, = x%u, which is
nonnegative by Theorem 2.4. Hence, u is concave up. Similarly, for any arbitrarily fixed
t €(0,tp), uz(1,t) < 0. For any = € (b.1), uze = 2%y > 0, and hence u is concave up.
Thus, if u blows up, then b is the single blow-up point. O

Let

u(t):/o 29¢(x)u(x, t)dx,

where ¢ denotes the normalized fundamental eigenfunction of the problem (2.2) with A
denoting its corresponding eigenvalue.
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THEOREM 3.3. If 9 attains its maximum at b,

1/(p—1)
1(0) > ((—:\§> . (3.1)
1 p/2
o(b) f(u(b.t)) > (H—l) u?(b.1), (3.2)

where p is a real number greater than 1, then the solution u of the problem (1.2) blows
up at a finite time.

Proof. Multiplying the differential equation in the problem (1.2) by ¢, and integrating
over x from 0 to 1, we obtain

W () + Au(t) = a®o(b) f(u(b. ). (3.3)

Since u(z,t) < u(b,t), we have

1
uit) < (/0 .’Ifq@(.’l‘)dI) u(b, t).

It follows from the Schwarz inequality and j()l r9¢%(z)dr = 1 that

ult) < ([faHOQu»dm)

1 1/2

o(b) f(u(b.t)) = pP(1).

1/2 1/2

([ )" s

By (3.2),

From (3.3),
() + Mu(t) > a?pP(t).
Solving this Bernoulli inequality, we obtain
2 2
1-p(py < & 1-p() — &) -1t
po < 5o (00 - 5 ) e

From (3.1), ' ~P(0) < a?/\. Thus, p tends to infinity for some finite ¢,. This implies
u(b, t) blows up at tp. O

If t, < oc, then we use the method of Olmstead and Roberts [7] to find a lower bound
t; and an upper bound t, for t,. These are used later on to compute the finite blow-up
time. Using (2.14), we obtain from (2.15),

flks + k1)

flks + k)

Let us assume that ¢ attains its maximum at . Then, k; = ¢(b). Thus, an appropriate
ks is the smallest solution of

Rw <

(ks + (b))
(ks + (b))

ks = fj (3.4)
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We note that in the proof of Lemma 2.3, (2.14) implies R is a contraction mapping. This
and (3.4) show that if

ks
flks + (b))’
then R is a contraction mapping, and hence u exists. From (2.13), a lower bound ¢; of
ty is given by

14
a2/ G(b,t;b,1)dT < (3.5)
JO

t; k-
2 G(b,t;;b, T)dT = ———3—
“ 0 (b tusb, T)dr fks + (b))

For some ¢11 < #, (2.12) has a continuous solution w(t) for t € [0, ¢11]. From Lemma
3.1,

(3.6)

w(t) > s(t),0 <t <ty <ty
where

¢
sty =a? | G(b,t11;b,7)f(w(T) + 2(7))dT.
0
For some t,, to be determined later, let ming<;<;, z(¢) be denoted by ks, which is positive.

Then,
s'(t) = a®G(b, t11; b, t) f(w(t) + 2(t))
Z O,ZG(b\, t11; b7 t)f(S(t) + k'5)

We have 0
s'(t
> a?G(b, t11;b.1).
T + k) = ¢ OO
That is.
s(t11)+ks dr t11
— > a2/ G(b,ti1;b,7)dT.
/ks F(r) Jo (0.t )

Since (2.12) having a continuous solution w(t) for ¢ € [0,t;1] insures that s(t) < oo, we
have

> g t11
/ T s @[ Gt b7
k

s f(r) 0
A contradiction to existence of a continuous solution occurs if
< dr
< oc, (3.7)
ks f(7)
and there exists some #;2 such that
>~ dr 5 trz
—— =a G(b,t12: b, 7)dT.
ks f(7) 0
Thus, an upper bound ¢, of ¢, is determined by
oc d by
2T 2| Gbyte;b, T)dr. (3.8)
ks f(r) 0
That is,
< dr 2 = 3 (b) by
——=a (1 — e Nitw), (3.9)
ks f(T) ; Ai

Thus, we have proved the following result.
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THEOREM 3.4. If t;, < oc. and v attains its maximum at b, then a lower bound #; of
ty is determined by (3.6). If in addition, (3.7} holds, then an upper bound t, of ¢, is
determined by (3.9).

4. An example. As an illustrative example, let ¢ = 0. Then,

x<
G(z.t:€.7) =2 Z e~ =T) sin(nwr)sin(nn€) for t > 7.
n=1
From Olmstead and Roberts (7],

! 2 X sin®nnb 2 2
G(.IL:(, d :I 1_b _ {7717{{,.
(b, t;b,T)dT = b( ) — E ¢

0 n=1

Let
22 for 0 < x <b,
Ylx) = 2 ‘
(x) ( b ) (t—x)? forb<ar<1.

1—b
It is nontrivial, nonnegative and continuous such that (0} = 0 = (1). Its generalized

second derivative (cf. Stakgold [10, pp. 38-39]) with respect to z is given by

2 forO<a<b,

P (r) =< — IQf’bé(;I: —b) forxz=h.

2
2(%) forb<r<l.

Thus, the condition (1.3) is satisfied if

A sufficient condition for this to hold is

o 21
Q2fh?) > 2 (4.1)
1-5
Let f(u) = uP where p is any real number greater than 1. From (3.4). ks = (ks +v(b))/p.
and hence, k3 = b2/(p — 1). From (3.5).

a2 b(l . b) - 3 = Sin2 nﬂ-bpfnzﬂgt (p - 1)p—1
2 ‘ ne prh2r=1)
n=

This is satisfied for all + > 0 if

(-1t

a2V - b)) <
P

(4.2)

Thus, u exists for all t > 0 if (4.2) holds. We note that (4.2) can always be achieved
by placing the concentrated source sufficiently close to the boundaries (cf. Olmstead and
Roberts [7]).
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Since the normalized fundamental eigenfunction is given by ¢(x) = 2'/2sin 7z, and
its corresponding eigenvalue is A = 72, it follows from Theorem 3.3 that if
93/2 ) 2/(p-1)
Tyl 20— 267 + (1= 20) cosmb o+ (1= D)mbsin ] > (a) . (43)

2Y25in7h > 1, (4.4)

then u blows up at a finite time. A plot of the left-hand side of (4.3) as a function of b
by using Mathematica® version 4.1 shows that it is positive for 0 < b < 1. Thus for a
given b, we can find a such that (4.3) is satisfied. From (3.6), a lower bound #; for t; is

given by
2 sin mrb ey, | (p—1)P!
We have
4 >
z(t) = D {Z[b2 cosnm + (1 — 2b) cosnmh
" (4.6)
+(1=-b)(-1+b+ 7L7rbs111717rb)]bm7;ﬂ-b _"2”2t} )
n
From (3.8), an upper bound ¢, is given by
1 —a? b(1-b) - 2 < sin? nwh _ 22, (4.7)
(p—1)E2! B 72 —on? ¢ ’ ‘

Since ks = ming<;<, 2(t), it follows from (4.7) that an upper bound ¢, may be deter-
mined by
2
- 1)k§_1 =a“b(1 —b). (4.8)
As a numerical example, we further let p = 2 and b = 1/2. The sufficient condition
(4.1) is satisfied if a > 4v/2. Since (4.4) is automatically satisfied, it follows from (4.3)
that v blows up in a finite time for a > 9.74. Thus for each value of a (> 9.74), we use
(4.5) to compute a lower bound ¢; by taking a finite number of terms in the infinite sum
since a smaller ¢; is obtained by doing so. We use (4.8) to find k5. From (4.6),

—7rt

z(t) < l—b FJZ 14 0%+ (1 —b)nrb)

4e-1rt 1+b2 o< > 1
< 1 — b —
S 0o (1—b)7r< +/1 x3>+ ,;n?]

2 [3(1+b2) b] a2
b(1-bx3 3 '

Thus, an upper bound t,, may be obtained by solving

2 [3(14—1)2) bJ s

k{,:— —_ -
I1-b (1—1))7r3+3

Mathematica® is a registered trademark of Wolfram Research. Inc., Champaign. IL.
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We then use the following bisection procedure with Mathematica® version 4.1 to deter-
mine the blow-up time:

Step 1. Let the lower and upper bounds fl(o) and 1‘“0 deter mined above be our first
estimates of ¢; and t,,. Then the fnst estimate of ¢, is fbo) ( b4 1‘1 )/2

Step 2. For step n, if |1‘u -t" [ < ¢ (a given tolerance), then f(”) (t(” ¢ )/2 is
accepted as the final estimate of ¢, and we stop: otherwise, we go to the next step.

Step 3. Let t,, = (f}") + 1‘51"))/2. and mh = t,,., where m denotes the number of
subdivisions of equal length h. We use the following iteration process:

u O (b, 1) = w(b).

and for k =0.1,2....,
rh
uF D (b rh) = o? Gb.rh:b.7) f(u®(b.7))dr
Jo
1
+/ G(b,rh: £, 0)y(&)dE.
Jo
where r =0,1,2..... m. As an approximation to G{x.t:£. 7). we use the finite sum
o~ 1\; 2 2
G €7y = QZ e T gin(nwr) sin(nn€)  for t > 7.
n=1

Using the adaptive integration procedure, we do the following calculations:
a? x N Integrate|G (b, rh: b, 7) f((b)). {7.0. rh}].
N Integrate|[G(b. rh: £.0)1(€). {f 0.1}].
For r=1.2,3,.... m. we obtain an approximate value z)“)(b, rh) of uM(b.rh) as
iV (b.rh) = o « N Integrate[G(b.rh: b.7) f(@ (b, 7). {7.0.7h}]
+ N Integrate|G (b, rh: £.0)¢:(€). {£€.0.1}].

where @O (b, 7) = (b). and @V (b.0) = ¢ (b).
Similarly by making use of the values,

1k (b.0) = (b). A (b, h), a®)(b.2h). . ... @™ (b, mh).

we obtain an approximation %) (b, ) of the function u* (b.t) by
&“")(b, t) = Interpolation[{rh. '&,“")(b‘ )} e=o...m)-

Forr=1.2.3,..., m. we perform the following calculation,

a? x N Integrate[G(b. rh:b. 1) f (¥ (b.7)). {7.0.7h}].
to obtain an approximate value @5+ (b, rh) of u*+1(b, rh) as

a* VY (b, rh) = a® * N Integrate[G(b. rh:b.7) f (@™ (b.7)). {7.0,7h}]
+ N Integrato[é’(b. rh:€.0)y(€). {€,0.1}].

where 2%+ (b,0) = ¥(b).
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For each given tolerance 4, if [(@®) (b, mh) — @*=1 (b, mh))| < &, then tl(nH) = tm,
D = ¢ or else if |(@®) (b, mh) —@* =D (b, mh))| > C for some given positive number
C, then tl(nH) = tEn)\ tELnH) = t,,. We stop the iteration process and go to Step 2.
The results for ¢, given in the following table were obtained by taking N = 10,
e=10"7,8=10"2,C =10°, m =40, b = 0.5, and f(u) = u>.

a 10 15 20 25 30 35 40
ty | 0.0062 | 0.0022 | 0.0012 | 0.00073 | 0.00050 | 0.00036 | 0.00027
a’ty | 0.62 0.50 0.48 0.46 0.45 0.44 0.43

The above results illustrate that the blow-up time is a decreasing function of the length
a.
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