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SINGLE-POINT BLOW-UP FOR A DEGENERATE PARABOLIC
PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

By
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Abstract. Let q be a nonnegative real number, and T be a positive real number.
This article studies the following degenerate semilinear parabolic first initial-boundary
value problem:

xqut(x,t) — uxx(x,t) = a25(x — b)f(u{x,t)) for 0 < x < 1,0 < t < T,

u(x, 0) = i/j(x) for 0 < x < 1,
w(0, t) = u(l, t) = 0 for 0 < t < T,

where S(x) is the Dirac delta function, and / and ip are given functions. It is shown that
the problem has a unique solution before a blow-up occurs, u blows up in a finite time,
and the blow-up set consists of the single point b. A lower bound and an upper bound
of the blow-up time are also given. To illustrate our main results, an example is given.
A computational method is also given to determine the finite blow-up time.

1. Introduction. Let a, a, q and /3 be constants with a > 0, a > 0, q > 0, and
0 < /3 < a. Let us consider the following degenerate semilinear parabolic first initial-
boundary value problem,

-tt« = 6(<; - P)F(u(<;, 7)) in (0,a) x ((^crM

u(q, 0) = VK?) on [0,a], I (1.1)
u(0, 7) = u(a, 7) = 0 for 0 < 7 < a, J

where <5(x) is the Dirac delta function, and F and ip are given functions. This model is
motivated by applications in which the ignition of a combustible medium is accomplished
through the use of either a heated wire or a pair of small electrodes to supply a large
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amount of energy to a very confined area. When q = 1, the model may also be used to
describe the temperature u of the channel flow of a fluid with temperature-dependent
viscosity in the boundary layer (cf. Chan and Kong [2]) with a concentrated nonlinear
source at /?; here, and 7 denote the coordinates perpendicular and parallel to the
channel wall respectively. When q = 0, it can be used to describe the temperature of a
one-dimensional strip of a finite width that contains a concentrated nonlinear source at (3.
The case q = 0 was studied by Olmstead and Roberts [7] by analyzing its corresponding
nonlinear Volterra equation of the second kind at the site of the concentrated source. A
problem due to a source with local and nonlocal features was also studied by Olmstead
and Roberts [8] bv analyzing a pair of coupled nonlinear Volterra equations with different
kernels. When the nonlinear source term in the problem (1.1) is replaced by up, the blow-
up of the solution was studied by Floater [4] for the case 1 < p < q 4- 1, and by Chan
and Liu [3] for the case p > q + 1.

Let = ax, 7 = aq+2t, j3 — ab, Lu = xqut — uxx, 7)), D = (0,1),
D = [0,1], and il = D x (0, T], Then, the above system is transformed into the following
problem:

Lu = a26(x — b)f(u(x,t)) in $1. 1

u(x, 0) = ip(x) on D, > (1-2)

u(0, t) ~ u(l, t) = 0 for 0 < £ < T. J
with 0 < b < 1, and T = a/aq+2. We assume that /(0) > 0, /(it) and its derivatives f'(u)
and f"(u) are positive for u > 0, and %p(x) is nontrivial, nonnegative, and continuous
such that ip(b) > 0, 0) = 0 = ip( 1), and

rp" + a2d(x — b)f(ip) > 0 in D. (1.3)

This condition (1.3) is used to show that before u blows up, u is a nondecreasing function
of t. Instead of the condition (1.3), Olmstead and Roberts [7] assumed that h(t) =
J0 where g(x,t;£,T) denotes Green's function corresponding to the
heat operator d/dt — d2/dx2 with first boundary conditions, was sufficiently smooth
such that h'(t) > 0, and 0 < ho < h(t) < hoc. < o° for some positive constants h0 and
ftoo; these were used to show that u(b, t) and its derivative with respect to t were positive
for t > 0.

A solution of the problem (1.2) is a continuous function satisfying (1.2).
A solution u of the problem (1.2) is said to blow up at the point (x,tb) if there exists

a sequence {(xn,tn)} such that u(xn,tn) —► 00 as (xn,tn) —> (x,tb)•
In Sec. 2, we convert the problem (1.2) into a nonlinear integral equation. We prove

that the integral equation has a unique continuous and positive solution U(b, t) at the
site of the concentrated source. We then show that U(x, t) is a nondecreasing function of
t. These are used to prove that the problem (1.2) has a unique solution u. We also show
that u(b,t) blows up if ip attains its maximum at b and u(b,t) ceases to exist at a finite
time. In Sec. 3, we show that b is the single blow-up point. We then give a criterion
for u to blow up at a finite time, and use the method of Olmstead and Roberts [7] to
establish a lower bound and an upper bound for the finite blow-up time. We remark
that ij) attaining its maximum at b is used as a sufficient condition for u to blow up at
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b. Whether it is a necessary one remains as an open question. To illustrate our main
results, an example is given in Sec. 4. We also give a computational method to find the
finite blow-up time.

2. Existence and uniqueness. Green's function G(x,t;£,r) corresponding to the
problem (1.2) is determined by the following system: for x and £ in D, and t and r in
(—oo, cxd),

LG(x,t;£,r) = S(x — £,)5(t — r),
G(x, t; £, r) = 0, t < r,

G(0,i;£,T) = G(l,t;£,T):«= 0.

By Chan and Chan [1],
OO

G(x,t; £, t) = 5>(*)*,(0e A<(t~T\ (2.1)
i=l

where Ai(? = 1, 2, 3,...) are the eigenvalues of the Sturm-Liouville problem,

0" + AxV = 0, (f)(0) =0 = ^(1), (2.2)
and their corresponding eigenfunctions are given by

<j>i(x) = {q + 2)l/2x1/2
j^ ( 2-^x^+2)'2

q+2 \ 9 + 2

"^+q + 2 I 9+22A1/2

with J\/(q+2) denoting the Bessel function of the first kind of order 1 /(q + 2). From
Chan and Chan [1], 0 < Ai < A2 < A3 < • ■ • < Aj < Ai+i < • • •. The set {^(x)} is a
maximal (that is, complete) orthonormal set with the weight function xq (cf. Gustafson

[6, p. 176]).
To derive the integral equation from the problem (1.2), let us consider the adjoint

operator L*, which is given by L*u = —xqut — uxx. Using Green's second identity, we
obtain

U (x, t) = a2 f G(x,t;b,r)f{U{b,r))dr + [ £qG(x,t;£, (2-3)
J o Jo

For ease of reference, let us state below Lemmas 1(a), 1(b), 1(d), and 4 of Chan and
Chan [1] as Lemma 2.1(a), 2.1(b), 2.1(c), and 2.1(d) respectively.

Lemma 2.1. (a) For some positive constant c\, |0i(a;)| < c\x~q!A for x £ (0,1].
(b) For some positive constant C2, \4>i(x)\ < C2X1/2\lJ4 for x £ D.
(c) For any xq > 0 and x £ [xo, 1], there exists some positive constant C3 depending

1 /2on xq such that \(j)'i(x)\ < c3\ .
(d) In {(x, t;£, r): x and £ are in D, T > t > r > 0}, G(x,t;£,r) is positive.

Lemma 2.2. (a) For (x,t;£,r) £ (D x (r, T}) x (D x [0,T)), G(x,t;£,r) is continuous,
(b) For each fixed (£, r) £ D x [0, T), Gt(x, t; £, r) £ C(D x (r, T]).
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(c) For each fixed (£, r) € D x [0, T), Gx(x, t; £, r) and Gxx{x, t\ £, r) are in C((0,1] x
(r,T]).

(d) If r 6 C([0,T]), then J* G(x, t; b,r)r(r)dr is continuous for x £ D and t G [0, T].

Proof, (a) By Lemma 2.1(b),
OO

i=i

which converges uniformly for f in any compact subset of (t,T). The result then follows,
(b) By Lemma 2.1(b),

00 ')

dt
1=1

<Y. od->-) T)
(2-4)

<^Ea"'2(; a,!' 7i-
i= 1

which converges uniformly with respect to x S D and t in any compact subset of (r, T}.
This proves Lemma 2.2(b).

(c) By Lemma 2.1(b) and (c),

OC r\

J2 C',:(.r)o,(0': K(t' r)
dx

i= 1
< £ jo,(^)R A-<

<_1 (2.5)
OC V '

< c2c3 ̂ 2 X
1=1

which converges uniformly with respect to x in any compact subset of (0, 1] and t in any
compact subset of (t, T],

Since (pi is an eigenfunction, it follows from Lemma 2.1(b) that

2 = 1

< Y, W'MI
i= 1
oo

= ^ A,./' 6, (./:) io,U) c.' M'-t) (2.6)
2=1

OO

i=i

which converges uniformly with respect to x in any compact subset of (0,1] and t in any
compact subset of (r, T].

Lemma 2.1(c) is then proved.
(d) Let e be any positive number such that t — e > 0. For any x £ D, and t € '0. / —i.

it follows from Lemma 2.1(a) and (b) that
OO / \ OO

T,<h(x)Oj(b)e A|(t~r V (r) < cic26"9/4 ( max t-(t)) ^ A;1/4e~Al-,
i=i / ,=1
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which converges uniformly. By the Weierstrass M-Test,
rt—e 00 pt—e

/ G(x,t;b, T)r(r)dT = V* / ^i(a;)0j(fo)e"A!(t~r)r(r)dr.
o i=1 Jo

By Lemma 2.1(a) and (b),
00 /-t-e / \ 00 rt~e

TJ / 4>i{x)(t>i(b)e~Xi(t~T)r{T)dT < c\c2b~ql4 ( max^rfr) J ^ / Al1/4e~A,(t~T)(ir
i-l ^ -T- 7 i=l

= c1c2b~q/4 ( max r(r)^) A~'3^4(e_A,e — e_Ait)
Vo<r<T / ' *v ~ 7 i=l

< cic2b~q/4 ( max r(r)) A"
\0<r<T '\ - 7 i=l

(2.7)
which converges (uniformly with respect to x, t, and e) since 0(A;) = 0(i2) for large i
(cf. Watson [12, p. 506]). Since (2.7) also holds for e = 0, it follows that

oo „t_e

y, / 4>i{x)(t)i(b)e^Xi<-t~T)r(T)dT
«=i -70

is a continuous function of x, t, and e (> 0). Therefore,
rt OO rt — £

/ G(x,t; b, T)r(r)dT = lim / 4>i(x)4>i(b)e~Xi^~T\(T)dT
Jo o

is a continuous function of x and □
Let us consider the problem,

Lv = Q in f2,

i>(x, 0) = i^(x) on D,

u(0, t) = i>(M) = 0 for 0 < t < T,
which has a unique classical solution

v(x,t)=f £qG(x,t-,t,0)il)(t)d(;
J o

(cf. Chan and Chan [1]). Since the strong maximum principle holds for the operator L
(cf. Friedman [5, p. 39]), and ip(x) is nontrivial, nonnegative and continuous, it follows
that v > 0 in fi, and attains its maximum n\dxxejj%l){x) (denoted by k\) somewhere in
D x {0}.

From (2.3),

U(b, t) = a2 I G(b, t; b, r)f(U(b, r))dr + [ £qG(b, i; £, 0M£)d£. (2.8)
Jo J o

By Lemma 2.2(d), we can look for a continuous function U(b:t) satisfying (2.8). From
Chan and Chan [1],

lim I ^G{b, t; f, 0)$(£)d£ = ^>(6).
t—./n
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Thus from (2.8), {7(6,0) = ip(b) > 0.
Let us show that there exists some 11 such that

l'(b) < i'(b. t) for 0 < t < l\. (2.9)

Since

L(f - u) < a2S(x - b)(J'(v) - /(«)) in Q,

and ip — u = 0 on dfl, it follows from (2.8) that

tp(b) - U(b,t) < a2 I G(b,t;b,T)f'{rj)(ili.(b)-U(b,T))dT (2.10)
Jo

for some 77 between and U(b,t). Since G(x,t; £,t) is nonnegative and integrable
over [0, t], it follows that for any ti, there exists some p such that for any t G (£2^2 + p],

rt
a2f'(ip{b)) [ G(b,t;b.T)dT < 1.

Jtn

We also note that U(b, 0) > 0. Suppose there exists some 13 such that tp(b) > U(b, t) > 0
for t, e (0,^3]. Let ti = min{p,%}. From (2.10), we have

ip(b) — U(b,t) < a2 ( I G(b,t;b,T)f'(rj)dT\ max (tp(b) — U(b,t)).
\J0 / 0<i<ti

This gives a contradiction. Thus, we have (2.9).
It follows from (2.8), /(0) > 0, and f(u) being positive for u > 0 that U(b,t) >

v(b, t) > 0 for t > 0.
Let

z(t)= [ ^G(&,i;4,0):#(£K.
J 0

We note that z(t) = v(b, t), and hence, z(t) exists for t > 0. Let A*2 denote mino<t<T v(b, t).
We have

fc2 < z(t) < k\ for 0 < t < T.

It follows from > 0 and v > 0 in il that k% > 0.
Let

w{t) — U(b,t) — z(t). (2-11)

From (2.8),

w(t) = a2 f G{b,t\b<T)f(w{r) + z(r))dT. (2.12)
J 0

Let

Rw(t) = a2 I G(b, t: b, r)/(io(r) + z(r))dT.
Jo

From (2.12), we have w = Rw.

Lemma 2.3. For some given positive constant /c3, there exists some <4 such that (2.12)
has a unique continuous and nonnegative solution w(t) < k3 for 0 < t < £4.
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Proof. By Lemma 2.2(d), G(b, t\ b, r) is integrable over [0, t]. Since G(b, t; b, r) is non-
negative, there exists some 14 such that

rt
,2,af(k3 + ki) / G(b, t; b, r)dr < fc3 for 0 < t < £4, (2-13)

Jo

o2}'(kz + k\) f G(b, t\6, r)dr < 1 for 0 < t < t4. (2-14)
Jo

From (2.13) and f'(u) > 0 for u > 0,

Rw(t) < a2f(k3 + fci) f G(b,t\b,r)dT < kz for 0 < t < t±. (2-15)
Jo

Thus, R maps the space of continuous functions satisfying

0 < w(t) < k.3 for 0 < t < t.4

into itself. For any w\(t) and W2(t) satisfying (2.12),

max \Rwi(t) — Rw2(t)\ < a2f (k3 + ki) ( max |wi(t) — 102(t)A f G(b,t;b,T)dr.\ J Jq0 <t<t4

By (2.14),

max \Ru>i(t) — Rw2{t)\ < max |u>i(f) — W2{t)\ for 0 <t< 14.

Thus, R is a contraction mapping, and we obtain an interval 0 < t < t4 on which a
unique solution w of (2.12) exists and is continuous and nonnegative. □

By (2.11), U(b,t) exists, and is unique for 0 < t < t4; U(b,t) > 0 for t > 0. Let
tb be the supremum of the interval for which the integral equation (2.8) has a unique
continuous solution U(b,t).

Let Qb = Dx (0,ft), and <9flb denote its parabolic boundary ({0,1} x (0,tb))UD x {0}.

Theorem 2.4. The integral equation (2.3) has a unique continuous solution U(x,t) in
nb. Furthermore, ip{x) < U(x,t), and U is a nondecreasing function of t.

Proof. Since the integral equation (2.8) has a unique continuous solution U(b,t), it
follows that the right-hand side of the integral equation (2.3) is determined uniquely,
and hence, the integral equation (2.3) has a unique continuous solution U(x,t). Also
U(,x, t) > 0 in fib-

Let us construct a sequence {ui} in il by uq(x, t) = ip(x), and for i = 0,1, 2,...,

Lui+x = a2S(x - b)f(ui) in S7,

Ui+i(x, 0) = tp(x) on D, Mj+i(0,£) = ?Xi+i(l,t) = 0 for 0 < t < T.

We have

L(ui - u0) > a2S(x - b)(f(u0) - /(VO) = 0 in Q
Ui — Uo = 0 on

By Lemma 2.1(d) and (2.3), u\ > uq in Q. Let us assume that for some positive integer

j,
Tp < ui < U2 < ■ ■ ■ < Uj-i < Uj in fl.
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Since / is an increasing function, and Uj > Uj-1, we have

L(uj+1 — uj) — a2S(x — b)(f(uj) — f(uj-1)) > 0 in

Uj+1 — Uj = 0 on 0Q.

By Lemma 2.1(d) and (2.3), Uj+\ > Uj. By the principle of mathematical induction,

i> <U1<U2<-- - < un—i < un in (2-16)

for any positive integer n.
We would like to show that U(x,t) > ip(x) for 0 < t < tb. From (2.9), < U(b,t)

for 0 <t< ti, where ti = p. Let 15 be the smallest t (> ti) such that < U(b,t).
Since

L(u - ip) > a26(x - b)(f(u) - f{ip)) in 17,
u — ip = 0 on dQ,

it follows from (2.3) that

U(xJ) - tp{x) > a2 I G(x,t;b,T)(f{U{b,T)) - f(ijj(b)))dT.
Jo

Thus, U > 'tp on D x [0,ts]. By starting at t — is (instead of t = 0), we repeat
the procedure used in proving (2.9) and the above reasoning to show that U > ip on
D x [0, t6\ for some t$ > + p. In this way, we prove that U(x, t) > ip(x) for 0 < t < tb-

Since

L(u — u\) = a2S(x — b)(f(u) — f{ip)) > 0 in
u — u\ = 0 011 dVL,

it follows from Lemma 2.1(d) and (2.3) that U > u\. Using mathematical induction,
U > un for any positive integer n.

Let denote the closure of For any T E (0,tb), U is bounded 011 fi. There exists
some positive constant K such that U < K on J2. Since

un(x,t)=a2l G(x,t;b,T)f(un-1{b,T))dT+ f £qG{x,t;£,0)ip{£)d£, (2.17)
Jo Jo

it follows from the properties of / and the Monotone Convergence Theorem (cf. Royden
[9, p. 87]) that limn^oo un satisfies the integral equation (2.3). From (2.17),

un+i(x,t) - Un(x,t)

o fl (2-18)
= a G{x,t\b,T)[f{un(b,T)) - f{un-i{b,T))]dT.

Jo
Let Sn = maxjj(un — un_i) for any T < tb- By using the mean value theorem and
f'(u) > 0 for u > 0, it follows from (2.18) (as in the derivation of (2.7)) that

Su+i <a2f'(K)SnclC2b-^4 VA,1/4 f e-^-^dr
717 ./O=1

= a2f'{K)Clc2b-q/4 3/4n _ eEv3/4d-
t=i

Sn
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which converges since O(Xi) = (i2) for large i. Let us choose some positive number
ci (< T < tb) such that for t e [0,oi],

a2f'(K)cic2b 9/4 EA,:3/4(l-e-«) < 1.

Then, the sequence {un} converges uniformly to linin^oo un{x, t) for 0 < t, < <r\. Sim-
ilarly for ai < t < T < tb, we use lim^^ac un(£, <Ti) to replace ip(£) in (2.17); we then
obtain

OG

Sn+i < a2f(K)Clc2b-q'4 A"3/4[l - e-x^-^}\Sn.

For t e [<ri,min{2<7i,T}],

a2/'(A')c1c26~?/4 A"3/4[l - g-Aitt-CTi)]! < i

Thus, the sequence {un} converges uniformly to limn^oo un(x, t) for <j\ < t <
min{2(Ji,T}. By proceeding in this way, the sequence {un} converges uniformly for
0 < t < T, and hence limn^oo un is continuous. Since the integral equation (2.3) has a
unique continuous solution U for 0 < t < tb, we have U = limn_>00 un.

To show that U is a nondecreasing function of t, let us construct a sequence {wj} such
that for i = 0,1, 2,...,

Wi(x,t) = Ui(x,t + h) — Ui{x,t),

where h (< T) is some positive number. Then, wo(x,t) = 0. We have

Lwi = 0 in D x (0, T — h\.

From (2.16),

u>i(.z,0)>0 on D, wi(0, t) — Wi(l, t) = 0 for 0 < t < T — h.

By (2.3), wi > 0 in fl. Let us assume that for some positive integer j, 0 < wj in fl.
Then,

Lwj+1 = a2d(x — b)f'(£j)wj >0 inDx (0,T- h]

forsome^j between Uj (x, t + h) and Uj(x,t). Since Wj+\(x, 0) > OonD, and wJ+i(0, t) =
Wj+i(l,t) = 0 for 0 < t < T — h, it follows from (2.3) that Wj+1 > 0 in fl. By the
principle of mathematical induction, wn > 0 in for all positive integers n. Hence, U is
a nondecreasing function of t. □

The next result shows that U is the solution of the problem (1.2).

Theorem 2.5. The problem (1.2) has a unique solution u = U.



372 C. Y. CHAN and H. Y. TIAN

Proof. By Lemma 2.2(d), Jq G(x,t;b,r)f(U(b,T))dr exists for x 6 D and t in any
compact subset [t7,t$] of [(),£(,). Thus, for any x 6 D and any tg € (0,£),

[ G(x,t;b,T)f(U(b,T))d,T
io

ft-l/n
lim / G(x,t;b,T)f(U(b,T))d.T

n >0° ./()

= lim
n—► oc Ml C-l/n \

G{x, £; 6, t)f (JJ(b, t))(1t J d(

+ [ G(x,tg\b,T)f(U(b,T))dT
Jo

Since by (2.4),
oo

Gc(xX;b,T)f(U(b,T)) < c22J2X*/2e-Xi/nf(U(b.T)) for C -r > 1/n,
i=l

which is integrable with respect to r over (0,C — 1 /r?), it follows from the Leibnitz rule
(cf. Stromberg [11, p. 380]) that

5 1/n G{x, C; b, T)f(U(b,r))dT)
dC i o

1 \ („ /, „ 1= + J G((x,C,b,T)f{U(b,T))dT.
C—1/n

Let us consider the problem,

LuJ = 0 for x e D,0 < t < 1 < T,

uj(0, t; r) = £,t) = 0 for 0 < t < t < T.
lim xqw(x, £, t) = 5(x — £).

t—>T +

From the representation formula (2.3),

u>(x, t; £, t) = f aqG(.%,t;a,T)a~q8(a — £)da
Jo

= G(x,i;£,r) for t > t.

It follows that lim(^r+ xqG(x, t; b, r) = 6(x — b).
Since G(x,(^:b,<^ — 1/n) = G(x, 1/n; b, 0), which is independent of £, we have

[ xqG(x,t;b,T)f(U(b,T))dT
Jo

= S(x — b) f /({7(6,C)X+ lim f f xqG<i{x,C\b,T)f{U{b,T))dTdCl
Jtg OO Jtg _y0

rtg
+ / xqG(x,t9:b,T)f(U{b,T))d,T.

Jo
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Let
rt — l/n

gn(x,t)= / xqGt(x, t; b, t)f (U(b, r))dr.
Jo

Without loss of generality, let n > I. We have

K-l/n
9n(x,0 - 9l(x,0 = / xqGt{x,C,: b.T)f(U(b,T))dT.

JC-l/l

Since xqGt(x,t; b,r) £ C(Dx(t,T]) and f(U(b, r)) is a monotone function of r, it follows
from the Second Mean Value Theorem for Integrals (cf. Stromberg [11, p. 328]) that for
any i/i) and any £ in any compact subset [tj, is] of (0, t-b), there exists some real number
v such that £ — v £ (£ — 1/Z, £ — 1/n) and

9n(x, c) - 9i(x, 0 = f (u ^b, C - ^ xqGi(x7 C; b, r)dr

+ f (u (b,£- -X) f xqGc(x,(;b,T)d.T.

From G${x, C; b, r) = —GT(x, £;b,r), we have

9n(x,0 ~ 9i(x, C)

f[U(b,C--))-f(u(bX-\)) xqG(x,(;b,(-v)

+ f(U(bX-\))xqG (x,t-,b, C~\) ~f(u (b,C-~))xqG(x,Cb,C--

n)) \ V I

Since for x ^ 6,

xqG(x, 6, C — e) = xqG(x, e; 6,0)

converges to 0 uniformly with respect to £ as e —► 0, it follows that for x ^ 6, {c/n} is a
Cauchy sequence, and hence {<;„} converges uniformly with respect to £ in any compact
subset [£7, £g] of (0,if,). Hence for x j- b,

i-t K-l/n
lim / / xqGr(x,(;b,T)f(U(b.T))dTd(

n-*°° Jt9 7o

= I lim [ xqG<:(x,C,b,T)f(U{b,T))dTdC
Jt9 n~iX Jo

= f f xqGc(x,(;b,T)f{U{b,T))dTd(.
Jtg J 0

For x = 6,

-Gc(x,C-,b,T)f(U(b,T)) I ^tf(b)Ke-Xi«-T)f(U(b,T)),
1=1
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which is positive. Thus, {— gn} is a nondecreasing sequence of nonnegative functions
with respect to £. By the Monotone Convergence Theorem,

lim ( [ bqGc{bX\b,T)f(U{b,T))dTdC,
l-*°° Jt9 Jo

ft r C-l/n
I lim / 69Gc(6,C;^,T)/(C/(fo,r))cirdC
tg J0

r\"Gc(b^;b,T)f(U(b,T))dTdCIIJt-g J 0

Thus,

[ xqG(x, t;b,r)f(U(6, t))dr
ctt ./o

= <5(x - &)/(£/(&, t)) + f a«Gt(x, i; b, r)f(U(b, r))dr.
Jo

By using (2.5), (2.6) and the Leibnitz rule, we have for any x in any compact subset
of (0,1] and t in any compact subset [£7, is] of (0, £(,),

0dx

For any x\ € D,

~ J ( G(x, t; 6, r)f(U(b, r))dr = J ' G*(x, t; b, r)/(t/(6, r))dr,

5 ' Gx(x,t:b,T)f(U(b,T))dT = f Gxx{x,t;b,T)f(U(b,T))dT.

lim / G(x,t;b,T)f(U(b,T))dT
£-*u Jo

ft — E

lim J J G(ri,t-,b,T)f(U(b,T))dTj d-q

+ lim / G(xi,t;b,T)f(U(b,T))dT (2-19)
Jo/o

= lim I I Gv{ri,t-,b,T)f(U{b,T))dTdT]
£^°Jxl Jo

+ [ G(xi,t:b,T)f(U{b,T))dT.
Jo

We would like to show that

lim [ I Gr,(ri, t: b,r)f (U(b, r))drdrj
£-*0 x\ JO

[ lim [ Gn(T],t-,b,T)f(U{b,T))dTdr].
Jxx £—* J0

(2.20)
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By the Fubini Theorem (cf. Stromberg [11, p. 352]),

linJ, / f Gr,(ri,t;b,T)f(U(b,T))dTdr)
£^°Jx! Jo

ft — E

lim J ^f{U(b,T)) J Gv(r),t;b,T)d'nj dr
ot — £

= lim / f (U (b, r))(G(x, tm, b, t) — G(xi,t;b, r))dr
£^°Jo

= ( f{U(b,T)){G(x,t-,b,T)~G{xi,t\b,T))dT,
Jo

which exists by Lemma 2.2(d). Therefore,

[ f(U(b,T))(G(x,t;b,T)-G(xi,t\b,T))dT = f [ Gv(r),t;b,T)f(U{b,T))dTdri,
J 0 Jx\ J0

and we have (2.20). From (2.19),

~ J G(x,t;b,T)f(U(b,T))dT = J Gx(x,t;b,T)f(U(b,r))dT.

For any X2 € D,

lim [ Gx(x,t-,b,T)f(U(b,T))dr

= l[™of (/ Gr,(rj,t;b,T)f(U(b,T))dTj drj

+ Jim f Gv(x2,t;b,T)f(U{b,T))dT (2.21)
e_>u Jo/o

x rt—e

£—>0flJ X-2 J 0
= lim / / Grir1{r),t;b,T)f(U(b,T))dTdr/

+ I Gv(x2,t; b,r)f(U(b, r))dr.
J o

We would like to show that

linn I f Gvri{ri,t;b,T)f(U(b,T))dTd77£~' JX2 JO

= f lim [ Gvv{r]>t;b,T)f(U(b,T))dTdr}.
JXo J 0

(2.22)
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Since Gxx(x,t;£,r) = xqGt{x, t\£, r) — S(x — £)5(t. — r), we have

lim I f Gm{T},t\b,T)f{U(b,T))dTdri
Jx2 Jo

= lim [ I (rfGt{r],t\b,T) - S(rj - b)6(t - T))f(U(b,T))drdr]
Jx2 Jo

= lim f [ T]"Gt{ri,t-1b,T)f{U{b,T))dTdr]
W0 Jx2 Jo

= - lim f f rjqGT(rj,t-,b,T)f(U{b,T))dTdr].
s—>0 ' X2 «/0

By the Second Mean Value Theorem for Integrals, there exists some real number 7 €
(0, t — e) such that

nX />t —6

lim / / rigGT(ri,t:b,T)f(U(b,T))dTdri
Jx2 Jo

= — lim I f{U(b, 0)) [ r]qGT{ri^t;b,T)dTdr]
e-° Jx2 Jo

/•a: rt—s

— lim / f(U(b,t — e)) / r]qGT(ri,t;b,T)dTdr/
Jx2 J-r

= f(U(b,0)) lim [ if{G(r],t\b,Q)-G(qA\b^))di]
e^°Jx2

+ lim / f(U(bJ — £))rjq(G(r],t-,b1'y) — G(7^.t\b,t - e))d7] (2.23)
A:2

= f(U(b,0))^J r)qG(i),t\b, 0)dr] — lim J riqG(i),t-,b,"/)dri

+ f(U(b,t))(lim I r/qG(r],t-,b, f)dr] — Mm I riqG(i),t;b,t - e)dr)
\e""° ix2 e^° A2

= f(U(b, 0)) t; b, 0)dr] - lim J r]qG(r],t;b,^)dr]

f(U(b,t)) (jim j rjqG(r), t; 6, j)dt] — J 6{r) - b)drj+

since lim£_»0 f*2 <\'lG{r\, t;b,t- e)drj = lime^0 J^2 r]9G(b, t; ?/, t - e)dr] = f*2 S(r) - b)drj (cf.
Chan and Chan [1]).
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Case 1: If lim£_o 7 = t, then lim£_o ">lqG{r], t; b, 7)dr] = f* 6(r) — b)dri. We have
CX pt — £

- lim / / r}qGT(r), t\ b^r)f{U(b,r))drdrj
e—>0 'X2 JO

= f{U{b,0))(l r]qG{r),t-,b,0)dri - f 5{r)-b)dr]
JX2

+ f(U(b,t))^J 6{r]-b)dr]-J 5{r]-b)dr^j

= f{U(b, 0)) rfG{r], t; b, 0)dr] - J limr]qG(r],t;b,'y)dr]

+ f(U(b,t))\ I lim rjqG(r], t; b,j)dr] — [ lim rfG(r], t\b, t - e)drj
\Jx2 £^0 Jx2 £^°

= f{u (6,0)) r]qG(r], t; b, 0 )drj - J lim ??9G(r?, t; b, 7)drj

[ I™ [f(U(b, t - e))r]q(G{r], t; b, 7) - G(r?, t;b,t- e))]dr]
Jx.o

+

= — I lim/ lim f(U{b, 0)) [ T]qGT(r], t-,b,T)dT + f(U(b, t - e)) [ i] qGT(r/,t;b,T)dT
Jx2 I Jo J-y

= -[ lim [ r]qGT(t], t; b, r)/(17(6, r))drdi]
Jx2 £-"° J0

= [ lim/ (ifGt{ri,t;b,T) - 6(r]-b)5(t - T))f{U(b,T))dTdri
Jx2 £^° ./o

lim I Gvv(rf,t;b,T)f(U(b,T))dTdT).

dr]

lx2 £-°.

Case 2: If lime_»0 7 < t, then lim£^0 ( ' VqG(i], t; b, 7)^77 = fx riqG(r], t; b. lime_0 7)driJ X*2 ^ X2

since f r/qG(ri,t;b,-y)dr] is a continuous function of 7. From (2.23), we have

fX pt — £

lim / / r]qGT(ri,t;b,T)f(U(b,T))dTdr)
e^o ' X2 <*0

= f(U(b,0))^J r]9G(r], t; b, 0)drj — J r]qG (j],t;b, lim 7) dr]

+ f(U(b,t))^j r]qG (r], t; b, lim 7^ dr] — J 8{i]-b)dr^j

= ~ [ lim f(U(b,0)) f ifGT(r],t-b,T)dT + f(U{b,t - e)) [ T]qGT(r],t;b,T)dT
Jx 2 e^° [ Jo J J

= - [ lim f rjqGT(r], t; b, r)f(U(b, T))drdr]
Jx2 JO

= [ lim [ Grm(r],t;b,T)f(U(b,T))dTdT].
Jx2 £^° Jo

In either case, we have (2.22).

dr]
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From (2.21),

Gx(x, t;b,r)f(U(6, r))dr

Thus,

Therefore,

= 11 Gm{r],t\b,T)f(U{b,T))dTdr] + f Gn(x-2J:b,T)f(yU(b,T))dT.
JX-2 JO Jo

J Gx(x,t:b.T)f(U(b,T))dT = J Gxx(x>t-,b,T)f(U{b,T))dT.

J G(x,t;b,T)f(U{b,T))dT = J Gxx(x,t;b,T)f'(U[b,T))dr

for any x in any compact subset of (0,1] and t in any compact subset [i7,£g] of (0,i;,).
By the Leibnitz rule, we have for any x in any compact subset of (0,1] and any t in

any compact subset of (0,£{,),

dt G(x.t:£A))tqip(Od(. I xqGt(x,t-,£,,0)^q4>^)d^

j G(x,t;£,0)€gi//(£)dt = y Gx(x,t;{, 0)t"ip(£)d£,

G(x, t;f, 0)t,qip(0d£, = I Gxx(x, t; f, 0)£V(6)d£-

dx

dx2 J0 J{)

From the integral equation (2.3), we have for x e D and 0 < t <tb,

LU = a2S(x — b)f(U(b,t)) + a2 I LG(x,t;b,T)f(U(b,r))dT
Jo

+ f LCix.t-.c.WiiZW
J o

/•t-e
= a2S(x — b)f(U(b, t)) + a2S(x — b) lim / 5(t — r)f(U(b,T))dT

£->0 Jo

+ S(t) [ S(x - OCVm
Jo

= a2S(x - b)f(U(b, t)).

From the integral equation (2.3), we have for x £ D,

lim U{x, t) = lim [ £qG{x, t; £, 0)^(£R = VK®)
t-»U t—»U Jq

(cf. Chan and Chan [1]). Since G(0, £;£, r) = 0 = G(l,t;£, t), we have E/(0,t) — 0 =
U(l,t). Thus, the solution U of the integral equation (2.3) is a solution of the problem
(1.2). Since a solution of the latter is a solution of the former, the theorem is proved. □

The next result gives a sufficient condition for u to blow tip.

Theorem 2.6. If ip attains its maximum at b, then the solution u of the problem (1.2)
attains its maximum at b. If in addition, tb < oo, then u(b,t) is unbounded in [(),£(,).
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Proof. Let Dob = (0,6), Dob = [0,6], Dbl = (6,1), Dbl = [6,1], Qob = Dob x (0,tb),
and = Dbi x {0,tb). Since u(b,t) is known, let us consider the problems:

La = 0 in Slob, u(x, 0) = on -Dob,
u(0, t) = 0 and u(6, t) = u(b, t) for 0 < t < tb

Lu = 0 in fibi, u(x, 0) = tp(x) on Db\,
u(b, t) — u(b, t) and u(l, t) = 0 for 0 < t < tb

.}

■ }

(2.24)

(2.25)

Because ip attains its maximum at 6, it follows from the strong maximum principle and
Theorems 2.4 and 2.5 that the solution of the problem (2.24) attains its maximum at 6.
Similarly, the solution of the problem (2.25) attains its maximum at 6.

By Theorem 2.4, u is a nondecreasing function of t. Thus, if u blows up, it is at 6. If
in addition, tb < oo, then let us assume that u(b,t) is bounded above by some constant
fci in [0, ib). We consider (2.8) for t £ [tb,T) with the initial condition u(:r, 0) replaced
by lim^t- u(x, t), which we denote by u(x,tb):

u(b,t) = a2 f G{b,t;b,T)f(u(b, r))dr + f £qG(b,t; £,tb)u(£,tb)d£. (2.26)
Jtb Jo

Let
/>]

£qG(b,t;£,tb)u{£,tb)d£,Z(t) = fJo
and W(t) = u(b,t) — Z(t). An argument analogous to the proof of Lemma 2.3 shows
that there exists some tio such that W exists and is unique for tb < t < tio■ Thus, (2.26)
has a unique solution for tb < t < tio, and hence, (2.8) has a unique solution u(b,t) for
tb < t < tio- This contradicts the definition of tb, and hence the theorem is proved. □

3. Single blow-up point. From (2.1), we obtain the following result.

Lemma 3.1. G(6, t: 6, r) is a strictly decreasing function of t.

Theorem 3.2. If ip attains its maximum at 6, and u blows up, then 6 is the single
blow-up point.

Proof. Since ip attains its maximum at 6, it follows from Theorem 2.6 that if u blows
up, then it blows up at 6. To show that 6 is the only blow-up point, let us consider
the problem (2.24). By the parabolic version of Hopf's lemma (cf. Friedman [5, p. 49]),
ux(0,t) > 0 for any arbitrarily fixed t € (0,tb). For any x e (0,6), uxx = xqut, which is
nonnegative by Theorem 2.4. Hence, u is concave up. Similarly, for any arbitrarily fixed
t 6 (0,tb), ux(l,t) < 0. For any x G (6,1), uxx = xqut > 0, and hence u is concave up.
Thus, if u blows up, then 6 is the single blow-up point. □

Let

fl{t) = [ Xq(j){
J o

x)u(x, t)dx,

where (j) denotes the normalized fundamental eigenfunction of the problem (2.2) with A
denoting its corresponding eigenvalue.
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Theorem 3.3. If ip attains its maximum at b,

A \ i/(p-i)
M0)>(^J , (3.1)

1 \p^2— W(b,t), (3.2)
,Q + 1J

where p is a real number greater than 1, then the solution u of the problem (1.2) blows
up at a finite time.

Proof. Multiplying the differential equation in the problem (1.2) by <fi, and integrating
over x from 0 to 1, we obtain

+ \n{t) = a2<j)(b)f (u(b, t)). (3.3)

Since u(x,t) < u(b,t), we have

mW < (/ xq(f>{x)dx \ u(b,t).

It follows from the Schwarz inequality and fQ xq4>2{x)dx = 1 that

n(t) < (J xq(f)2{x)dx\ (/ xqdx\ u(b,t)
I \ !/2

£(jn) "<M)-
By (3.2),

From (3.3),

4>(b)f{u(b, t)) > np(t).

+ An(t) > a2

Solving this Bernoulli inequality, we obtain

< y + (V"P(0) - y)

From (3.1), y«1_p(0) < a2/A. Thus, /j tends to infinity for some finite tb- This implies
u{b, t) blows up at tb. □

If tb < oo, then we use the method of Olmstead and Roberts [7] to find a lower bound
ti and an upper bound tu for tb- These are used later on to compute the finite blow-up
time. Using (2.14), we obtain from (2.15),

„ „ m + h)Rw < "777; —■
f'(k3 + k i)

Let us assume that tp attains its maximum at b. Then, fci = ip(b). Thus, an appropriate
k-$ is the smallest solution of

f{k3+tp{b)) ,n ^
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We note that in the proof of Lemma 2.3, (2.14) implies R is a contraction mapping. This
and (3.4) show that if

alLG{b-tMiT< m+mr (">
then R is a contraction mapping, and hence u exists. From (2.13), a lower bound ti of
tb is given by

a'l'GfUr.i, T)dT=m + my <36)
For some tu < tb, (2.12) has a continuous solution w(t) for t £ [0,fn]. From Lemma

3.1,
w(t) > s(t), 0 < t < tn < tb,

where

s(t) = a2 j G(b, in; b, T)f(w(r) + z(t))cIt.
Jo

For some tu to be determined later, let mino<t<tu z(t) be denoted by k$, which is positive.
Then,

s'(t) = a2G(b, l\ i:b. t)f(w(t) + z(t))

> a?G(b, tu]b, t)f(s(t) + k5).

We have

That is,

■At) ^ 2
f(s{t) + k5)

fs(tu)+k5 ^ _ ft

> a G(b, tii; b, t).

> a2 f G(b,tii;b,T)dT.
JoJk5 f{r)

Since (2.12) having a continuous solution w(t) for t G [0,tn] insures that s(t) < oo, we
have

f°° dr o ftlx
/ 77T > a / G(b, tn;b,T)dr.

Jk5 J (T) Jo
A contradiction to existence of a continuous solution occurs if

r°° dr
1 < oo, (3.7)

and there exists some 112 such that

f°° dr
Jk5 f(r)

Thus, an upper bound tu of tb is determined by

Jk5 f{r)

rt\2

= a2 / G{b,ti2',b,r)dT.

*°° dr 2 rt

f{r) = a / G(b,tu;b,r)dT. (3.8)
/ 0

That is,

Jk5 f(T) frt A
Thus, we have proved the following result.

dr (39)
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Theorem 3.4. If tb < oo, and t/> attains its maximum at b, then a lower bound ti of
ft, is determined by (3.6). If in addition, (3.7) holds, then an upper bound tu of tb is
determined by (3.9).

4. An example. As an illustrative example, let q = 0. Then,

OO

G(x, t; £, r) = 2 e~n n sin(n7ra;) sin(ri7r£) for t > r.
71= 1

From Olmstead and Roberts [7],

sin2 nirbf 2
/ G(b,t;b,T)d,T = 6(1 — b) -

Jo n ,n=1

-e~n n K

Let

!x2 for 0 < x < b,
/ L \2
(rrfe) I1 ~ XY for b < x < I.

It is nontrivial, nonnegative and continuous such that ip(0) - 0 — y(l !. Its generalized
second derivative (cf. Stakgold [10, pp. 38-39]) with respect to x is given by

2 for 0 < x < b,

v"{x) r: { fVV b) for a; = 6,

2 (r=b) for b<x< 1.

Thus, the condition (1.3) is satisfied if

~ 6(x ~b)^ °-

A sufficient condition for this to hold is

a2f(b2) > A, (4.1)

Let f(u) = up where p is any real number greater than 1. From (3.4), k-s = (£3 +i/j(b))/p,
and hence, k3 — b2/(p — 1). From (3.5),

a2
7i" n2

n=l

(p-iF'1
pPfr2(p-l)

This is satisfied for all f > 0 if

a2b2p-l(i _ < \ (1.2)
pp

Thus, w exists for all t > 0 if (4.2) holds. We note that (4.2) can always be achieved
by placing the concentrated source sufficiently close to the boundaries (cf. Olmstead and
Roberts [7]).
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Since the normalized fundamental eigenfunction is given by 4>{x) = 21'2sin7rrE, and
its corresponding eigenvalue is A = 7r2, it follows from Theorem 3.3 that if

93/2 . /7TN2/(P-1)
\ q o[—' 1 + 26-26 + (1 - 26) cos7r6 + (1 — 6W6sin7r6] > ( — ) , (4.3)

(1 — o)z7rd \a/

21/2 sin7r6 > 1, (4.4)

then u blows up at a finite time. A plot of the left-hand side of (4.3) as a function of 6
by using Mathematica® version 4.1 shows that it is positive for 0 < 6 < 1. Thus for a
given 6, we can find a such that (4.3) is satisfied. From (3.6), a lower bound ti for tb is
given by

(p - l)f-x
a2 b(l -- r? E

n—1 pPb2(p~1) (4.5)

We have

z(t) — —  3 < V^[62 cosnn + (1 - 26) cosnnb
^ ' \n=l

i \ / -i , , • .. sin 7i7r6 _„2_2,+ (1 — 6)(—1 + 6 + mrbsmmrb)]  —e
(4.6)

From (3.8), an upper bound tu is given by

1 2
= a

(p - 1 )kl~ ^ ^ Eo 00 • 2 z2 sin nirb
7r^ ^—' n2

n= 1

e-n2^t„ (4.7)

Since fcs = mino<t<tu z(t), it follows from (4.7) that an upper bound tu may be deter-
mined by

As a numerical example, we further let p = 2 and b = 1/2. The sufficient condition
(4.1) is satisfied if a > 4\/2. Since (4.4) is automatically satisfied, it follows from (4.3)
that u blows up in a finite time for a > 9.74. Thus for each value of a (> 9.74), we use
(4.5) to compute a lower bound ti by taking a finite number of terms in the infinite sum
since a smaller ti is obtained by doing so. We use (4.8) to find k$. From (4.6),

Ap-ir2t. °° 1

z{t) - (1 -6)2tt3 E + b'2 + " b>^
V ' n—l

4e~n t
<

(1 — 6)7T2

2

1 + 62 / f°° dx\ ^ i1+/ 3+tEs(1 — b)n \ x3 J n

3(1 + 62) 6
(1 — 6)7t3 3

e .1-6
Thus, an upper bound tu may be obtained by solving

"3(1+ 62) 6
fcs =

(1 — 6)7r3 3
e~'n K

Mathematica® is a registered trademark of Wolfram Research, Inc., Champaign, IL.
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We then use the following bisection procedure with Mathematica® version 4.1 to deter-
mine the blow-up time:

Step 1. Let the lower and upper bounds t\0^ and determined above be our first
estimates of ti and tu. Then, the first estimate of tb is fj,0' = (t\0) +t[^)/2.

Step 2. For step n, if |f„n) — t\n] \ < e (a given tolerance), then ^n) = +tL"')/2 is
accepted as the final estimate of tb, and we stop; otherwise, we go to the next step.

Step 3. Let tm = (fj"' + t^)/2, and mh = tm, where m denotes the number of
subdivisions of equal length h. We use the following iteration process:

u,(°\b,t) = ip{b),

and for k = 0,1,2,...,

u{k+1){b,rh) = a2 [ G{b,rh-,b,T)f{u{k\b,T))dT
Jo

+ f G(b,rh;f,0W(t)dt,
Jo

where r = 0,1,2,..., m. As an approximation to G(.x, t;r), we use the finite sum

N

G(x, t; £,t) = 2 ^2 e~H n sin(n7rx) sin(n7r£) for t > t.
71=1

Using the adaptive integration procedure, we do the following calculations:

a2 * NIntegrate[G(£>, rh; b, T)f(ip(b)), {r, 0, rh}],

N Integrate[G(6, rh; f, 0)t/>(£). {£, 0,1}].

For r — 1, 2,3,..., m, we obtain an approximate value ii^l\b, rh) of u^(b, rh) as

u^l\b.rh) — a2 * iVIntegrate[G(i>, rh-, b, r)/(tt^°'(6, r)), {r, 0, rh}}

+ N Integrate[G(6, rh; £, 0)ip(£), {£, 0.1}],

where m(0)(6,t) =ip(b), and u^{b. 0) = ip(b).
Similarly by making use of the values,

u(fc) (b, 0) = ip(b), w(fe) {b, h), u(k) {b, 2h),..., u{k) (b, mh),

we obtain an approximation u^ (b, t) of the function u(b, t) by

t) = Interpolation[{r/i,{^fc)(6, rh)}r=o m].

For r = 1,2,3,... ,m, we perform the following calculation,

a2 * N Integrate[G(6, rh; b, r)f(u^ (b, r)), {r, 0,r/i}],

to obtain an approximate value u^k+1\b,rh) of u^k+l\b,rh) as

ij(fc+1) (b, rh) = a2 * N Integrate[G(6, rh; b, r)/(w(fc' (b, r)), {r, 0, rh})

+ N Integrate[G(6, rh; £, 0)ip(£), {£, 0,1}],

where 0) = ip{b).
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For each given tolerance S, if \(u^(b,mh) — u(-k~1^(b,inh))\ < S, then t\n — tm,

tin+1] = tu \ or else if \(u^k\b, m,h) — u^k~l\b, mh))\ > C for some given positive number
C, then t\n+i ) = t\n\ tlT+1) = tm. We stop the iteration process and go to Step 2.

The results for tb given in the following table were obtained by taking N = 10,
£ = id"7, 6 = 10"2, C = 105, m = 40, b = 0.5, and f(u) = u2.

h
a tb

10
0.0062
0.62

15
0.0022
0.50

20
0.0012
0.48

25
0.00073

0.46

30
0.00050

0.45

35
0.00036

0.44

40
0.00027

0.43

The above results illustrate that the blow-up time is a decreasing function of the length
U.
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