
 Open access Proceedings Article DOI:10.1109/WCADM.1995.514642

Single-rail handshake circuits — Source link

Anna Peeters, K. van Berkel

Institutions: Eindhoven University of Technology, Philips

Published on: 30 May 1995

Topics: Asynchronous system, Handshake and Asynchronous communication

Related papers:

 Handshake Circuits: An Asynchronous Architecture for VLSI Programming

 An asynchronous low-power 80C51 microcontroller

 Communicating Sequential Processes

 Programming in VLSI: from communicating processes to delay-insensitive circuits

 Reductivity arguments and program construction

Share this paper:

View more about this paper here: https://typeset.io/papers/single-rail-handshake-circuits-
4mb45pnqvm

https://typeset.io/
https://www.doi.org/10.1109/WCADM.1995.514642
https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm
https://typeset.io/authors/anna-peeters-wzym3ukeli
https://typeset.io/authors/k-van-berkel-2k5klmpo3k
https://typeset.io/institutions/eindhoven-university-of-technology-131kgvqf
https://typeset.io/institutions/philips-3rduy2jw
https://typeset.io/topics/asynchronous-system-l8de31l9
https://typeset.io/topics/handshake-1r8nvpwj
https://typeset.io/topics/asynchronous-communication-32zvom8z
https://typeset.io/papers/handshake-circuits-an-asynchronous-architecture-for-vlsi-2ln642dq4i
https://typeset.io/papers/an-asynchronous-low-power-80c51-microcontroller-4oqeumhfra
https://typeset.io/papers/communicating-sequential-processes-43isnj77cd
https://typeset.io/papers/programming-in-vlsi-from-communicating-processes-to-delay-55ao2n8sl6
https://typeset.io/papers/reductivity-arguments-and-program-construction-41tph15xjv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm
https://twitter.com/intent/tweet?text=Single-rail%20handshake%20circuits&url=https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm
https://typeset.io/papers/single-rail-handshake-circuits-4mb45pnqvm

Single-rail handshake circuits

Citation for published version (APA):
Peeters, A. M. G. (1996). Single-rail handshake circuits. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR461274

DOI:
10.6100/IR461274

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 30. May. 2022

https://doi.org/10.6100/IR461274
https://doi.org/10.6100/IR461274
https://research.tue.nl/en/publications/9d9970a7-5d55-4440-b76a-f52bc8a143f2

Single-Rail

Handshake Circuits

AdM. G. Peeters

n

g

Copyright© 1996 by Ad Peeters, Eindhoven, The Netherlands.

All rights reserved. No part of this pubHeation may be reproduced, stored in a re­
trieval system, or transmitted, in any form or by any means, electronic, mechanica!,
photocopying, recording or otherwise, without prior permiss ion of the author.

Cover: layout of the single-rail demonstrator IC, which is discussed in Chapter 7.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Peeters, Adrianus Marinus Gerardus.

Single-Rail Handshake Circuits I Ad M.G. Peeters. -

Proefschrift Technische Universiteit Eindhoven. -
Met lit. opg. - Met samenvatting in het Nederlands.

ISBN 90-74445-28-4

Trefw.: IC-design, VLSI, asynchronous circuits.

Single-Rail Handshake Circuits

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

AAN DE TECHNISCHE UNIVERSITEIT EINDHOVEN,

OP GEZAG VAN DE RECTOR MAGNIFICUS,

PROF. DR. J.H. VAN LINT,

VOOR EEN COMMISSIE AANGEWEZEN

DOOR HET COLLEGE VAN DEKANEN

IN HET OPENBAAR TE VERDEDIGEN

OP WOENSDAG 12 JUNI 1996 OM 16.00 UUR

DOOR

ADRIANUS MARINUS ÜERARDUS PEETERS

GEBOREN TE DONGEN

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. M. Rem

en

prof. S. B. Furber

en door de copromotor:

dr. ir. C. H. van Berkel.

The work described in this thesis bas been carried out at Philips Research Laborat­
mies Eindhoven while the autbor was employed on EXACT (ESPRIT project 6143)
by Eindhoven University of Technology, under the auspices of the research school
IPA (Institute for Programming research and Algoritbmics).

Contents

Preface V

1 Introduetion 1

1.1 Tangram project 2
1.2 Roadblocks 0 0 3
1.3 Challenges 0 0 4
1.4 Contributions 0 5
1.5 Overview 0 0 0 6

2 Tangram Handshake Circuits 7

201 VLSI Programming 7
202 Handshake circuits 0 0 0 0 11
203 Tangram 18
2.4 Tangram handshake circuits 23

3 Single-Rail Data Encoding 25

301 Single rail 25
302 Handshake channels 26
303 Twophase 27
3.4 Four phase 28
305 Single track 32
306 Minimum-power schemes 32
307 Extended data-valid schemes 0 33
308 Synchronous data-valid schemes 34
309 Options 0 0 0 0 0 35

4 Handshake Circuits 37

401 Structure 0 0 0 0 37
402 Assignment 0 0 39
403 Communication 50

ii Contents

4.4 Iteration 54
4.5 Selection 55
4.6 Sharing . 58
4.7 Condusion . 61

5 Handshake Components 63

5.1 Implementation aspects 63
5.2 Interface components . 71
5.3 Passive components 79
5.4 Push components . 90
5.5 Pull components 98
5.6 Summary. 105

6 Design Flow 107

6.1 Design flow 107
6.2 Tangram compilation . . 108
6.3 Component substitution 114
6.4 Examples 119
6.5 Fine tuning 123
6.6 Placement and routing 128
6.7 Verification . 129
6.8 Condusion 129

7 Demonstrator 133

7.1 Function 0 0 0 0 0 133
7.2 Diagram • 0 0 0 0 134
7.3 Tangram program 136
7.4 Handshake circuit 137
7.5 Gate netlist . . 138
7.6 Measurements 144
7.7 Evaluation 147
7.8 Condusion 151

8 Condusion 153

8.1 Comparison 153
8.2 Strengtbs .. 165
8.3 Weaknesses 167
8.4 Opportunities . 167
8.5 Threats 168
8.6 Remaining issues . 169

Contents 111

Bibliography 171

Summary 179

Samenvatting 183

Curriculum Vitae 187

iv Contents

Preface

In the Tangram project at Philips Research Laboratones Eindhoven, silicon compil­
ation and asynchronous circuit techniques are combined to enable the fast design of
low-power circuits. VLSI designers using the Tangram system are offered a power­
ful programming language, called Tangram, a compiler from Tangram to standard­
cell netlists, and several tools that give fast and accurate feedback on performance
aspects such as area, time, energy, and testability.

Handshake circuits form an intermediate representation in the compilation from
Tangram to silicon. At this level one can still choose between various handshake
protocols and data encodings. The fiTst version of the Tangram system was based on
the combination of a four-phase handshake protocol and double-rail data encoding.

These double-rail handshake circuits successfully demonstrated the low-power
potential of compiled asynchronous circuits. The low-power advantage, however,
came at too high costs, namely an unacceptable area overhead and a dedicated stand­
ard-celllibrary.

The challenge that was formulated for the research documented in this thesis
was to remove these two roadblocks towards exploitation. To this end single-rail
techniques were investigated and applied to handshake circuits.

The thesis introduces single-rail implementations ofhandshake circuits as a cost­
effective way to realize low-power asynchronous circuits. The thesis presents an
overview of several ways to combine single-rail data encoding with handshake pro­
tocols. A design-flow from Tangram to single-rail realizations in a generic stand­
ard-celllibrary is defined. This flow is applied successfully toa demonstrator IC:
an error-detector that is part of a DCC player.

Much of the research that is documented in this dissertation was carried out in
the context of EXACT1. The aim of this ESPRIT project was to demonstrate the
low-power promise of asynchronous VLSI circuits. The single-rail DCC chip was
used as one of the demonstrators in EXACT.

1 EXploitation of Asynchronous Circuit Technologies (ESPRIT project 6143)

V

vi Preface

Acknowledgements

Throughout the years the Tangram Team at Philips Nat.Lab. has always been an
inspirational environment to work in. I am especially indebted to Kees van Berkel
for inviting me 'to spend a brief period' in the team, to learn more about asynchron­
ous circuit design. This was is July 1991, and since then I have leamed alotand
was allowed to work on some challenging problems. I would like to thank Eric van
Utteren and the memhers of the team, Ronan Burgess, Joep Kessels, Marly Ron­
eken, Frits Schalij, Hans van Gageldonk, and Rik van de Wiel, for their support
and the pleasant cooperation.

Ever since my M.Sc. work in the Parallelism and Architecture group at Eind­
hoven University, Martin Rem has encouraged me to write a Ph.D. thesis on asyn­
chronous silicon compilation. I am most grateful to him for this continuous support
and for his help in focusing the thesis on single-rail handshake circuits.

I want to thank the memhers of the thesis committee -which, in addition to
Martin Rem and Kees van Berkel, consistedof Steve Furber, Emile Aarts, and Joehen
Jess- for the effort they put into judging this thesis.

During the period that I worked for EXACT, Andrew Bailey has been an ideal
colleague. We had a lot of interesting discussions, not only on asynchronous circuit
design, but also on polities, religion, and other facts of life.

The memhers of the Eindhoven VLSI club are acknowledged for the regular
Friday-morning discussions. Rudolf Mak and Tom Verhoeff taught me to be crit­
icaL JoEbergen introduced me into the interesting field of asynchronous and delay­
insensitive circuit design.

Manchester University was one of the partners in EXACT and during my work
I had the opportunity to pay some visits to the AMULET group. The discussions
with Steve Furber, Craig Famsworth, Shiv Sikand, and Doug Edwards helped me
in understanding more about micropipeline techniques.

ESPRIT Working Group 7225 (ACiD) is gratefully acknowledged for funding
my visits to Manchester University and to workshops and conferences.

There is a lot more to life than working, and for me, running has become one
of the major other occupations. lt has always been an excellent way to relax after
or during a working day and to find new inspiration. On the other hand, the sort of
work I have been doing enabled me to train a lot and to turn running into a way of
life. Although running is often considered to be an individual sport, I have always
experienced it as a team sport, for which I would like to thank a lot of friends, espe­
cially the former Asterix core, the current PSV running group, the Nat. Lab. runners,
and their respective trainers.

Chapter 1

Introduetion

The market for portable consumer-electronic products is booming, and is expected
to continue to grow at a high rate for many years to come. Portable telephones,
digital assistants, notebooks, video games, buzzers, and portable digital audio, are
products that already today are affordable to a lot of people. Several key teebuo­
logies have made the introduetion of all these portable devices possible. Display
technology, audio and video compression, and IC technology are some of these en­
abling technologies.

Power consumption is a major issue for all these portable products. Low power
consumption of a device may enable the use of less batteries, which results in a
lighter and more appealing product, or altematively, the product may be recharged
less frequently.

An important souree of power consumption is the digital signal processing in­
side these portable products. The ever decreasing dimensions of especially CMOS
IC-technology have enabled the integration of more and more digital functions. Al­
though CMOS was originally preferred because of its low-power consumption in
comparison with other technologies, power consumption of digital CMOS ICs has
now become a main concern. Digital I Cs demand an ever increasing portion of the
power budget of portable devices.

One of the alternatives that is investigated to reduce the power consumption of
digital I Cs is not to use a clock to drive the operation of the IC, but to apply asyn­
chronous techniques instead. Although these techniques generally introduce some
area overhead because they require some circnitry to replace the control by a clock,
the extra cost may be affordable if it results in a significant rednetion in energy con­
sumption. Furthermore, the circuits should be implementable against reasomtbie
design-costs, which in general means within a short design time.

This dissertation introduces single-rail implementation of handshake circuits

1

2 1. Introduetion

as a means to realize area-efficient low-power asynchronous VLSI circuits. Neither
'single-rail' nor 'handshake circuits' is a new concept, but the combination of the
two is, especially in the context in which it is applied in this thesis, namely that of
a silicon compiler and a standard-cell layout style.

Part of the work described bere bas been reported earlier in two papers at the
1995 London Asynchronous Design Methodologies working conference [65, 10].
For references to asynchronous literature the public 'asynchronous' bibliography
as maintained at Eindhoven University ofTechnology bas been used [64].

1.1 Tangram project

The project 'VLSI Programming and Silicon Compilation' at Philips Research Labs
Eindhoven was initiated in 1986. The central idea was -and still is- to view VLSI
design as a programming activity. This can be achieved by combining a powerfut
programming language and a good silicon compiler for that language. In the course
ofthe project a VLSI programming language called 'Tangram' has been defined and
a compiler from Tangram to VLSI circuits bas been implemented. In the rest of the
thesis the project is referred to as 'Tangram project'

Handshake circuits farm the intermediate representation in the fully automatic
compilation of Tangram programs to VLSI circuits, and where introduced by Van
Berkel in [8]. A handshake circuit is a networkof handshake components, con­
nected by point -ta-point handshake channels. In such a circuit, all communication
takes place via handshaking. VLSI programs written in Tangram are translated in a
transparent way into handshake circuits, which are subsequently, on a component­
by-component basis, replaced by gate netlists.

Handshake circuits can be realized in silicon in different ways. One of the de­
grees of freedom is the timing assumptions that are made in this mapping. The only
timing assumption that was made originally in the implementation ofhandshake cir­
cuits was that of the isochronie fork, which is a fork (branch in a wire to different
inputs) for which the difference in the delays between the two branches is shorter
than the delays through the gates to which the fork is an input. The isochronie fork
is introduced by Bnrns and Martin [20, 57] and is considered to be an essential and
the 'weakest possible' campromise to true delay insensitivity [56] if such circuits
are to be realized in CMOS, the dominating IC-technology of today. The resulting
circuits are generally called quasi delay insensitive (QDI) [19]. Implementation as­
pects of isochronie forks are well understood [56, 7].

The restrietion to QDI implementation of handshake circuits implies that for
data communication a delay-insensitive encoding of the data should be used [82].
The most natura! coding scheme then is the double-rail code, in which two wires per

1.2. Roadblocks 3

bit are used, one to signal the communication of a '0,' the other for communicating
a '1.' Double-rail operations on data, such as addition, require complex cells, not
normally available in a standard-cell library. Therefore, a dedicated asynchronous
celllibrary was developed.

With this approach a number of interesting circuits have been realized. In 1987
the feasibility of the approach was demonstrated with working silicon [6]. This led
to the definition of the VLSI-programming language Tangram, the implementation
of a compiler from Tangram to handshake circuits, the development of a cell lib­
rary, the implementation of a compiler for handshake circuits, and the implement­
ation of a tooi set to support this design flow. A secoud demonstrator IC, used to
validate the tools and the flow, was reported in 1993 [14]. In terrus of complexity
the most-notabie Tangram-compiled ICs are the chips for the error decoder of the
Digital Compact Cassette (DCC) player [11].

The DCC chip set proved that designs of industrially-relevant complexity could
be handled by the tools and that interfaces to synchronous environments, standard
protocols, and standard DRAMs could be straightforwardly implemented. More
importantly, however, the circuits demonstrated an interesting power advantage over
a commercial synchronous equivalent: the a<;ynchronous circuit used only a fifth of
the energy for the equivalent function.

1.2 Roadblocks

Although low power was recognized as a key advantage of Tangram circuits, two
roadblocks prohibited practical application and exploitation of Tangram VLSI pro­
gramming. The most important harrier was the 70 to 100% area overhead of the
double-rail circuits over synchronous implementations of the same functions. This
overhead is not industrially acceptable, even when the circuits are five times more
energy efficient.

A second, increasingly important, obstacle was the use of the dedicated asyn­
chronous standard-celllibrary, while the trend in industry has been towards generic
standard-celllibraries. Such a library comprises standard logic gates (NAND, NOR,
AND, OR, XOR), some complex gates (AND-OR-INVerts), inverters and buffers of
a range of driving capabilities, and special functions such as adders, multiplexers,
decoders, latches, and D-types. The advantage of generic libraties is that a design
can easily (fast and cheap) be retargeted to different verslons of a given technology
(low power, high performance, minimal area), to different technologies (CMOS in
various feature sizes, FPGA, gate array), and to different manufacturers.

Both the area overhead and the need for a dedicated ce1llibrary are due to the
double-rail encoding of data that has been used. Since double-rail uses two wires

4 1. Introduetion

per bit in the encoding of data, the area of such a circuit is about twice that of a
circuit in which only one wire per bit is used. (Each wire bas to be ddven by some
cell, and hence implies transistors and circuit area.)

1.3 Challenges

The goal that was set for the work deselibed in this thesis was to greatly reduce
the area overhead of handshake circuits and, simultaneously, to map them onto a
genede standard-cell library. Both points are essential when striving for acceptance,
application, and production of asynchronous circuits on a larger scale.

The main candidate for area rednetion is the datapath, where we should switch
from an encoding based on two wires per bit to one that uses only one wire per bit.
Single-rail data encoding [72], which uses one wire per bit, plus one additional wire
to signal the validity of the data, is such an encoding. This farm of data encoding is
also known as bundled data [75] and was already applied in the sixties in the Mac­
romodule project [74]. Especially for wide datapaths, single-rail encoding should
leadtoa rednetion in the number of wires and transistors, and thus toa smaller area.

The choke for single-rail encoding introduces a new timing assumption. In
QDI implementations we only had to consider isochronie forks, but in single-rail
we have to take a more quantitative look at delays. The use of a data-valid wire in­
troduces the bundling constraint [75]: the data-valid signal must ardve later than
the valid data. This implies that the delay through the data-valid path should be
larger than the worst-case delay that can be encountered in the datapath.

The bundling constraint implies new verification obligations in the design flow,
especially in the context of the standard-cell layout style that we pursue. In this
style, the actual delay of gates is only known when the layout is completed and
before that we have to resort to estimated wire loads. We have to take the sens­
itivity of the delays to these estimates into account, most notably in compadng the
delay of the datapath with that of the data-valid signal. If we want to minimize the
vedfication effort, we have to combine optimistic estimates for the data-valid wire
(low loads, short wires) with pessimistic estimates for the actual data (high loads,
long wires). From this observation it is clear that one of the challenges in single­
rail implementations is to combine manageable verification effort with acceptable
performance.

An important advantage of single-rail datapatbs is that datapath operators such
as adders and exclusive ars can be found in any genede standard-celllibrary. This
motivates our choice to try and implement all handshake components, bath control
and data, using only such a generic celllibrary.

The double-rail datapath was identified as the main souree for area inefficien-

1.4. Contributions 5

ei es. The control path, however, must also taken into account when trying to reduce
the area of handshake-circuit implementations. ln going from a dedicated to a gen­
etic library the circuit area of the control is likely to increase. One possible remedy
is to identify frequently occurring combinations of handshake components and to
substitute these by more economie implementations. Another approach that might
help is to exploit the richness of the genetic library through peephole optimization.

Low power is considered to be the key strength of asynchronous circuits. We
therefore also strive to imprave the power efficiency of handshake circuit imple­
mentations. Area reduction, ho wever, is the main concern, because the 70-100%
area overhead of double-rail circuits is a serious handicap. We furthermore believe
that, to some extent, less area implies shorter wires and thus less power and poten­
tially more speed.

Another challenge in the step from double-rail to single-rail is not to affect the
compilation from Tangram to handshak:e circuits, thereby keeping this compilation
independent of the actual implementation style of the handshake circuit.

We furthermore want to rnaintaio the push-button aspect of the compilation from
handshak:e circuit to layout. This means that we should minimize the effort for post­
layout verification. The safety margins in the data bundling, and the sensitivity to
varlation in processing and operation parameters are, therefore, important aspects
of the single-rail design-flow.

Finally, the testability of single-rail circuits (against production faults) is of ut­
most importance when striving for practical applications.

1.4 Contributions

Throughout the thesis a systematic approach to single-rail handshake circuits is in­
troduced. In going from double-rail to single-rail we basically increase the engin­
eering content of handshake circuit implementations. This improves area, timing,
and energy quality of the resulting VLSI circuits at the cast of a well-identified and
manageable increase in design effort.

mg:
The main contributions of the research documented in this thesis are the follow-

• An inventory of single-rail handshak:e protocols, leading toa surprisingly rich
domain to choose from.

• The identification of a four-phase handshak:e protocol in which all four phases
are productive (functional), thus removing an often mentioned disadvantage
of four-phase handshaking, namely the redundancy of the return-ta-zero phase.

6 Chapter 1. Introduetion

• The definition and implementation of a push-button single-rail design flow,
targeted at a generic standard-celllibrary.

• A single-rail demonstrator in the form of fully functional silicon.

1.5 Overview

In this chapter we have given some context and defined the main target of the re­
search that is reported in the rest of the thesis. The structure of the thesis is as fol­
lows.

Chap 2. Introduetion to the Tangram VLSI-programming approach. This chapter
briefly introduces the VLSI-programming language Tangram, handshake cir­
cuits, the compilation from Tangramtothese handshake circuits, and an over­
view of the Tangram toolbox.

Chap 3. Discussion of single-rail data encoding. Takes stock of various ways to
implement handshake channels. Various single-rail data-valid schemes are
introduced.

Chap 4. Implementation of single-rail handshake circuits. The choice of a 'good'
data-valid scheme, basedon the compilation scheme from Tangram to hand­
shake circuits. The implementations of assignments, communication, itera­
tion, and selection are discussed.

Chap 5. Implementation of handshake components, basedon a data-valid scheme
for the handshake channels. The delay assumptions in the implementation of
the components are made explicit.

Chap 6. Single-rail design-flow, with emphasis on the role of peephole optimiza­
tion at various levels of representation.

Chap 7. The viability of single-rail handshake circuits is demonstrated by the im­
plementation of a DCC error detector.

Chap 8. Single-rail handshake circuits are compared with various other (synchron­
ous and asynchronous) circuit technologies. This leads to an identification of
the strengths, weaknesses, opportunities, and threats of single-rail handshake
circuits. The chapter ends with an identification of the main remaining issues
on the route to exploitation of asynchronous circuits.

Chapter 2

Tangram Handshake Circuits

Handshake circuits are the central architecture in the Tangram project. They form
the intermediale representation in the compilation from Tangram to VLSI circuits.
Essentially, handshake circuits abstract from all VLSI aspects, thus separating Tan­
gram compilation aspects from VLSI technology details.

This chapter briefty sketches the role of Tangram as a VLSI-programming lan­
guage. Subsequently, handshake circuits, as introduced by Van Berkel [8], are dis­
cussed. The compilation from Tangram programs to handshake circuits is addressed,
which results in the identification of Tangram handshake circuits: handshake cir­
cuits as they can be obtained by compilation from a Tangram program. The effi­
cient implementation of these Tangram handshake circuits is the subject of the rest
of this thesis.

2.1 VLSI Prograntming

Silicon compilation, that is, the automatic generation of VLSI circuits from descrip­
tions written in a high-level programming language, demands a powerfut program­
ming language and a good compiler. The programming language should abstract
from VLSI circuit and technology details, thus allowing the designer to concen­
trale on application and programming issues. The silicon compiler should be able
totranslate these programs into efficient VLSI circuits automatically, which induces
requirements for the programming language.

Two extreme approaches to silicon compilation can be identified. The first is
to combine a traditional programming language, like C or Pascal, with a power­
fut compiler (or, perhaps more accurately, a synthesizer) that extracts parallelism,
chooses efficient data-encodings, optimizes the amount of sharing, et cetera. The
advantage ofthis style is that it puts minimal burden on the designer (programmer).

7

8 Chapter 2. Tangram Handshake Circuits

An important disadvantage is that it generally is unclear how to steer the compiler,
for example towards a low-power solution. A small change in the input program
that was thought to imprave a design aspect, may actually decrease the quality of
the resulting circuit. A familiar cause for this may be an unexpected side effect: the
change may disable optimizations that have been applied to the original program.

The approach that bas been chosen in the Tangram project represents the other
extreme. It is based on a more dedicated programming language in combination
with a highly transparent silicon compiler, which allows the designer to infer cir­
cuit costs and performance directly from the program. The language (Tangram) is
similar to a traditional programming language but in addition

• offers language constructs to explicitly deal with parallelism, at any level of
granularity;

• supports synchronized (CSP-like [43]) communication via channels;

• makes the sharing of hardware resources explicit, both for control structures
and the datapath; and

• offers provisions for tuple construction and selection, type casting, and type
fitting, which can be used to choose the most appropriate and efficient data
encoding.

The transparency of the compiler enables the designer to evaluate the silicon area,
timing, power consumption, and testability of the compiled circuit at the program
level. This high-level feedback is an essential requirement to allow the designer to
make trade-offs and to explore the design space.

This approach to silicon compilation is called VLSI programming [5], and the
designer of such a program is referred to as a VLSI programmer.

The VLSI programmer typically is a system expert in the application field for
which the design is intended. Detailed VLSI knowledge is not required, since this
is bidden in the tools and the libraries. However, some silicon awareness (insight
into the area and energy properties of a VLSI design) is essential to arrive at cost­
effective solutions.

To support the VLSI programmer in the exploration, a set of tools have been
defined and developed. These tools, and the VLSI programmer's view on the design
flow are illustrated in Fig. 2.1.

Tangram Compiler. This compiler implements the syntax-directed translation of
Tangram programs into handshake circuits, as described in [6, 16, 8].

For each production rule of the Tangram syntax a corresponding translation
rule to handshake circuits exists in the compiler. This translation is therefore

2.1. VLSI Programming

Handshake Circuit
Analyzer

VLSI
Pro grammer

Tangram

Compiler

Handshake Circuit
Compiler

Function
Timing

Energy

Performance
Analyzer

Handshake Circuit
1-----~

Simulator

Silicon
Foundry

9

Figure 2.1: The Tangram Toolbox: boxes denote tools, ovals denote (design) rep­
resentations.

10 Chapter 2. Tangram Handshake Circuits

highly transparent, and allows one to relate performance criteria like timing,
area, power, and testability directly to the Tangram program.

Handshake Circuit Simulator. This discrete event simulator is based on detailed
functional, timing, energy, and test models of handshake components. The
test-coverage part ofthis simulator is described in detail by Van de Wiel [79].
The other design aspects have also been modeled in VHDL, which makes co­
simulation of Tangram generated circuits and other designs relatively straight­
forward.

Performance Analyzer. This is a tooi with a high-quality graphical user interface
that is used to link simulation results to the Tangram program. After sim­
ulation, the VLSI-programmer can use this interactive tooi to evaluate the
performance and the energy consumption of the Tangram program, and to
identify possible bottlenecks and 'hot spots.'

Handshake Circuit Analyzer. This tooi generates area statistics from a handshake
circuit. In contrast to the other performance criteria, area information is not
translated back to the Tangram level.

Handshake Compiler. Compilation from handshake circuits to layout consists of
several steps, which are detailed in Chapter 6. This compilation forms the
central theme of this thesis and can be partitioned into two phases: compon­
ent substitution and layout generation. Component substitution is the map­
ping of handshake components onto a celllibrary and is part of the Tangram
tooi set. The netlist that results from this phase can be input in any commer­
cially available CAD framework for placement, routing, simulation, and veri­
fication.

In actdition to the tools shown in the diagram and mentioned above there is also
a faster simulator that can be used for functional and coarse-grain timing simula­
tion. This simulator is based on the direct compilation of Tangram to C, without
using handshake circuits as intermediate. The timing information is linked to the
Tangram program using the sameperformance analyzer as for the handshake cir­
cuit simulator. A VLSI programmer typically uses this tooi during the initial phase
of the design, when fast iteration is more important than high accuracy.

In the final stage of the design other simulators, based on representations that
are more detailed than the handshake circuit (netlist, layout) are also used. These
simulations are typically part of a standard CAD framework, and are not dedicated
to asynchronous or handshake circuits.

2.2. Handshake circuits 11

2.2 Handshake circuits

Handshake circuits form the intermediale representation in the compilation from
Tangram programs to VLSI. It is the central architecture throughout this thesis. In
this section we introduce handshake channels, handshake components (which com­
municate via such channels), and handshake circuits (networks of handshake com­
ponents).

2.2.1 Handshake channels

Handshake signaling is a communication mechanism that establishes point-to-point
synchronization. A handshake involves two partners which play different roles,
called active and passive. The partners exchange so-called request and acknow­
ledge signals. The passive partner waits for a request to arrive and after receipt of
a request responds with sending an acknowledge. The active partner starts with is­
suing a request and then waits for the corresponding acknowledge to arrive. Such
a combination of a request and an acknowledge is called a handshake.

Throughout this thesis we assume the active and passive roles to he fixed, which
means that one partner will always be active, and the other will always be passive.
The communication medium between the partners is called a handshake channel.
We conform to the convention to denote an active handshake partner with a fat dot
(•), and a passive partner with an open circle (0), see Fig. 2.2.

active ••-------O passive
partner partner

Figure 2.2: A handshake channel represents the communication medium between
an active and a passive handshake partner.

Those who are used tothink in terms of Petri-nets [67], places, and tokens, may
think of handshake communication as the exchange of tokens. Initially the active
partner has the token. Sending a request is then interpreted as passing the token
from the active to the passive partner. An acknowledge is represented by sending
the token from the passive to the active partner. The fat dots and open circles can
then be thought of as indicating the initial distribution of the tokens.

A handshake essentially synchronizes the active and the passive partner. In act­
dition to pure synchronization, handshakes can also establish data communication
between the partners byencoding data in the request, in the acknowledge, or in both.

Handshake channels with no data encoded are called nonput channels. They
conneet two so-called nonput handshake partners, one active, one passive. A hand-

12 Handshake Circuits

shake on a nonput channel establishes a synchronization only; no data is commu­
nicated.

The second type of handshake channels are those with data encoded in the re­
quest. These channels conneet an active sender and a passive receiver. So, the
sender takes the initiative fora communication action. One might say that thesender
pushes the data through the channel, therefore these channels are referred to as push1

channels. From a data-flow point of view push channels are data driven.
On a pulfl handshake channel data is encoded in the acknow ledge. Such a chan­

nel connects a passive sender and an active receiver. The sender issues data after
receiving a request from the receiver, so one could say that the receiver pulls the
data through the channel. From a data-flow point of view pull channels are demand
driven.

The fourth type of handshake channels are biput channels, on which data is en­
coded in both the request and the acknowledge. One handshake then establishes
the exchange of values between the two partners. The active partner now initiates
the handshake by sending data to the passive partner. The passive partner then re­
sponds by sending data back. The handshake partners alternatingly act as sender
and receiver.

The four types ofhandshake channels are depicted in Fig. 2.3. On data channels,
arrows indicate the direction(s) of data-flow. In the context of Tangram only nonput,
push, and pull channels are applied. Biput channels do not recur in the rest of the
thesis. For push and pull handshake channels, the data that can be communicated
on such a channel is called the type of the channel.

For a handshake channel a we use ar to denote the request of a, and aa for its
acknowledge. If a is a push channel, the communication of a value x (encoded in
the request), is denoted by ar(x). Similarly, the communication of a value x on pull
channel a is denoted by aa(x).

Now that we have introduced symbols to denote events on handshake channels,
we can use traces to record sequences of events that can be observed on handshake
channels. The allowed sequences of events canthen be specified using commands.
Traces and commands are introduced by example, rather than via a separate formal
section. ForTrace Theory as used throughout this thesis the reader is referred to Van
de Snepscheut [78], Hoare [44], Kaldewaij [47], Ebergen [29], or Verhoeff [83].

The handshake protocol prescribes that a handshake is initiated with a request
and ended by an acknowledge. The allowed sequence of events on a nonput hand­
shake channel acanthus bedescribed by command *(ar; aa)· In this command

1The narnes pushand pull were coined by Joep Kessels. Previously, these type of channels were
referred to as straight and anti, respectively. Push and pull are also used as strategies in flow-shop
controL A drawback of the push-oriented strategy then is the accumulation of unsold products. Other
familiar terms, especially in the market place, are Technology Push and Market Pull.

2.2. Handshake circuits 13

nonput channel active •
nonput 0

passive
nonput

push channel active •
output

., 0 passive
mput

pull channel ~ctive •"
mput 0

passive
output

biput channel ac~ive • ~
b1put 0

passive
" biput

Figure 2.3: Symbols for the four types of handshake channels

the semicolon indicates that an acknowledge is allowed only after the request has
occurred, and the star denotes repetition.

Throughout the thesis we use explicit typing of push and pull channels, espe­
cially in specifications, for which we use commands. All commands in which data
plays a role are of the form I [D I C Jl, where D (for declaration) introduces variables
of some appropriate type, and C is a command in which these variables occur. For
a push channel a of type T the behavior is prescribed by I [x : T I * (ar (x) ; a a)]I.
This command describes the altemating of requests in which data of type T is en­
coded and acknowledges. Similarly, pull channel bof the sametype is specified by
command I [x : T I * (br ; ba (x))]I.

2.2.2 Handshake components

Handshake components are components that use handshake channels to communic­
ate with their environment. The interface of a handshake componenttoa handshake
channel is called a handshake port. These ports are either active or passive, depend­
ing on whether the component plays the active or the passive role on that channel.

If data is encoded on a handshake channel, then the handshake ports are input
or output ports, depending on whether the channel is push or pull, and whether the
port is active or passive. For a handshake port connecting to handshake channel a,
we use the following conventions to denote the type of the port.

14 Chapter 2. Tangram Handshake Circuits

notation port activity channel type
ao passive nonput
a• active nonput

a0 ?T pass1ve push, T
a•!r active push, T
a0 !T passive pull, T
a•?r active pull, T

We use commands to specify the behavior (that is, the allowed sequences of

events at the external interface) of handshake components. One restrietion that all

components satisfy is that the handshake protocol on all handshake channels in­
volved is obeyed. This can always be readily verified from the command specific­

ations that are given.

In the commands, input and output events can be distinguished. For passive

ports, the request events are inputs and the acknowledge events are outputs. On
active ports this is the other way around, which means that requests are outputs and
acknowledges are input.

The sequencer is used to implement sequentia! composition of Tangram. It is

a handshake component with one passive nonput port and two active nonput ports.
The specification and the symbol for a sequencer with ports a, b, and c are shown

below.

SEQ(a 0
, b•, c•) =

*(ar; br; ba; Cr; Ca; aa)
c

When this sequencer is activated along channel a it first performs a handshake
along b, then a handshake along c, and then signals successful termination by com­

pleting the handshake along a. In the symbol for the sequencers we label the hand­

shake channel that is first activated with a '*·'
From the command one can derive the behavior on the individual channels. If

we focus on channel b, for instance, the behavior is characterized by *(br; ba). The
sequencer thus satisfies the handshake protocol on channel b. This can be checked

for all handshake channels that the sequencer connects to. Other handshake com­

ponents can be verified in a similar way.
The parallel component implements Tangram's parallel composition. lts hand­

shake interface is the same as that of the sequencer, that is, it has three nonput ports,
one passive and two active. When activated along its passive port, it initiates hand­
shakes on its active ports, then waits till both handshakes have completed, and sig­
nals this by sending an .acknowledge on its passive channel. lts specification us-

2.2. Handshake circuits 15

inga command and the symbol for the component are shown below. Notice that in
commands, sequentia! composition (denoted by ';') has higher priority than parallel
composition (denoted by ' 11 ').

PAR(a0
, b•, c•) =

*(ar; (br; ba 11 Cr; Ca); aa) b c

The sequencer and the parallel are both examples of control components. Of
course, there are also handshake components that deal with data. An example of a
data component is the adder, whose specification and symbol are given next. This
component operates in a demand-driven fashion. It awaits a request on its result
channel before it collects the operands, computes the result, and outputs this on the
result channel.

ADD(a
0 !Ta, b•?Tb, c•?Tc) =

l[x: Tb,Y: Tc
I *(ar; (br; ba(x) 11 Cr; Ca(Y)); aa(X + y))
ll

b

a

c

The adder is an example of a parameterized component. The inputs and output
each have their own type, in which the type of the output is determined by that of
the inputs. This is discussed in more detail in Chapter 5.

One may observe that the specification of the adder is very similar to that of the
parallel component. The communication behavior is essentially the same; the only
difference is that the adder eneodes data in the acknowledges.

The transferrer is a handshake component with three different kinds of hand­
shake ports, a passive nonput port, an active pull portand an active push port. When
activated along its passive channel it actively fetches data from its pull port and
subsequently forwards this data along its push port. The transferrer thus transfers
data u pon request and -in handshake circuits- is an interface between control and
data components, or, phrased differently, between the control and the datapath. The
symbol and command specification are given below.

TRF(a 0
, b•?T, c•!T) =

I [X : T I * (ar ; br ; ba (X) ; Cr (X) ; Ca ; a a)]I b

16 Handshake Circuits

The behavior of the transferrer, as specified in the command, is similar to that of
the sequencer. The sequences of events are basically the same; in addition the trans­
ferrer bas data encoded in the acknowledge of its input channel and in the request
of its output channel.

The components addressed so far illustrate how operations on data can be per­
formed, how data can be transferred, and how this can be controlled. An essential
component that is missing is one to store data. The handshake variabie implements
exactly this. Its specification and symbol are given next.

VAR(a
0 ?T, b0 !T) =

I [X : T I * (ar (X) ; a a I br ; ba (X))]I

A variabie can be engaged in a write handshake (on channel a) or a read hand­
shake, and the environment must guarantee that these two will always be mutually
exclusive. During a write handshake the content of the variabie is updated; during
a read handshake it is inspected.

All components, except the variable, are receptive [8]. This means that on all
channels, if the handshake protocol on that channel allows for an input to occur,
the component is willing to accept that input. (Fora passive port, the request is the
input, for an active port the acknowledge is the input.) More precisely, if a trace that
is specified by the command can be extended with an input as far as the handshake
protocol is concemed, then this extension is also specified by the command. The
parallel component, for example, initially and after completion of a full cycle, can
accept a request on its passive channel. On both active channeis, an acknowledge
is anticipated directly after the corresponding request is sent.

The specification of the variabie as given in the command above implies that
the variabie is nat receptive. During a read handshake, for instance, the component
is not receptive fora write request. Tangram's compilation scheme guarantees mu­
tual exclusion between read and write accesses [16, 8]. Therefore the non-receptive
variabie always suffices in the Tangram context.

2.2.3 Handshake circuits

Handshake channels can be used to conneet handshake components into networks
of handshake components that are called handshake circuits. The connections that
are made by a handshake channel are point-to-point, and of course the type of the
channel should match that of the handshake ports of the components. Furthermore,
a channel must conneet an active port to a passive port. A push handshake channel,
for instance, can only conneet an active output port to a passive input port.

2.2. Handshake circuits 17

a

c

b

Figure 2.4: An example handshake circuit, built from the components introduced
earlier in this chapter.

With the handshake components that have been introduced in the previous sec­
tion, we can for instanee build the handshake circuit of Fig. 2.4. When activated via
channel i, this circuit first activates the left branch of the sequencer, which in turn
activates two transfeners in parallel. These transfeners operate independently. The
top transfener collects a value from channel a and stores this in variabie x, the other
transferrer stores the value collected from b in y. After both transfeners have com­
pleted, the acknowledges are combined in the parallel and sent to the sequencer.
This component then sends a request via its right-hand channel, which activates the
transferrer that connects to output channel c. The transferrer collects its output from
the adder, which in turn collects its input (the operands) from x and y.

The above description of an operational cycle is rather verbose. We can also
specity the behavior of such a handshake circuit as if it where a handshake compon­
ent. This requires abstraction from internal detail and structure. The format side of
this (parallel composition and hiding) falls outside the scope of this thesis. Por this
the reader is referred to Van Berkel [8]. A command that specifies the handshake
circuit of Fig. 2.4 is the following.

![x: Ta,Y: n
I * (ir; (ar;
ll

Designing handshake circuits by abutting handshake components is not a very

18 Handshake Circuits

productive way of designing these circuits. It makes more sense to design these
circuits in an algorithmic language and to use a compiler to generate the handshake
circuits.

The programming language should abstract from the handshaking details, such
as the exact interteaving of the request and acknowledge events and the assignment
of active and passive roles to handshake ports. Shorthands should, for instance, be
offered for 'collecta value from channel a and store this in variabie x.' This natur­
ally leads to a CSP-like language, in which the operation of the handshake circuit
canbedescribedas (a?x 11 b?y) ; c! (x+y).

2.3 Tangram

Tangram is a VLSI programming language that abstracts from handshake circuits
and enables the design of a circuit as a programming activity. Programs written in
Tangram can automatically be compiled to handshake circuits.

A key strength of Tangram compilation is the transparency of the compi1ation
scheme. The basic idea is that for each Tangram construct there is a handshake com­
ponent that implements the same function. This transparency is illustrated in the
first two examples in this section. Two additional examples illustrate the express­
ive power of Tangram.

A complete definition of Tangram, logether with a description of the perform­
ance characteristics (in terms of area, time, and energy) of the corresponding sil­
icon as they can be derived from a Tangram program, can be found in the Tangram
manual [71].

2.3.1 Adder revisited

In the previous section we only gave the command that corresponds to the hand­
shake circuit shown in Fig. 2.4. To obtain a complete (compilable) Tangram pro­
gram we have to add typing information and declarations. A Tangram program that
actually compiles to the handshake circuit of Fig. 2.4 is shown below, in which we
have chosen to input eight-bit operands and to output a nine-bit result.

int8 type [0 .. 255]
int9 type [0 . . 511]

(a?int8 & b?int8 & c!int9).
begin

x,y : var int8

(a?x 11 b?y) ; c! (x+y)
end

2.3. 19

2.3.2 Wagging buffer

The wagging FrFO is included as an example to illustrate the sharing of control and
datapatbs in handshake circuits compiled from Tangram. The Tangram program for
a wagging FIFO is shown below.

= type [0 .. 2 5 5 J

(a?byte & b!byte}.
begin

x,y : var byte
/* two-place wagging FIFO */
a?x ;

forever do (b!x 11 a?y)
{b!y 11 a?x)

od
end

In this program we encounter three inputs from channel a, two ofthe forma ?x
and one a ?y. Incoming messages on channel a are altematingly sent to variables
x and y. The program also contains two outputs to channel b, one from variabie x
and one from y. Compilation of this Tangram programtoa handshake circuit yields
the circuit of Fig. 2.5.

This handshake circuit contains three so-called mixer handshake components.
A mixer component has three handshake ports, two passive (say a and b) and one
active (say c). The command that specifies the behavior of the mixer is

This command specifies the nonput mixer. In addition, data may be encoded in the
request or the acknowledge, in which case the component is a multiplexer or a de­
multiplexer, respectively.

Mixer components are used for sharing. The component labelect 'dmx' in the
handshake circuit in Fig. 2.5 is a demultiplexer. It splits the input stream on channel
a to variables x and y. On the output side a multiplexer (labeled 'mux') merges data
from x and y onto channel b.

The datapath of the handshake circuit is connected to the control path via four
transferrers, which each control one of the data transfers of the Tangram program.
Since there are two occurrences of a ?x, the corresponding transferrer has to be
shared via a control mixer (labeled '!').

Channel i represents the initiation channel, which is used to activate the hand­
shake circuit. The component labelect '*'is a repeater and impiemeuts the forever
do od construct of the program. The handshake circuit clearly represents the syn­
tactic structure of the Tangram program. Each handshake component, apart from

20 Handshake Circuits

a b

Figure 2.5: Handshake circuit for wagging FIFO

the mixers, can directly be related to the program. The mixers are required to im­
plement sharing of hardware, which in the Tangram program shows as multiple oc­
currences of a construct.

2.3.3 Galois Field arithmetic

Tangram offers only two data types: booleans and integers from a specified range.
Any other data type that is required can be programmed based on these two basic
types, using tuple construction and selection, and type casting and fitting.

The construction of a user-defined type is exemplified in the Tangram program
given in Fig. 2.6, which introduces the Galois Field data type for GF(28). This data
type is used, for instance, in the Compact Disc program as discussed in [49] and
the DCC decoder program from [11], which is used as basis for the demonstrator
discussed in Chapter 7.

A Galois Field is characterized by a root of an irreducible polynomial. For the
field described here this is polynomial 1 + x 2 + x 3 + x 4 + x8 , and the root is de­
noted by a. Galois Field symbols are represented in the Tangram program as tuples
of eight booleans. This type is called gfsym. Tupling in Tangram is denoted by
< < > >, in which items are separated by commas. The program introduces two con-

2.3. Tangram 21

/* Definition of GF data type plus operations */
& gfsym = type <<bool,bool,bool,bool,bool,bool,bool,bool>>
/* some useful GF constants */
& gff const false
& gft const true
& gfzero const <<gff,gff,gff,gff,gff,gff,gff,gff>>
& gfalpha const <<gft,gff,gft,gft,gft,gff,gff,gff>>
!* GF functions */

& gfiszero = func (s: gfsym): bool.
- (((s. O+s. 1) + (s. 2+s. 3)) + ((s. 4+s. 5) + (s. 6+s. 7)))

& gflrot = func (s: gfsym): gfsym.
<<s.7,s.O,s.l,s.2,s.3,s.4,s.5,s.6>>

& gfadd = func (s,t: gfsym): gfsym.
<<s.O#t.O,s.l#t.l,s.2#t.2,s.3#t.3,

s.4#t.4,s.5#t.5,s.6#t.6,s.7#t.7>>
& mulalpha = func (s: gfsym): gfsym.

<<s.7,s.O,s.l#s.7,s.2#s.7,s.3#s.7,s.4,s.5,s.6>>
& divalpha = func (s: gfsym): gfsym.

<<s.l,s.O#s.2,s.O#s.3,s.O#s.4,s.5,s.6,s.7,s.0>>

Figure 2.6: Definition of Galois Field data type plus operations in Tangram.

stants of type gfsym: gfzero, which is the all-zero word, and gfalpha, which is
the representation of a in gfsym.

Function gfiszero implements the check whether a gfsym equals gfzero.
This function illustrates the use of tuple selection (denoted by a dot and the appro­
priate index, starting from 0) and the use of boolean operators for logical or (+) and
negation (-). Rotation to the leftover one position is defined in gflrot. The other
three functions implement addition (bit-wise exclusive or, denoted by #), multiplic­
ation by a, and division by a. In addition to the functions shown here the CD and
DCC programs require functions for inversion of a g f sym and multiplication of two
gfsyms.

The Galois Field example illustrates that the definition of data types in a Tan­
gram program does not differ from the definition of an abstract data type in any other
programming language.

2.3.4 Carry-select adder

Tangram offers four basic operations for integers: addition (+), subtraction (-), neg­
ation (-), andcomparison (=, <>, <, >, <=, >=). Forthese basic operations the VLSI
programmer should be aware of their performance characteristics. The transpar­
ency of the compilation from Tangram to VLSI circuits can then be used to reason
about the performance of (the silicon corresponding to) a Tangram program. The

22 Chapter 2. Tangram Handshake Circuits

!* type
I* type

U Si
Bi

UnSigned, i bits *I

Boolean, i bits */

B9 type <<bool,bool,bool,bool,bool,bool,bool,bool,bool>>
& BB9
& US8
& US9
& US16
& US8US8
& USBB
& US16B

I

type <<bool,B9>>
type [0 .. 2 5 5]
type [0 .. 511]

I* < 2~8 */

I* < 2A9 *I

I* < 2A16 */ type [0 .. 65535]
type <<US8,US8>>
type <<US8,bool>>
type <<US16,bool>>

().
begin

x,y,z : var US16
& cout : var bool

I* carry-select implementation of z := x+y *I

<<z,cout>>
begin

sumlow val (x cast US8US8.0 + y cast US8US8.0)
& sumhighO val (x cast US8US8.1 + y cast US8US8.1)
& sumhighl val (<<l,x cast USBUSB.l>> cast US9

+ <<l,y cast US8US8.1>> cast US9
) cast BB9.1

& sgn val sumlow.l
& sgnb val -sumlow.l
& sumhigh val << sumhighl.O * sgn + sumhighO.O

sumhighl.l sgn + sumhighO.l
. 2 * sgn + sumhigh0.2

sumhighl.3 * sgn + sumhigh0.3
sumhighl.4 * sgn + sumhigh0.4
sumhigh1.5 * sgn + sumhigh0.5
sumhigh1.6 * sgn + sumhigh0.6
sumhighl.? * sgn sumhigh0.7
sumhighl.8 * sgn + sumhigh0.8

>>

<<sumlow.O,sumhigh >> cast US16B
end

end

*
*
*
*
*
*
*
*
*

cast
cast

sgnb
sgnb
sgnb
sgnb
sgnb
sgnb
sgnb
sgnb
sgnb

Figure 2.7: Tangram program using carry-select addition.

US8B
B9

2.4. handshake circuits 23

adder that is offered, for instance, is a simple ripple-carry adder (this is the simplest
implementation of addition of two numbers). Should the pro grammer require a dif­
ferent (faster) adder, then this can be programmed in Tangram rather straightfor­
wardly. The implementation of z : =x+y with a carry-select adder, for instance, can
be programmed in Tangram as shown in Fig. 2. 7.

The carry-select Tangram program illustrates the use of a powerlul language
construct, namely type casting. This allows one to cast an expression to another
type of the same size, in which the size is the number of bits used in the (unique)
bit-vector representation. This requires that the VLSI programroer knows that in­
legers in Tangram are represented as bit vectors, with the I ow-order bit representing
the least-significant bit. This ordering of bits within a symbol is similar to the Big
Endian ordering of bytes within a word [24].

With this information in mind the program can easily be understood. The pro­
gram is basedon splitting the 16-bit actdition in two partsof 8 bits each. The !ow­
order bits are added using the standard ripple-carry adder and the result is available
as sumlow. Forthe high-order bits two values are computed, one basedon a 'zero'
carry-in (sumhighO), the other basedon a 'one' carry-in (sumhighO). Basedon
the carry-out of the low-order actdition (sumlow .1) the appropriate high-order act­
dition is selected.

Another integer operation that is not directly supported in Tangram is multiplic­
ation. Tangram does allow, however, for the definition of a wide range of multipli­
ers with various performance characteristics. An extensive treatment of Tangram
programs for multiplication is given by Haansin [38].

Other examples of VLSI -programming in Tangram, with emphasis on program­
ming for low power, can be found in reports by Van Berkel and Rem [17] and Kes­
sels [48]. The examples given in this section illustrate the expressive power of Tan­
gram. Common programs, such as those for integer multiplication and Galais Field
arithmetic, could be put in a library of Tangram definitions, from which a VLSI pro­
grammercanthen directly include a salution with the required performance char­
acteristics.

2.4 Tangram handshake circuits

This thesis addresses the implementation of so-called Tangram handshake circuits.
These are handshake circuits as they can be generated from a Tangram program.
The restrietion to Tangram handshake circuits allows us to exploit properties of the
compilation scheme from Tangram to handshake circuits in the implementation.
We try to keep the implementation of handshake circuits as general as possible, but
at some points the restrietion to Tangram allows for efficient implementations that

24 Handshake Circuits

would not be suited in a more general context. The properties of the compilation
scheme that are exploited are the following.

First of all, the Tangram compiler assures mutual exclusion between read and
write accesses to handshake variables. For the Tangram programs this implies that
so-called auto-assignments (like x: =x+ 1) are decomposed into two assignments
(like xx: =x+ 1; x: =xx). This master-siave deeomposition is implemented in the
Tangram compiler. Removing this restrietion from the Tangram compiler would re­
quire the introduetion of master-siave variables, whieh in addition to normal read
and write cycles allow for read-modify-write cycles.

Secondly, Tangram does not allow input communications in expressions. This
implies that if an input bas to be processed, it first has to be stored in a variable.
This restrietion could easily be removed from the language, since at the handshake
circuit level inputs could easily be allowed in expressions. In the implementation
of Tangram handshake circuits, however, we can take advantage of the restrietion.

A third property of handshake circuits compiled from Tangram is that mixers of
any type (nonput, multiplexer, demultiplexer) can be implemented non-receptively.
The compiler assures mutual exclusion of mixer requests on different passive ports.
The implementation of receptive mixers would require arbiter circuits to resolve
possible confiicts.

Chapter 3

Single-Rail Data Encoding

Fora cost-effective implementation of handshake circuits the efficient implement­
ation of data storage, manipulation, and communication is of utmost importance.
Single-rail implementations are promising since they only require one wire per bit
for the data encoding, in contrast with double rail, for which two wires per bit are
needed.

In this chapter single-rail data communication is introduced. The combination
of single-rail with handshaking is then illustrated on two- and four-phase handshake
protocols. In subsequent chapters, four-phase single-rail implementations of hand­
shake components and handshake circuits are introduced. It tums out that the com­
bination of single-rail and four-phase handshake protocols allows fora wide range
of choices.

3.1 Single rail

In a single-rail data interface, schematically depicted in Fig. 3.1, one wireperbit
is used to represent data. In actdition to this there must be a means for the sender
to inform the receiver that the data is stabie and valid (called the data-valid signal),
and a means for the receiver to indicate that this data is no longer required (the data­
release signal).

The exchange of information between sender and receiver is organized as fol­
lows. The sender first puts valid data on the wires and then informs the receiver
about this by sending a data valid signal. The receiver can then process this data
and inform the sender when the data is no Jonger required by sending a data release
signal.

The relation between sender and receiver in the single-rail protocol is essen­
tially symmetrical. The sender may take an indefinite amount of time to prepare

25

26 Chapter 3. Single-Rail Data Encoding

data valid

Sender
da;a

Receiver I

data release

Figure 3.1: Single-rail data interface between sender and receiver.

new data. After the issue of the data-valid signal, however, it has to keep the data
stable. The receiver can then prolong the data-valid period as long as required to
fully assimilate the new data. Only after the issue of the data release signal by the
receiver, the sender is relieved from its task to keep the data stable, and new data
may be prepared.

The single-rail data communication scheme was already applied in the Macro­
modules project [23]. The scheme wasthen called data validation and the control
signals were called initiation (valid) and completion (release) [74].

The term single rail was first used by Seitz to contrast it with double-rail en­
coding [72]. Sutherland, in his Turing Award lecture [75], popularized the use of
the single-rail data encoding scheme under the name bundled data. This name em­
phasizes the importance of the so-called bundling constraint, that is, the obligation
for the data-valid signal to arrive later than the data itself.

Both Seitz and Sutherland refer to the data valid wire as the request, and to the
data release wire as the acknowledge. Per data transfer this is indeed a natural way
to denote these signals, since a data communication then is initiated by a request and
ended by an acknowledge. In the next section the relation between the handshake
protocol and the single-rail scheme is discussed. Request and acknowledge are then
signals that are distinguished in the handshake protocol and the interpretation as
data valid and data release depends on the direction of the data flow.

3.2 Handshake channels

Tangram handshake circuits feature two kinds of handshake channels with data,
namely, push and pull channels, cf. Chapter 2. These two types of handshake chan­
nels are shown in Fig. 3.2, together with the relation between the request and ac­
knowledge of the handshake channel and the data valid and data release of the single­
rail scheme. On push channels (Fig. 3.2, top) the data-valid signalis encoded in the
request, and the data-release signal in the acknowledge. On pull channels (Fig. 3.2,

3.3. Two

active ••_ _____ ..,..
0

passive
output mput

passive 0..._ _____ ..,... •• ~ctive
output mput

req --------+data valid

----1-----+ n-bits data
n

ack ..,.__ ______ data release

req -------data release

ack --------+data valid

----1-----+ n-bits data
n

Figure 3.2: Single-rail push (top) and pull (bottom) handshake channels.

bottom) this is the other way around.

27

A communication on a push channel is initiated by the sender and starts with the
issue of a data-valid signal. After assimilation of the new data the receiver responds
by sending an acknowledge, which is interpreted as the data-release signal. On the
handshake channel the data is thus valid during the handshake.

· Communication on a pull handshake channel is initiated by the receiving party,
which thereby requests new data. The tirst-ever request may be interpreted as a
redundant data-release signal. The handshakeis completed when the receiver ac­
knowledges the request by issuing a data-valid signal. This implies that data is valid
between handshakes and that the sender thus prepares new data during the hand­
shake.

In literature on handshaking, communication data via pull channets is gener­
ally not addressed. Apparently, communicating data with handshakes in a demand­
driven way is not very common. Martin, however, mentions that 'contrary to com­
mon belief, it is simpter to implcment input commands with active ports than with
passive ports' [57, Sec. 20.4].

3.3 Two phase

In the two-phase handshake protocol a request and an acknowtedge wire are used
to imptement the handshaking between the active and the passive partner. If we
assume both wires to be low initially, then the sequence of events that can be ob­
served on such a channel is depicted in Fig. 3.3. Up and down handshakes can be
distinguished, where after an up handshake both wires are high and aftereach down
handshake both wires are low. Of course other initializations are also possible, and

28

req

ack I ______ ,_ ________ -J,

:..--up-:
I I

Chapter 3. Single-Rail Data Encoding

' I I

:-- Down ----....:
0 I

Figure 3.3: Two-phase handshaking

in partienlar it is not essential for the wires to start in the same state.

In the two-phase handshake protocol all transitions are functional, that is, each
request followed by an acknowledge constitutes a complete handshake. Two-phase
handshaking is also known as transition, two-stroke1

, two-cycle1
, and non-return­

to-zero (NRZ)2 signaling.
Since all transitions are functional the direction of dataflow directly de termines

the assignment of data valid andrelease to the handshake signals. On push channels
every request event signals the beginning, and every acknowledge the end of a data­
valid period. On pull channels this is the other way around. The timing diagrams for
push and pull two-phase single-rail channels are depicted in Fig. 3.4, which shows
a down handshake foliowed by an up handshake.

The data on the push channel is valid when the request and the acknowledge
are in a different state (which can be detected with an exclusive-OR), whereas on
the pull channel the data is valid when the request and the acknowledge are in the
same state (which can be detected by an exclusive-NOR).

3.4 Four phase

A complete cycle in a four-phase handshake involves four (sequentia!) events, hence
the name. One four-phase handshake consistsof an up handshake followed by a
down handshake, as shown in Fig. 3.5. (Of course other initial states could be chosen.)
The down handshakeis also referred to as the return-ta-zero phase. Since four events

1 Originall y referring to combustion engines in which a complete fuel cycle in a cylinder requires
only two piston strokes.

2 Adopted from digital magnetic recording techniques. NRZ refers toa mode of recording in which
the direction of writing current is reversed for every change in the binary sequence. One direction of
surface magnetization then corresponds to a '1,' the other to a '0.' In NRZI encoding, the current is
reversed only when a '1' is recorded. See Hoagland [42] for details.

3.4. Four 29

req

ack

push

pull ----'Xtlf:X __ ~YXYJX'----

Figure 3.4: Data-valid schemes for two-phase single-rail channels. (The data is
valid during the non-hashed periods.)

are used to designate a handshake, half of these events are essentially functionally
redundant. Three interpretations can be distinguished tbat differ as to which events
are labeled redundant. These interpretations are depicted in Fig. 3.5. In the early in­
terpretation the return-to-zero phase is assumed to be functionally redundant. One
might interpret this as a functional phase foliowed by a cooling down. The late
view, in contrast, assumes the up handshake to be functionally redundant, such that
a complete handshake can be interpreted as a warming up followed by a functional
phase.

req

ack ---....;-------'~
. . .
:..,._ Early ____.:-- Middle-- :_ Late --:
I I I J .
.-~~-------- Broad----~~-----~

Figure 3.5: Four-phase handshaking

Four-phase handshake protoeals arealso known as return-to-zero (RTZ)3, four-

3 In digital magnetic recording, return-to-zero (RZ) recording refers to a mode in whlch a 'I' is
recorded by saturating a spot in one direction, and a '0' by saturating a spot in the reverse direction.
Interestingly, a feature ofthis RZ encoding is that it allows for self-clocking, because an output signal
is obtained during each bit interval. As Haagland [42] put it: 'The RZ recording method (...) does

30

stroke4 , four-cyclé, and level signaling.

3.4.1 Push channels

On a push channel the data-valid signa] is encoded in the request and the data-release
signal in the acknowledge. In the two-phase protocol this left us with only one
choice, but in a four-phase protocol three conventions can be distinguished. lf reqT
is the data-valid signal, we can choose ackT or ackl as the data-release signal. In
case reql is the data-valid signal we can only choose ackl as the data-release sig­
nal. These three conventions will be called early, broad, and late, respectively, and
are depicted in the form of a timing diagram in Fig. 3.6.

The term 'broad' has been borrowed from Brunvand [18). Early and late were
coined by Craig Farnsworth. Early is referred to as narrow by Brunvand.

req

ack

braad

late X/XXX/XXXIXX/XXX~_YJ;i

Figure 3.6: Data-valid schemes for push single-rail channels.

Although the data-valid periods are defined by theevents that signal the begin­
ning and the ending of such a period, the data-valid period can in all three cases
be characterized by a Boolean function, by looking at tbe state of the control wires
only. On a broad push channel, for instance, the data is valid when req + ack. On
an early channel the data-valid period is defined by req * ack, on a late channel by

* ack.

possess a capability for almost asynchronous operation.'
4 Referring to cambustion engins in which a complete fuel cycle in a cy tinder requires four separate

piston strokes, namely intake, compression, power, and exhaust.

3.4. Four 31

3.4.2 Pull channels

On a pull channel the data-valid signalis encoded in the acknowledge and the data­
release signal in the request. In the two-phase protocol this leads to the observa­
tion that the data thus is valid between two handshakes, not during a handshake as
on a push channel. In the four-phase protocol we can again identify three different
data-valid schemes. The data-valid period can begin at ackT and then end at reql of
the same handshake, or at reqj of the next handshake. The other choice is that the
period begins at ackl and ends at reqT of the next handshake. These three conven­
tions arealso called early, broad, and late, respectively, and are depicted as a timing
diagram in Fig. 3.7.

The early convention for pull channels can also be called the middle data-valid
scheme, since the data is valid during the middle phase of the handshake protocol,
namely from ackT till reqJ. Likeon push channels, the data-valid period can be
defined by looking at the state of the request-acknowledge signals. The broad data­
valid period, for instanee is characterized by ack + req

req _j \._____ ___ /
ack

Figure 3.7: Data-valid schemes for pull single-rail channels.

3.4.3 Double rail

Although the double-rail data-encoding scheme can be applied in both two- and
four-phase handshake protocols, it is generally only used in combination with four­
phase handshaking. The up-going phase of the handshake is then used to assert the
data, and in the return-to-zero phase all wires are reset. The data on a double-rail
channel is completely defined if all pairs of wires are in a complementary state. If

32 Chapter 3. Single-Rail Data Encoding

all wires are low the channel is inactive, and the two wires of a pair must never be
high at the same time.

If the data on a double-rail channel is completely defined, one might say that
the data is valid, in the sense that the status of the one-wires eneodes the message,
and the zero-wires hold the complement (bitwise inverse) of the message. Both on
push and on pull channels this interpretation of when the data is valid corresponds
with the early data-valid scheme as defined for single-rail channels.

3.5 Single track

The single-track handshake protocol, as described by Van Berkeland Bink [9], com­
bines the advantages of two- and four-phase handshaking. It has the minimum num­
ber of transitions, that is, two per handshake, and after each handshake the initial
state is restored. This is achieved by combining the request and the acknowledge
onto one wire. This idea can be combined with single-rail data encoding, which
results in a data-valid scheme that is similar to that of the two-phase handshake pro­
tocol, see Fig. 3.8.

stw I \ I \
push

pull YXYXX xxxxx
Figure 3.8: Data-valid schemes for single-track single-rail channels.

The single-track wire (denoted by stw in Fig. 3.8) combines request and ac­
knowledge events. Each rising transition denotes a request event, and the falling
transitions denote acknowledge events. If we assume the single-track wire to be
low initially, as depicted in the tigure above, then the data on push channels is valid
when that wire is high, and on pull channels when stw is low.

3.6 Minimum-power schemes

In the definition of the data-valid schemes we have only defined what rules should
be obeyed during the data-valid periods. Thesender then has to keep the data stabie

3.7. Extended data-valid schemes 33

so that the receiver can safely interpret it. Data-valid periods are separated by what
we might call data-change periods, during which a sender can prepare new data.
For this period we have not defined any restrictions yet.

An additional restrietion to the data-valid scheme could be to limit the number
of transitions in the data-path to at most one per bit. This obviously is the minimum
number of transitions that should be allowed since thesender must be able to switch
between any two messages. We call data-valid schemes with this additional con­
straint minimum-power schemes, since they minimize the number of transitions in
the data channels, and thus minimize the energy consumption (assuming a CMOS
implementation, in which the energy consumption is dominated by switching en­
ergy [84]).

In general we allow for an arbitrary number of transitions in the datapath dur­
ing data-change periods. This means that spurious transitions due to deep combin­
ationallogic are allowed. Minimum-power schemes are more strict, which limits
the implementation freedom and results in more circuit area.

3.7 Extended data-valid schemes

The relation between sender and receiver on a handshake channel is symmetrical in
all data-valid schemes that have been addressed so far. A sender may prolong the
data-change period by postponing the data-valid signal, and a receiver may use the
data-release signal to extend the data-valid period.

This symmetry is not always practical. Especially the relation between the data­
releasesignaland the end of a data-valid period need not always be that strict. Two
situations can be distinguished, namely, one in which the data remains valid after
the data-release signal, and one in which the data may change even befare the data­
release signal ha& occurred.

3.7.1 Reduced schemes

One situation that can easily be envisioned is that the receiver cannot prolong the
data-valid period, that is, that the data-valid period may end befare the data-release
signal arrives. For each data-valid scheme that has he defined earlier in this chapter
such a reduced scheme can be defined.

A reduced broad scheme on a push channels means that the data is stabie after
the up-going edge of the request, butaftera down-going edge of the request the data
may change shortly. In reduced early or reduced late schemes on push channels
the data is only valid during a short period after the data-valid signal. The exact
duration of a reduced data-valid period may vary, and is nottaken into account here.

34 Chapter 3. Single-Rail Data Encoding

A reduced data-valid scheme may, for instance, be caused by the use of dynamic
logic. This may imply that aftera data-valid signal there is only a limited window
during which the data may be assumed stable. With most styles of dynamic-logic,
however, the symmetry between sender and receiver can be restored by adding stat­
icizers (trickle transistors).

Another reason to use a reduced data-valid period may be that the sender is in­
formed via some other path (that is, not via the data-release signa!) that the data
it is keeping stabie is no longer required. In the implementation of the handshake
variabie in Chapter 5 we encounter this situation.

3. 7.2 Prolonged schemes

Although the data-releasesignalis used by a receiver to inform the corresponding
sender that the data is no longer required, the data may remain stabie for quite some
time. Basically, for each channel we should not only look at the formal ending of
the data-valid period (as signaled by the data-release signal), but we might try to de­
termine when the data may actually start to change and thereby become invalid. For
the different data-valid schemes that have been introduced, prolonged versions may
be defined, in which the data remains valid for some period after the data-release
signal.

In the implementation of Tangram assignments, as discussed in Chapter 4, pull
channels are used with such a prolonged data-valid scheme. In that context, the
data-valid period is actually under control of the environment, more specifically,
the transfereer that controls the data-transfer. The data-valid scheme that is used
in that context is the prolonged early scheme. This data-valid scheme can also be
considered as a reduced form of the broad scheme.

3.8 Synchronous data-valid schemes

Single-rail data encoding essentially is very similar to the way data-validity is or­
ganized in a synchronous circuit. In a synchronous circuit the data is genera11y
storedinflip-flops (D-types, FFs) which are controlled by a central doek. The tim­
ing assumptions are then formulated in terms of data-stability assumptions at the
inputs and outputs of these flip-flops.

An example of a synchronous data-valid scheme is shown in Fig. 3.9. In this
diagram elk refers to the global doek, D to the data-inputs of the flip-flops, and Q

refers to their outputs.
For such a data-valid scheme, at least three parameters are important. First of

all, the data at the input (D) of the flip-flops should bestabie (valid) before the rising

3.9. 35

elk ___ _,/ \'---~! _

Figure 3.9: Data-valid schemes fora synchronous system, assuming positive-edge
triggered storage elements and a global single-phase doek.

edge of the doek, by a margin that is called the set-up time of the data. After the
clock edge the input data should remain stabie for at least the hold-time. A third
parameter that is specified is the time it takes for new data to be assimilated in the
flip-flops and to propagate to the outputs (Q). This is generally called the propaga­
tion time through the flip-flops. Similarly, there is also a propagation time through
the logic between the flip-flops, which is the time it takes for the new input data D
to stabilize again. Por a more extensive discussion of timing assumptions in a syn­
chronous (clocked) circuit one may consult [77], [3, Chap. 8], and [84, Chap. 5].

One ofthe differences that can be noted between handshake data-valid schemes
and synchronous data-valid schemes is that in the synchronous diagram we refer
both to the current state (Q) and to the next state (D), whereas in the handshake
schemes only the current state is recorded. In the implementation ofthe respective
circuits this difference shows in the choke of storage elements. Synchronous cir­
cuits generally use flip-flops, whereas in asynchronous circuits latehes are common.

In the single-rail data-valid schemes, the validity of the data is defined in rela­
tion to local signals (req, ack). Data-validity in a synchronous scheme is always
related to a global signal: the clock. In terms of communication this means that in
a synchronous system the time that is available for a communication is fixed, and
predefined ('dictated') by the clock period. In asynchronous (handshake) commu­
nication the lengthof the data-valid period may vary between different handshake
channels, and even between different communications along such a channel.

3.9 Options

In this chapter, several single-rail data-valid schemes have been introduced. Each
scheme defines a contract between a sender and a receiver that communicate through

36

a handshake channel. Such a contract specifies when the receiver can reliably in­
speet the data and when the sender may change the data. In the next chapters the im­
plementation ofhandshake components and handshake circuits is addressed. Hand­
shake components communicate via handshake channels. In the single-rail imple­
mentation of handshake circuits we have to choose a data-valid scheme for each
handshake channel.

The two-phase and single-track handshake protocol do not allow any choice in
the assignment of data-valid and data-release to the request and acknowledge sig­
nals. They may still allow for some interesting implementations of handshake cir­
cuits and components, but as far as the data-valid schemes are concemed, there is
not much of a choice.

The four-phase handshake protocol, in contrast, allows for early, broad, and late
data-valid schemes. The challenge in the single-rail implementation of handshake
circuits now is to make the best possible choice. This choice may depend on the
performance criteria that is considered. A salution that is optima] in terms of (min­
imal) area requirements may not be optima} for maximum speed or minimal power.
The main cost criterion in this thesis is area.

In the discussion of single-rail implementation of handshake circuits, we have
chosen to follow a top-down approach. We first address the choice of a data-valid
scheme for each handshake channel in a handshake circuit, basedon the compilation
scheme from Tangram to handshake circuits. For the handshake components this
limits the number of alternatives that have to be considered. The choice of data­
valid schemes for handshake channels in Tangram handshake circuits is covered in
Chapter 4; the implementation of the componentsis discussed in Chapter 5.

Chapter 4

Handshake Circuits

The subject of this chapter is the implementation of handshake circuits. We focus
on the four-phase single-rail implementation of the datapath and assume a four­
phase implementation of the controL lt tums out that, contrary to common belief
the retum-to-zero phase of the four-phase handshake can be scheduled such that it
is fully productive. This alleviates an often mentioned disadvantage of four-phase
over two-phase handshaking.

In the discussion of handshake circuits the compilation scheme from Tangram
to handshake circuits is followed. We therefore first investigate the structure of Tan­
gram handshake circuits, and then concentrate on the various compilation rul es that
introduce datapath components. From the structure of Tangram handshake circuits,
an assignment of data-valid schemes to the handshake channels can already be eval­
uated. For each compilation rule this leads to the choice of an optimal data-valid
scheme for the handshake channels and components that are involved.

If we would discuss the implementation of handshake circuits in genera!, then
it would be natural to follow a bottorn-up approach, that is, first elaborate on the
implementation of the individual components, and then look at interconnections
of these components. The advantage of the top-down approach that is pursued in
this chapter is that it limits the number of alternatives that have to be considered in
the implementation of handshake components, as discussed in Chapter 5. For most
components only one combination of data-valid schemes on its channels has to be
taken into account.

4.1 Structure

Handshake circuits can in general be split into a control part, a data part, and an
interface part. The control part is then composed of handshake components that

37

38 Chapter 4. Handshake Circuits

only have control (nonput) handshake channels. The components that constitute the
data part have a handshake interface that consists of data channels only. interface
components have both nonput and data handshake channels and thus forma natural
separation between the control path and the data path of a handshake circuit.

Throughout this chapter the data components are furthermore partitioned into
pull, push, and passive components. Push and pull components have at least one
active and one passive handshake port. Push components are data components that
have an interface consisting of push handshake channels only. Similarly, the hand­
shake interface of pull components consists of pull channels. Passive components
have !fnly passive handshake ports. This partition in three types covers all Tangram
data components. Tangram does not use all-active components, for example.

With respect to the above partitioning of Tangram handshake components, the
general structure of a Tangram handshake circuit is as shown in Fig. 4.1. The tigure
schematically represents both the intemal structure of a handshake circuit and the
possible handshake interfaces to the environment. Non-handshake interfaces (both
intemally and extemally) arenottaken into account.

ai

pn

Pull
Components

Control
Components

Interface
Components

Passive

~---'"" Components po

an

Push
Components

Figure 4.1: General structure of Tangram handshake circuits.

ao

Synchronization between control components and the environment takes place

4.2. Assignment 39

via nonput channels, and can be either active (an) orpassive (pn). One ofthe passive
nonput channels generally is the activation channel, along which the operation of
the handshake circuit is initiated. This corresponds to starting the execution of the
Tangram program. Control components may furthermore activate interface hand­
shake components, and the other way around, interface components may activate
control components.

Pull components are used in Tangram to implement operations on data, such as
addition. The evaluation of such operators is demand driven and the operands are
collected from passive components such as variables and constants. The general
function of pull components is to collect, modify, and output data upon request.
This data can also be collected from the environment of the handshake channel,
either directly via an active input (ai), or indirectly through a passive component
from a passive input (pi).

An example of a push component is the multiplexer, cf. Section 2.3.2. lt is used
to merge two streams of data onto one channel, and as such, implements sharing of
push handshake channels. Push components also take care of the communication of
data to the environment of the handshake circuit, either directly via an active output
(ao), or indirectly through a passivator via a passive output (po).

The link between the control, push, and pull components are the interface com­
ponents. The predominant interface between control and data in a (Tangram) hand­
shake circuit is the transferrer, which controls a so-called data transfer, that is, a
Tangram input action, output action, or assignment. Other interfaces are the do and
case components, which deal with repetitive and conditional execution. These two
components are often referred to as control components, but in this thesis they fall
into the class of interface components because they deal with data for the evaluation
of their guards.

Intherest ofthis chapter we first explore Tangram assignments, and then briefly
look at input and output communications. After this iteration and selection are dis­
cussed. Initially, the interface components are studied independently. An important
issue, however, is that of sharing, which reduces the implementation freedom of the
interface components, since at the interface to the datapath (push or pull channels)
they often have to be compatible. The impact of sharing is discussed at the end of
this chapter.

4.2 Assignment

An investigation into general handshake data-transfers, with input, output, assign­
ments, and combinations thereof would be too complex as a starting point. Since
assignments constitute the majority of data-transfers in a Tangram program, we start

40 4. Handshake Circuits

by zooming in on a relatively simpte assignment, namely z : =x+y. This tums out
to be a good starting point to explore the rich world of four-phase single-rail hand­
shake implementations.

In the rest of this section we concentrate on the data-transfer action described
by the Tangram fragment z : =x+y, in which x, y, and z are integer variables within
some range and + stands for addition. We furthermore assume that there is also
another assignment to z, resulting in a multiplexer on the write-port of the corres­
ponding handshake variable. The corresponding handshake circuit is depicted in
Fig. 4.2.

Figure 4.2: Compiled handshake circuit for z : =x+y with an additional multiplexer
onz.

The assignment is initiated by a request signal on handshake channel a, which
connects to the transferrer. This transferrer then sends a request for data along chan­
nel b. The adder component forwards this request to handshake variables x and y,
which correspond to the Tangram variables x and y. The variablesthen assert data,
which is processed by the adder and passes through the transferrer to channel c. The
multiplexer forwards this data to the write port ofhandshake variabie z, in which it
is subsequently written. The acknowledge thereof passes through the multiplexer
and the transferrer and finally arrives at channel a, which completes the data trans­
fer.

For the realization of these components we have to choose a handshake protocol
and a data-valid scheme per channel. In subsequent sections, several options pass
in review. We begin with a two-phase implementation, which gives us a chance to
identify in more detail the work that has to be done during this assignment. After
this, several four-phase implementations are addressed.

4.2.1 Two-phase

One of the properties of two-phase handshake circuit implementations is that there
is virtualJy no degree of freedom in the implementation, apart from post -optimization

4.2. 41

issues. The implementation of the control part of the transferrer, for example, is as
shown in Fig. 4.3. For the data-part we have ebasen bere to use wires only in the im­
plementation. The two-phase pull data-valid scheme on channel b assures that the
data on channel cis valid at least during the corresponding push data-valid period.
Therefore, no latehing is required in the transferrer.

Figure 4.3: Data transfer with early transferrer;

Below we take stock of some of the tasks that have to be performed in the vari­
ons data components during the data transfer. We do not elaborate upon their im­
plementation yet; for that we refer to Chapter 5.

variabie (x,y) The readports of variables x and y have to release new data upon
request, and keep this stabie between handshakes.

adder The function of the adder, apart from actding operands and producing a res­
ult, is to provide a data-valid signalat its outputto signal the validity of the
result. This can be established by delaying the request-acknowledge signals
for a time that matches that of a worst-case addition.

multiplexer Two tasks can be distinguished in the multiplexer that relate to the
datapath. First of all, the appropriate input bas to be selected, and secondly,
the control signals have to be delayed such that they provide a matebed path
with the delay that a bit encounters in passing through the multiplexer.

variabie (z) Tangram's compilation scheme basically dictates normally-opaque im­
plementations of the latches, though sometimes, via some post-optimization
procedure, one can get away with this, see Section 8.1.3. Assuming a normally­
opaque latch control, a data-transfer requires the latehes to be opened, valid
data should be allowed toenter (possibly via some matebed delay), and the
latehes have to be closed again.

From the above description it is already clear that a direct two-phase implement­
ation of these components leads to quite complex circuitry. Especially the imple­
mentations of the variabie and the multiplexer require quite some hardware. We do

42 Chapter 4. Handshake Circuits

not further elaborate upon this here, but switch to the greener pastures of four-phase
handshake protocols, which allow a variety of choices.

4.2.2 Early four-phase

The wire-only implementation of the transferrer in Fig. 4.3 resembles the double­
rail implementation. When activated along channel a, this transferrer fint perfarms
an up handshake along b, then one along c, after which it sends an acknowledge on
a. The return-ta-zero phase follows the same cycle.

Given the wire-only transferrer of Fig. 4.3 we can deterrnine the data-valid scheme
on channel c directly from that on channel b. In this section we assume the early
data-valid scheme on channel b, in the next section we look at late and broad data­
validity.

An early data-valid scheme on channel b and the other pull channels implies
that the data is guaranteed to be valid in the transferrer during the period as shown
in Fig. 4.4. This means that one may assume an early data-valid scheme on c (the
period labeled as 'U' in the figure) as well. This data-validity is prolonged a bit
(during UI), but valid data may not be assumed anymore after this.

I u UI

Figure 4.4: Early data transfer

This limited data-validity has an important impact on the data-transfer action
and the implementation of the components involved. First of all, it implies that after
the up-going phases of all handshakes (that is, directly after aa T, which signals the
end of phase U in Fig. 4.4) the data-transfer is basically complete, in the sense that
new data mustalready be latebed in the variabie (z). Both the control phase (UI)

and the retum-to-zero phases (IV, V) of the data-transfer are, therefore, functionally
redundant as far as the actual transfer of data is concemed.

4.2. Assignment 43

The functional redundancy of the return-to-zero phase of the handshake should
betaken into account in the implementation ofthe delay-matching in the adder (and,
in general, in pull components). To minimize the timespent in the redundant phase,
one could consider using asymmetrie delays. The implementation should be such
that during phase I of the data-transfer, when data is collected from the latches, the
actual delay-matching takes place. The return-to-zero phase (IV), however, does
not contribute to the data-validity, and should be implemented as a quick reset to
minimize the time wasted in this phase.

The implementation of the handshake variabie with an early data-valid scheme
on its write port requires quite a few gates, as is shown in Section 5.3.2. During
the up phase of the write handshake the latehes in the variabie must be opened and
closed again, for which a sequentia! control circuit is required.

In the multiplexer we must first make sure that during the up phase of the hand­
shake, the data on the output channel comes from the selected input channel, and
that it is valid. The first requirement can only be met after the input channel an­
nounces itself by starting a handshake (in this case, on channel c). After selecting
the actual input, the data must be allowed to ripple through the multiplexer before
a data-valid signal issued.

In conclusion, in the early scheme all work is performed in the up phase of the
handshakes. The return-to-zero phase serves only to reset the request-acknowledge
circuits and is a functionally redundant cooling-down phase. For the latches, oper­
ators, and multiplexers, this leads to inefficient implementations.

With the early data-valid scheme, all work has completed after the up phase on
control channel a has finished. This can be exploited in the implementation of the
control components. Since the return-to-zero phase in the datapath is redundant,
we might just as well implement the control path such that its return-to-zero phase
is also redundant. This means that we can implement the control components with
the early protocol, which allows for some parallelism between return-to-zero and
functional phases. This may result in overall faster circuits, since after the func­
tional phase of each handshake a kind of quick reset can be implemented. In gen­
era!, however, it leads to more complex implementations of the components, which
reduces the possible speed advantage, and is generally not optimal for power and
area.

In the context of micropipelines the early protocol is rather popular, see for in­
stance [25]. The main reason for this is that some of the disadvantages mentioned
here do not hold for micropipelines. Although asymmetrical delays have to be used,
the implementation of the variables can be kept relatively simple. A more extensive
discussion of this is given inSection 8.1.3.

4.2.3 Late and broad four-phase

If the transferrer is implemented as shown in Fig. 4.3, and the data-valid scheme
on channel b is late, then the relation between the handshake signals and the data­
validity is as shown in Fig. 4.5. For channel c, and thus for the multiplexer and
the handshake variabie that are involved in the data-transfer, this implies that late
data-validity must be assumed.

The data-transfer is now a bit more efficient, since the up-going phase of the
handshake can be used as a sort of 'warming up.' Phase I of the transfer is redund­
ant, but in phase II the multiplexers can already be set in the requested state and the
latehes in the variabie that is to be updated (z) can already be opened. The actual
delay-matching then takes place during phase IV, after which the data is latebed in
phase V.

late

broad

I II III IV V VI

Figure 4.5: Data transfer with a late or broad data-valid schemeon b (and c).

If the late data-valid scheme is assumed on all pull channels, this means that the
up-going phase of their handshakes cannot be exploited. For the implementation of
operators, asymmetrical delays should thus be used that have minimal delay in the
up phase of the handshake, and a matebed delay in the down phase. (This in contrast
to the early scheme, where the asymmetry is the other way around.)

The implementation of multiplexers and of assignments to variables is already
a bit more efficient than in the early scheme, since the up phase of the handshake
can be used to prepare the arrival of valid data.

If the data-valid scheme on channel bis braad, we mayalso assume the broad
data-valid scheme on channel c, as may be concluded from Fig. 4.5. Phase I now

4.2. 45

clearly is functional, since it establishes data-validity on channels band c. The work
on the push side of the transferrer, that is, in the multiplexer and the variable, can
again safely be spread over the up and the down phases of the handshake, since
the data on channel b is guaranteed to remain valid. Phase IV of the handshake,
however, should be kept as short as possible (asymmetrical delays in the adder),
since it does not add anything, as the data was already valid.

An apparent drawback of both the late and the broad scheme is that data is as­
sumed to be valid between handshakes. For the passive components that are in­
volved as data-sourees in such an assignment (x, y), this implies that they have to
keep data valid at the outputs after the handshake has completed. Especially for
handshake variables this leads to area-inefficient implementations, since in each
readport data must be latched.

N ote that broad, early, or late on b leads to a prolonged broad, early, or late data­
valid scheme on c, respectively. On the other hand, for an early, broad, or late data­
valid scheme on channel c, only a reduced early, broad, or late data-valid scheme
on b is required. In the next sections we exploit the last observation.

4.2.4 Mirrored four-phase

The implementations of data-transfer discussed so far are all based on an imple­
mentation of the transferrer in which the request/acknowledge signals follow the
same path as the direction of the data-transfer, that is, the handshake on the input
channel is started before that on the output channel. An interesting alternative is
obtained when the transferrer is mirrored, as in Fig. 4.6.

Figure 4.6: Data transfer with 'mirrored' transferrer.

Since the handshake on channel c has completed befare the return-to-zero phase
on channel bis started, the early data-valid scheme on channel bis the only viabie
option. From Fig. 4.7 one can see that in this implementation of the data-transfer,
early data-validity on channel b is combined with the late data-valid scheme on
channel c.

46 Chapter 4. Handshake Circuits

I
X_ ~ 'I

11 I 111 IV V .

Figure 4.7: Min-ored data transfer

An advantage ofthis scheme is that. in the data-transfer. only the return-to-zero
phase on channel b (denoted by V in Fig. 4.7) is redundant. Phase I can be used to set
the multiplexer in the correct state, and to al ready open the latehes in the variable.
Phase 11 is then used fordelay-matching, phase 111 adds an additional safety-margin
to the bundle. and during phase TV the actuallatching takes place.

A potenrial disadvantage of this mirrored implemenlat ion of the assignment is
that the data may actually still be changing when the latehes in the variabie are
already opened. This can cause the outpur of these latehes to make more than one
transition, which may nor be optima! from a !ow-power point of view.

4,2.5 True four-phase

In the orgunization of data-transfer as we have discussed so far. we have looked at

various combinations of assigning data-valid and data-release 'meanings' to trans­
itions on handshake signals. In all choices that have passed in review we ended up
with some form of (productive) redundancy of handshake events. Especially for the
dawpath operaton; this is a disadvantage, smce it demands asymmetrie implemem­
ation of delays. which is more complex (and less efficient) than symmetrie delays.

The mirrored four-phase protocol implementation of the previous seclion has an
interesting advantage. namely that both in the up and the down phase of the hand­
shakes on the push channek uscful work could be done. The challenge now is to
organize the data-transfer such that we can also spread the work on the pull channels
over the up and down phases.

A straightforwnrd way to spread the work in the pull components that are in­
volved in the assignment over the up and the down phase is to let these phases each

47

contribute to the delay matching. Per phase we can then match half of the delay of

the dmapath.

lfwe spread the workon both !he pushand the pull channels over the up and the
down phase. then we have basically assigned a meaning to all handshake events. On

pull channels, for example. the up-going acknowleclge signals that half of the clelays
have been matched, and the down-going acknowledge indicates that matching is

complete and data is val id. Si nee all handshake events now have a function. we
call this scheme the true four-phase scheme.

Since the data on pull channels is valiel only after the completion of the hand­
shake, the transferrer has to be implementeel as shown in Fig. 4.8, provided that

we want to keep the implementation simple. that is, without latehes in the data­
path. Th is implememation is actually the same a& that used for two-phase and early,
broad. and late data-transfer, cf. Fig. 4.3.

(IT :

Figure 4.8: True four-phase data transfer: implementation of transferrer.

ll ((] IV

b f '' ' •• ' '' '' '' '' '' '' '. ''

<1/ Cd ULY.pL..lL::L\1 I " ", .. ., " -vfx l

Figure 4.9: True four-phase data transfer: data-valid scheme, with dotteel lines in­
dicating 'half' validity of the data.

48 4. Handshake Circuits

With reference to the true four-phase timing diagram of Fig. 4.9, the workis
spread over the different phases of the handshakes on channels a, b, and c as follows.

I. The request signa) (b7. n is distributed, generally via forks, to the readports of
the variables. In the acknowledge phase the delay of the data is matched.

IJ. Multiplexers are set and the delay through the multiplexer is matched. The
latehes in the variables are opened (switched from opaque to transparent).

liL The time required by the control circuit between aaI and ar 1 (at least one
CMOS inversion) adds an additional safety margin to the data-bundle.

IV. The same path as in phase I is followed, which means that the delay in the
datapath is again matched. After this the pull handshake components are back
in their initial state, but the data is still valid.

V. Delay through the multiplexer is matched again in the control circuit of the
multiplexer. Data is latebed in the variables. The setting of the multiplexer
switches should be maintained until the latehes in the variables are closed
again.

From the above description ofthe true four-phase implementation ofthe assign­
ment we can deduce the required data-valid schemes on band c. Although both the
up and the down handshake on b have a function, it is the falling edge of the ac­
knowledge that actually signals the validity of the data. A late data-valid scheme
on bis thus assumed. For channel c this implies a prolonged late data-valid scheme.
The other way around, however, we only need a 'pure' late data-valid scheme on
channel c, which means that a reduced late data-valid scheme on b suffices.

In Tangram handshake circuits, mutual exclusion between read and write ac­
cesses to variables is assured. For assignments this implies that variables that are
being written are not read during the same assignment. During a truc four-phase
data-transfer it is guaranteed that at least until the completion of the handshake on
the nonput channel of the transferrer (channel a in the handshake circuit above) the
variables that are read from are not written. We can thus keep the implementation
of the variabie simple (that is, without latehing data in readports, see Section 5.3.2)
· and still guarantee the data at the input of the transferrer to be stabie during at least
the reduced late period from bal till aal·

The true four-phase scheme has some obvious advantages. It allows for sym­
metrie delay matching and efficient multiplexer and latch control circuits. It does
depend, however, on the mutual exclusion between read and write accesses to vari­
ables, and can therefore be applied straightforwardly to Tangram handshake cir­
cuits. For handshake circuits in genera!, however, a true four-phase salution may
not al ways be efficient.

4.2. 49

A consequence of the true four-phase scheme is that control should be imple­
menred with the braad four-phase protocol, such that mutual exclusion between data
transfers is guaranteed during the complete four~phases of the handshak:e protocol.
This assures that for two transferrers of which one implements an assignment to a
variabie x, and the other requires a read action from x, their activation channels will
never be active (involved in a handshak:e) simultaneously.

4.2.6 Low power

The emphasis has so far been on minimizing the (productive) redundancy of the
transitions in the request-acknowledge path on handshak:e channels. In this section
we address the implementation of assignments with low power as the main target.

A separate investigation into low-power implementations is only meaningful if
the implementations shown earlier suffer from power inefficiencies. The true four­
phase scheme, which is optimal in terms of minimal redundancy, indeed does. In
that context, for handshake variables we know that the value on a read port is no
langer required to be stabie as soon as a write handshake is initiated. The arrival of
a write requestessentially signals that all reduced late data-valid periods at the input
of transferrers can be ended. During a write action on a variabie we are thus free to
change the data at the read ports. This may lead to quite some redundant transitions
at the data wires of a read port, since not every write action is necessarily followed
by a read action.

If we want to minimize the number of transitions on the handshake channels,
we should allow fora maximum of only one transition per data-wire between data­
valid periods. This restriction, in combination with spreading the actual work over
the up and the down phases of the handshakes, is called thc low power scheme. It
thus is a minimum-power variant of the true four-phase scheme.

This low power variant mainly affects the implementation of the handshak:e vari­
able. In the standard true four-phase scheme, we could latch the data in a write port,
and update all read ports after (or during) a write handshake. In the low-power vari­
ant, we have to latch the data in the read port. Since read and write accesses to vari­
ables are still assured to be mutually exclusive, and the data is notallowed to change
between handshak:es, we may assume data at the input to the write port to be stabie
during all read actions. We thus do nothave to latch data in write ports of variables,
but effectively use the write channel to store the current state.

Although the low-power variant indeed minimizes the transitions on the hand­
shake channels in the datapath, it is not necessarily a power-efficient solution. It is
likely that the additional power consumption in the handshak:e variables, due to the
complex read ports, sweeps away the power advantage that is gained by minimizing
the number of transitions on the·channels.

4.2. 7 Comparison

The important characteristics ofthe data-valid schemes for assignments, which are
addressed so far, are summarized in Table 4.1. The true four-phase scheme has the
best prospects when it comes to efficiency, both with respect to area and time.

4.3 Communication

Input and output communications are special cases of data-transfer, for which the
true four-phase scheme may not always bethebest alternative. For communication,
different schemes may be better suited, for instance, because they reduce the costof
some components or lead to more natural data-valid schemes at off-chip interfaces.

Before we start looking at input and output separately, we first investigate the
combined effect, namely that of communication within a handshake circuit. The
parallel composition of Tangram fragments a! E and a ?x is semantically equival­
ent to assignment x: =E. Communication may thus be interpreted as a qistributed
assignment.

In the compilation scheme from Tangram to handshake circuits, both input and
output are implemented with a transferrer. For output statement a ! E its transferrer
collects the value of expression E and sends this along channel a. The transferrer
for input statement a ?x collects a value via channel a and stores this in variabie
x. Since both communications along a are active weneed aso-called passivator to
synchronize these two handshakes.

The general structure of the handshake circuit that is involved in such a com­
munication (or distributed assignment) is depicted in Fig. 4.10. The component in
the center of the figure is the passivator. The left transferrer corresponds to the out­
put action, the right one totheinput action. The boxes labeled with 'mux' refer to
a handshake circuit consisting of (push) multiplexers only, and allow access from
multiple sourees totheir respective outputs. The box labeled 'dmx' refers to demul­
tiplexers, which allow multiple input actions to (mutually exclusive) use an input
channel.

Figure 4.10: Synchronization within a handshake circuit through a passivator.

The challenge in the implementation of input, output, and synchronization is

4.3. Communication

Control
Data
Operators
Variables
RTZ-phase
Late scheme

Early or broad
Early for both push and pull channels
Asymmetrical delay-matching (quick reset)
Complex latch control, simple read-port
Fully redundant; pure overhead (quick reset)

Control Broad, late would complicate variables
Data Late for both push and pull channels
Operators Asymmetrical delay-matching (quick set)
Variables Simple latch control, complex read-ports
RTZ-phase Functional; up-phase is half-functional
Broad scheme

Data
Operators
Variables
RTZ-phase

Broad for pull channels; broad or late for push channels
Asymmetrical delay-matching (quick reset)
Simple latch control, complex read-ports
Half redundant

Mirrored scheme

Data
Operators
Variables

Data
Operators
Variables
RTZ-phase

Data
Operators
Variables

Early for pull channels; late for push channels
Asymmetrical delay-matching (quick reset)
Simple latch control, simple read-ports
Redundant on channels, functional on channels

Reduced late for pull channels; late for push channels
Symmetrical (halved) delays for matching
Simple latch control, simple read-ports
Fully functional

Broad
Late for both push and pull channels
Symmetrical (halved) delays for matching
Latebed readports, write port wires only

functional

51

Table 4.1: Characteristics of different handshake implementation of assignments.

52 4. Handshake Circuits

to findan implementation in which the data-valid schemes that are involved match
nicely at the interfaces, and this against minimal cost.

The central component in the above handshake circuit is the passivator. This
component can be implemenled cheaply, that is, against constant costs, independent
of the word size, if the data-valid scheme on its output is early. For any other data­
valid scheme the costs are linear in the number of bits, see Section 5.3.3. For the
input channel of the passivator the broad data-valid scheme leads to the cheapest
realization, but against constant cost the passivator can also deal with early and late
input channels.

These costs characteristics of the passivator have an impact on the implement­
ation of input and output, which are discussed separately. We also discuss the im­
plications for external communications, such as off-chip.

Input

The optima! choice for the passivator is to have an early data-valid scheme on its
output. For the pull components between the passivator and the input transferrer
this is no problem, as long as there are no operators in that path. Fortunately, Tan­
gram does not allow inputs in expressions, and all input actions are of the forrn a ?x.
This means that inputs are stared immediately after collection, without intermedi­
ale modification through operators. Therefore, for the complete pull path from the
passivator to the transferrer, the early data-valid scheme is fine.

For the multiplexers and the variables that are involved in an input action, a
data-valid scheme that has data valid during the return-ta-zero phase (that is, at least
during the late period) is optimal.

The mirrored data-transfer scheme, as discussed in Section 4.2.4, exactly com­
bines early pull with late push, and thus seems a good choice in the sense that it
minimizes the implementation costof the passivator, the multiplexer, and the vari­
able.

Output

The handshake circuit around the output transferrer is very similar to that of a trans­
ferrer in an assignment. At the input si de of the transferrer we may have operators
which require delay-matching, and at the output side we encounter multiplexers that
have to be switched to the correct state. Therefore, it seems a good choice to im­
plement the output data-transfer based on the true four-phase protocol.

For the input of the passivator this implies that the data may already be valid
during the up phase of the handshake, but it is safer to interpret the data during the

4.3. Communication 53

down phase. We should thus assume the late data-valid scheme at the input of the
passivator.

Internal

For communication inside a handshake circuit, the combination of the choices for
input and output as described above, leads to a solution in which mirrored input
and true four-phase output are combined. An advantage of this scheme is that both
transferrers that are involved can be implemented with wires only. Furthermore, the
cost of the passivator is low, since its data part consists of wires only.

One should observe that concentrating the costof communication in the passiv­
ator is better than distributing it over the transferrers, since the passivator is possibly
shared between many input and output actions. For each passivator there will gen­
erally be multiple transferrers in the handshake circuit.

External

The choices that have been made for input and output also have an impact on com­
munication at the boundary of handshake circuits with the external world, which in
general is non-handshaking. There are four cases that can be considered, namely,
input and output, which can both be active or passive.

For active input the mirrored transferrer assumes an early data-valid scheme on
the associated pull channel. For the external of the handshake circuit it follows that
the handshake circuit first requests for input, and then the up-going edge of the ac­
knowledge is interpreted as the data-valid signal. The falling edge of the request
signals the end of the data-valid period, which means that the input data need no
longer be stable. The advantage of this input scheme is that the requirements for
the environment are minima!. It must only hold the data valid between two hand­
shake events, and between handshakes it can prepare new data. This is of course
more efficient than preparing the data after the request, as would be required in the
broad or late pull data-valid scheme, since then the handshake circuit would be tem­
porarily stalled.

Passive input takes place through a passivatoralong a push channel. The im­
plementation of this passivator can be easily tuned to any data-valid scheme. The
cheapest implementation is possible if the data-valid scheme is broad, but then the
environment should keep the data stabie during the complete handshake. Gener­
ally this is no problem, and new data can be prepared between handshakes, without
stalling the handshake circuit.

During active output (on a push channel) the late data-valid scheme is guaran­
teed, which means that the falling edge of the request is the data-valid signal. The

54 4. Handshake Circuits

broad and early data-valid scheme can he realized against low cost, via data-valid
converters, cf. Section 5.4.1. All data-valid schemes, however, allow the data to
change after the handshake has completed. Except for the minimum power vari­
ants, the data may even change more than once. Especially for off-chip communie­
ation it may he effective to filter out these spurious transitions by latehing the last
communicated values at the interface.

For passive output via a passivatoralong its pull channel, the early data-valid
scheme can he realized with the lowest cost. This scheme, however, allows the data
to change between handshakes and, therefore, also allows for spurious transitions
during this period. For off-chip passive output it may, therefore, he better to as­
sure the broad data-valid scheme by latehing the data in the passivator. This not
only minimizes the extemal transitions, but also maximizes the time during which
the environment can safely interpret the data, without stalling the handshake circuit
(keeping it from making progress).

4.4 Iteration

A second component that interfaces between control and data is the do-component,
which implements the control structure of Tangram's "do G then s od." The
compiled handshake circuit for this Tangram statement is depicted in Fig. 4.11. Chan­
nel a is the initiation channel of the iteration and originates from some control com­
ponent. Via channel b the guard (G) is evaluated, and channel cis the initiation chan­
nel of command s.

Control

a

G s

Figure 4.11: Handshake circuit that corresponds to Tangram's iteration statement
do G then S od.

The box labeled 'G' implements the guard G of the statement and may contain
both puU and passive components. The pull components then correspond to the op­
erators that occur in expression G; the passive components correspond to the oper-

4.5. Selection 55

ands. Tangram does not allow for communication (input actions) in guards, which
implies that the passive components are limited to variables and constants.

The handshake circuit that corresponds to cammand s of the construct is rep­
resented by the box labelect 'S.' It depends on the structure of s whether channel
c connects to an interface component (for instance, if s is an assignment) or to a
control component.

When activated along a, the do-component first evaluates the guard during a
handshake along b, and then, depending on the outcome of that evaluation, either
terminates by completing the handshake along a (if the evaluation resulted in false),
or handshakes along c to execute the statement, and then reevaluates the guard. This
cycle of handshakes along b and c continues until the guard is false.

The choice of a data-valid scheme for the data channels bas impact both on
the implementation of the pull components and on the implementation of the do­
component itself. One important observation that bas to bemadeis that during ex­
ecution of the statement (that is, during the handshakeon channel c) some of the
variables that occur in the guard will typically change. So, as soon as the handshake
on channel cis initiated, some of the variables in the passive-components block may
change.

From the discus si on on the implementation of the assignment we already know
that in order to keep the implementation of the variables simple, that is, in order
not to have to latch the data in the readports of the variable, we should assume a
reduced data-valid scheme on the pull channels. The data on the pull channels may
then change as soon as one of the variables involved changes. For this particular
context this implies that the data on channel b should no langer be assumed to be
valid if the handshake on channel c is initiated. This naturally bas an impact on the
implementation of the do-component, which is discussed in Section 5.2.3.

In a four-phase implementation, the true four-phase protocol on the pull chan­
nels gives rise to an implementation of the pull components (operators in the guard)
that best exploits the four phases of the handshake protocol. Furthermore, choosing
the samedata-valid scheme on the data channels as for assignments allows sharing
of datapatbs between guards and expressions that occur in assignments, see Sec­
tion 4.6.3.

4.5 Selection

Another interface between control and data originates from Tangram's case state­
ment, which is the equivalent of the switch statement in the programming language
C and the case statement in Pascal. A case statement selects, depending on the value
of an expression, the corresponding alternative from an enumerated list. An ex-

56 4. Handshake Circuits

ample of a case statement is the following.

case (x+y)

is 0 then 80
or 1 then 81
or 4 then 84
or 7 then 87
si

If x+y evaluates to o, then 80 is executed. SimHar for the other alternatives that
are listed. If the expression evaluates to a value that is not listed, the behavior of
this statement is not specified. We may choose this situation equivalent to stop or

for instance. (In the Tangram compiler is chosen.)
The handshake circuit that corresponds toa case statement is shown in Fig. 4.12.

Handshake channel a is the initiation channel of the statement. It connects to a
transferrer, which (when activated) evaluates the expression via channel b, and sends
the result of this along channel c. Box 'G' represents the handshake circuit for the
expression and consists of pull components (for the operators) and passive compon­
ents (for the operands). The case components forma sort of decoder that, dependent
on the data that is input along channel c, activates one of the nonput channels con­
necting to the alternative statements.

G
b

Control

a

Case
Components

Figure 4.12: Structure of datapath around case components.

One thing that should be taken into account in the implementation of the hand­
shake components that are involved in a case statement is that the statement that
is selected may change variables that occur in the guard. If the variables are im­
plemented with simple read ports, as in the true four-phase protocol, this implies
that the data on the pull channels (and thus on b), may start to change as soon as
a handshake on one of the nonput channels from the case components block is ac­
tivated. This, of course, affects the implementation of the transferree and the case

4.5. Selection 57 ------

components.
The simplest situation is that in which the guard does not contain operators, but

consists of a variabie only, and, furthermore, that variabie is not written by any of
the alternatives. In that case no delay-matching has to be done and the guard re­
mains stabie during the complete handshakes on b and c. We can thus implement
the transferrer with wires only (any of the two will do), and the data on cis stabie
during the complete four-phase handshake, which allows tor a straightforward com­
binational implementation of the case components (see Section 5.2.2).

Another situation in which the case components can be implemented combin­
ationally is if the guard is an expression that contains operators, but none of the
alternatives modifles any of the variables that occur in the guard. In order to fully
exploit the delay-matching potential of the operators, we should first complete the
four-phase handshake before the handshakeon cis initiated. This requires a trans­
ferrer with gates in the control, see Section 5.2.1.

The most complex situation occurs if some of the alternatives do affect vari­
ables that occur in the guard. In that case the guard is not stable, and as soon as
a handshake is initiated the guard may change. There are two ways to handle this
situation. One possible solution is to make to case components insensitive for such
changes, at the cost of one asymmetrie C-element per alternative, the other is to
latch the guard before initiating the handshake on c. The first solution is discussed
inSection 5.2.2, the second one can be implemented at the Tangram level.

In order to assure stabie guards during the execution of an alternative in the case
statement, the compiler from Tangram to handshake circuits could însert an auxil­
iary variabie of the same type as the guard, and transfarm

caseGis ... si

into

g:=G; casegis ... si.

This new case statement then has a simple and stabie guard. Therefore, the cor­
responding transferrer can be implemented with wires only, and the case compon­
ents can be implemented combinationally.

It depends on the type of the guard, more precisely, on the number of bits that
are used to represent the guard, which alternative is the most economie. Making
the case components insensitive to changes in the guard requires (on average) three
transistors per alternative. Latehing the guard requires ten transistors per bit, plus
some small overhead (6), cf. Section 5.3.2. A guard of N bits can serve 2N altern­
atives, so for the transistor count we have to weigh ION+ 6 against 3 · 2N. Given
these numbers, four bits is nearly the break-even point, and a guard of at least five

58 4. Handshake Circuits

bits should be latched. In a standard-cell technology it also makes sense to minim­
ize cell area. If we use grids as a unit we might compare 6N + 5 and 3 · 2N -l, which
also indicates that from five bits onwards latehing is more area-efficient.

4.6 Sharing

In the discussions so far we have ignored possible interlerences between choices for
data-valid schemes in various contexts. In this section some sourees of interterenee
are addressed.

4.6.1 Sequential sharing

One point at which there is only limited freedom in choosing data-valid schemes is
the data-transfer. Datapatbs in Tangram can, for instance, be shared, which means
that hardware resources are reused. An example of this is the sequentia} compos­
ition of Tangram statements z: =x+y and b! (x+y). Tangram provides means to
share the hardware for expression x+y, so that only one adder is required. An ex­
ample of such a Tangram program is the following, in which function add is de-
clared (denoted by ':' in add func ()).

T type [0 .. 7]
& TT= type [0 .. 14]

I
(b!TT).

begin
x,y

& z
& add

I

var T
var TT
func () : TT . (x+y}

z:=add() ; b!add()

end

The compiled handshake circuit for the above Tangram program is shown in
Fig. 4.13. Only one adder component is used, and multiple (sequentia]) accesses to
this are handled by the demu1tiplexer (dmx).

In the implementation of the adder a data-valid scheme bas tobechosen for all
channels. Since this adder may be part of an expression in an assignment and in an
output communication it is clear that the choice fora particular data-valid scheme
has impact on the implementation of both types of data-transfers.

The shared part of the handshake circuit consists of pull channels only. For­
tunately, bath for output and assignment we have chosen a reduced late data-valid

4.6. Sharing 59

Figure 4.13: Compiled handshake circuit for sequentia! assignment and communie­
ation with sharing.

scheme forthese channels, since this allowedtheuse of symmetrie delay-matching,
with the matching spread over the up and the down phase of the handshake.

In the example above the influence is limited to pull channels only, since the
transferrers are still separate and may therefore be implemented differently. The
influence may go further, as shown in the next section.

4.6.2 Parallel sharing

Sharing in Tangram may have an effect on bath push and pull channels in the hand­
shake circuit, since it may in some cases be interesting to share more than just an
expression. An example where sharing clearly pays off is the parallel composition
of Tangram statements z : =x+y and b! (x+y) . (One could replace the sequentia!
composition of these statements in the Tangram program in the previous section
by parallel composition. Unfortunately, this is nat allowed in the current version
of Tangram.) These statements bath 'transfer' x+y, albeit to different destinations,
namely to variabie z and to channel b. Bath from an energy and an area viewpoint
it would pay off to share the hardware for bath the expression and the transferrer,
between the two data-transfers. This would imply, however, that the transfers are
nat really in parallel anymore, but are more-or-less synchronized, in the sense that
they caonat complete the handshakes independently. The handshake circuit with
the best area and energy statistics, in which bath the expression and the transferrer
are shared, is depicted in Fig. 4.14.

In this handshake circuit the assignment and the output are intertwined. For
the transferrer and the adder a choice has to be made for an appropriate data-valid

2With the current specification and compilation of Tangram this handshake circuit cannot be
generated.

60 Chapter 4. Handshake Circuits

Figure 4.14: Handshake circuit for synchronized assignment and communication.2

scheme. In the fork component, which distributes the value to channel b and vari­
abie z, one could still choose to differentiate between the two output channels, and
choose two different data-valid schemes. This would, however, complicate the im­
plementation of the fork. With the choices that have been made in this chapter, the
data-valid scheme at channel b will be late.

4.6.3 Sharing between do/trf

Declared functions can be shared between expressions in various contexts in Tan­
gram. Above we addressed the sharing between various data-transfers, but we may
also share a declared function between, say, the expression in an assignment, and
the guard of an iteration, such as in the following Tangram fragment.

T type [-6 .. 7]
& TT= type [-13 .. 14]

I
().

begin
x,y var T

& z var TT
& add func(): TT
& sub func(): TT

I
z:=add()

(x+y)
(x-y)

do add () >sub() then . . . od
end

From this example it should be obvious that we had best choose one data-valid
scheme for all pull channels, and thus not distinguish between expressions that oc­
cur in assignments and in guards. For all components that occur in expressions we

4.7. Condusion 61

choose the true four-phase scheme, which was already identified as the best choice
in the context of assignments, earlier in this chapter.

4. 7 Coneinsion

In this chapter we have investigated the implementation of Tangram handshake cir­
cuits. More precîsely, we have tried to findan 'optimal' assignment of data-valid
schemes to handshake channels. The main target was to combine data-valid schemes
such that all phases of the four-phase handshakes are productive.

For pull channels this leads to the choice for the reduced late data-valid scheme.
This allows for low-cost implementation of both variables and operators. Delay­
matching can be implemented with symmetrie delays, since both the up-going and
the down-going phase of the handshakes on the pull channels are scheduled before
the data-valid signal. Although the above choice for pull channels was motivated by
the implementation of Tangram assignments, sharing of datapatbs basically dictates
the same data-valid scheme to be chosen on all pull channels.

On push channels the late data-valid scheme has been chosen. In multiplex­
ers this allows to use the up phase for setting the switches and the down phase for
matching the rippling of the data. In the implementation of handshake variables,
the up phase is used to open the latches, which are then closed again in the down
phase. The late data-valid scheme thus allows for simple multiplexer and latch con­
trol circuits (details in Chapter 5).

The choice for data-valid schemes in which all phases are productive ('true'
four-phase) bas lead to a restrietion of the implementation freedom for the con­
trol part of handshake circuits. The broad four-phase handshake protocol bas to be
chosen, since this is required to guarantee the mutual exclusion between read and
write actions on handshake variables on which the choices for push and pull data­
valid schemes have been based. Another reason to choose broad control is that it
keeps the implementation of multiplexers simple, since for these components it as­
sures mutual exclusion between accesses via different inputs.

This chapter intentionally does notcover the complete compilation scheme from
Tangram to handshake circuits. The implementation of register files, RAM and
ROM interfaces, and parameterized functions and procedures, for example, bas not
been addressed. These additional features, however, all fit naturally in the schemes
as they have been discussed in this chapter.

In the next chapter we discuss the implementation of handshake components
with emphasis on the variants with the data-valid schemes as they are required for
the true four-phase implementation of handshake circuits.

62 4. Handshake Circuits

Chapter 5

Handshake Compo11ents

Single-rail implementations ofhandshake components are discussed in this chapter.
The partitioning that is introduced in the previous chapter is followed, that is, we
distinguish interface components (transferrer, do), passive components (constant,
passivator, variable), pull components (adder, negator, comparator), and push com­
ponents (multiplexer).

The implementations of the various handshake components that are addressed
in this chapter follow the same line of thought. The components are decomposed
into a data and a handshake part. The data part implements the operations on the
data, whereas the handshake part organizes the request and acknowledge signal­
ing between a component and its environment. The data and control part may be
connected via enable, control or select signals, but they can also be independent.
Examples of both situations are addressed in this chapter.

In the implementation of handshake components several criteria can be taken
into account, such as area, speed, energy, and testability. We choose minimal area
as the most important design criterion, since the rednetion of the area overhead of
handshake circuits is the main moti vation throughout the thesis.

In the implementation of some of the components we take into account that they
are part of a Tangram handshake circuit. If such assumptions are made, this is ex­
plicitly stated in the text.

5.1 lmplementation aspects

In this section we briefly introduce production rules as a means to abstract from
the target (CMOS) technology. Fmthermore, several timing assumptions are iden­
tified, which lead to a choice of specific timing assumptions in the implementation
of handshake components.

63

64 Chapter 5. Handshake Components

5.1.1 Production rules

The target technology for handshake circuits is that of digital CMOS VLSI circuits.
Such a circuit consists of CMOS gates which are interconnected by wires. A CMOS
gate is an operator with inputs and, generally, one output. For the specification of
CMOS gates we use production rules, as introduced by Martin. For an extensive
treatment we refer to Martin [57]. A brief introduetion is given in the rest of this
section.

Production rules describe the dynamic behavior of CMOS gates. This is estab­
lished by giving a pair of predicates U and D that specify when the output of the
gate makes a transition. The behavior of an operator with single output z can be
specified by the following pair of production rules

{
U f--t zj
D f--t zl

Predicates U and D are Boolean expressions that range over the inputs of the oper­
ator. They are generally referred to as the guards of the operator. Production rule
U f--t zj can be interpreted as 'when U holds output z becomes true (goes high).'
Similarly, D f--t z 1 can be read as 'when D holds output z goes low.' These two
rules, in combination with the rule that the output is stabie otherwise, specify the
behavior of the operator.

In Boolean expressionsas they used in this thesis, '*' denotes Boolean AND and
'+' stands for Boolean OR. The negation of a literal x (expression without operat­
ors) is denoted by x; that of a compound expres si on X by -X.

One of the simplest examples to which production rules can be applied is an
inverter, whose production rules and symbol are given next (input a, output z).

{
a f--t zj
a f--+ zl

A restrietion on the guards is that they must be mutually exclusive, that is, they
may never be true simultaneously (or, alternatively, -(U *D) should be invariantly
true). A further restrietion is that guards are required to be stable, which means that
an output transition should not directly invalidate its own guard. This essentially is
a restrietion on the environment of the operator. An output change must be allowed
to complete before the guard that causes it becomes false.

Changes on the inputs of an operator may or may not cause a change in the gate
output. If an input transition causes the output to make a transition, it is called pro­
ductive, otherwise it is called void.

5.1. 65

Two kinds of gates can be distinguished, namely, combinational and sequen­
tia/ gates. A gate is called combinational if the disjunction of the predieales in the
production rules specifies the complete (input) state space, that is, if U+ D always
holds. In that case we have D = -U. Combinational gatescan also be specified
using a Boolean equation of the form z = U.

A two-input OR-gate with inputs a and band output z, is specified by z = a+ b,
and by the following pair of production rules (the symbol is also shown).

{
a+~ r--+ zT
a* b r--+ zl

a
b

z

A well-known sequentia! gate in the context of asynchronous design is the Muller
C-element.1 In its basic form, this gate bas two inputs and one output. The output
assumes the value of the inputs if these values are the same. The production rules
and symbol of this symmetrie C-element are as follows.

z

One may observe that the C-element behaves like an AND-gate when the output is
low, and like an OR-gate when the output is high. The production rules allow for
multiple void transitions. For example, when output z and input b are both low,
input a may make multiple transitions, without affecting the state of the operator.
In this state, the output will only change if a and b are high simultaneously.

Asymmetrie C-elements are used frequently throughout this chapter. In an asym­
metrie C·element the guards of the production rul es are not equivalent modulo neg­
ating of the inputs, as is the case for the symmetrie C-element. In the symbol that
we use for a C-element we indicate which input only contributes to the up guard,
by labeling that input terminal with a'+.' Similarly, we use a'-' labelifan input
only contributes to the down guard. This notation bas been adopted from Furber.

The most common asymmetrie C-element is the one specified below. For this
element, input b is the dominating input. By making input b low, we can force the
output of the C-element low.

1 named after D. E. Muller [61).

a~
b~Z

66 5. Handshake

In addition to labeling inputs with '+' and '-', to denote in which guard they
occur, we may also use bobbles to denote inverted inputs.

Sequentia) gatescan also be specified in a single equation, specifying the output
state as a fixed point. Fora gatewithoutput z, up guard U, and down guard D,
equation z = U + z * D completely characterizes the behavior of the gate.

The initial state of a sequentia! gate is not uniquely defined. To force such a gate
toa know state, should that be required, one can add a (re)set input to the gate, or
control the inputs such that the state is known. Throughout this thesis we strive for
self-initializing circuits, in which no extra (re)set input is used. In these circuits the
gates in a sense cooperate to reach a know initial state.

Production rules specify the behavior of a gate, and in this, abstract from the
exact timing behavior. After a productive input transition, the time it takes for the
output to react is not specified. The impact of the abstraction, and the cases where
we do require timing information, are discussed in the next section.

5.1.2 Timing assumptions

CMOS gates can be connected to form more complex structures. Por these net­
works several timing assumptions can be made, especially with respect to nodes
that fan out to multiple gates: so-called forks. Intherest of this section several tim­
ing assumptions are addressed. These timing assumptions differ in the amount of
implementation knowledge that is used. More timing assumptions generally lead
to circuits that are more efficient but that operate within a more limited window of
operating conditions.

Fork

An extreme approach that can be foliowed in asynchronous circuit design is to make
no timing assumptions, apart from those made in the operators, which is that pro­
ductive input transitions eventually lead to output transitions, within some unknown
but non-negative delay. This class of circuits is generally called delay insensitive.

In its purest form, even branches in wires are treated as separate components,
known asforks. A fork is a component with one input and two outputs, in which the
outputs follow the input, albeit with an unspecified delay that is possibly different
for the two branches. The associated symbol and the specification with production
rules are given below.

{
~ ~ yj, zi
a ~ yl,zt

5.1. Implementation aspects 67

b c ba---+--'
br_ _ _,__ ___ _,.. Cr

Figure 5.1: Two-phase, delay-insensitive implementation (right) of parallel com­
ponent (left).

In a delay-insensitive circuit, transitions at both endsof the fork have to bede­
tected befare the input of the fork may be changed. This leads to circuits in which
for every fork a corresponding C-element can be pinpointed that essentially com­
bines the two paths again.

An example of the combined use of the fork and the C-element is the two-phase
implementation of the parallel handshake component (for specification and symbol
see Chapter 2). The behavior of a two-phase parallel component with passive port
a and active ports b and c is described by cammand

This component can be implemenled with a fork that forwards ar tobrand er, and
aC-element that combines the two acknowledges (ba and ca) into one acknowledge
aa. The circuit diagram for this implementation is shown in Fig. 5.1. (The deriv­
ation of implementations in terms of production rules from such commands is dis­
cussed by Martin in [57].)

Isochronie fork

The isochronie fork is introduced by Burns and Martin [20, 57] and is considered
to be an essential and the 'weakest possible' campromise to true delay insensitivity
[56]. An isochronie fork is a fork for which we assume that the difference in delays
between the two branches is less than the delays through the gates to which the fork
is an input. Circuits in which the only timing assumption is that of the isochronie
fork are generally called quasi delay insensitive (QDI) [19]. The term speed inde­
pendent basically refers to the same class of circuits.

Implementation aspectsof isochronie forks are well understood [56, 7]. They
amount to limiting the spread in logic thresholds of gates, which is straightforward
as long as the maximum transistor-stack height is two or three. Furthermore, the
capacitive loads and driving strengtbs should be balanced such that transition times
are uniform and especially 'slow' transitions are ruled out.

-'-6-'-8 _______________ C_h-"ap'-t_er_5_._H_anf:lshake Components

ar -------'--\
br -------,---/

ba

Figure 5.2: Four-phase, quasi delay-insensitive implementations of the nonput
mixer with one (left) and three (right) isochronie forks.

Isochronie forks quite often combine with asymmetrie C-elements, similar to
the way forks combine with symmetrie C-elements. An example of the application
of isochronie forks is the four-phase implementation of the nonput mixer. The sym­
bol and the command specification of the four-phase mixer with passive ports a and
b and active port c are as follows:

*(ar Î ; ; Ca Î ; aa Î ; arl ;
I brT;c1·ÎiCaÎïbai;brl;
)

; Cal; aal
; bal

a

b

The nonput mixer requires the handshakes on a and b to be mutually exclus­
ive. For the four-phase command given above, this implies that the environment
guarantees that ar and br will never be high simultaneously.

From the command given above the gate-level implementation is readily de­
rived. For each output the state that causes this output can be uniquely character­
ized using only the inputs of the mixer. This leads to the following three pairs of
production rules.

These production rules specify an OR-gate and two symmetrie C-elements. The
corresponding circuit is shown in Fig. 5.2 (left). The fork connecting ca to the C­
elements is isochronie. Both for the up and the down-going transition, only the
transition on one branch of the fork is acknowledged. One may observe that the
OR-gate basieally is the reason that the isochronie fork is necessary.

The efficiency of the mixer implementation (in termsof area, time, and energy)
can be improved by replacing the symmetrie C-elements by asymmetrie C-elements,

5 .l. Irnplernentation aspects 69

at the cost of two additional isochronie forks. To this end the production rules for
aa and ba should be weakened to:

The circuit that corresponds to this irnplernentation is depicted in Fig. 5.2 (right).
The forks connected to ar and br are isochronie. The up transitions are acknow­
]edged for both branches, whereas the down transition of the branch to the asym­
metrie C-elernent is ignored. The isochronic-fork assurnption is that after a trans­
ition on Cr caused by any of the incorning requests, the asymmetrie C-elernent that
connects to the other branch of the fork has also observed the corresponding input
transition.

The mixer irnplernentation illustrates that circuit realizations can be made more
efficient by rnaking more timing assumptions. Especially the application of iso­
chronie forks to replace symmetrie C-elernents by asymmetrie variants is an inter­
esting one that is often applied in the irnplernentation of handshake cornponents.

Extended isochronie fork

For an isochronie fork we assurne that, once a transition on one branch has been ob­
served, a node connected to the other branch has also detected this transition. With
extended isochronie forks [15] we even go even a step further. For such a fork we
also assurne that transitions on different branches have cornpleted (and have been
observed by gates connected tothese nodes) once one transition is observed, but
now for the nodes that are one (inverting) CMOS stage further away from the fork.

These forks are called (extended) isochronie forks of depth one, and this notion
can readily be generalized to any depth (counting inverting CMOS stages as a unit).
The traditional isochronie fork then has depth zero. Isochronie forks of maximurn
depth two are used throughout this chapter.

An exarnple of the use of an extended isochronie fork of depth one is the im­
plernentation of a 3-input C-elernent. With inputs a, b, and c, and output z, this
C-elernent can be characterized by z a * b * c + z * (a + b + c). This specifica­
ti on can be decornposed into three equations, thus introducing two internat nodes,
narnely as z = * y), where x -(a* b * c) and y = *(a+ b + c)). This
irnplernentation is shown in Fig. 5.3.

For this realization of the 3-input C-elernent, the extended isochronie fork as­
surnption guarantees that aftera transition on node z1 (which represents the output
of any inverting CMOS gate connected to output z of the C-elernent) internal node
y is stable. Therefore, after a change on z1

, the inputs of the C-elernent rnay safely
change, without the risk of a hazard.

_70 ________________ C_h~ap._t_e_r _5_. _H_andshake Components

a
b
c

z'

Figure 5.3: Implementation ofthree-input C-element basedon OR-AND-INVert and
an extended isochronie fork. The gate with output z' is included to show the reach
of the extended fork.

One may observe that, for proper operation of the 3-input C-element, the ex­
tended fork assumption can be asymmetrie. Node y should be stabie before a gate
connected to z' observes a productive transition on z' (and reacts). All extended
forks that are used in this cbapter have such an asymmetry.

Delay matching

With the extended isochronie fork we can stepwise enlarge the reach of an isochronie
fork. The timing assumption of these forks, however, becomes increasingly tricky.
For two long chains of inverting CMOS stages we cannot guarantee that the dif­
ference between the delays through these chains is bounded to, say, a (unit) gate
delay.

In the implementation of extended forks we generally have to assure an asym­
metry, that is, we have to guarantee that one path is not slower than another path.
An extreme in this is delay matching, in which we have to assure that the delay of
a path is larger than the worst case delay of several other paths.

Delay matching is an essential technique in the implementation of single-rail
circuits. The implementation of this generally requires a safety margin, to account
for variations in operating conditions, spread in capacitive loads, and variations in
driving strengths. This is discussed in more detailinSection 5.5.2 and Chapter 6.

5.1.3 Assumptions in handshake circuits

In the previous section we have identified several timing assumptions that can be
made in the design of handshake components and handshake circuits. In this section
we choose which assumptions are applied in which part of the design of handshake
components.

5.2. Interface 71

The implementation of control handshake components falls outside the scope of
this chapter. These components are implemented such that they are QDI. The mixer
and parallel implementations that are shown earlier in this section are examples of
such QDI realizations.

The request-acknowledge part of data and interface components are mostly im­
plemented QDI. Sametimes extended isochronie forks (depth one or two) are used.
This is then indicated explicitly. Delay matching is used if timing assumptions have
to be made about the logic in the datapath. In these assumptions, the extended iso­
chronie fork occasionally suffices.

For all handshake components we strive for implementations that are self ini­
tializable [8]. In combination with the property that the activity graphof a Tangram
handshake circuit is acyclic, this can be exploited to force a compiled circuit in a
well-defined initia! state after power-up of the IC, without the needof additional re­
set circuitry, by making only the electrical inputs to the circuit low. (The activity
graph is the directed graph obtained from a handshake circuit by replacing the com­
ponents by nodes and introducing a directed are from one node to the other if there
is a corresponding handshake channel for which the component of the first node is
active, and that of the second node is passive.)

To make a circuit realization self-initializable we have to obey two rul es. Firstly,
when the (request) inputs of the passive ports are low, the (request) outputs of all
active ports should go low. Secondly, when all inputs (active acknowledges and
passive requests) are low, all outputs should go low. The implementation of the
parallel and mixer components shown earlier obey these rules.

5.2 Interface components

In the components that interface between control and data we encounter both data
and control handshake channels. In a four-phase implementation this leaves us with
three alternatives for the four-phase nonput handshake protocol that is followed,
namely, early, broad, and late. Throughout this chapter we assume the broad four­
phase protocol for all nonput channels. This allows us to focus on the single-rail
data issues, thereby reducing the scope of this chapter.

The interface components that are covered in this section are the transferrer,
case components, and the do component.

5.2.1 Transferrer

The transferrer (whicb is discussed earlier in Chapter 2) has one nonput port, one
pull port, and one push port. In the compilation scheme of Tangram the transferrer

72 Chapter 5. Handshake Cornponents

is used to control the transfer of data in input, output, and assignrnent. (The trans­
ferrer is also used in the irnplernentation of case-selection, as is discussed later in
this chapter.) The specification and syrnbol of the transferrer are as follows:

TRF(a
0

, b•?T, c•!T) =
I [X : TI * (ar ; br ; ba(X) ; Cr (a:) ; Ca ; aa)] I b c

In the cornrnand, x is alocal variabie of the appropriate type (the type of the
input and output channel), ba (x) denotes the receipt of a value x via channel b, and
Cr (x) the sending of the sarne value encoded in the request of channel c. The vari­
abie should nat be interpreted as a piece of hardware, but rather as an auxiliary (or
ghost) variabie that is only used in the specification.

Global organization

Since the transferrer is used frequently in handshake circuits, it is essential to irn­
plernent it efficiently. The transferrer controls the transfer of data frorn channel b to
channel c. It should therefore be possible to irnplement it with wires only as far as
the data is concemed. Por the control some hardware rnay be required. We there­
fore start with the decornposition of the transferrer as shown in Fig. 5.4.

b

a

Control

part
c

bd ----+----.,_Cd

Figure 5.4: Decornposition of transferrer in control and data circuitry.

Frorn the decornposition we can derive requirernents for the control circuit. Since
the data is notlatebed we have to makesure that the data-valid period on channel
b encloses that on channel c. This rneans that the data-valid signal on b should pre­
eede that on c, and the data-release signal on c should preeede that on b.

In all control circuits that we discuss we shall adhere to the broad four-phase
protocol for the control on channel a, that is, for all irnplernentations, the first trans­
ition during a data-transfer action wiJl be ar I, and the last one aal· Other handshake
protoeals for control can also be interesting but fall outside the scope of this chapter.

5.2. Interface 73

Wire-only transferrers

Two wire-only implementations of the transferrer control circuit exist, and they were
bothalready introduced in the previous chapter. The circuits are shown in Fig. 5.5;
the transition level specifications are given in Eqn. 5.1 and Eqn. 5.2.

ba----'

ba --------+-Cr br +------------Ca

Figure 5.5: Wire-only realizations of the transferrer control circuit.

*(ar i i br i i ba i; Cr· i; Ca i; aai
; arl ; br! i ba! ; Cr! ; Cal ; aal
)

*(ar i; Cr i; Ca i; br i; ba i; aai
; arl ; ; Cal; brl ; bal ; aal
)

(5.1)

(5.2)

The transferrer in Fig. 5.5 (left), which corresponds to Eqn. 5.1, is also the im­
plementation of the two-phase transferrer. In that case it naturally combines the
data-valid schemes on b and c in the appropriate way.

In case the data-valid scheme on channel b is early the control circuit assures a
(prolonged) early data-valid scheme on channel c. Similarly, broad combines with
prolonged broad, and late with prolonged late.

The microred transferrer of Fig. 5.5 can only be used in combination with the
late four-phase data-valid scheme on channel c. In that case the data-valid signal
on channel b must be ba i, which implies that either the early or the broad data-valid
scheme on b should be assumed.

Parallel transferrers

The wire-only transferrers are all fully sequentia!. At the expense of some circuitry,
parallelism might be introduced, for example to reduce the time spent in redundant
phases of the handshakes. Two examples of such transferrers are given below.

The serial-parallel transferrer sequences the up-phases of the handshakes on b
and c, but allows for parallelism during the return-to-zero phases on these channels.
lts specification is given in Eqn. 5.3. This transferrer can be used in combination

74 5. Handshake

with the early data-valid schemes on band c, and in that case runs the cooling-down
phases of the handshakes on these channels in paralleL

The control circuit for this transferrer consistsof an AND-gate and an asymmet­
rie C-element, see Fig. 5.6 (left). Since these gates add delay to the critical paths,
it is not obvious befarehand that such an implementation results in faster overall
operation than the wire-only implementation.

*(ar i; br i; ba i i Cr i i
; ar!; (brl; bal 11 Cr!; Cal); aal (5.3)
)

The parallel-serial transferrer runs the up-going phases of band c in parallel but
sequences the down-going phases of the protocols, as specified in Eqn. 5.4. This
transferrer can be used with late data-valid schemes on band c. It then runs the
warming-up phases of the handshakes in parallel and properly sequences the data­
valid periods. An implementation of the control circuit is shown in Fig. 5.6 (right).
When compared to the wire-only transferrer of Fig. 5.5 (left), it is again not obvious
whether the costof the additional gate-delays outweighs the advantage of the extra
parallelism.

*(ar i; (br i; ba i 11 Cr Ti Ca i); aai
; ar! ; b".l ; bal ; Crl ; Cal ; aal
)

Figure 5.6: Control circuits forser-par and par-ser transferrer.

Sequencer transferrer

(5.4)

In the implementation of case selection a transferrer is needed that perfarms the
complete four-phase handshake on channel b before the handshake on channel c is
initiated. This is required to exploit the delay-matching properties of the pull data­
path fully before the data that is fetched is interpreted on the push side. The control

5.2. Interface components 75

circuit of this transferrer is exactly the control sequencer, and its behavior is spe­
cified by Eqn. 5.5.

*(ar r; br T; bal; br!; bal; Cr T; Ca T; aa T
; ar! ; Cr! ; Cal ; aal
)

(5.5)

The implementation of this transferrer is based on the so-called S-element [8,
p. 162], also known as the Q-element [57, p. 36]. The S-element is a handshake
component with two nonput handshake ports, one passive and one active. During
the up phase of the handshakeon the passive port a complete handshakeon the act­
ive port takes place. The down phase on the passive port has no effect on the active
port and basically restores the initial state of the S-element. For the S-element in
Fig. 5.7, with passive port d and active port b, the behavior is described by

dr ar I • aa
br =J· OI

'--Ca
s da

ba • Cr

Figure 5.7: Control circuit for sequencer transferrer.

Data bomDing

All transferrers described in this section are safe with respecttotheir bundling con­
straints. For the data-path they all consist of wires only. The control circuitry same­
times even adds an additional safety margin to the data-valid signal. This holds es­
pecially for transferrers that require more than wires for the control circuitry, such
as in the last four implementations discussed above.

Even the wire-only transferrers may indirectly increase the safety margin ofthe
data-valid signal. If the transferrer of Fig. 5.5 (right) combines the early data-valid
scheme on b with the late scheme on c, for example, then the time from aa T till a 7.!
(at least one inversion) is added to the safety-margin of the data-valid signal.

5.2.2 Case components

Case components are used in the implementation of Tangram's case construct to
decode the expression to select the appropriate statement to be executed. The basic

76 Chapter 5. Handshake Components

case component has two nonput ports and one push data-port, along which it can be
activated.

CASE(a 0 ?bool, b•, c•) =
I[x: bool

I * (ar (x) ;

ll

if :t: then br ; ba else Cr ; Ca fi ;
aa)

b

a

c

For the implementation of the case component the data-valid scheme on the data
channel is critica!. If the data-valid scheme on a is broad, then valid data may be
assumed during the complete handshake on a. This implies that the handshakes
on b and c apparently do not directly inftuence this data, which has impact on the
compilation scheme for Tangram, as discussed inSection 4.5.

With the broad data-valid scheme on a, the case can be implemenled as shown
in Fig. 5.8 (left). The AND-gates decode the incoming data, and depending on the
outcome either initiate a handshake along b or along c.

Ifthe data-valid scheme on a is early, measures have tobetaken to assure proper
handshakes on b and c. The data (a 0) should then only inftuence the initiation of the
handshake, whereas the retum-to-zero should depend on the control signals only.
This can be accomplished by replacing the AND gates with asymmetrie C-elements,
as shown in Fig. 5.8 (right). These asymmetrie C-elements act as filters for redund­
ant transitions on ao.

a a
ba aa • G ba
Ca Ca

ar br br
ao ao

Cr Cr

Figure 5.8: Gate realizations of case component for broad (left) and early (right)
data-valid scheme on channel a.

If only a red u eed early data-valid scheme can be assumed on channel a, even the
filtering with asymmetrie C-elements is not sufficient. If input a0 changes from high
to low while ar and br are high, then the early implementation allows for a trans­
ition on c,., which would imply that bothalternatives are selected. This situation
clearly is undesirable. To prevent this we can choose the implementation based on
the production rules given next. With respect to the early realization, the up guards

5.2. Interface 77

have been strengthened. This leads to an implementation based on cross-coupled
asymmetrie C-elements.

The case component is a good example of a component tor which the relation
between the compilation scheme (from Tangram to handshake circuits) and the im­
plementation of the components itself is important. In genera!, the handshakes on
b and c may affect some of the variables that occur in the guard of the case state­
ment. Therefore, if as aresult of this the value on a may also change, then the above
implementations leadtoa reduced early data-valid scheme on a, and the implement­
ation with cross-coupled asymmetrie C-elements should be chosen. If the guard is
latebed after evaluation, however, the implementation based on AND gates is safe
as well.

The basic case component can only be used to decode boolean (1-bit) guards.
In a general case-construct n-bit guards have to be decoded. In Tangram this is ac­
complished by constructing trees of case components, for which the push case com­
ponent is used. lts symbol and specification are given next. One may abserve that
these components basically are push components.

CASE(a0 ?bool x T, b• !T, c• !T) =
I [x : bool, y : T

I *(ar(x, y); if x then br(Y); ba else cr(Y); Ca fi; aa)

ll

b

a

c

The implementation of this case component is similar to that of the basic case.
The realization with AND gates can be used. Depending on the least significant bit
the rest of the message is then sent either via b or via c. The forwarding of this part
of the incoming data can be implemented by simply forking the data, such that on
the outputs the same data-valid scheme may be assumed as on thè input, but now
(due to the control overhead) with an even larger safety margin.

5.2.3 Do component

The do component is used to imptement Tangram's iteration ('while') construct.
The cammand and the symbol for the do component are given next.

78

DO(a0
, b•?bool, c•) =

I[x: booi

I *(ar;br;ba(x);

ll

do x then Cr ; Ca ; br ; ba (x) od ;
aa)

5. Handshake

b c

Before we start implementing the do-component, we first take stock of some
of the properties of the communication with its environment and the implications
thereof on the four-phase implementation. First of all, the guard that has to be evalu­
ated may be of arbitrary complexity, which implies that delay-matching on channel
b is important. In the true four-phase scheme this means that we should perform a
complete four-phase handshake on b before we interpret its data.

If the guard evaluates to true a four-phase handshake on channel c has to be per­
formed. During this handshake some of the variables occurring in the guard wi11
typically change. In the true four-phase scheme this implies that the guard may
change as well. Consequently, the value of the guard is oot stabie after the hand­
shake on c is initiated. If the guard evaluates to false, however, the handshake on
a can be completed. Due to the broad four-phase control protocol this implies that
all variables that occur in the guard wiJl be stabie during this handshake.

A possible gate-level realization of the do-component is depicted in Fig. 5.9.
This implementation is based on the S-element and a variant of the case compon­
ent. The function of the S-eiement is to assure valid data on channel b. At da i, b0

is guaranteed to be stable. If bo is low (the guard is false) then the handshake on
a is completed, which also resets the S-element. If b0 is high (a true guard) then
the handshake on c is performed. During this handshake the handshake on d is also
completed, and upon completion of c a cycle is started by making dr high. The
asymmetrie C-element assures the stability of er even if b0 changes during the hand­
shake.

The use of a NOR gate for aa is a bit tricky. If we would follow the imple­
mentation of the case component, an asymmetrie C-element would be used that sets
at da 1\ b0 and resets at We can get away with the simpler implementation,
however, due to the stability of the guard when it is false during the handshake on
a. The only proteetion that is required is against b0 going low during the handshake
on c. We could thus choose aa = da * do * Cr * which assures that aa is low
during a handshake on c. We can get rid of the factor if we assume an isochronie
fork of depth one at ba and choose the implementation shown in Fig. 5.9. The as­
sumption is that the path from dal through the in verter to its output going high (one
inversion) is faster than that from da going low to Cr· going low (two inversions).

5.3. Passive 79

bo----~-~~
!-'--------+- Cr

Figure 5.9: Implementation of do-component basedon S-element and case com­
ponent.

5.3 Passive components

Passive components provide and accept data upon request. The simplest passive
component is the constant, which upon request always outputs the same value. The
variabie is one of the essential Tangram handshake components, since it is used to
store and retrieve information. The passivator is used in synchronization and in­
formation exchange between parallel processes.

5.3.1 Constant

The constant bas one passive pull handshake port along which it outputs its constant
value (denoted by C, where C E T and where T denotes the type of the channel)
u pon request. The specification and the symbol of the constant are given next.

The single-rail implementation of the constant is straightforward. Depending
on the binary representation of the value C, some wires are tied low and the others
tied high. The control part of the constant is implemented with wires only, since
the data is always valid, and thus the acknowledge can be connected directly to the
request.

All data outputs of the constant are tied high or low, which implies that the gates
that these wires conneet to are amenable for post optimization. This optimization
is part of the single-rail design flow and is discussed in Chapter 6.

5.3.2 Variabie

Tangram variables are implemented in the handshake circuit by components that we
also eaU variables. Variables are used to store information and can be read and writ­
ten. Tangram's compilation scheme assures that these read and write handshakes
are mutually exclusive. It even assures a stronger property, namely, that in a data­
transfer a variabie is never both read and written. This property is stronger than mu­
tual ex dusion on reads and writes, since the latter would still allow for direct imple­
mentation of Tangram statements like x: =x+ 1. This statement could be compiled
to a handshake circuit in which the read handshake is completed before the write
handshake is initiated. In Tangram, however, an auxiliary variabie is required, as
in y: =x; x: =y+ 1. Variables that do allow for these so-called read-modify-write
cycle (in which the current state of the variabie is read and the new state is written
within one assignment) fall outside the scope of this thesis.

An important characteristic of handshake variables is that they may have an un­
bounded number of independent read ports. One might say that the variabie may
have multiple subscribers that, independent of each other, can decide to inspeet the
value via a read action. A more precise specification of this is given below.

The specification and symbol of the variabie are given next. As an example a
variabie with three read ports is used. In general the number of read ports is at least
one.

VAR(w
0 ?T, a0 !T, b0 !T, c0 !T) =

var(w, a, b, c)

Read and write actions on variables are mutually exclusive, but multiple read
actions may take place independently. Therefore, we choose the following specific­
ation.

var(w,a,b,c) l[x: T

I* (wr(x); Wa I *(ar; aa(x)) 11 *(br; ba(x)) 11 *(Cr; Ca(x)))
ll

Global organization

The variabie can be decomposed into a data and a control part, as shown in Fig. 5.10
for a variabie with one read port. Since read and write handshakes are mutually
exclusive, we can imptement the data part with latches. The control circuit has to
generate the enable signals (en) forthese latches.

5.3. Passive 81

Figure 5.10: Decomposition of variabie into control and data circuitry, connected
by enable signals.

Since a variabie may have any number of read ports, it is important to keep
their implementation cost minimaL The absolute minimum is to implcment the read
ports with wires only. A way to achieve this is to conneet the read acknowledge to
the read request directly, and per bit to conneet all read ports to the outputs of the
same latch. This decomposition leads to an implementation in which the enable sig­
nals of the latehes are controlled by the write port only, and one latch per bit is used,
with the output broadcast to all read ports.

Intherest of this section we first discuss several implementations of latehes and
lateh-control circuits. After that an alternative decomposition is given that is based
on more expensive read ports.

Latehes

An important choice that has to be made is what latch to apply for storing the data.
Some degrees of freedom are (i) static versus dynamic storage, (ii) inverting versus
non-inverting data, and (iii) the type of select signals. These issues are eovered in
detail by Weste [84, Ch. 5] and Bakoglu [3, Ch. 8].

All handshake components are implemenled using static CMOS. For data and
control paths that are activated with a suftkient high frequency, dynamic imple­
mentations could be used. This option, however, is not studied in this thesis. Fur­
thermore, all variables are implemented with non-inverting latehes. Inverting latehes
could be introduced in a post-optimization step, but this requires information about
the context of the variables.

One of the simplest latehes that can be chosen is depicted in Fig. 5.11. This
latch is non-inverting, requires complementary enabling signals and is fully statie.
It contains two tri-state inverters, one conneeting d to qb, the other providing the
feedback by connecting q to qb. This feedback-stack is only required to make the
latch statie, and has to compensate leakage for current only. It can therefore be im­
plemented with minimum-sized transistors.

82 5. Handshake

Figure 5.11: Multiplexer-like latch circuit. The feed-back stack only compensates
for leakage and can be minimal sized.

The latch can be in two states, known as transparent (or open) and opaque (or
closed, state-holding). With the enable signa! (en) high and its complement (en)

low, the latch is transparent As long as the latch is transparent, its output will follow
the input. This means that if the input is stabie at high or low, the output will settie
to the same value.

If the enable signal is low, the latch is state-holding since the output q is in a
feedback-loop to qb. Although generating the feedback directly from the output res­
ults is a simple latch, it also bas some disadvantages. One consequence is that the
minimum period during which the latch should be transparent depends on the out­
put load on q. Some implications of this are sketched later in this section. A second
consequence, however, is that the output may affect the internal state, for instance,
if it is exposed to chargesharing effects due toa pass transistor connecting to q, or
if q connects to an off-chip pin.

The symmetry can be broken by separating the feedback path from the output
path, at the costof only two additional minimal transistors, as shown in Fig. 5.12
(left). (Note that the tri-state inverters are identified by their enabling signa! only,
assuming the complement as disabling signaL) From this implementation two min­
imum transistors can be saved by replacing the tri-state in verter in the feedback path
by a minimum sized inverter, as in Fig. 5.12 (right). Although this introduces a
small fight during switching, it may still be advantageous because it reduces the
load on the enable signals and it simplifies the layout.

The last two latehes require minimal set-up and hold times and enable-pulses,
because only the internat node qb bas to be switched. After the latch is closedit still
continues to update its output q, if the transition on q bas not yet completed. An
additional advantage of these latehes is that they appear to have better testability
properties than the simple latch [70].

The latehes shown bere all require complementary enable signals. It depends

5.3. Passive 83

d d

Figure 5.12: Latehes with feedback decoupled from output, basedon MUX cell
(left) and RAM cell (right).

on the layout style whether one can best distribute both signals, or apply a local
inversion of the enable signal. In a ful1-custom layout style it is generally better
to distribute both signals, whereas in standard cells it may pay off to use a local
inverter, since this reduces the number of external signals of the cell and thus the
routing requirements.

An alternative that is not elaborated u pon bere is to use latehes that require only
one polarity of the enable signal. These are called true single-phase latches, and
are introduced in [86] and [1]. In a synchronous environment these latehes rednee
clock-skew problems, precisely because only one signal bas to be distributed. These
latehes are especially interesting when combined with logic operations, which was
demonstrated in the design of the DEC Alpha [28]. Since single-phase latehes re­
quire more transistors, it is not immediately clear whether they lead to really better
asynchronous circuits. A case study can be found in [25].

Latch control

The lateh-control circuit is the heart of the variable. It controls the enable signals
of the latehes such that they capture the valid data when required. An important re­
striction for the latch control to fulfill is that the latehes should be closed during a
write action before the data-valid period of the input data has ended. This is gener­
ally implemented by withholding the data-release transition on the write acknow­
ledge until after the latehes have closed.

Throughout this section we assume the broad data-valid scheme on the write
channel, which means that the data is valid at least from Wr T until wal· The im­
plications of using other data-valid schemes are discussed later.

In the variable, the first time that it is known that the current state is no Jonger re­
quired is when a write action is initiated, that is, when Wr T arrives. The only option,
therefore, is to use a normally-opaque lateh-control circuit. Since in the broad data­
valid scheme the data is valid during the complete write handshake we can open the
latehes right after Wr Tand closethem just before wal·

A circuit that achieves exactly this is shown in Fig. 5.13. It employs a driver to

84 5. Handshake

Figure 5.13: Matched-delay lateh-control circuit

distribute the enable signa! to all data latehes and to the latch that generates the write
ack:nowledge. This circuit can be used in combination with any type of enable­
signal distribution, provided that after Wr going low there is enough time to switch
the latch driving wa before the enable signal goes low as well. With the latehes
of Fig. 5.12 this should be no problem. The generation of the write ack:nowledge
signal via a latch automatically provides a matebed path with the data.

The above control circuit may be a bit tricky in combination with the latch of
Fig. 5.11, since it depends on the load on wa whether wrl can really effect the state
of the latch before (as areaction to this transition) the enable signa! goes low and
thereby doses the latch. An extended isochronie fork of depth 2 is required to jus­
tify this assumption.

en

Figure 5.14: QDilatch-control circuit

A very safe way of generating complementary enable signals and controlling
these is to use the QDI lateh-control circuit shown in Fig. 5.14. This is basedon
the two-phase control circuit described by Paver [63] with the two-to-four-phase
converter (Toggle and XOR) removed. The larger sized inverters are included in the
figure to indicate the insertion of buffers (drivers) and strong inverters to drive the
potential high load on the enable signals (in variables consisting of many bits). The
C-element in this circuit postpones the write-acknowledge signa! until both enable
signals (en and en) have completed their transition, and have thus opened or closed
all latches.

5.3. Passive components 85

Whilst this control circuit is very safe, the C-element also introduces a delay,
since it is in the critica! path twice. A variant that enables faster cycle times is de­
picted in Fig. 5.15. Compared with the previous control circuit, the C-element is
removed. Completion detection of transitions on the enable signals is done on en
using an inverter. In combination with the latch of Fig. 5.11 the total transistor load
on the en-signal will be larger than that on the en-signal, since the former is con­
nected to a minimum n-transistor and a default p-transistor, whereas the en-signa]
drives normalp-transistors and small n-transistors. (The load of a p-transistor is lar­
ger than that of an n-transistor.) This circuit thus essentially assumes an asymmetrie
extended isochronie fork of depth two on Wr.

en

en

Figure 5.15: Extended QDI lateh-control circuit.

Other ways of generating the write acknowledge signal are to conneet it to the
enable signal directly (thus saving an inverter), or to apply fastforwarding, that is,
to generate Wa from Wr directly. This assumes that the latehes are fast enough, and
the environment is slow enough to still allow a sufficiently long transparent period
of the latches. The time between the completion of a write handshake and the ini­
tiation of a read handshake should also suffice to complete the output transition of
the latches.

lf latehes with local enable inverters are used -which only requires one enable
signal to be distributed to the latch cells- a simplified version of the above control
circuits can be used.

Data bundling

To illustrate what may go wrong when the latch of Fig. 5.11 opens for only a short
period consider theevents depicted in Fig. 5.16. The circuit simulated bere consists
of a4-bit variabie with the latch control of Fig. 5.15. The write-request and write­
acknow led ge are connected to an S-element to give a fast but realistic response time
from War to Wr l. The enable signa) is driven by a buffer, its complement by a
standard inverter. The acknowledge is generated by a standard invetter from the
en-signal.

86 Chapter 5. Handshake Components

6.0

VN(EN)

.Y~<!:-!!'2---- 5.0
.Y.~Q.Lg:!P.~.

~N_i2L_ 00_p~

~T:IQ~.Q:~~- 4.0

~1\!.(:±L J Jr!'-

3.0 \

2.0

1.0

0.0

-1.0
I. On I

3.0n
I

5.0n
I

7.0n
2.0n 4.0n 6.0n

T

Figure 5.16: How to break the latehing scheme.

The pulses generated on the enable and its complement are narrow. Tagether
they allow for a 1 nanosecond period of transparency of the latch. It now depends
on the output laad of the particular latehes whether this time suffices to make a trans­
ition.

Initially, the outputs of alllatehes are high and the inputs of alllatehes are low.
The four latehes are loaded with 0.1, 0.5, 0.8, and 1.1 picofarads. (In the technology
that is assumed in the simulation, a typical laad is in the range of 0.1 to 0.4 pF.)
The latch with the 0.1 pF laad switches fast; its transition is completed befare the
latch doses again. The second latch has an 0.5pF output laad. The open period of
the latch still suffices to make a nearly complete swing. While the latch doses it
completes its transition.

The third latch is critical. Due to the 0.8pF laad it requires more time to make
a complete transition. When the latch doses again, its output is still changing. The
output now takes considerably more time to complete this transition. The fourth
latch, with the 1.1 pF laad, does not make it. When the latch doses again its output
has not yet passed the threshold. Therefore, when the feedback-path is created, the
output of the latch overwrites the state of the latch (which was stared on the intern al
node).

5.3. Passive components 87

The analysis done here is not carried out in great detail. There are two reasous
for this. First, others have already characterized this mode of failure in detail. This
type of problems is closely related to synchronization and metastability, as studied
in, for example, [21, 68, 81, 50].

The secoud and more important reason is based on engineering practice. To
build a working system, safety is an important issue. It is therefore useful to estab­
lish safety guidelines for the implementation of variables. At the output of latehes
that have a high fan-out, and thus face a high capacitive load, additional buffers are
inserted to assure a timely transition (see Chapter 6).

Early/late data-valid schemes

In the above we assumed a broad data-valid scheme on the write channel ofthe vari­
able. An impheation of this was that we could open the latehes during the full write
handshake without wondering about valid input data. In this section we investigate
the impact of having non-broad data-valid schemes on the write channel.

If the data-valid scheme onwis early, we have to adapt the lateh-control circuits
that we have seen so far. In the early scheme we may not assume valid data after
wal, which implies that the latehes have to be opened and closed intheup phase of
the w-handshake. This can be achieved by using an S-element, basically to couvert
from early to broad. (See also Section 5.4.1.)

In case the data-valid scheme on the write channel is late we could of course
also couvert this to broad (by using aD-element). The lateh-control circuits shown
above, however, can also be used, since at the falling edge of Wr, which signals
the beginning of the late data-valid period, the latehes are still transparent lt now
depends on the available setup time margins whether we have to delay the closing
of the latch or not.

A consequence of making the latehes transparent when the data is not yet valid,
such as in the context of a late or a true four-phase data-valid scheme, is that the
latehes may toggle more than once, due to spurious transitions on the data inputs
before the data is stable. These spurious transitions at the output of the latehes are
not optima} for low power. To prevent them one should enable the latehes as late
as possible, or, alternatively, use flip-flops instead of latches, such that the output
does not switch before the latehing has completed.

Minimum channel power

All implementations of the handshake variabie discussed so far are based on a de­
composition in which a write handshake results in the broadcast of the new state via
all read ports. For the read handshake channels this possibly results in spurious data

88 5. Handshake

transitions, since a write handshake is not necessarily foliowed by a read handshake.
For the early, reduced late, and broad data-valid scheme on these read channels this
is nota problem, since these transitions fall outside the data-valid period.

However, in the minimum powervariantsof these data-valid sehemes the num­
ber of transitions on these ehannels are restrieted to at most one per bit. To aehieve
this we have to implcment the read ports of a variabie with more than wires only.
To aehieve a minimum number of transitions we can only allow the data on a read
handshake ehannel to change when a read request has been received. Therefore we
have to latch the last-read data in all read ports independently. This requires a latch
per bit per read port of the handshake variable.

A nice feature of these minimum power variants is that the write port can now
be implemented with wires only, provided that the write ehannel also obeys the
minimum power rule, and thus only changes data just before a write request ar­
rives. To make this work, the other eomponents should eooperate and also obey
the minimum-power rule. For all handshake ehannels the value that was last eom­
municated should be kept stabie until new (valid) data arrives. This means that data
has to be latebed in more eomponents, for instanee in passivators and demultiplex­
ers. It also limits the implementation freedom in the multiplexer, which complicates
especially the control circuits for multi-input multiplexers.

5.3.3 Passivator

The passivator is used to synehronize two active partners duringa data transfer. It

synchronizes data exchange between an active sender and an active receiver. The
symbol and specification of the passivator are given next.

PAS(a
0 ?T, b0 !T) =

l[x,y :T
I (ar(x) 11 br)

]I

; *((aa; ar(Y) 11 ba(x); br)
;(aa;ar(x) 11 ba(y);br))

The specification of the passivator is rather complex. Intuitively, one may ex­
peet the simpter command

This specification, however, is not receptive. It allows fora new request to arrive on
a channel on1y after the acknowledge on the other channel has occurred. In the Tan­
gram compi1ation scheme a receptive implementation of the passivator is required,
since it is used to synchronize otherwise independent processes.

5.3. Passive 89

c

aa -+------1----...... ba

ad ---+---...... bd

Figure 5.17: Lateh-free passivator implementation

In a two-phase implementation, the specification dictates the use of latehes for
the datapath. After the acknowledge on a has been sent, the input data from a is no
langer valid. On channel b, however, valid data must still he assured.

In contrast, in a four-phase implementation data-valid schemes fora and b ex­
ist that allow fora lateh-free implementation of the passivator. In the compilation
scheme of Tangram communication takes place only between independent parallel
processes. Fortunately, the four-phase implementation of this parallel composition
is such that it allows any interleaving of the intermediate phases of the four-phase
handshake protoeals on a and b without any danger of deadlock. The simplest im­
plementation is to u se a control passivator for the control of the data-valid signaling,
as depicted in Fig. 5.17.

In this implementation the data-release signal of channel a is directly connected
to the data-valid signalof channel b. This means that both the early and the late data­
valid scheme on channel a lead to empty data-valid periods on channel b. The only
choice therefore is to assume the broad data-valid scheme on a. The passivator in
that case guarantees an early data-valid scheme on its output channel b.

The circuit depicted in Fig. 5.17 can thus be used to combine the broad data­
valid scheme on a with the early scheme on b. For this combination, however, we
can, at the expense of some extra circuitry, also use a circuit that allows a retum-to­
zero of ba independent of whether ar has already gone low.

This broadlearly passivator can be used in a context where input is implemen­
ted with the early data-valid scheme for input communications (such as basedon
the mirrored transferrer) and the broad data-valid scheme for output (based on the
sequencer transferrer).

Different data-valid combinations can be achieved by connecting data-valid cou­
verters to either of the channels. These data-valid couverters are discussed in the
next sections. If broad or late data-validity is required on the output channel, then
the data must be latebed in the passivator, since after the complete handshake on a

data-validity is no langer guaranteed in any of the push data-valid schemes.

90 Chapter 5. Handshake Components

5.4 Push components

Two types of push components are discussed in this section, namely protocol con­
verters and multiplexers.

5.4.1 Data-valid conversion

Connectorscan be used to convert between data-valid schemes, if that is required.
The symbol and the specification ofthe push connector are shown in Fig. 5.18.

CON(a
0 ?T, b•!T) =

I [X : T I * (ar (X) ; br (X) ; ba ; aa)]I

Figure 5.18: Push connector, which can be used for data-valid conversion.

The implementation of the connector is especially interesting if the data-valid
schemes on channels a and b differ. A wide range of these type of components can
be defined, but in the context of this thesis only the four-phase converters are of
interest.

If the data-valid scheme on channel a is broad, and that on channel b is early
or late, then the implementation of the converter can be done with wires only, since
the data-valid periodinthese two schemes is a sub-period of the data-valid period
in the broad scheme.

Two interesting cases are when the broad data-valid scheme on the output chan­
nel is combined with early or late data-valid schemes on the input channel. To es­
tablish a broad data-valid period on channel b we have to implcment the converter
such that the data-valid signal on channel a precedes br i, and the data-release signal
on a is scheduled after baL which is the data-release signal on b.

If the data-valid scheme on channel a is early, this leads to the specification
shown below, in which a complete handshake on channel b is performed during the
up handshake on a. The control component with this specification is known as the
S-element [8, p. 162], also known as Q-element [57, p. 36], and is used in the im­
plementation of the do-component inSection 5.2.3.

In the case of a late data-valid scheme on channel a, the D-element [57, 8] can be
used to convert to broad data-validity. The D-element schedules the handshakeon b
during the down handshakeon a. The implementation ofboth converters is depicted
in Fig. 5.19. As can be seen, the data part ofboth componentsis implemented with

5.4. Push components 91

wires only, and the control hardware takes care of the proper ordering of the data­
valid and data-release signals.

a-0-b

Figure 5.19: Implementation of early (left) and late (right) to broad converter for
push channels.

Push protocol couverters with a broad data-valid scheme on the output channel
can for instanee be used in the implementation of variables (which require a broad
data-valid scheme on their write port), or in output communications (to allow the
environment to use its favorite data-valid scheme).

5.4.2 Multiplexer

The multiplexer is used tomerge (type compatible) data streams onto one channeL
F~r proper operation the handshakes on the passive channels have to be mutually
exclusive.

MUX(a
0 ?T, b0 '?T, c•!T) =

l[x:TI

]I

* (ar (X) ; Cr (X) ; Ca ; a a

I br(x); cT(x); Ca; ba
)

b

c

a

This specification of the multiplexer can easily be generalized to multi-input
multiplexers. Multi-channel multiplexers form an attractive substitute for trees of
binary multiplexers. First of all they potentially offer more-or-less· uniform latency
to all clients, and second they can be implemented efficiently. Therefore, the im­
plementation of both binary and multi-channel multiplexers are addressed below.

Global organization

In any implementation of the multiplexer, three things have tobetaken care of. First
of all, the data of one of the incoming channels has to be forwarded to the output
channeL Secondly, the associated data-valid signal should be derived from the in­
coming data-valid signals and should compensate for any delay that might be en­
countered by the data. The third thing that has to be done is to send the incoming

92 5. Handshake

data-release signal (from the output channel) to the input channel that sent the data­
valid signal.

We decompose the mu1tiplexer into a control part, which takes care of the re­
quest and acknowledge signaling, and a data part, which takes care of the forward­
ing of the data. The interface between these two modules consists of select lines,
which are signals from the control part to the data part that identify the input that
has to be selected. This decomposition is schematically depicted in Fig. 5.20.

a
Control

----- c
b ----<

part

as bs

I

Data
I

part I

I

Figure 5.20: Global organization of a two-input multiplexer.

Below, we fiTst discuss the implementation of the data part, and then that of the
control part. One may already observe that apart from generating the select signals
a8 and b8 , the function of the control part is equal to that of a nonput mixer. The
exact specification of the select signals depends on the implementation of the data
part.

Multiplexer cells

In the data section of the multiplexer we have to direct input data to the output, based
on the status of the select lines. Two options for this are addressed here, namely a
bus-like implementation based on tri-state cells, and a direct realization based on
complex CMOS gates.

A solution that is especially attractive for many-input multiplexers is to use tri­
state inverters in combination with a bus-keeper (a cell that keeps the bus stabie
when noother cell is driving it). One bit section of a four-input rnultiplexer, with
inputs a, b, c, and d, and output q is shown in Fig. 5.21. In this solution at most one
select signal is allowed to be high at any time. Otherwise an dectrical conflict may
occur, which results in short -circuit. A nice property of this implernentation is that it
basically latehes the output of the multiplexer cell. This means that after valid data

5.4. Push components 93

has been assured, the corresponding select signal can return to zero. Especially for
many-input multiplexers this simplifies the control circuit.

a

b

c

d

Figure 5.21: Circuit realization for one bit of the data section of latebed four-input
bus-like multiplexer.

A drawback of the tri-state solution is that a tri-state inverter requires both the
true and the complement of its select signal. Especially in a standard-cell imple­
mentation this leads to area inefficiencies. One can choose to distribute both the
true and the complement of the select signals (the 'dual rail' distribution), or invert
the select signal in the multiplexer cell. In the latter case this inverter only drives
one transistor, in the former case the multiplexer cells require excessive routing.

An alternative realization of the multiplexer is the direct implementation of the
sum-of-products function q = as* a+ bs * b +Cs* c (fora three-input multiplexer;
generalization is straightforward). Especially if complex gates known as AND-OR­
INVerts (AOis) can be employed, this function can be realized efficiently. From
an electrical point of view this realization does not impose any restrietion on the
implementation of the select signals.

Mixer-based control circuit

The function of a multiplexer control circuit is twofold. First of all, the control cir­
cuit has to generate appropriate select signals for the multiplexer cells. In addition
to this the handshake signaling on the handshake channels has to be taken care of.
The latter also involves the generation of a data-valid signal on the output channel,
and depends on the data-valid scheme that is chosen and on the implementation of
the multiplexer cells.

94 5. Handshake

If we ignore the data-valid obligations and the select lines, then the control cir­
cuit can be implemented as a control mixer. So, an approach to the design of a mul ti­
plexer control circuit is to start with such a control circuit, and then add gates to con­
trol the select lines. The implementation of the nonput mixer is shown in Fig. 5.2.

Data at the output of a multiplexer cell need only be valid during the data-valid
period. This implies that the state of the select lines outside this period may be ar­
bitrarily chosen. Throughout this section we assume active-high select lines.

If the data-valid scheme is early, the data is supposed tobevalid on a handshake
channel during the period in which the request is high and the acknowledge is low.
Por the control circuit of the multiplex er one can thus choose, for input channel a,
for example, a8 = ar * aa. Naturally, we mayalso decide to keeptheselect lines
stabiefora Jonger period, and thus simplify the expression to as = ar.

In case the data-valid scheme would be late, we can for similar reasans choose
a 8 = aa. When a broad data-valid is required, however, we cannot simply use the
request or the acknowledge signal as a select signa], but rather we have to choose
as= ar+ aa.

The forwarding of the data-valid signal in the mixer control circuit is imple­
mented by the OR-gate. This doesnottake the delay-matching obligations with the
datapath into account. To provide a perfect match the data-valid signal should be
forwarded with the same circuitry as the data in the datapath. This means that for
instanee the multiplexer cell with Cr = a8 *ar + bs * br could be used.

A disadvantage of the above implementations of the select lines is that the sig­
nals return-ta-zero between handshakes. This clearly does not minimize the switch­
ing activity of the select lines. We therefore switch to a different kind of control
circuit, based on complementary select lines.

Complementary-select control circuit

A different way to design a control circuit is to start with the select lines, that is, first
design a circuit that controts the select lines, and later extend this circuit to include
the handshake signaling as well.

From a low-power point of view it is best to minimize the switching activity
of the select lines, because these signals may fanout to many multiplexer cells. We
therefore opt for a salution in which the select lines only switch state when neces­
sary. This implies that we (i) latch the select lines, and (ii) keeptheselect lines com­
plementary, such that the]ast selected input remains selected between handshakes.
If we forthermore choose to switch the select lines as early as possible in the hand­
shake, that is, at an incoming request, this leads to the following specification of the

5.4. Push 95

associated circuit.

{
ar ~--+
br 1-+

This specification can straightforwardly be implemented as a set-reset latch with
complementary outputs. Two (cross-coupled) NORs suffice for this, and for high
fanout select signals, two extra inverters can be added to provide sufficient driving
strengtb.

The next issue is the forwarding of the request. The data-valid signa] of hand­

shake channel c is encoded in its request, so we have to be careful with the request
signaling. If the data-valid scheme on the input channels of the multiplexer is early,

and we want to have an early data-valid scheme on c as well, then we have to delay
an incoming request sufficiently long to allow tbe select lines to switch and, sub­
sequently, the data to propagate.

A specification of the request signa] on in wbich at least tbe switching of tbc
select lines bas been taken into account is the fo1lowing.

{
ar * as + br * bs 1-+

ar* br 1-+

Since we decided to leave the select lines intbelast selected state, we can implcment

tbc above specification by Cr ar * a8 + br * b8 • An advantage of tbis implement­
ation is tbat tbc request forwarding can be done witb exactly tbe same cell as tbc
actual multiplexing of tbc data. as sbown in Fig. 5.22.

Tbe last task tbat bas to be implemented is tbe generation of tbe acknowledges
on tbe input cbannels. For tbc mixer this is specified as follows. (Only tbe specific­
ation of aais given. It is similar for ba.)

{

Ca* ar 1-+ aai
Ca r--+ aa!

It is again belpful tbat tbe select lines are being latebed in tbe control circuit. Tbis
allows us to implement tbc above specification witb an AND-gate, namely as aa
Ca * a.s, insteadof the asymmetrie C-element that is actually specified.

Tbe complete circuit realization of a two-input multiplexer is shown in Fig. 5.22.
Tbe widtb of tbe multiplexer may vary: multiple multiplexer cells can be straigbt­
forwardly connected totheselect lines.

Tbe delay tbat data encounters in the multiplexer of Fig. 5.22 is perfectly matebed
in tbe con trol, since tbe samecircuit is used for forwarding tbe request as for the ac­
tual multiplexing of tbe data. Actually, the select lines are treated as extended iso­
chronie forks; in the tigure of depth two. Tbis makes the circuit a safe implement­
ation in any data-valid scheme. In tbe context of true four-pbase communication,
however, a simpler request circuit can be used.

96 5. Handshake

}--•Cr

bo
)---• co

)---• Cn

Figure 5.22: Two-input multiplexer, showing select, request, acknowledge, and
(two) data signals.

Simplified control circuit

In the true four-phase protocol, data validity is established in two phases, and we
can use both the up and the down phase of the handshake to match the delay of the
datapath. This means that we can implement a quick forwarding of the request, for
example, as quickly as possible, that is, with an OR-gate, as shown in Fig. 5.23.

Figure 5.23: Simplified control circuitfortwo-input multiplexer basedon quick for­
warding of the data-valid signa!.

A consequence of the quick forwarding of the request is that, from a speed­
independent point of view, when the acknowledge arrives we cannot be sure that
the select-lines have already switched to the correct state. In genera}, however, the

5.4. Push 97

path from, for example, ar i, via Cr i to Ca i requires more time than the path from
ar f to as i. Therefore the acknowledge signals can generally be safely derived from
the select signals, as shown in Fig. 5.23.

Biased control circuit

In the control circuits discussed so far it is assumed that both select signals are dis­
tributed, but of course one could also choose to havealocal select-line inverter in
each multiplexer cell. This then guarantees that the select lines are always com­
plementary, but does not necessarily minimize the switching activity on the select
lines.

An interesting option then is to choose the simple select generation circuit based
on the nonput mixer. This can be used to implcment a biased multiplexer, which by
default selects some input, and only during the handshake on the other input selects
that one. For multiplexers that have an unbalanced invocation profile, in the sense
that one input is selected significantly more often than the other, a biased control
circuit is as good as a latched control circuit.

Quantitative aspects

From the control circuits and multiplexer cells that are discussed above several mul­
tiplexers with different performance characteristics can be built

One of the degrees of freedom is the safety margin that is taken into account
in the delay matching of the data-valid signal with respect to the datapath. In the
true four-phase protocol the falling edge of the request signal counts as the definite
data-valid signal, but the delay-matching cao be spread over the several phases of
the handshakes.

From a low-power point of view it seems a good idea to use a control circuit
that miniruizes the number of transitions on the select lines. This is achieved in
the control circuits that store the last selected state, such as the control circuits of
Fig. 5.22 and Fig. 5.23. A disadvantage ofthis scheme, however, is that the outputs
of the multiplexer cells always follow the last selected input, which may give rise
to switching activity outside the data-valid period (that is, in between handshakes).
Therefore, for circuits in which a lot of spurious data transitions are expected, a
salution based on retum-to-zero select lines may result in less switching activity.
This cao be combined with both latched tri-state and AOI multiplexer cells.

98 Chapter 5. Handshake Components

5.5 Pull components

Expressions in Tangram are compiled to pull components. Pull components are
connected to pull handshake channels only. This means that expressions are eval­

uated in a demand-driven way.
We first briefly look at data-valid conversion on pull channels, and tben discuss

the implementation of operators (unary and binary) and the demultiplexer.

5.5.1 Data-valid conversion

Connectorscan be used to couvert between data-valid schemes, if that is required.

The symbol for a pull connector with input port b and output port a is shown below.

Figure 5.24: Pull connector, which can be used for data-valid conversion.

The interesting data-valid conversions are again those from early or late to broad.

Surprisingly, it is the conversion from late to broad that can be implemented relat­
ively cheaply, that is, with wires only for the data part. If the data-valid scheme on
b is late, then the data-valid signal is ba Î. We have to schedule this before aa 1 to
assure a broad data-valid scheme on a. This can be achieved by performing the full

handshake on b during the up handshake on a, for which an S-element suffices.
Conversion from early to broad cannot be achieved without latehing the data,

because this would require to withhold the data-release signal on channel b (brD
until after the data-release signal on channel a. This data-release signal is ar! of
the next handshake. So, a lateh-free pull converter from early to broad would imply

a form of deadlock for channel b. The converter can be implemented with latehes

that are opened at br 1, and closedat brl·
The true four-phase protocol resulted in a reduced broad data-valid scheme for

pull channels. To convert this to 'full' broad data-valid schemes the latehing con­

verter can be used as wel1.

5.5.2 Datapath operators

One of the more interesting aspects of single-rail handshake components is the im­
plementation of operations on data. The data part of the single-rail operators is sirn­
ilar to well-known synchronous realizations; the interesting choices are in the kind

5.5. Pull 99

of delay matching or completion detection that must be applied to generate appro­
priate data-valid signals.

Tangram offers several unary and binary operators, both for booleans and for
integers. Other operators and types can be explicitly programmed in the language.
We piek two examples of binary operators, namely the XOR for booleans, and the
subtractor for integers. The complete set of Tangram operators is described in the
Tangram manual [71]. The two examples given hereare intended to be represent­
ative.

First the genetic specification of the binary operators is given. Operators are
evaluated in a demand-driven way, that is, each cycle of operation is initiated by a
request for a result. After this request is forwarded and the operands are collected,
the computed value is sent as an acknowledge to the initial request, which completes
the cycle.

BIN(EB, a0 !Ta, b•?Tb, c•?Tc)
l[x: Tb,Y: Tc
I *(ar;(br;ba(x) 11 CriCa(Y));aa EBy))

ll

b

a

c

The type of the result channel, especially the number of bits that are needed to
represent these, depends on those of the operand channels. This typing infonnation
is kept track of during the compilation process from Tangram to handshake circuits
and is defined as follows.

Ta= n Tc= {x, y: x E 1\ y E :xEBy}

In the implementation of all operators we strive for the samedata-valid scheme
on all channels. For the circuit this means that, given a data-valid scherne on the
inputs, the samedata-valid scheme should also be guaranteed on the output channel.

Boolean operators

The implementation of boolean operators on data is simp Ie, since the variety of op­
erators is small and they all operate on 1-bit operands and deliver a 1-bit result. As
an example the circuit realization of the logical XOR is shown in Fig. 5.25. The
interesting aspects of this implementation are the C-element and the delay-element
in the acknowledge path.

Intuitively one would say that the combined delay of the C-element and the
delay-element should match that of the XOR. It then depends on the actual data­
valid scheme at hand and the safety margins one wants to take into account, how

100 5. Handshake

br
ar

Cr

ba a a Ca

bo ao co

Figure 5.25: Implementation of logical XOR. The delay through the C-element is
nottaken into account in the delay-matching since it is always (in Tangram hand­
shake circuits) eliminated during post-optimization.

the delay should be dimensioned. Fortunately, however, in Tangram handshake cir­
cuits the C-element is always redundant, in the sense that it always re-combines the
forked request, possibly via some delayed paths. This issue is discussed in detail
in Chapter 6 and relates to the wire-only implementation of the control circuit for
read ports in variables and the fact that, in Tangram, no inputs are allowed in ex­
pressions. For now it suffices to know that the C-element is generally removed and
thus the delay-element should take care of all the matching.

For the implementation of the delay element several options remain. We only
discuss symmetrie delay implementations, since asymmetrie delays (with a fast re­
set or preset) are not required in the true four-phase protocol. For the matching of
the delay of a gate an equivalent gate could be used. An AND-gate delay could for
instanee be matebed by an AND-gate with inputs connected together. For the XOR,
however, this is nota good idea, since any delay elementbasedon an XOR would
possibly result in hazards at its output.

We have chosen to use a unit-delay element as a basis for all delay matching.
This allows for simple post-optimization rules, for instanee for the elimination of
parallel delays (cf. Chapter 6). The implementation is shown in Fig. 5.26. Given
our standard-celllibrary, this implementation is such that (in a tirst-order approxim­
ation based on delay-versus-load characteristics) the sum of the delays of the N AND­
gate (with the NOR-gate transistor load and zero wire load) and the NOR-gate (as­
suming an average totalload C) matches the delay of an XOR-gate withaverage
load C. Further quantitative analysis of delays and the matching thereof is given in
Chapter 6.

There is sarnething interesting about the relation between the two-phase spe­
cification and the four-phase implementation. According to the specification the
handshakes on b and c should be able to complete independently. The four-phase
implementation, however, synchronizes the two operands with aC-element, which
may give rise to deadlock. Fortunately (or intentionally), in Tangram handshake

5.5. Pull 101

Figure 5.26: lmplementation of a unit delay element

circuits this deadlock is guaranteed not to occur. This is of course related tothefact
that the C-element can be removed, as mentioned above.

The reason behind the absence of deadlock is that for the evaluation of expres­
sions (in which the operands occur) a reduced form of parallelism known as mutual
inclusion suffices. At the Tangram level this means that the evaluation of an expres­
sion can be seen as an atomie action. If we would allow input communications in
expressions, then with the implementation sketched bere, communications occur­
ring in one expression would be synchronized, that is, cannot complete independ­
ently. In this situation the C-element would not be removed in the post-optimization
phase.

Integer operators

For the implementation of operations on integers, one first has to choose a re present­
ation of the integers. The choice of a partienlar integer representation has an import­
ant impact on the implementation of integer operations (addition, inversion). Two
representations are frequently used in computer arithmetic, namely, one's and two's
complement. Negation in one's complement amounts to bit-wise inversion (which
can be done in constant time), and is more complex in two's complement, where
it is equivalent to incrementing the bit-wise inverse. Actdition and multiplication,
however, are more straightforward in two's complement than in one's complement.

In Tangram, the choice has been made to represent signed integersin two 's com­
plement, and unsigned integers without the (zero-valued) sign-bit. Throughout this
thesis we stick to this choice. Operations based on other numbering systems can be

programmed directly in Tangram. Examples of multipliers in various representa­
tions are described by Haans [38].

For an integer variabie x of N bits, we use Xi, with 0 ~ i < N, to refer to
the individual bits, in which xo refers to the least significant bit and x N -1 to the
most significant bit. If x is a signed integer, then x N _ 1 is generally referred to as
the sign-bit.

An unsigned variabie x of N bits thus represents

102 5. Handshake

which is a value in the range [0 ... 2N -1]. A signed variabie x of N bits represents

CL:: i: 0 :::; i < N- 1 : Xi * 2i)- XN-1 *

which is in the range ... 2N -l - 1] of signed numbers.
For the details of two's complement arithmetic we refer to Hwang [46]. In this

section we focus on the single-rail aspects of the arithmetic operations and we do
this by using subtraction as an example. For now it is suftkient to know that sub­
ttaction in two's complement in it simplest form requires a carry to ripple from the
least significant to the most significant bit.

A schematic representation of the circuit realization of a 4-by-4 bit subtraction
wîth a4-bit result is shown in Fig. 5.27. Each box labeled with a'-' represents a
half or full subtractor. The matched-delay path that is depicted consists of fi ve unit
delays. This, of course, is a tentative match. It depends on the actual implementa­
tion of the carry-path (always positive, or alternatingly positive and negative repres­
entation) and of the delay from the carry in totheresult bit in the last subtractor cell.
The C-element should be considered as a zero-delay element, since -in Tangram
handshake circuits- it will be eliminated during post-optimization.

bo co

ao

ba--r~

Ca ---;...__.r

Figure 5.27: Implementation of subtraction with single-rail carry. The C-element
should be interpreted as having zero delay. The delay chain matches the worst -case
path through the subtractor.

An alternative for the independent delay-matching path as in Fig. 5.27 is to make
the data-valid signaling part of the computation. Phrased differently, one could let
the computation itself signal when it has completed. An example of such an ap­
proach is shown in Fig. 5.28, where a double-rail carry is used to control the sub­
traction. The computation is started by injecting a start-carry in the head-cell, and
upon arrival ofthe carry at the tail (detected by the OR-gate) one can assume all bits
to have settled to their correct value.

5.5. Pull 103

bo co

ao

Figure 5.28: Implementation of subtraction with double-rail carry, with (redundant)
C-element as initiator and OR-gate for completion detection.

In the implementation shown in Fig. 5.28 the carry is reset during the retum­
to-zero phase of the handshake. This implies that it can only be combined with
the early data-valid scheme. In a late data-valid scheme we could make the carry
ripple during this retum-to-zero phase. If the data-valid scheme is broad or true
four-phase, however, this is harder.

One ofthe often cited advantages of asynchronous circuits is their average-case
promises, that is, in an asynchronous circuit it should be possible to take advantage
of (or, profit from) average case processing times. The subtractor is a good example
for this. The matebed path in Fig. 5.27 anticipates on the worst-case processing
time, that is, it can accommodate a full-length carry ripple plus the computation of
the most significant bit. On average, however, the subtraction may complete faster.
For this four-bit subtractor the difference is minimal, but for a 32-bit subtractor the
difference between the average and the worst case is significant.

This observation was already made in 1955 in a paper by Gilchrist [36], and he
proposes double-rail encoding to achieve this. Even with only a double-rail carry
one can implement this, but then one should broadcast the data-valid signal of the
inputs to more bits, such that multiple carries may start to ripple independently.
Hwang, in his book on computer arithmetic, also discusses such double-rail tech­
niques, see [46, pp. 75-78] on self-timed adders. This observation was also made
by Seitz [72].

The ALU of the AMULET12 has been implemented using such a double-rail
carry-scheme [34, 63]. It has been designed as a four-phase sub module, operating
in an otherwise two-phase handshaking environment. The early data-valid scheme
has been employed, which combines naturally with the dynamic CMOS domino
logic that implements the data operations.

In this ALU, the evaluate signal (which signals both the completion of the pre­
charge phase and the validity of input data) is distributed to all bit sections. Each

2 An asynchronous version of the ARM, designed at Manchester University.

104 5. Handshake

full addercanthen generatea (double-rail encoded) carry-outsignalas soon as the
majority of the two operands and the carry-in have assumed the same value. To
detect completion of the operation, the arrival of the carry at all stages is detected.
Implementation details of this ALU can be found in [34].

Another way to achieve an exact data-valid signalis to use current-sensing com­
pletion detection [26, 27, 37]. This is a technique that exploits the property of CMOS
that charge and discharge currents are some orders of magnitude larger than leak­
age currents. Therefore, when a computation bas completed, and all wires have set
to their final value, this can be detected. It is not obvious, however, at which grain
size this should be applied. Furthermore, this does not combine very well with a
standard-cell layout style, since completion detection requires isolated power or
ground rails. lt has also not been demonstrated yet how to efficiently imptement
this in CMOS.

5.5.3 Demultiplexer

The demultiplexer does not directly correspond to any language construct in Tan­
gram. It is used to organize mutually exclusive access to an input channel, such
as required in the Tangram program for the wagging buffer on p. 19. The demulti­
plexer can thus be considered as the pull variant of the control mixer, in the sense
that it allows (mutually exclusive) sharing of pull channels, whereas the mixer im­
plements sharing of nonput channels. Of course the multiplexer can be seen as the
push variant of the mixer. The specification of the demultiplexer and its symbol are
given next.

DMX(a
0 !T, b0 !T, c•'?T) =

l[x:T
I * (ar ; Cr ; Ca (X) ; a a (X)

I br ; Cr ; Ca (X) ; ba (X)
)

ll

a

c

b

The implementation of the demultiplexer is simple. For the control circuit a
nonput mixer suffices. The data from c can be forked to a and b, in which case the
data-valid schemes on these outputs are the same as the data-valid scheme on the
input. The control overhead even adds to the already existing safety margin.

A possible pitfall of course is the increased input load for the gates driving the
data wires of channel c. Fora safe implementation of sarnething as simple as fork­
ing a good driver strategy is required to keep transition times bounded. Otherwise
even forking may invalidate the delay matching. This issue is covered in more de­
tail in Chapter 6.

5.6. Summary 105

If the number of transitions on the channels has to be minimized, then the two
outputs should be independently latched. The particular latehing scheme depends
on the data-valid scheme of channel c. Thereby, an output of such a demultiplexer
is similar to the readport of a variabie with minimum channel transitions.

5.6 Summary

In this chapter we discussed the implementation of the handshake components that
are essential to the cast and performance trade-offs as they are made in Chapter 4.
Most attention was paid to the implementation of the transferrer, the variable, the
multiplexer, and arithmetic. Por all these components the true four-phase realiza­
tions -in which the workis partly performed in the up-phase of the handshake and
completed during the down-phase- are area-efficient.

The implementation of handshake components in the datapath is split in a data
part (for the operations on the data) and a control part (which is involved in the
handshaking). The control and data part are sametimes connected by some control
signals, but the implementation can aften be addressed independently. The circuit
realization of the data part generally is straightforward, and can directly be based
on the implementation of equivalent synchronous functions.

In the implementation of the control part of the components, trade-offs are made
between area and timing assumptions. Por most circuits it holds that the more tim­
ing assumptions that are made, the smaller the resulting circuits are.

106 Chapter 5. Handshake Components

Chapter 6

Desig11 Flow

One of the innovative aspects of our approach to single-rail asynchronous circuits
is that they are compiled from a high-level VLSI programming language. This re­
quires us to pay attention to two essential goals: on the one hand the resulting cir­
cuits should be push-button correct, whereas on the other hand they must be area,
timing, and power (energy) efficient. It turns out that these two goals are not neces­
sarily conflicting.

In this chapter we discuss the design flow from Tangram to (single-rail) silicon.
This flow can be characterized as a transparent, syntax-direct compilation. The po­
tential weakness of this building-block approach is that it leads to inefficiencies,
especially at the boundaries of these building blocks.

An important aspect of the design flow, therefore, is the peephole optimization
that is applied at several phases during the compilation process. This issue has pre­
viously not been highlighted, but receives considerable attention throughout this
chapter. It is argued that the combination of simple building blocks and simple pee­
phole optimization rules results in efficient silicon.

The design flow is treated step by step, and for each step the importance of pee­
phole optimization is illustrated. This is accompanied by numerous examples.

6.1 Design flow

The design flow from Tangram to single-rail silicon is schematically depicted in
Fig. 6.1. The boxes stand for representations of the design, and the arrows represent
design steps. Peephole optimization is considered to be an important issue in any
compiler and should be considered at alllevels of representation [59, 76].

Tangram is the language in which the VLSI programmer describes a design.
Several tools are available that give accurate feedback on timing, energy, area, and

107

108 Flow

Figure 6.1: Push-button single-rail design flow.

testability at the level of the Tangram program. These tools were briefly touched
upon in Chapter 2. For the single-rail design flow, Tangram is considered to be the
starting point.

Since Tangram is the first level of representation that is encountered, it is also
the first level at which a compiler could start optimizing. This, however, is not con­
sidered in this thesis. First of all, manipulations at the Tangram level are considered
to be the domain of the VLSI programmer. Secondly, most optimizations that can
be achieved at the Tangram level (if not all) can also be realized at the handshake
circuit level, due to the transparent syntax-directed translation. Examples of this
are given later.

In the rest of this chapter the design flow is discussed step-by-step, and after
each step the importance of peephole optimization at that level of representation is
illustrated by some examples.

6.2 Tangram compilation

Compilation from Tangram to handshake circuits is basedon syntax-directed trans­
lation. During the compilation of a Tangram program an abstract syntax tree is con­
structed that represents the program. This is subsequently mapped onto a handshake

6.2. Tangram compilation 109

circuit. Details on the compilation may be found in [6, 16, 8]. Several examples are
reviewed later in this chapter.

Since a handshake circuit is essentially just another representation of the syn­
tax tree of the Tangram program, the VLSI programmer has detailed control over
the handshake circuit that is generated, and thereby over the performance charac­
teristics of the corresponding VLSI circuit. This property of the compiler is called
transparency, and it basically means that properties ofthe VLSI implementation of
a program can be related to the Tangram souree program. This transparency is the
basis of powerlul analysis tools that give the VLSI programmer detailed informa­
tion on performance characteristics of his Tangram program (area, speed, energy,
testability) in a format that allows him (or her) to directly relate this to the program.
The testability of a program, for example, can readily be analyzed at the Tangram
level [79].

Compilation from Tangram to handshake circuits is independent of the style
of implementation of these handshake circuits. It is not immediately obvious that
this independency is optimal for all implementations of the handshake circuit. It
turned out, ho wever, that although the compiler from Tangram to handshake circuits
had been designed with double-rail implementations of these handshake circuits in
mind, these handshake circuits were indeed a viabie starting point for single-rail
implementation.

A potential weakness of transparent syntax-directed translation is that of inef­
ficiencies at the handshake-circuit level. Therefore, peephole optimization is re­
cognized as an important post-processing step. Throughout this chapter peephole
optimization plays an important role. It tums out that these optimizations generally
improve even the (intuitive) transparency of the compilation process, in the sense
that they make it easier to derive performance characteristics of the silicon form the
Tangram program.

6.2.1 Peephole optimization

One class of optimizations that can be applied at the handshake circuit level is to
apply obvious improvements that have apparently been overlooked by the VLSI
programmer, such as sharing of datapaths. Another important class of optimizations
is that of multi-channel components.

Sharing

Compilation from Tangram to handshake circuits is (currently) basedon explicit
sharing, that is, the VLSI programmer has to indicate in the program which parts
of the datapath have to be shared. The motivation bebind this is that the designer

110 Chapter 6. Design Flow

can make trade-offs at the Tangram level, for example to minimize the circuit area
under the restrietion that the performance criteria are met. In some cases, however,
there is no trade-off, and one alternative (sharing) is obviously better than the other
in all dimensions (area, time, energy, test). These cases are not recognized by the
Tangram compiler, but could easily be recognized in the handshake circuit.

An example of a handshake circuit in which sharing is beneficia! is shown in
Fig. 6.2. The two transferrers collect data from the same souree (variable x) and
send it to the same destination (channel a). This handshake circuit might corres­
pond to a Tangram program in which a statement such as a ! x or y: =x occurs twice.
In the first case channel a in the handshake circuit corresponds to channel a in the
program, in the second case, channel a corresponds to the write port of the hand­
shake variabie that implements y.

a

a

Figure 6.2: Sharing datapaths, showing pattem (left) and improved replacement
(right).

The replacement of this handshake circuit is better in terms of area, sirree the
multiplexer cells (one per bit) are saved. Sirree these cells and their select lines con­
tribute to the switching activity in the original circuit, the substitute is also more
energy efficient. Furthermore, the control circuit of the mixer is simpler than that
of the multiplexer, which makes the replacement faster.

Surprisingly, the replacement above even improves the testability of the circuit,
in the sense that it allows for shorter test traces. Testing the original realization in­
volves testing the multiplexer, for which it is required to provide it with comple­
mentary data via each branch. This means that each transferrer should be activ­
ated twice. In the optimized circuit the mixer should be activated from each branch,
which can be combined with complementary data-values totest the datapath.

6.2. Tangram compilation 111

Reordering

Reordering of handshake components may also lead to improvement. In the hand­
shake circuit in Fig. 6.3 we cao save one mixer and one sequencer, provided that the
orientations of the sequencers are equivalent. This is another example of improved
sharing that cao also be achieved at the Tangram level. From the handshake cir­
cuit in Fig. 6.3 (left), and given the transparency of the compilation from Tangram
to handshake circuits, one may conclude that the souree Tangram program has the
following form.

begin
procA proc().

& procB proc().

pro cA () procB ()

pro cA () procB ()

end

The improved handshake circuit can be obtained directly from the Tangram com­
piler by introducing a declared procedure for pro cA () ; procB () , and then replace
the two occurrences of this text by calls to that procedure.

Figure 6.3: Sequencer-mixer reordering. Pattem (left) and optimized replacement
(right).

A similar optimization in the datapath is shown in Fig. 6.4. Por this substitution
to be allo wed, it is required that the split components are of the same type. The gain
then is one multiplexer control circuit and one C-element. The width of the new
multiplexer, is the sum of the two original multiplexers, and the split is of the same
type as the originals.

The split-multiplexer reordering is harder to repair at the Tangram level. lt may
originate from two tuple assignments of the form <<x, y> > : = ... , and it depends

112 Flow

Figure 6.4: Split-multiplexer reordering. Pattem (left) and optimized substitute
(right).

on the choices in the Tangram compiler whether it maximizes the sharing of these
datapaths. Whereas at the Tangram level (or fora Tangram compiler) this may be
hard to optimize, at the handshake circuit level it is a rather trivia! optimization.

Multi-channel components

Nearly all handshake components that are used by the compiler have a fixed num­
ber of handshake ports. An exception is the variable, for which the number of read
ports may vary. For all other components, trees of 'binary' handshake components
are built if actually a multi-channel variant is required. These trees either have to
be balanced by the compiler, or somehow the VLSI programroer must indicate the
structure of such trees, for instanee by the use of brackets, to force the compiler in
a certain direction.

Examples of components that regularly occur in trees are control components
like sequencer, parallel, and mixer, and data components like (de)multiplexer, split,
and adder. Inslead of building trees constructed from the binary versions of these
components, one could use parameterized (multi-channel) versions.

The gate-level implementation of such a parameterized component can always
be based on a (balanced) tree of the binary component. Generally, however, more
efficient implementations exist. The approach that is foliowed in the Tangram design
flow is to replacetrees of components by multi-channel components, whenever the
latter can be implemenled more efficiently.

The control mixer generalizes trivially to multi-channels. As an example the
three-channel mixer is shown in Fig. 6.5. For each additional passive port an ex­
tra asymmetrie C-element and an extra input to the OR-gate are used. Larger OR­
gates can be constructed from NANDs and NORs. In termsof area this multi-channel
mixer is clearly an impravement over any tree realization. Fora mixer with N pass­
ive ports only N asymmetrie C-elements are required, against 2N - 2 for an equi-

6.2. 113

valent tree of binary mixers.

a c

Figure 6.5: Three-channel mixer: symbol (left) and its implementation (right).

Since the fanout of the acknowledge signal of the active port increases, at first
sight it seems that the multi-channel implementation loses in terms of energy per
handshake. In a tree realization, however, depending on the path that the acknow­
ledge has to follow, multiple asymmetrie C-elements have to be switched. The total
switched capacitance is in both cases linear in N, but since in the generalized mixer
only one C-element is involved per cycle, this implementation requires less energy
per cycle. Also in terms of speed the generalization is a clear win. Another con­
trol component for which the multi-channel generalization can be implemented ef­
ficiently is the sequencer. Large sequencers can, for instance, be based on Gray­
code counters. Various ways to imptement generalized sequencers are discussed
by Bailey and Josephs in [2].

The multiplexer is an example of a component in the datapath for which a multi­
channel generalization can be implemented a lot more efficiently than a tree of ba­
sic (two-channel) components. Especially implementations with a control circuit
basedon the (multi-channel) mixer, in which the select lines return-ta-zero between
handshakes, generalize readily to multiple inputs.

An advantage of the multi-channel realizations of componentsis that the trans­
parency of the Tangram compilation scheme generally improves. The three com­
ponents discussed above, for instance, can be implemented such that the cycle times
for all handshakes are (almost) equal. This means that the incurred delay only de­
pends on the number of channels that are involved, which is directly related to the
number of occurrences in the Tangram program. With a tree implementation, the
cycle time depends on the position of the leaf in the tree, and thus also on the bal­
ancing of the tree.

114 Chapter 6. Design Flow

6.3 Component substitution

Compilation from handshake circuits to single-rail standard-cell netlists is imple­
mented as a component-by-component substitution process. The basis of this sub­
stitution process is the choice of a standard-celllibrary. We have chosen a generic
standard-cell library as a starting point. Such a library contains (N)AND, (N)OR,

X(N)OR, gates, various inverters and buffers, quite a few complex gates, latehes
and possibly some special functions (full adder, multiplexer, decoder, etc.).

The implementation of some of the datacomponentsis discussed in Chapter 5.
Most components are straightforward and can bedefinedas library elements, whereas
others are parameterized and require netlist generators. The implementation of the
adder component, for instance, depends on width (in termsof number of bits) of the
operands, and on their representation (signed or unsigned).

All-in-all, the netlist generation is manageable, since all handshake compon­
ents obey a four-phase handshake protocol on all channels, and for each channel
it is uniquely determined whether on that channel the active or the passive roleis
required. However, due to the simple component-by-component substitution pro­
cess, netlist generation results in a netlist that possibly contains inefficiencies. In a
post-optimization step these are eliminated.

6.3.1 Peephole optimization

Especially at the gate-level netlist, peephole optimization is of utmost importance.
The building-block approach to the implementation ofhandshake circuits results in
inefficiencies at the boundaries of handshake components. Three sourees for peep­
hale optimization are distinguished: the control-part of data components, the data­
part of data components, and the control components.

Data components: control part

An important step in the single-rail netlist generation is the elimination of the abund­
antly present redundant C-elements and parallel delays in the control part of the
datapath. A lot of pull datapath components that were discussed in Chapter 5 use
both a fork and aC-element in the request-acknowledge path. Since these compon­
ents are generally involved in the evaluation of expressions, and expressions do not
contain input statements, the C-element is usually redundant, in the sense that it
synchronizes two branches of a forked wire.

The elimination of redundant C-elements is illustrated in Fig. 6.6 (left). If a
wire forks to a C-element, then this C-element is functionally redundant. Since C­
elements (by choice) do not play a role in the delay-matching, such C-elements can

6.3. Component substitution 115

safety be removed from the netlist The pattem shownis generic, that is, the number
of delay elements in sequence on the top branch may vary from zero to any number.

Figure 6.6: Two rules for the rednetion of delay-matching and its associated con­
trol, namely redundant C-element elimination (left) and parallel-delay elimination
(right).

Whereas the first rulereduces the number of C-elements, a second one is needed
to rednee the number of (unit) delay elements. Such a ruleis illustrated in Fig. 6.6
(right). Two parallel delays that lead to aC-element can also be placed after that C­
element, since in termsof delay-management it does notmatter whether the waiting
takes place befare or after the synchronization by the C-element.

The combination of the above two (generic) rules takes care of the automatic
construction of the longest delay path and on the fty gets rid of parallel delay paths.
The power of these rules is illustrated later in this chapter on several examples.

Data components: data part

Since Tangram offers only a limited set of basic operators and allows for the con­
struction of other functions by programming, the data-part of the datapath is also an
important souree for impravement Two issues can be distinguished here, namely
operator reconstruction and technology mapping.

A simpte example that illustrates the room for peephole optimization is Tan­
gramexpression a *b*c, in which a, b, and care boolean variables. Since Tangram
offers only the binary and-operator (*) the expression is compiled using two 'and'
handshake components, each containing an AND gate. The composition of these
two can of course be replaced by an implementation with a 3-input AND-gate. This
type of optimization applies toother gates as well, and may be called input extension
(though it essentially is a farm of technology mapping). This optimization can be
obtained by peephole optimization, or, alternatively, by introducing a3-input 'and'
handshake component, corresponding to a ternary operator.

There are, however, also optimizations that cannot easily be associated with
multi-input components. The compilation of Tangramexpression a *b=c * d (in which
all operands are booleans), forinstance, introduces two AND-gates and one XNOR-

116 Chapter 6. Design Flow

gate. These AND-gates can be replaced by NAND-gates. This optimization by shift­
ing inversions through gates is called bubble shu.ffling.

Another example is a decrementer, which is nota basic operator but can be con­
structed fram a subtractor and a constant, as in x -1, in which x is an integer of, say,
n bits. The Tangram compiler then generates a subtractor, with one n and one I­
bit operand. However, since the data-input of the 1-bit operand is constant (namely
1), the subtractor can be further optimized such that a true decrementer is obtained.
Optimizations that involve constant inputs are known as constant propagation.

The optimization of the logic in the datapath is implemented as an incremental
impravement step in the compilation, based on peephole optimization. Examples
of peephole optimizations are constant prapagation, bubble shuffting, and input ex­
tension, as shown above. This optimization step also involves so-called techno­
logy mapping, which is the link between the celllibrary that is assumed during net­
list generation, and the larger standard-celllibrary that is available. Especially the
availability of complex gates, such as AND-OR-INVerts, allows forsome improve­
ments in the netlist

An important aspect of the logic optimization step is that the reptacement cir­
cuits are always smaller than the original circuits, which is our primary concern.
Secondly, the optimizations generally also imprave the speed of the datapath, in
the sense that they locally reduce the worst-case path. This means that after this
step the delay matching can often be relaxed, in the sense that the delay-chain can
be reduced in length. This issue is discussed later in more detail.

An alternative for the incremental impravement would be to use a logic syn­
thesizer in combination with a technology mapper. For each node in the generated
netlist its function can be derived from the cell that drives the node. A logic synthes­
izer could then optimize the combinational part of the netlist according to some cri­
terion, for example logic depth, speed, or area. A combination of a powerfullogic
optimizer and a good technology mapper should be able to generate more efficient
netlists than are obtained through the peephole strategy.

An experiment with Synergy ™ 1 , however, suggests that the peephole approach
is quite powerful. For the demonstrator that is discussed in Chapter 7, Synergy
could not come up with a smaller netlist Even worse, after flattening the expres­
sions it turned out to be impossible to find a cost-equivalent solution, and the best
appraximation that was given was still 1-2% larger in terms of standard-cell area.
This was probably (partly) due to the abundant number of XOR-gates in the net­
list. Since logic optimizers internally generally use a sum-of-products or product­
of-suros normal form, it may be hard to reeoostmet X OR-gates after the optimization
step, whereas during the peephole optimization step this is never a problem.

1 Synergy is a logic optirnizer frorn Synopsis

6.3. substitution 117

Control components

Although the focus in this thesis is the efficient implementation of datapath com­
ponents, it should be noted that the control path of a handshak:e circuit can also be
improved by a peephole optirnization step. The effect of multi-channel components
has already been discussed earlier. In this section we focus on improvements at the
boundaries of neighboring handshake components.

An example of such a post-optimization is depicted in Fig. 6.7. The handshake
circuit shows a fork that connects to two mixers. This might result from a Tangram
program in which two shared procedures are called in parallel, such as inthelast line
in the fragment of a Tangram program shown below. The mixers organize multiple
calls to the shared procedures, and the fork implements the parallel (synchronized)
calls of the procedures.

begin
procA proc().

& procB proc().

procA()

procB()

pro cA () I I pro eB ()

end

Direct implementation ofthe handshak:e circuit, such as is obtained by substitut­
ing gate-level implementations for the components, results in a circuit with a sub­
circuit as shown in Fig. 6.7 (left). The request of channel a, denoted by ar, is forked
to two asymmetrie C-elements, which originate from the mixers in the handshake
circuit. The outputs of these asymmetrie C-elements are combined in a standard
Muller C-element.

This circuit exhibits a forrn of redundancy that is particularly hard to test. The
path from ar to aa is a so-called re-convergent path, which means that the fork­
ing of ar leads to a C-element that is functionally redundant. This can be resolved
by replacing the circuit by the circuit shown in Fig. 6.7 (right). The redundant C­
element is elirninated, such that synchronization with ar in producing a a takes place
only once.

For other component interfaces that contain C-elements, similar optimization
rules can be defined. Two-input C-elements can often be combined into multi-input
C-elements (an optirnization that was earlier referred toasinput extension), some
of which can be efficiently realized in a standard-cell library containing standard
AND-OR-INVert gates and their duals.

118 Flow

Figure 6.7: Fork-mixer optimization: handshake circuit (top), direct implement­
ation of a subcircuit (left), and optimized subcircuit (right). The remaining C­
elements can be further combined into one asymmetrie three-input C-element.

Integrating C-elements, however, can be tricky. Although a C-element with
three inputs can be decomposed into two two-input C-elements, the integration the
other way around is not always possible. This depends on information about the
behavior on the various inputs. Especially in a non-QDI environment, combining
C-elements is not always allowed.

lmplementation

The incremental netlist optimization step, based on peephole optimization, is im­
plemented using a Philipsin-house tooi called VERA (VERification Assistant, [52,
53]). This is a rule-based pattem-matching algorithm basedon LISP. Match pat­
terns and their substitutes can easily be defined and added to the so-called know­
ledge base.

The actual netlist optimization amounts to applying rules in some predefined
order. This order is important, both for the efficiency of the optimization step and
for the costs of the final result. The first phase is the elimination of redundant C­
elements and parallel delays. This step generally halves the number of elements
in the netlist, which increases the efficiency of subsequent matching of patterns.
Detailed technology mapping is performed as the last step, since this increases the
number of library cells that are used.

6.4 Examples

In this section we illustrate the effect of the peephole optimization steps on pull
datapaths, that is, on the implementation of Tangram expressions. These examples
also illustrate the power of Tangram as a VLSI programming language. Tangram
offers only a basic set of operators for data, but it has the expressive power to build
other operators. The efficiency (in terms of area, speed) of these programmed im­
plementatiuns quite often is equal to what one would expect from a dedicated op­
erator.

6.4.1 Parallel delays

The role of some of the peephole optimizations can be illustrated on the compilation
of the Tangram expres si on (x. O+x. 1) <> (a -1), in which a is an integer, and x is
a tuple of two integers. The compilation of this expression results in the handshake
circuit shown in Fig. 6.8 (top). Duringa handshakeon channel E, data is collected
from handshake components 'x', 'a', and '1 ', and the expres si on is evaluated.

The infrastructure that is required to organize this data flow through the hand­
shake channels is shown in Fig. 6.8 (middle). This is exactly the request-acknowl­
edge circuitry that is generated during the component-by-component substitution
process. In this control circnitry, all channels and components of the original hand­
shake circuit can still be identified.

With the two peephole optimization rules of Fig. 6.6 this circuit can be greatly
simplift ed. The C-element that corresponds to the split component (labeled) (), for
instance, receives its inputs from the adder, in which these are forked from one re­
quest signal. This C-element thus is redundant and can be removed from the net­
list. Similarly, the inputs to the C-element in the adder are forked from one signal in
the split. Por the subtractor component, the inputs to the C-element are (indirectly)
generated within the subtractor component itself.

So, by applying the rule for eliminating redundant C-elements one can already
eliminate three C-elements, and only the right-most C-element remains. The inputs
of this C-element, however, are both connected to a delay-element, and the rule for
elimination of parallel delays can be applied. 2 After this the remaining C-element is
also redundant and can be removed. What remains is a control circuit in which Er is
connected to Ea via a pathof delay-elements only. This delay-line, by construction,
matches the worst-case delay path of the expression.

The circuitry that is generated for the data part of the above handshake circuit
is also simplified during peephole optimization. The netlist generator for the sub-

2The tigure shows a simplified view on delays. Each delay-element represents a string of unit­
delays, Jong cnough to provide a worst-case match with its datapath.

120

I I

I I

I I

I I

I I

I I

I I

I I

I I I I

Flow

Figure 6.8: Post-optimization example showing handshake circuit (top), netlist for
control circuit generated by direct substitution (middle), and post-optimized control
circuit(bottom). The dasbed boxes indicate the relation with the handshake circuit.

tractor takes advantage of the fact that '1' is an unsigned number and requires only
one bit to represent. Therefore the subtractor is actually quite simple, and during
peephole optimization only the]ow-order bit-seetion of the subtractor is affected.
This may slightly reduce the worst-case delay of the subtractor, which means that
the matching string of unit delays could possibly he shortened. This issue is further
addressed in Section 6.5.

6.4.2 Galois-field arithmetic

The VLSI programming language Tangram offers only some basic operators as its
starting set of operators. More complicated and dedicated functions can he pro-

6.4. 121

grammed, in which bit-selection and type-casting are wide1y applied. An examp1e
of such a user-defined function is multiplying by alpha, where the operands and the
result are from some Galois Field. Such a multiplication function is gfalpha of the
CompactDisc Erco program (taken from [49]).

begin
gfsym type <<bool,bool,bool,bool,bool,bool,bool,bool>>

& gfalpha func (s: gfsym): gfsym.
<<s.7,s.O,s.l<>s.7,s.2<>s.7,s.3<>s.7,s.4,s.5,s.6>>

& x,y : var gfsym

I
y := gfalpha(x)

end

In this Tangram text, gfsymintroduces eight-bit Galois Field symbols as a type,
which is represented as a tuple of eight booleans. Function multiplies
s by alpha, basically by performing a shift-add step, where actdition is modulo 2
(exclusive-or).

x..Rl gfalpha

Figure 6.9: Handshake circuit

An invocation of this function, as in y: =gfalpha (x) (with x and y of type
gfsym), results in considerable 'pull' handshake circuitry. The handshake circuit
that corresponds to this assignment is shown in Fig. 6.9, in which we abstracted
from the handshake circuit for function gfalpha. The textual representation of
that handshake circuit is give in Fig. 6.10 (excerpt from compiled Tangram).

This combinational (pull) handshake circuit has two extemal pull channels. Chan­
nel x_Rl is the readport of variabie x, and the result of the expression appears on
channel Emul. In the textual representation the extemal channels are listed in the
header (between ()). The body (between I [] I) consists of a list of handshake
components, in which each component has an associated type (between [J) and a
list of handshake channels (between { l).

This handshake netlist contains seven split-components, which together impie­
ment the bit-selection of variabie x. Channel x_Rl connects to a readport of hand­
shake variabie x, and each split components splits off a one-bit channel. The bits
are available on channels s_2VOQ through s_2V7Q. Bit 7 of this variabie occurs

122 Chapter 6. Design Flow

gfalpha

)

I [

l I

Emul PULL 8 PAS,
x_R1 PULL 8 ACT

/* Substitution
SPLIT [PULL, 7'
SPLIT [PULL, 6'
SPLIT [PULL, 5'
SPLIT [PULL, 4,
SPLIT [PULL, 3'
SPLIT [PULL, 2'
SPLIT [PULL, 1,

of
1]
1]
1]
1]
1]
1]
1]

JOIN [1] (s_2V7Ql,

function: gfalpha *I
(s_2_5, s_2V7Q, x_R1);
(s_2_4, s_2V6Q, s_2_5);
(s_2_3, s_2V5Q, s_2_4);
(s_2_2, s_2V4Q, s_2_3);
(s_2_1, s_2V3Q, s_2_2);
(s_2_0, s_2V2Q, s_2_1);
(s_2VOQ, s_2V1Q, s_2_0);
s_2V7Qr, s_2V7Q);

JOIN [1] (s_2V7Qrl, s_2V7Qrr, s_2V7Qr);
JOIN [1] (s_2V7Qrrl, s_2V7Qrrr, s_2V7Qrr);
BIN [NEQ, 1, 1, 1] (Emul_rrl, s_2V1Q, s_2V7Qrl);
BIN [NEQ, 1, 1, 1] (Emul_rrrl, s_2V2Q, s_2V7Qrrl);
BIN [NEQ, 1, 1, 1] (Emul_rrrrl, s_2V3Q, s_2V7Qrrr);
COMBINE [PULL, 1, 1] (Emul_rrrrrr, s_2V5Q, s_2V6Q);
COMBINE [PULL, 1, 2] (Emul_rrrrr, s_2V4Q, Emul_rrrrrr);
COMBINE [PULL, 1, 3] (Emul_rrrr, Emul_rrrrl, Emul_rrrrr);
COMBINE [PULL, 1, 4] (Emul_rrr, Emul_rrrl, Emul_rrrr);
COMBINE [PULL, 1, 5] (Emul_rr, Emul_rrl, Emul_rrr);
COMBINE [PULL, 1, 6] (Emul_r, s_2VOQ, Emul_rr);
COMBINE [PULL, 1, 7] (Emul, s_2V7Ql, Emul_r);
/* End of function: gfalpha */

Figure 6.10: Textual representation of compiled handshake circuit for gfalpha

four times in the expression, hence the three join-components connected to chan­
nel s_2V7Q. The function is basically computed by the three BIN components. The
combine-components combinetheresult again in an eight-tuple, which is available
on channel Emul.

Compilation of this handshake circuit into a gate netlist results in one C-element
per handshake component (twenty in total), and three delay elements and XOR-gates,
one for each bin-component. During peephole optimization, all C-elements and
two delay elements are eliminated. What remains in the request-acknowledge part
is a request wire connecting Emulr to x_Rlr, and one delay element connecting
x_Rla to Emula. In the data part the three XOR gates remain. This resulting cir­
cuitry clearly is the optimum that would also be used in a dedicated GFALPHA com­
ponent, would that be available in the library of handshake components.

6.5. Fine 123

6.4.3 Carry-select adder

Another illustrative example of the effect of peephole optimization is the carr-y­
select adder of Section 2.3.4. The purpose of this adder is to provide a faster cycle
time, which is achieved by splitting the 16-bit adder into two 8-bit parts. The carry­
out of the least significant half can then be used to select either the high-order adder
that assumed a zero carry-in or the one that assumed a one carry-in.

The control optimization of this carry-select adder is straightforward. The par­
allel delay paths of the two high-order adders can easily be merged, similarly for
the parallel delays that correspond to tbc programmed AND-OR multiplexing. The
result of this parallel-delay and redundant C-element elimination is a matebed path
that matches the sum of one 8-bit adder delay and the multiplexing delay.

The datapath logic that is generaled for the carry-select adder is also improved
during peephole optimization. First of all, the constants allow for simplification of
the 9-bit high-order adder. Furthermore, the two high-order adders differ in their
carry path, but since the two operands are the same, the full-adders can be merged,
for example, by sharing the XORs in the sum paths of the full adders. A third im­
provement is achieved by combining the ANDs and ORs that imptement the multi­
plexing of the high-order adders into AND-OR gates.

6.5 Fine tuning

The netlist that remains after the peephole optimization steps described in the pre­
vious sections still requires some attention before an actuallayout can be made and
sent to a foundry. Part of the work that still has to be done is related to the timing as­
sumptions that have been made during the component-by-component substitution
process. In Chapter 5 three delay assumptions are distinguished, namely, (i) iso­
chronie fork, (ii) extended isochronie fork, and (iii) matebed path. The most critical
assumption in these is that of matebed path. We first discuss the implications of this
assumption, and then look into safety margins and the effect of peephole optimiza­
tion.

6.5.1 Driver strategy

Translation from Tangram to handshake circuits is based on compositional rules.
One might wonder why in such an approach, delay issues are nothandled composi­
tionally as well, such that after component substitution only peephole optimization
would be required. The main reason for this is that on the component level one can­
not predict the actual delay of a logical gate. In a tirst-order model, the delay of a
gate can be modeled as the sum of an intrinsic delay and a resistive factor times the

124 Flow

capacitive load of the output of the gate. lnput-slope dependendes and RC effects
(interconneet resistance) are then ignored. At the level of handshake components
the capacitive load is unknown, since both the fanout of the node and the required
wiring cannot be predicted, but depend on the structure of the handshake circuit.

The compositionality is lost in components that fork data wires, such as fork,
join, demultiplexer, and some arithmetic components. To maintain an exact delay­
matching between the request-acknowledge path and the data one could insert buf­
fers both in the data and the control part in all these situations, but that would be an
overly pessimistic approach.

The approach foliowed in this thesis (especially in Chapter 5) is to ignore fanout
issues during netlist generation and to solve this a posteriori. This requires a so­
called driver strategy to be implemented after the peephole optimization step. A
driver strategy is a procedure to resize transistors or to add drivers, such that timely
transitions can be assured.

In the netlist that is obtained after peephole optimization one can, for each node,
straightforwardly determine the cell that drives this node, the fanout of this node
(the number of cells it connects to) and the total input load (capacitive loads of the
inputs of these cells) of the node. The unknown factor before layout then remains
the wiring capacitance, but this can be estimated from the fanout, based on layout
statistics. This is sametimes calledforward annotation, to contrast it with back an­
notation, which can be done once the layout is obtained and the actual circuit para­
meters are known. Given the capacitive load of a node one can determine the ac­
tual delay of the gate driving that node, and the associated duration of output trans­
i ti ons. These canthen be adjusted by increasing or decreasing transistor sizes, or by
adding additional drivers. The exact implementation of the driver strategy depends
on the available repertoire of standard cells, which generally consists of standard
gates (possibly in multiple driving strengths) and a range of inverters and buffers
of different driving strengths.

The reason that such a driver strategy suffices to rnaintaio a matebed path re­
lation between the request-acknowledge partand the data part is that, although the
actual delay of a gate depends linearly on the capacitive load, the use of drivers
reduces this to a logarithmic relation. More precisely, a wide range of capacitive
loads (say, 0.1-10 picofarads) can be switched within small timing margins (say,
0.5-3 nanoseconds) assuming a sufficiently rich repertoire of drivers. For heavily
loaded nodes in the datapath the matebed properties should of course be verified.
This issue is addressed later.

A driver strategy is not only required for proper delay matching, but also has a
positive impact on the short-circuit power dissipation of the circuit Timely trans­
itions imply short periods in which both the path via u-transistors and the path via
p-transistors are conducting [80]. In addition, the driver strategy results in overall

6.5. Fine tuning 125

faster operation and thus has a positive effect on performance.

6.5.2 Tightening delays

The matebed paths that are generated during the component substitution process are
sometimes overly pessimistic in the sense that they add worst-case to worst-case.
This leaves room for tightening the matebed path by reducing the number of unit­
delay elements.

Skew

Compilation of the Tangramexpression x+y+z, in which the three operands are
subranges of integers, results in a handshake circuit containing two adders, one for
each +in the expression. In both adders the worst-case carry ripple is anticipated in
the delay matching. Due to the organization of the handshakes, the total matebed
pathof the combination of the adders is the linear composition of the two individu al
matebed paths.

The question now arises how well this summed delay matches the worst case
addition time of the combination of the two adders. The adders are both imple­
mented using a straightforward ripple-carry adder. A feature of these adders is that
the least significant bit is valid long before the most significant bit is valid. In gen­
eral the data-validity of the bits is skewed, that is, the data-validity ripples from the
low-order to the high-order bits. For an adder in isolation wethen have to choose
the latest data-validity. When the result of such an adder feeds into another adder,
however, this second adder will also have this skew property. This means that the
output of the second adder will be valid shortly after the output of the first adder is
valid. The two carries more-or-less ripple in parallel, whereas the summed delay
match anticipates a sequentia! rippling.

The skew problem is evenworsein large combinational (parallel) multipliers.
In a 16-by-16 multiplier with a 32-bit result, for instance, one could have 15 adders,
each contributing 16 unit delays (240 in total), whereas the worst-case carry requires
only about 32 unit delays. For the first example, with the two adders, the problem
could be solved by introducing a multi-operand adder component, so that an ap­
propriate matebed path can be generated during the substitution process. For the
multiplier, however, this approach would lead to a rather irregular handshake com­
ponent, or dedicated multiplier handshake components would be required (which
would make multiplication a Tangram primitive).

The cause of the skew problem is that we have chosen to use one data-valid
signal per channel, rather than a data-valid signa) per bit. A feasible alternative im­
plementation strategy is to introduce a data-valid wire per bit, at least for pull com-

!_2~6-~··~------------------=C::.:h.::a:cp.::le:::.r_:6:.:.._D=es:.::·i"'a"-n-"F-'-Io::_':.:.v

ponenls. In the implementation of handshake variables we could then braadcast the

data-valid signa! to all bits, and the transfeners would have to detenmne the appro­
priate data-valid signal fromthe incoming data-valid signals per bit. This could be
implemented using a tree of C-elements.

For most pull components the new approach woulel be straightforward. In ad­
ders and subtractors we could generale a delay chain to match the rippling of the

carry. Per bit we could then detect wilether the data-valid signa! of the carry and
that of the operands have arrived, and fmm this generale thc data-valid signa I of that

bit. In the peephole-optimization process the longest path should then be selected
and all other matching circuitry should be removecL For this the rules to eliminale
parallel delays and redundant C-elements suffice.

Control overhead

A second souree that possibly enables tighter delay matching is tl1e control over­
head. Consider the following Tangram fragment:

a?x
; z:::::: x+y

The delay-matçhing of expression x+y takes place during evaluation of that expres­
si on. The evaluation of the expression. however. starts as soon as x is updated. at
least. given the implementation ofthe variabie in Chaptcr 5. in which the value at all
readports drreetly follows the state of the handshake variable. This means that the
timespent in the sequencer (that impiemenis the; ofthe program) could be used to
shonen the delay of the adder. The contribut ion of the sequencer might be sosmal i
that it does not allow for the reduction of the matched path. but in general it may be
that enough time is spend in the control to safely reduce some of the matched paths.

Peephole impact

During peephole optimization thc logic in the data path is optimized. This oper­
ation may be called fimction me1ging. and also allows for tightening delays. An
example to which this applies is the incrementer. in Tangram written as +1. Due to

the constant input in the least-significant bit the adder can be simplified. and pos­
sibly the mmched path can be shortened. Another example Js the compilation of
boolean expressîon b*c+d~ which after component sub'\titution result'S in an AND­

gme. an OR-gate, and two delay elements. The AND· and OR-gate. however. can be
combincd into an A ND·OR·gate. which is smaller. fa.ster. and more energy efficient.
This inlegration probably allows for the elimination of one delay-element.

6.5. Fine 127

Critica) path

The above ob.servations are all related 10 the fuct that the matchcd path that IS gener­

aled by the camponem substitution process is nol afl"ccted during pcephole optim­
izat!On (apart from the elimination of parallel dclays) and therefore may be overly

pessimist ie. After peephole optilmzation the actual critica! paths should he identi­

fied. and the matched path should be adjusted to this.

Finding critica! paths in netlistsis computationally intensive, since critica! paths

are both load and data dependent For the identification of critica! pmhs timing amt­
lyzers can he exploited [221. which are tools that are common in synchronous circuit

design. This issue is nOl furrher uddressed in this thesis.

6.5.3 Isochronie lin·ks

!n the implementalion of control components und in the implementution of the re­

quest-acknowledge pa11 of the datapath (extended) isochronie forks are widely ap­
plied, for instanee in the completion dereetion on high-fanout control wires, such
as select lines in multiplexers and enable signals in variubles. The implementation

of these isochronie forks is an issue that must also be addressed aftcr peephole op­

timization. The implementation of isochronie forks is we !I m1derstood f7. 15]. The
two main concerns are to bound the difference in logic-threshold voltages between

gates that conneet to an isochronie fork. and to bound the transition times on these
isochronie forks.

The latter requirernent is taken care of by rhe driver strategy, which precisely

achieves this. With the insertion of drivers. steep transilions are guaranteed. Th is
makes sure that the logica! threshold voltages of different gates are passed at sufti­

eient high speed ro guarantee observation of the transition by dilferent gates within
a rypical gate-delay.

The variation in logic thresholds of gates is kept minimal si nee only fully-static

gates are used, and si nee the maximum stack height of n- or p-tmnsistors is limîted
to three or tour transistors in series. For the logic thresholds this limits the varintion

to at most I 0% from the logic threshold of a standard inver1er. The restrietion on
the variation in logic thresholds is thus guamnteed by the standard-cell library. (The
limited variation also follows from the very small variation in switching thresholds
of identical transistors on a single chip [66].)

6.5.4 Safety margins

The choice of a safety margin in delay matching is an imp011ant one. lt is based on
a trade-otT between safety. performance. power. area. and ve1ification effort.

128

One could choose to match the delays such that there is a 100% safety mar­
gin. In the context of the truc four-phase protocol, this implies that delays in the
request-acknowledge path should exactly match that of the datapath. Since the re­
quest-acknowledge path is traversed twice (both in the up- and the down-phase of
the handshake) this effectively gives a safety margin of 100%.

Especially for long cri ti cal paths this is a safe approach that allows for consider­
able spread in environmental and processing conditions. For short paths, however,
this approach may not be safe enough, since the margin may, in an absolute sense,
still be small. Therefore, the safety margin that is used will in general have a mul­
tiplicative and an additive component. Matching of a delay of td nanoseconds can,
for example, be done by a path of (1 +a) * td + f3 nanoseconds, in which a > 0 and
f3 > 0. In this, a might be inversely proportional to td, to accommodate the fact
that long paths are more likely toencounter both increasing and decreasing delay
effects, and thus are likely to have a smaller relative spread than short paths.

The advantages of tighter delay matching are higher performance (shorter delays
imply shorter cycle times and thus faster operation) and marginally smaller area
(delays are implemented with gates, and smaller delays require fewer gates). An ob­
vious disadvantage of tight matching is the greater verification effort that is required
after layout. The matching always includes some uncertainty about the con tribution
of wiring to the delays, and after layout, when the wiring and the delays can be ac­
curately characterized, the assumptions should be verified. With tight matching one
is more likely to hit some more-thau-average loaded nodes, which may affect the
safety margins. Note that there should always be a safety margin to accommodate
for performance variations due to variations in processing and operational condi­
tions.

A possibly unexpected effect of tight delay-matching is that it may lead to more
spurious transitions. In the true four-phase protocol, for instance, multiplexers are
switched and latehes are opened afterabout half the delay-matching has taken place.
This means that from that point onwards the output of multiplexers and latehes will
follow the inputs. When these inputs are still changing, this possibly results in spuri­
ous transitions at the outputs that would not have occurred if a greater margin had
been applied in the matching. So, tight matching can have a negative impact on the
energy-efficiency of the datapath.

6.6 Placement and routing

After peepho1e optimization and fine tuning, the netlist can be placed and routed.
This is a standard procedure, and therefore not thoroughly addressed here. One
thing that shou1d be noted, ho wever, is that for large netlists, for example, consisting

6.7. Verification 129

of more than 100,000 gates, a step after placement is required, in which additional
drivers are introduced.

For large circuits the wiring of some nodes may require long wires. Instead of
over-dimensioning the drivers in the netlist to anticipate these exceptional cases, it
is more attractive to adjust the driving strength of cells to the actual capacitive load
that they face in the finallayout This capacitive load can be accurately estimated
after placement of the cells, before actual routing has started. Even after routing
it may be attractive to resize transistors, though in general this requires a liberal
standard-celllibrary, which allows for variabie transistor sizes.

Placement-driven optimization in combination with post-routing optimization
of transistor sizes, is an interesting approach, both for higher performance and for
better power management Some ideas on this may be found in [60].

From the final layout the actual capacitive load of all nodes can easily be de­
termined. This can then be used to back-annotate the netlist and start verification
and accurate timing and power simulation.

6. 7 Verification

After layout the wiring capacitances are known and it can be verified how realistic
all timing assumptions have been, especially how safe the data-bundling is. The ac­
tual delay of the delay-matching ebains can be determined straightforwardly. De­
termining the critical path of the combinational part is more complex, but can be
done by a timing verifier [22, 41].

Rather than imptementing the critical-path checks in the design flow, we have
applied timing simulations basedon accurate timing models ofthe standard cells. In
these simulations theset-upand hold time coristraints of the latehes can be evaluated
using various input scenarios. When there appears to be a safe margin, the silicon
is likely to operate correctly under a reasonable range of operating conditions.

The verification process has been applied to multiple designs and uncovered no
problems so far. To a large extent this is due to the conservative delay-matching
that we have chosen. The design flow has also resulted in tirst-time right silicon,
which is functional over a wide supply-voltage range, see Chapter 7 anq [10]. This
suggests that there is room for tighter delay-matching.

6.8 Condusion

Some aspects of the single-rail design flow have been stressed in this chapter that
are important for a successful route from Tangram to efficient single-rail silicon.

130 Flow

Especially the tight relation between simple and transparent compilation steps and
peephole optimization is of utmost importance.

All compilation steps have been kept relatively simple and transparent This can
only lead to efficient implementation if sufficiently powerful peephole optimization
is applied. The simple compilation steps and the representation at each level in a
small set of primitives allow a straightforward and effective peephole optimization.

The implementation of the mixer component is a good example of where this
approach pays off. Throughout the thesis the implementation with an OR-gate plus
two asymmetrie C-elements is used. At the gate level implementations exist that
require less area. An advantage of our implementation, however, is that it straight­
forwardly generalizes to multi-channel implementations and in actdition allows for
peephole optimizations in which the asymmetrie C-elements can quite often be elim­
inated.

Peephole optimization is an essential step in all phases of the design flow. The
optimizations sketched in this chapter can all be characterized as macho improve­
ments3, which means that they lead to improvements in all cost and performance
aspects. The primary concern in the optimizations has been to reduce area, but as a
result of this the timing and energy consumption of the circuit also improves. Fur­
thermore, even the testability is often improved, since structural redundancy (such
as parallel equivalent gatesandreconvergent paths) is eliminated from the netlist

An important step in the design flow as discussed in this chapter is the netlist
generation phase, in which each handshake component in a handshake circuit is re­
placed by a gate netlist, and subsequently the total gate netlist is improved via a
peephole optimization step that is basedon iterative improvement. This turned out
to be a viabie approach, both for the logic and the control in the datapath.

An alternative approach to iterative netlist impravement that is definitely worth
pursuing is to employ logic synthesis tools. Datapath synthesis tools combine lo­
gic optimizers that manipulate logic expresslons according to some performance
criteria with powerfut technology mappers that map these expressions onto some
standard-celllibrary. Although these tools generally have computationa] problems
with deep combinatorics (especially with XOR or adder dominated networks), they
become increasingly powerful. Since at the level of handshake components these
bottlenecks are already identified, the netlist generated from this level may be good
starting point for a logic synthesizer.

One of the important trade-offs in the design flow is that of tight delay matching
versus verification effort and performance. In the applications we had at hand, per­
formance has never been the primary issue, but the emphasis has been on low power
and area efficiency. When striving for highest possible performance, however, the

3 term coined by Andrew Bailey

6.8. Condusion 131

delay matching will have to be done as tightly as possible. This will come at the
price of increased verification effort, and sametimes also at the price of more spuri­
ous transitions, and thus reduced energy efficiency. Moreover, it may in general
lead to multiple place and route iterations, in which timing violations are removed
in an iterative process. Another point that might deserve additional attention when
striving for high performance is that of data-dependent completion times of com­
putations. In a high-performance setting it may pay off to implement some of the
components such that they take advantage of this data dependency.

132 Flow

Chapter 7

Demonstrator

7.1 Function

The choice of a demonstrator for the single-rail techniques presented in this thesis
was highly motivated by the desire to campare it to alternative synchronous and
asynchronous implementations of the same (or a comparable) function. Further­
more, for the demonstrator to be sufficiently convincing it should be of reasanabie
complexity and imptement an industrially relevant (not self-defined) function.

Based on these motivations an error detector for the DCC player was chosen.
This function was already realized as an asynchronous circuit, using double-rail en­
coding ofthe data [12]. Furthermore, information on several synchronous realiza­
tions of essentially the same function was also available.

The Digital Compact Cassette (DCC) player is an industrially relevant product
(at least for Philips). It is a successar of the analog compact cassette system and
allows for digital recording and playback of music (or other data) in digital format.
The DCC system has forthermore been designed for backward compatibility, which
means that it also plays analog cassettes. For a detailed overview of the system the
reader is referred to [54, 45].

Since this thesis focuses on single-rail implementations, we take the Tangram
program for the error detector as a starting point. Motivations bebind the design and
VLSI-programming insights can be found in [48]. The double-rail implementation
of this function was first reported at the ISSCC, February 1994 [13], and later in
some more detail in [ll] (with emphasis on tools and design flow) and [12] (with
emphasis on the asynchronous implementation).

The single-rail demonstrator bas earlier been reported on at the Asynchronous
Design Methodologies working conference in London, UK, May 1995 [10]. This
chapter goes into somewhat more detail, and especially elaborates more on the design

133

134 7. Demonstrator

steps that have been identified in Chapter 6. The importance of some peephole op­
timization steps is addressed.

Tbraughout the rest of this chapter the demonstrator will aften be referred to as
DDD, which is an acronym for Dicy DCC Decoder1 (Dicy is the originaJ name of
the Tangram project).

7.2 Diagram

One of the motivations to choose the DDD as a vehicle was that a double-rail ver­
sion was already available. This chip is part of a three-chip board comprising the
Detector (DDD), an asynchronous (double-rail) Controller (DDR, for Dicy DCC
Renuûnder1), and a commercially available lMbit DRAM. The board is used for
error con-eetion in an experimental DCC player, and can thus be used to test the
chips in a working environment.

A diagram showing the context of the D D D is shown in Fig. 7 .1. The chip-set
is designed to operate in play mode only. Data from tape is first demodulated by the
Channel Decoder, then con-ected by the En-or Con-ector, and finally decompressed
by the Souree Decoder. A more detailed description of the function of the various
modules is given in [12].

tape Channel

8 tracks [96] Decoder [72]

Detector
(DDD)

i !
Controller

(DDR)

t
DRAM

256Kx4bit

Souree

[48] Decoder [48x4]

audio
2x16 bit

Figure 7.1: DCC codec in play mode [datarates in kilobytes persecond]. The DDD,
DDR, and DRAM tagether constitute the En-or Con-ector.

In order to be pin-compatible with the double-rail DDD the single-rail version
bas couverters between single-rail and double-rail handshake channels. The dia­
gram of the DDD withits double-rail interface is shown in Fig. 7.2. The converter

1 coined by Kees van Berkel

7.2. 135

elements, labeled D in the figure, convert between single and double-rail. Commu­
nication on channels t, c, l, and eis double-rail, and on channels T, C, and E

single-rail. The converters have been made switchable, allowing the actual single­
rail behavior also to be observed. This gives additional information about the on­
chip behavior, which might be required if the circuit malfunctioned (which fortu­
nately it did not).

go test mode

T L
t

Error

c Detector
E

c e

vomode-L--------------------------~

Figure 7.2: Single-rail error detector encapsulated with switchable conversion ele­
ments D fromlto double-rail data-encoding.

The type in formation of the external channels can be understood from the header
of the Tangram program for the DDD, which is given in the next section (Fig. 7.3).
The implementation of the conversion elements is rather straightforward, and ideas
can be found in [72]. Steven Vereauteren (IMEC, Belgium) proposed circuits for
the converters using ASSASSIN [85], and a variant of these were actually imple­
mented.

(One may observe that, from a cost (pin-count) viewpoint, it would have made
more sense to add double-to-single rail converters to the original double-rail imple­
mentations. Also, the pins for channels C and E could have been made bidirectional
so that they can be shared, since communications on these channels are mutually
exclusive.)

The go channel in the diagram corresponds to the activation channel of the Tan­
gram program. More specifically, it activates the repeater that implements the outer
loop do . . . od) of the Tangram program. Since the repeater never
issues an acknowledge on its passive port (or, alternatively, the Tangram program
never completes) the acknowledge of the go channel can be eliminated. (After net­
list generation this pin is tied low.)

Finally, a test mode signal has been added. The DDD contains a form of Tangram-

136 7. Demonstrator

<<bool,bool,bool,bool,bool,bool,bool,bool>>
& type <<gfsym,bool>> /* erasure>> */

& int= type [0 .. 31]

I
(T?<<bool,bool>> & C?gfsymbool & E! & L!int).

!* additional types, definitions, and declarations */

forever
do Syndromes()

Euclid()
Chien ()
Output ()

od
end

Figure 7.3: Structure of Tangram program for DDD.

programmed scan testing that is activated by mak:ing the test-mode signal high. This
allows for shorter test sequences during functional test, since it allows short cuts in
some of the iterations in the algorithm. Channels C and E are in test mode used as
scan-in and scan-out channels. This k:ind of VLSI-programmed test has also been
applied to the double-rail controller. A detailed report on this can be found in [69].

Throughout this chapter we focus on the single-rail core of Fig. 7.2, which ex­
cludes the conversion elements, but includes the (scan-) test facilities.

7.3 Tangram program

The signature ofthe Tangram program forthe DDD is given in Fig. 7.3. This shows
the typing and the direction of the extemal channels, and the main stmcture of the
program. The program is explained in detail in [48].

The DDD is a Reed-Solomon type of decoder. At the beginning of a cycle it re­
ceives typing information via channel T (for Type). The type information determ­
ines whether the code word that has to be decoded consists of 24 or 32 bytes (called
gfsym in the program), and how many parity symbols are used (4 or 6). The sym­
bols are subsequently input sequentially via channel C (for Code word), in which
each symbol is tagged with an erasure bit, indicating whether the channel decoder
was successful. During reception of the code word the DDD on the fiy computes
whether the word contains an error. After this the number of errors is output via
channel L (for Location). Ifthe word contained errors (but not too many) then the

7.4. Handshake circuit 137

error patterns and the error 1ocations are subsequent1y output via channel E (for Er­
ror) and L. In termsof a command the communication behavior of the DDD can
be denoted by

*(T?; C?24l32; L!; (L! 11 E!)o ... 6).

The complete Tangram program for the DDD consists of 650 lines of code. A bout
120 of these concern the definition of Galois-Field arithmetic. This includes the
definition of the types that are used, and the definition of operations on these types,
such as addition, multiplication and division. Since the vast majority of the data­
path logic in the DDD is in terms of Galois Field operations, the DDD program is
somewhat atypical.

7.4 Handshake circuit

Translation from Tangram program to handshake circuit is performed in two steps:
syntax-directed compilation foliowed by peephole optimization. In the peephole­
optimization step of the compilation of the DDD, the rule for split-multiplexer re­
ordering (as shown in Fig. 6.4) applies 11 times. This rule therefore accounts for the
elimination of 11 multiplexer control circuits and 11 C-elements. Other reorderings
in the handshake circuit could not be applied, since all possible sharing optimiza­
tions had been implemented in the Tangram program.

An important optimization step in the compilation from a Tangram program to
a gate-level netlist is the combination of sequencers, mixers, multiplexers, and de­
multiplexers into multi-channel versions. Especially for mixers and multiplexers
this allows for area-efficient implementations.

The handshake circuit that was initially generated by the Tangram compiler con­
tained 2,009 handshake components. After reordering 1,987 components remained,
and after the introduetion of multi-channel components the handshake circuit for
the DDD contained 1,768 handshake components. The breakdown into control and
data, and a more detailed account of the distribution of handshake components are
given in Table 7.1 (for control) and Table 7.2 (for data).

For the control it may be interesting to observe that the number of sequencers
is about equal to the number of mixers. Furthermore, most parallel components are
implemented with forks (synchronizers), which indicates that the Tangram program
is highly sequentia! and the parallelism is limited to parallel assignments. Only 10
test components (called IFt in [69]) were required to enhance the testability of the
program (or, more precisely, the corresponding silicon).

In the data part, the number of variables and multiplexers are about equal, and
the number of transferrers is about twice the number of multiplexers. The adder

138 7. Demonstrator

Component # breakdown/coroment
Sequencer 160 n 2 3 4 5 9 15 48

37 12 6 3 1 1 1
Mixer 164 n 2 3 4 5 6 7 10 11

30 17 3 9 3 2 2 1
Repeater 7 forever do s od

Parallel 1
Fork 65 cheap parallel (synchronizer)
Join 7
Run 11 skip, e.g. in if-then-else-fi construct
Duplicator 5 for 2 do S od

Ca.'ie 15 if G then St else Sf fi

Do 16 do G then S od

Test 10 test component
Total 461 265 after multi-channel mixer/sequencer step

Table 7.1: Control componentsin DDD. Forthe sequencer and mixer both the num­
ber of 'binary' and multi-channel variants are given.

actually is an incrementer, and two out of four subtractors are decrementers. The
datapath logic is dominated by XORs, which imptement addition modulo 2 (used in
Galois-Field arithmetic), and boolean ANDs (used in Galois-Field multiplication).

From the handshake circuit netlist an estimate of the contri bution of the vari­
ous handshake components to the standard-cell area can easily be generated. For
the DDD this estimate (which doesnottake into account the peephole optimization
at the netlist level) gives rise to the distribution shown in Table 7.3. In this list, re­
dundant C-elements and delay elements havenotbeen taken into account, since they
are assumed to be removed (at leasttoa large extent) in the peephole optimization
step.

7.5 Gate netlist

The netlist that is available after component substitution contains many redundant
C-elements and parallel delays. Most redundant C-elements can already be pre­
dicted from the handshake component summary given in Table 7.2. For most pull
data components it is known befarehand that they can be generated only by Tan­
gram expressions, and that therefore the C-element will be redundant. This applies
to the join, combine, split, and all binary operators, thus summing up to 1,285 re-

7.5. Gate netlist 139

Component # breakdown/camment
Variabie 42 total: 410 bits
Transferrer 76
Multiplexer 54 befare split-mux reordering

43 n 2 3 4 5

8 8 5 l

Demultiplexer
4 I

n 2 4

1 I

Boolean ops 430 I t~e mv or and xor
26 17 84 303

Integer ops 7 ! type add sub less adapt

1 4 1 1
Split 320 pull type
Split 37 push type, befare split-mux reordering

26 after split-mux reordering
Combine 261
Constant 23
Join 294
Total 1526 1503 after multi-channel mux/dmx

Table 7.2: Datacomponentsin DDD. For the (de)multiplexer bath the number of
'binary' and multi-channel variauts are given.

dundant C-elements. These are indeed all removed in the peephole optimization
phase.

The number of unit-delay elementscan also be estimated from the data com­
ponents. Each binary boolean operator accounts for one delay element, which adds
up to a total of 404 delay-elements. The adders and subtractors add 26 delay ele­
ments. The total number of delays therefore is 430. A lot of these elements turn out
to be in parallel. After peephole optimization only 64 delay elements remain, which
is 15% of the number of delays in the original netlist This can be explained by the
Galois-field arithmetic that has been programmed in Tangram. Some of the opera­
tions are specified at the bit-level, which means that at the word-level there may be
many parallel delays. In an application that is dominated by adders, for instance,
the percentage of parallel delays will be significantly lower.

Constant propagation is the elimination of constauts (lows and highs) from the
netlist by simplification of the gates to which these cells conneet These constauts
originate from two types of handshake components, namely constants and repeat­
ers. These rules are rather trivia!; so are the rules that eliminate cells with dangling

140 7. Demonstrator

category perc.

control 36% components of Table 7.1
communication 22% (de)multiplexers, split
starage 23% variables
logic 19% datapath operators

Table 7.3: Area contribution of handshake components per category.

outputs from the netlist
Bubble-shuffling optimizations are part ofthe technology-mapping phase of net­

list optimization. The rule that allows to replace an AND-gate that feects into an
XOR-gate by a NAND and an XNOR applies 64 times in the DDD netlist, thus sav­
ing 128 transistors.

After the complete optimization step about 400 C-elements remain, both sym­
metrie and asymmetrie, and with two or three inputs. These C-elements are sub­
sequently mapped onto combinations of complex gates and inverters. The exact
mapping depends on the ceils that are available in the library. A symmetrie two­
input C-element with input a and b and output z, for instance, can be realized by
the sequentia] function z a * b + z * (a + b). This can be decomposed into a
combinational gate and an inverter if either a negating majority with three inputs,
or the function - (a* b+ C* d + e * f) is available. A decomposition into three gates
is also possible, using x (O.* b), y = -(Z* (a+ b)), and z = -(;x;* y). The first
decomposition assumes an isochronie fork, the latter an extended isochronie fork,
at the output of the C-element [15].

The last step in the netlist generation is the application of the driver strategy.
For each gate output the expected capacitive load is estimated. If this exceeds the
driving capability of the gate, that is, if it leads to too slow transitions, the driving
strength is increased. For NOR, OR, AND, and NAND gates, this is achieved by re­
placing the gate by its inverse and actding astrong inverter. Inverters and buffers are
simply replaced by stronger versions, and for other gates a buffer is inserted. For
the DDD, the driver strategy actcts some 300 transistors to the netlist, using unit-size
transistors as unit. (A buffer of drive strength 8 contains 20 transistors, 2 parallel
inverters for for the first stage, 8 for the second stage.)

7 .5.1 Area breakdown

The total standarct-een area of the single-rail DDD is 1.47 mm2 in a 0.8ft CMOS
technology, which amounts to 4,783 gate equivalents, using the area of a two-input
NAND-gate as a unit. The layout area, using double-layer metal, is 3.9 mm2 • A

7.5. Gate netlist 141

photo of the layout is shown in Fig. 7 .4. 2 This photo was also used in an artiele in
the Scientific American of June 1995 [35].

An overview of the 3,364 standard cells that have been used is given in Table 7 .4.
The standard-cell dimensions are in terrns of grids. One grid is 3.2 Jlm, the cell
height is 10 grids, and the cell width varies.

The top two of the standard-celllist are latehes and exclusive-ors. This should
not eome as a surprise since the datapath logie in the DDD is dominated by Galois
Field arithmetic, whieh is toa large extent mapped onto XOR-gates.

The high inverter count may come as a surprise. Many inverters originate from
C-elements, in whieh they imptement the feedback to make the C-element statie.
The asymmetrie C-element used in mixers, for instance, is implemented by the se­
quentia! funetion z = a* (b + which is mapped onto an OAI-gate (y = -a*
(b + z)) and an inverter (z -y) that generates both the output and the feedback.
This exarnple also explains the high ranking of OAI-gate z = -a* (b + c), which
is used to imptement the 270 asymmetrie C-elements.

Two other high-ranking AOI-gates are z = (a* b + c * d) and z =-(a* b +
c * d+ e * f), which are used in the implementation of (multi-channel) multiplexers.
Some ofthe other AOI-types are reduced multiplexer cells that were originally fed
by a constant. Two or three-input multiplexers also give rise to inverters.

Mutti-ehannet sequencers are built from NAND and NOR-gates, and C-elements
specified by z = a * b * (c + z), in which a is used as a reset (this gives rise to an
OAI and an inverter) [2].

2Both this layout (corresponding to SR2 in Table 7.5) and that of the siugle-rail IC (SRl in the
same table) were made by Gert-Jan Hekelaar and Amold Gruijthuijsen of Microtel. for which they
are gratefully acknowledged.

142 Chapter 7. Demonstrator

Figure 7.4: Layout of the single-rail DDD.

7.5. Gate netlist 143

Function #occ #MOSts (%) #grids (%)

q=d*g+q*?J 410 4,100 20.2 2,870 20.0
z=(a::f;b) 300 3,000 14.8 2,100 14.6
z =-a 735 1,470 7.2 1,470 10.2
z=-(a*(b+c)) 346 2.076 10.2 1,384 9.6
z = -(a*b) 349 1,396 6.9 1,047 7.3
z = -(a* b + c * d + e * f) 114 1,368 6.7 912 6.4
z=-(a+b) 284 1,136 5.6 852 5.9
z=-(a*b+c*d) 170 1,360 6.7 850 5.9
z = a*b 112 672 3.3 448 3.1
z = -(a+b*C) 85 510 2.5 340 2.4
z = -(a* b * (c + d)) 59 472 2.3 295 2.1
z=a*b*c 52 416 2.1 260 1.8
z=-(a*b*C) 60 360 1.8 240 1.7
z=a+b 60 360 1.8 240 1.7
z =a (2) 57 342 1.7 228 1.6
z =-a (2) 50 200 1.0 150 1.0
z =(a b) 17 170 0.8 119 0.8
z= (a+b+c) 29 174 0.9 116 0.8
z= *b+c+d) 11 88 0.4 55 0.4
z=a+b+c 11 88 0.4 55 0.4
z=a*b*C*d 6 60 0.3 36 0.3
z=-a(6) 5 60 0.3 35 0.2
d =(a b ei) } 2 60 0.3 32 0.2
co maj(a, ei)
z =-a (3) 8 48 0.2 32 0.2
z=-(a*b+c*d+e) 5 50 0.2 30 0.2
z =-a (4) 6 48 0.2 30 0.2
z = - ((a * b + c) * d) 6 48 0.2 30 0.2
z=a+b+c+d 4 40 0.2 24 0.2
z = a (8) 2 40 0.2 22 0.2
z = - ((a + b + c) * d) 4 32 0.2 20 0.1
z -(a* b * C* d) 3 24 0.1 15 0.1
z =a (4) 2 20 0.1 12 0.1
Total j3,364 20,288 100.0 14,349 100.0

Table 7.4: Standard-celllist of single-rail DDD, ranked according to the contribu-
tion to the total cell area. Inputs are labelect a, b, .. . , output is z, except for latch
and subtractor cells. The numbers between (.) denote relative drive strengtbs (for
inverters and buffers).

7.5.2 Verification

Verification ofnetlists is always an important step in the design. For single-rail cir­
cuits, an essenrial aspect is the timing behavior. There are several modes of failure
that can be envisioned. Most of the errors can be formulated in terms of latehing
the wrong data during assignments or communications.

First of all, latehes may be enabled for a period that is too short to allow new
data to be assimilated in the latches. In particular, this is a problem if the output of
the latch is used in the feedback path, since then the output load of the latch directly
affects the required putse width on the latch enable. This type of problems can be
expected when the environment of the variabie is maximally fast, which is during
a data-transfer in which no operations on data are involved, such as in a FIFO.

In the single-rail circuit some of these fast cycles were simulated at Spice level.
The most critica! scenario was very similar to the one shown in Fig. 5.16. The actual
output load was O.SpF, and the circuit was still fully functional with an output load
of 1.3pF. At l.SpF the circuit malfunctioned. This safety margin was considered
suftkient to accommodate variations in processing or operation conditions.

The delay-matching was verified by varying the set-up times of the latches. For
most of the latehes it tumed out that the input data was stabie at 7ns before the actual
closing of the latch. This was considered to be a sufficient safety margin. In general
it may not be trivial to actually reconstruct the worst-case timing path for the logic
in the datapath, since this may be highly data dependent In the DDD, however, the
maximum logic depth is less than 10, which simplifies finding the worst-case path.

7.6 Measurements

In June 1994 the netlist of a single-rail DDD, including test facilities and couverters
between single and double rail, was frozen. The resulting silicon arrived in Novem­
ber 1994 and proved fully functional, both on an HP82000 tester and in the exper­
imental DCC player, in which it first played rousic on Wednesday, November 16,
1994.

Some interesting features of the error detector can be (and have been) tested in

the experimental player. The error-correcting capacity of the code, for instance, is
such that if one of the eight input tracks is corrupt, the other seven tracks contain
sufficient information to reconstruct the missing information. In the player this fea­
ture has been tested by removing one of the tracks, thus forcing the DDD into its
worst-case corners, with the most demanding signai-processing requirements. The
player then indeed still produces audibly correct music, and a little extra stress (tap­
ping the cassette), which makes the input uncorrectable, produces clicks (glitches)
in the music.

7.6. Measurements 145 --------------------------------

Both the single-rail IC, and the double-rail IC that was reported earlier [13],
were tested and characterized on an HP82000 tester. The results of the measure­
ments fortiming and power of these ICs aredepicted in Fig. 7.5 and 7.6. In Table 7.5,
which is presented in the next section, the circuits are referred to as SRl and DRl.
The measurements of the single-rail IC were reported earlier in [10] and received
attention in an artiele in Electronk Design [55].

7.6.1 Speed

The measured execution frequencies are plotted in Fig. 7.5. In the measurements,
the DCC-specified mix of 3,000 Cl words (length 24) and 2,3000 C2 words (length
32) per second has been used.

50

$
~
" 8'
~
.9
.!§
g
<l>

" o-
~
(.)
(.)

0

5.0 5,5 6.0 6.5 7.0

supply voltage [VJ

Figure 7.5: Measured execution frequencies versus supply voltage for correct and
incorrect code words. The specified frequency for DCC application is used for nor­
malization.

Both ICs are fully functional in the complete supply-voltage range from 1.2V
to 7V. This indicates the robustness of these circuits. For a synchronous circuit one
would need to adjust the clock frequency as the supply voltage is varied, to assure
that the logic completes in timetomeet the clock deadline. In the double-rail circuit
this timing assumption has been replaced by that of the isochronie fork. Correct
functioning is then guaranteed by the inherent completion detection on all double­
rail handshake channels. In this way, the circuit naturally adjusts its speed to the

146 7. Demonstrator

supply-voltage.
The robustness of the single-rail circuit may come as a surprise. In addition to

the isochronic-fork assumption, the single-rail circuit uses matebed paths to time
the completion of datapath operations. The matebed paths have been implemented
with standard gates, just like the datapath operators. Furthermore, only fully static
cells have been applied. The delay-elements have been implemented such that the
timing dependendes on processing and operation conditions are similar to those
of the operators in the datapath. Therefore these delay elements also slow down
their operation as the supply voltage is lowered. Apparently, the safety-margins in
the delay-matching are sufficient to guarantee correct operation over the complete
supply-voltage range.

The single-rail IC still easily meets its performance constraints, with a safety
factor of 2, at a supply voltage of 2V. At 5V, the decoder even has an excess in per­
formance of a factor 10. One could thus operate the circuit at 2V, which gives at
least a factor 9 reduction in power consumption. Altematively, one could try to re­
write the Tangram program to one that requires less area, possibly at the cost of a
higher power consumption.

The relative speed impravement of single-rail over double-rail is a factor 3. We
estimate that a factor 2 is due to the differences in technology, layout, Tangram pro­
gram, and control optimizations. The remaining factor of 1.5 then represents the ac­
tual single-rail contribution. This can be attributed to the absence of completion de­
tection in the datapath, and the u se of simpter cells (with fewer transistors in series)
for the operations on data.

7.6.2 Power

The measured power dissipation of the single- and the double-rail ICs is shown
in Fig. 7.6 for both correct and worst-case words. A logarithmic scale is used for
power consumption. The DCC-specified mix of Cl and C2 words has been used,
and the supply voltage was varled in steps of 0.5V. The measurements themselves
are not too interesting. A comparison, however, leads to interesting observations.

First of all, one can observe that, for the single-rail IC, the ratio of power for in­
correct versus correctwordsis close to 5. For the double-rail IC this ratio is only 3.
The increased ratio for single-rail reflects an impravement in the underlying Tan­
gram program, which was further optimized towards minimal activity for correct
inputs.

A second observation that can be made is that the double-rail curves rise some­
what more steeply than the single-rail curves. This hints at a difference in the short­
circuit contribution to the power consumption. We assume that the total switched
capacitance per cycle is independent of the supply voltage. Given this, switching

7. 7. Evaluation

20

10

supply voltage [V]

incorrect 2-rJ3.il -
correct 2-rail -
incorrect 1-rail ----·
correct 1-rrul ----·

147

Figure 7.6: Measured power consumption versus supply voltage for correct and in­
correct code words at DCC speed.

this capacitance results in a power consumption that is quadratic in the supply voltage.
At a supply voltage of 2V the short -circuit dissipation is zero, which can be used to
estimate the shmt-circuit power. The short-circuit power at 5V, as a fraction of the
total power, can thus be estimated from the following formula.

For the single-rail IC this indicates 15% short-circuit dissipation, for the double­
rail IC it indicates 40%. The farmer is considered to be reasonable [80], whereas
the latter is excessive, and is due to a poor driver strategy.

7. 7 Evaluation

In Table 7.5 six circuit realizations of the DCC error detector are compared: two
single-rail circuits, two double-rail circuits, and two synchronous circuits. The four
asynchronous circuits have been obtained by compilation from a Tangram program.
The synchronous circuits are part of existing ICs that are used in DCC products.

All circuits, except DRl, have been realized using the same standard-celllib­
rary, in a 0.8JL double-metal CMOS technology. DRl was realized in a l.OJL ded-

148 7. Demonstrator

icated (asynchronous) standard-celllibrary. Data for DRl have been scaled to the
0.8p technology.

Data fortheI Cs have been measured at 5V, layouts have been simulated assum­
ing nominal processing and typical operation conditions (5V, 25 degrees Celcius).
Data for the IC-parts were kindly provided by Peters Arts and John Sherry (Philips
Consumer Electronics). The cycle times in Table 7.5 are given only to compare the
four asynchronous circuits. For the synchronous IC-parts this is not applicable.

Circuit DR 1 is the chip that bas been reported in [13]. Basedon new insights the
Tangram program was then changed a little, to further minimize the average-case
activity (correct code words). From the new program three designs were realized,
one single-rail chip with double-rail interfaces (SRI, reported in [10]), one single­
raillayout (SR2), and one double-raillayout (DR2).

In the rest of this section we first discuss the various realizations in more detail,
campare first and second generation of each technology (to illustrate the respective
learning curves), and after this gi ve a comparative evaluation of the three second
generation circuits.

7. 7.1 Single rail

Both single-rail circuits use the true four-phase protocol for data, and the broad four­
phase protocol for controL Circuit SRI contains single-to-double rail converters
and can be put in the double-rail DCC test board. For sake of a better compar­
ison withother (a)synchronous realizations of the same function we derived SR2,
by stripping these converters (-400 MOSts). SRI contained a power-supply switch
[ll], which was also removed (-150 MOSts). Additional peephole optimizations,
not yet available at the time when SRl was produced, lead to the saving of another
1,000 transistors.

The additional optimizations only explain part of the impravement of SR2 over
SR I. Another factor is that the layout of SR2 is better SRI, due to more experience
with the layout tool. The quality of the layout can, for instance, be measured by
looking at the average wiring capacitance per node, which improved from 114fF for
SRl to 78fF for SR2. The ratio between core area and cell area improved from 2.8
to 2.6. This high ratio probably reflects the irregular structure of the DDD datapath,
and the associated routing complexity.

The increased density of the layout results in better area, power, and timing res­
ults. In going from SRI to SR2, the transistor count was reduced by 7%, and the
core area by 13%. The total capacitance (transistor plus wiring) was reduced by
23%. Toa first order approximation, this gain may be expected to be reflected as a
gain in energy. The actual gain turns out to be larger, namely 30%. The optimiza­
tions (interfaces, peephole, and layout) also result in a 20% reduction of the cycle

7.7. Evaluation 149

Single Rail Double Rail Synchronous
SRl SR2 DRI DR2 Syncl Sync2

Quantity unit IC layout IC layout IC-part IC-part
Area
#transistors 1,000 21.8 20.3 44.0 30.8
Cell area mm2 1.6 1.5 3.5 2.2
Core area mm2 4.5 3.9 7.0 5.9 3.4 3.3
Cycle time
Cl, correct fiS 8.0 5.9 14.0 8.1
C 1, worst case fiS 26.8 23.2 38.4 31.1
C2, correct fiS 8.7 7.3 14.4 10.3

C2, worst case fiS 38.1 31.3 51.2 42.0
DCCmix ms 50 40 83 55
Energy
Cl, correct fiJ 0.08 0.05 0.37 0.10 2.0 0.4
C 1, worst case fiJ 0.36 0.31 1.12 0.63 2.4 0.8
C2, correct {iJ 0.08 0.06 0.41 0.15 2.7 0.6
C2, worst case tti 0.55 0.42 1.50 0.88 3.1 1.1
Power
DCCmix mW 0.50 0.35 2.3 0.80 12 2.7

Table 7.5: Comparison of six implementations of the error detector. Cycle time
and energy are measured at 5V. The DCC mix camprises 3,000 Cl and 2,300 C2
codewordsper second, 95% correct and 5% worst case.

time.

7.7.2 Double rail

The double-rail circuits both use the broad four-phase protocol for control and the
four-phase double-rail protocol tor data. The difference between DRl and DR2 are
the timing assumptions that have been made, the control optimizations that have
been applied, and the celllibrary.

Circuit DRl is fully QDI and is implemented in a dedicated standard-celllibrary
which includes several asynchronous cells. To keep layout costs reasonable, special
cells for double-rail arithmetic and logic were required. Layout DR2 is realized in
a generic standard-cell library and, therefore, required extended isochronie forks
[15]. Furthermore, the samecontrol optimizations as for SR2 have been applied.
The cells in the dedicated celllibrary used for DRl are rather dense (in terms of

150 7. Demonstrator

transistors per area), which explains the relatively small area rednetion compared
to the rednetion in transistor count.

A forther difference between DRl and DR2 is the Tangram program (and hand­
shake circuit) that was used as a starting point. A slight modification of the program
for DRl allowed a rednetion in the activity for correct code words by about 50%,
at the costof only a small area increase (3%). Furthermore, the short-circuit dissip­
ation was reduced by a better driver strategy (the same driver strategy as for SRl
and SR2).

In comparison to DRl, DR2 is 35% faster, 15% smaller, and requires only 35%
of the energy.

7. 7.3 Synchronous

Circuit Syncl is part of a synchronous IC in an early-generation DCC player. It
operates on a 6.14MHz clock, uses a ROM-based centralized controller and a small
RAM to store intermediale results. The ROM and RAM together account for more
than 50% of the power dissipation.

Sync2 is the successar of Sync 1 and is optimized towards low power consump­
tion. Architectural modifications allowed the halving of the clock frequency and
elimination of the RAM. Furthermore, by means of clock gating (in the enabling of
the ROM), power could be reduced further. The latter also decreased the power ra­
tio for best over worst case. The contribution of the ROM to the power consumption
was reduced to 6-10%.

7. 7.4 Comparison

The data collected above allow for an interesting comparison for area and power.
Forthermore the speed of single- and double-rail can be compared.

The main motivations for the single-rail work were area rednetion and mapping
onto a gencric celllibrary. The original double-rail circuit had a 100% area over­
head over the synchronous circuit that was available at that time (Syncl). Mean­
while, both the synchronous and the double-rail implementation have been improved,
in which the double-rail overhead was reduced to 80%. The single-rail circuit, in
contrast, has an area overhead of 20%, which is a significant reduction, but cannot
be neglected.

Power efficiency is an important motivation for the workon asynchronous cir­
cuits and bas also gained increased attention in synchronous designs. Interestingly,
the factor 5 advantage in powerthat was reported in [13] fordouble-rail circuit DRl
over synchronous circuit Sync l recurs for the power efficiency of the asynchronous

7.8. Condusion 151

DDD Sync SR DR
Area 100% 120% 180%

Energy 100% 15% 30%
Speed 100% 75%

Table 7.6: A simplified comparison of the best synchronous, single-rail, and
double-rail realizations of the DCC error detector.

successor ofDRl (single-rail circuit SRl) over Sync2, the synchronous successor
of Syncl.

In conclusion, the single-rail circuit is 20% larger than the synchronous version,
but uses only 15% of the power. Compared to the best double-rail version it is 33%
smaller, 25% faster, and requires 50% less energy. A simplistic surnrnary of the
main characteristics is shown in Table 7.6.

Testing has not been addressed in the above evaluation. For the synchronous
circuits, test hardware wasnottaken into account. At the costof about 3-5% (area
and energy) these circuitscan be made fully scan testable. The two single-rail cir­
cuits include partial scan-test facilities, accounting for 4% of the circuit area. With
these facilities, both circuits are fully testable against stuck-at input faults. The
double-rail IC is fully tested against stuck-at faults in a functional sequence invalving
four code words (giving rise to four complete algorithmic cycles). The testability
of DR2 bas not been analyzed in detaiL

On an HP82000 tester, the complete test ofthe single-rail IC (SRl) takes 1.15ms
(including scan in/out). The complete test for the double-rail IC (DRl) requires
2ms.

7.8 Condusion

The single-rail DCC error detector demonstraled the viability of the single-rail im­
plementation of handshake circuits in a generic standard-cell library. The power
advantage of a factor 6 over the synchronous equivalent was suffîcient to justify
the 20% area overhead.

The delay-matching in the single-rail DDD has been implemented straightfor­
wardly and conservatively, to maximize the chance to get a successful first-time­
right single-rail chip. The robustness of the delay-matching was demonstraled by
the correct operation over the complete supply-voltage range from 1.2V to 7V.

152 Chapter 7. Demonstrator

Chapter 8

Conclusion

The target that was set for the work described in this thesis was to reduce the sil­
icon area of handshake-circuit implementations greatly, while restricting oneself to
a generic standard-cell library. Furthermore, the low-power properties should not
be lost and possibly be improved, and the design flow should be highly automated,
with manageable verification effort after layout.

Throughout the previous chapters single-rail implementation of handshake cir­
cuits has been put forward as a way to achieve exactly these goals. The potential
success of this approach has been demonstrated on a DCC error detector chip. This
demonstrator has an interesting power advantage, at the cost of an acceptable area
overhead, and was realized in a generic ('synchronous') standard-celllibrary.

In this final chapter we first compare single-rail circuits withother implementa­
tion techniques, both synchronous and asynchronous. Next we evaluate the strengtbs
and weaknesses of single-rail handshake circuits. This leads to an inventory of the
opportunities and threats for single-rail handshake circuits. The chapter is concluded
with some thoughts on possible future directions.

8.1 Comparison

In this section we address the quality of single-rail handshake circuits, and we do
that by comparing them to circuits realized via other design flows. Since in the Tan­
gram project both a single-rail and a double-rail design flow from handshake cir­
cuits have been implemented, we have leamed quite alotabout their relative merits.
Therefore, this comparison is rather detailed and extensive.

We have chosen to use a four-phase protocol in combination with single-rail
data-encoding. A different option would have been to use a two-phase handshake
protocol. The disadvantages of two-phase implementation of single-rail handshake

153

154 8. Condusion

circuits are also addressed in the comparison. Furthermore, brief comparisons with
micropipelines and synchronous circuits are made.

8.1.1 Four-phase double-rail handshake circuits

The main difference between single and double-rail handshake circuits is the area
efficiency of the resulting circuits, but the timing, power, and testability character­
istics of these two also differ.

A first insight into the difference between single rail and double rail can be gained
by looking only at the handshake channels, and ignoring the contribution of the
handshake components. For a handshake channel, the number of wires can be used
as a measure for area, and the number of transitions on these wires (per handshake)
as a measure of energy.

For the double-rail channel 2N + 1 wires are used, whereas the single-rail vari­
ant only requires N + 2 wires. For a 16-bit datapath this hints at an area-ratio
of double rail over single rail of 1.8. If we look at the number of transitions per
handshake, then a double-rail handshake requires exactly 2N + 2 transitions, and a
single-rail handshake ~N + 4 (assuming uncorrelated data and no spurious trans­
itions). A 16-bit double-rail handshake thus consumes 2.8 times the energy of the
equivalent single-rail handshake.

From the above observations, we may expect single-rail circuits to be equally
fast at the cost of a little more than half the area and only a third of the power of
double-rail circuits. This comparison is rather naive, and is carried out in more de­
tail intherest of this section.

Standard-celllibraries

The motivation to choose double-rail encoding of data generally is to adhere to a
QDI implementation style in the circuit. In combination with a generic standard­
celllibrary this leads to a high area price that has to be paid.

One well-known work-around to get rid of this overhead is to use a dedicated
standard-cell library, in which special double-rail operators are included. Circuit
techniques basedon weak feedbacks or partially dynarnic realizations canthen be

exploited to reduce the area-inefficiency of fully static implementations [58, 73, 39].

Another way to partially elirninate the double-rail overhead is to relax the QDI
timing assumption, and to allow for extended isochronie forks. A generic standard­
celllibrary canthen be used with little overhead over a dedicated library [15].

Single-rail handshake circuits can be realized efficiently in generic standard-cell
libraties, as has been demonstraled in this thesis.

8.1. 155

Speed

The most simplistic comparison of the speed of single-rail and double-rail circuits
is obtained by looking only at the handshake protocol on the channels. Sirree they
are both basedon a four-phase protocol, a handshakeon both channels requires four
handshake events. So, from this simple viewpoint, single-rail and double-rail cir­
cuits are equally fast.

Several observations can be made, however, that lead to the condusion that
single-rail realizations are faster than their double-rail equivalents.

If we zoom in a bit further on the handshake channels, and look at the sequences
of events, we observe that, on a single-rail channel, the timing (and therefore the
speed) is determined by the four transitions that are required for a complete hand­
shake on the request-acknowledge pair. On a double-rail handshake channel the
slowest bit determines the length of a cycle. Completion detection is required to
determine whether a complete message has arrived. This is typically implemented
using a tree of C-elements, for instanee in a double-rail variable. This completion
deteetion introduces a timing overhead for double-rail circuits.

Another issue that has to be taken into account is the processing time for oper­
ations on data. Typically, a double-rail implementation of a function requires com­
plex gates with stacks of pMOS and nMOS transistors that are higher than required
for the equivalent single-rail implementation. This makes the gates slower and
maybe moreimportant-reduces the possibilities for peephole optimization. Fur­
thermore, the fanout of cells in a double-rail datapath is, on average, also higher.
As a consequence, double-rail processing is generally slower than the equivalent
single-rail processing.

In double-rail operations, the return-to-zero phase is redundant. If this is not im­
plemented as a quick reset (for which extended isochronie forks can be used [15]),
this time gives an additional overhead for double-rail timing. This effect can be
canceled against the safety margin that has to be applied in the delay-matching in
the single-rail datapath. Another way to circumvent the redundancy of the return­
ta-zero phase is to employ the lazy active protocol, as proposed by Martin [57].

A potential speed advantage of double-rail datapatbs is the data dependency of
timing. A double-rail adder, for instance, can easily be realized such that in each
bit section of the adder the carry out is generated as soon as it can be determined
[72, 58]. In the single-rail implementations that we have chosen and implemented,
data-dependent processing times have not been exploited. Instead we have chosen
to use a fixed matebed delay that always accommodates the worst-case completion
time of the datapath. For an incrementer, for instance, we always anticipate the full
length carry ripple, although this is known to occur very rarely, and on average the
carry ripples only two stages.

156 8. Condusion

From the above observations, and from our experience, we conclude that single­
rail datapatbs are on average clearly faster than double-rail equivalents. This does
not apply to wide, stand-alone adders or large combinational multipliers, for which
the average processing time may easily befaster than the worst-case single-rail delay.
On the other hand, however, if no operations on data are required (as in a FIFO)
the completion detection required in the double-rail circuit becomes a really seri­
ous overhead.

The single-rail demonstrator that we have built turned out to be some 30% faster
than a double-rail variant, in the sense that it performs the same function in only
70% of the time. lt is hard to quantify the speed-potential of single-rail in compar­
ison with double-rail, although from the discussion above a performance advantage
may generally be expected. Basedon the single-rail demonstrator, a rough estimate
for the speed-advantage of single-rail over double-rail is that it is in the range of 20
to 40%. It should be noted that the advantage depends on the margins that are used
for delay-matching, on the layout style, and on the design effort.

Energy

For double-rail handshake channels the number of transitions per communication is
determined by the protocol. Each (four-phase) communication on an N-bit chan­
nel results in exactly 2N + 2 transitions, independent of the data that is actually
communicated. On a single-rail channel the number of transitions depends on the
Hamming distance between the current data and the previous data. On average, as­
suming uncorrelated data, one would expect ~ N + 4 per communication. This sug­
gests that a single-rail implementation uses only about a third (for practical N) of
the energy of a double-rail implementation.

However, some countereffects exist in single-rail datapaths. Most notably, we
did not restriet the transitions on the data wires in the period in which the data was
not valid (data-change period). In the true four-phase scheme -which has actually
been implemented- the state of latehes is updated when a variabie is written. All
handshake components that read from this variabie are therefore faced with chan­
ging inputs. Especially for arithmetic (adders etc.) this implies that they start using
power as well, since the operators are permanently evaluated. This may have a con­
siderable impact on the energy consumption, because the read ports may fanout to
many logic gates. Apart from the sum of input capacitances of these gates that has
to be switched, the output of these gates may also be affected. Especially in deep
combinationallogic (for example in multipliers), this can lead to a lot of redundant
transitions.

Another effect that must be taken into account is that latehes are made trans­
parent during the up-going phase of the write handshake, and closed again during

8.1. 157

the down-going phase. In between, the latehes are transparent and the latch outputs
follow the latch inputs. If the data was not yet valid at the input when the latch was
opened, this leads to spurious transitions, which also reduces the energy efficiency.

Since double-rail combinatorics generally require more complex cells than the
equivalent single-rail functions, double-rail datapatbs typically have higher average
fanout and higher average transistor stacks than single-rail datapaths. This effect
works in favor of single-rail energy efficiency.

From the above observations and from practical experience (for instance, meas­
urements on the DCC demonstrator) we estimate that a single-rail circuit consumes
half the energy of its double-rail counterpart.

Area

In contrast to energy and timing, circuit area is relatively easy to compare. A first
order insight can already be gained by looking at handshake channels. A single-rail
channel for N bits requires N + 2 wires, against 2N + 1 wires for the double-rail
circuit. Since every wire requires a gate to drive it, one may expect the standard-cell
ratio (d.r./s.r.) to be somewhat less than 2. This estimate is actually quite accurate,
though in the datapath effects in favor of both single-rail and double-rail exist.

Double-rail operations on data require gates that are more complex than those
used for single-rail operations, especially for simple boolean functions like AND,

OR, and XOR, but also for adders [58], although these can sametimes be simplified
somewhat by tuming the return-ta-zero phase into a quick reset [15]. All in all,
where the single-rail datapath is relatively simple, the double-rail operators quite
oftenare state-holding (to assure adherence to the handshake protocol), and require
standard cells with high nMOS and pMOS stacks.

For multiplexers -which are frequently used components in Tangram hand­
shake circuits- the single-rail and double-rail implementations are of camparabie
cast. A double-rail multiplexer requires two OR-gates per bit, whereas a single-rail
multiplexer requires a complex gate of about the same size, both in transistors and
cell area.

Completion detection in double-rail datapatbs and delay-matching in single-rail
datapatbs both require circuitry. These two contributions are hard to campare quant­
itatively. The circuit area required for completion detection is linear in the width of
the datapath to which this is applied. Delay-matching, in contrast, depends linear
on the logic depth of the function that is computed.

The area of a single-rail circuit on average turns out to be 60% of that of the
double-rail equivalent. To onderscore this, and to illustrate the contribution of the
control part, several Tangram programs have been compiled to netlists. For single­
rail the genede library is used, whereas for double-rail a dedicated library is applied.

158 8. Condusion

(With the extended isochronie fork assumption the double-rail circuits can be real­
ized in the samesilicon area using generic cells only, cf. [15].) The results are listed
in Table 8.1.

single rail ratio single/double rail
Design #MOSts control #MOSts cell area
FIFO (32b, 8st) 3.0k 14% 0.49 0.52
DCC detector 20.3k 36% 0.48 0.60
DCC controller 78.lk 54% 0.78 0.90
Speech codec 38.6k 21% 0.37 0.49
Router 28.5k 45% 0.58 0.70
average 33.7k 34% 0.64

Table 8.1: Comparison of single-double rail, cell area and transistor count. The
double-rail numbers arebasedon a dedicated celllibrary, the single-rail numbers
refer to implementations using a generic library.

As is to be expected, the gain in circuit area and transistor count depends on the
percentage of the circuit required for controL Data-dominated applications, such
as the FIFO, the DCC error detector, and the speech codec, profit highly from the
single-rail implementation of the data. The DCC controller and the router are con­
trol dominated, so single-rail and double-rail make less of a difference.

Test

QDI circuits and (as a consequence of this) double-rail data encoding have often
been praised for their good prospects for testability with respect to stuck-at faults
[4, 40). Indeed, on a double-rail channel a stuck-at fault implies that either during
the up-phase or the down-phase of the handshake protocol, the sender does not co­
operate and therefore stalis the receiver. This deadlock can be detected by a time­
out, since as a result of the deadlock, the circuit does not meet predetermined re­
sponse times.

However, it depends on the implementation of the components how well this
simple scenario can be foliowed down to the gate level. The observability of stuck­
at faults, for instance, highly depends on the acknowledge property of the double­
rail operators, which is that everyinput transition is eventually foliowed by an out­
put transition. At the gate-level, however, this property may be lost if the operators
have to be implemenled using a generic standard-celllibrary [15]. Since a dedic­
ated standard-celllibrary is nota viabie option (to us), this means that test hardware
bas to be added to make the design testable.

8.1.

single rail
timing data independent
energy data dependent

double rail
data dependent

data independent

159

Table 8.2: Data dependendes in single-rail and double-rail handshake circuits.

Testing single-rail datapatbs may require some form of scan to enhance the ob­
servability of faults in the logic of the datapath. The application of these techniques
to double-rail datapatbs is described in [69]. To facilitate test-generation for single­
rail circuits a fault simulator has been developed [79]. In this simulator, faults are
modeled at the handshake circuit level, which allows for high-performance simula­
tion and accurate feedback at the Tangram level. This enables the interactive design
of test pattems for single-rail datapaths. In combination with scan facilities this ap­
proach has proven a very powerfut means to achieve high-coverage test pattems.

Summary

From the above discussion we estimate that double-rail circuits areabout 75% larger
than single-rail circuits, consume twice the energy, and are some 25% slower.

An interesting insight that applies to the single-rail and double-rail handshake
circuits as they are compared here, and as they are implemenled in the Tangram
project, is given in Table 8.2, in which we look at the data dependendes of the time
and energy required for a computation. In a single-rail Tangram handshake circuit
the timing in the datapath is data-independent and the energy consumption data­
dependent In the double-rail implementation this is the other way around.

8.1.2 Two-phase single-rail handshake circuits

Our single-rail handshake circuits are based on a four-phase single-rail (bundled­
data) protocol. Many implementations ofbundled data circuits, however, use a two­
phase signaling protocol [33, 63, 75]. The use of such a two-phase protocol at first
sight leads tofaster and more power-efficient circuits, since only half of the control
transitions are required. However, in the implementation of some of the essential
handshake components it leads to complications; most notably in the variabie and
in components that implement sharing (mixers, multiplexers).

In the two-phase implementation of the variable, a lateh-control circuit is needed
that requires Toggles and Merges (XORs) to couvert from the two-phase (transition­
sensitive) write handshake to the four-phase (level-sensitive) enable signals. The
CMOS implementation of the Toggle is complex [63]. An important consequence

160 8. Condusion

of the use of Toggles and Merges is that they are in the critical timing path of the
control, which leadstopoor cycle times, and hence restricts the maximum attainable
speed. The use of capture-pass latehes [75] would allow fora simpler lateh-control
circuit, but then the latehes are slow and require more transistors.

Sharing of datapatbs and control paths is an important issue in Tangram hand­
shake circuits. In a typical Tangram application, a significant fraction of the hand­
shake components consists of mixers and multiplexers. The two-phase implement­
ation of the mixer is known as theeaU-component [75]. Tbe CMOS implementa­
tion of this is quite complex (see for instanee [63]) since intemally it essentially re­
quires a conversion to four-phase signals. The two-phase multiplexer control circuit
is based on this two-phase call component and also requires this conversion to four­
phase signals for the control of the level-sensitive multiplexer switches. Especially
tor multi-input mixers and multiplexers, two-phase realizations are bulky. Com­
pared to four-phase realizations they are significantly larger, have a langer cycle­
time, and use more energy per cycle.

Another component with a relatively complex two-phase implementation is the
passivator, a component that is used in input -output communication. In a two-phase
implementation of a passivator the data has to be latebed during each handshake,
whereas in the true four-phase protocol we can do without latching.

The implementation of datapath operators (components that operate on data,
such as adders and Boolean operators) is essentially the same in two and four-phase.
The symmetrie implementation of delays was traditionally claimed as an advantage
of two-phase over four-phase datapath operators. With the true four-phase protocol
that is applied in our single-rail circuits, however, four-phase delays can also im­
plemented symmetrically.

A complication in two-phase implementations ofhandshake componentsis that
fora lot of components self-initializable realizations do not exist. In all cases where
Toggles or call components are required, dedicated reset hardware is needed to force
the circuits into well-defined initial states. This reset circuitry has a negative impact
on the speed, power, and area characteristics of the resulting circuits.

In conclusion, two-phase handshaking does not seem to be an attractive altern­
ative for handshake circuits. Two-phase handshaking may appear to be more effi­
cient at the handshake channels, but some of the essential handshake components
become rather complex, which sweeps away any potential advantage.

On a speculative note, single-track handshaking (cf. Section 3.5) may be an al­
temative two-phase salution with interesting speed and energy prospects [9]. The
current implementation, however, requires a dedicated standard-cell library, which
makes it hard to apply to practical circuits directly, given the tendency towards gen­
etic standard-celllibraries. The testability of this implementation style is also still
unclear.

8.1.3 Single-rail micropipelines

Micropipelines were introduced by Sutherland in his Turing Award lecture [75],
in which he assigned the name to 'a partienlar simple farm of event-driven elastic
pipeline with or without internal processing.' Single-rail handshake signaling is
used to communicate between pipeline stages and the interface between stages con­
sists of a push handshake channel.

Micropipelines, and especially two-phase (transition signaling) realizations of
them, have become rather popular. They have, for instance, been used in AMU­
LETl, a micropipelined ARM processor designed in Manchester [32, 33, 31, 63].

Pipelines can straightforwardly be programmed in Tangram. There are some
properties of pipelines that make them an interesting subclass of handshake circuits,
most notably the increased freedom in the choice oflatch-control circuits. Intherest
of this section we first introduce the Tangram equivalent of a micropipeline, and
then campare the compiled circuit with dedicated micropipeline implementations
that are known from literature.

Tangram equivalent

An example of a Tangram program for a (micro)pipeline is shown below. The Tan­
gram program consists of three stages. The first stage includes internal processing
logic, represented by function f. The second stage is a 1-place FIFO element. The
structure of this program can of course be replicated to obtain langer (also called
'deeper') pipelines. Furthermore, the pipeline may be forked and joined, by split­
ting and combining the dataftow. Bypasses and counterflows can also be added, but
that is a VLSI programming exercise that falls outside the scope of this thesis.

begin
int type [0 .. 1023]

& f func (s:int) :int (...)
& a,b,c chan int

I begin x: var int forever do a?x b!f(x) od end

11 begin y: var int forever do b?y c!y od end

11 begin z: var int forever do c?z ... od end
end

The exact circuit realization of this pipeline depends on the compilation to hand­
shake circuits and the peephole optirnizations that are applied. Two handshake cir­
cuit realizations are possible, with slightly different performance characteristics.

Direct cornpilation of this Tangram program results in the handshake circuit of
Fig. 8.1. Only the first two stages are shown. In this circuit, the passivators impie­
ment the synchronization that is required for communication, for instanee between

162 Chapter 8. Condusion

stage 1 stage 2:

Figure 8.1: Handshake circuit for a Tangram-programmed pipeline with synchron­
ization in datapath (passivators).

b! f (x) and b?y.

Bath the double-rail and the two-phase single-rail implementation of passivat­
ors are rather expensive (in termsof area and energy). An alternative totheuse of a
passivator is to move the synchronization from the datapath to the control, via peep­
hale optimization. This ruleis introduced in [6] andresultsin the handshake circuit
show in Fig. 8.2. Basically, this rule replaces the synchronization of two (otherwise
independent) data transfers by one synchronized data transfer. The behavior of the
substituted circuit is not fully equivalent, but allows for only a subset of the ori­
ginal behavior (this is detailed later). The join component implements the control
synchronization.

:stage 1 ;stage 2 .

.
~-------------------·-----------------------------·-------------------

Figure 8.2: Handshake circuitfora Tangram-programmed pipeline with synchron­
ization in control path (joins).

The compilation of the handshake circuit with the passivator (Fig. 8.1) is de­
scribed inSection 4.3. The input transferrer in each stage (left) is implemented such
that the latehes in the associated variabie are made transparent befare the commu-

8.1. 163

nication with the passivator of the previous stage is initiated. The output transferrers
(right) and the passivator are implemented such that the actual synchronization in
the passivator takes place only after the delay-matching has completed. With this
implementation (which actually corresponds to the true four-phase compilation of
the handshake circuit), each stage is implemented such that the latehes are operated
in what is called a normally transparent way. Only when the output is actually in­
terpreted, are the latehes opaque.

The behavior of the circuit that is generated for Fig. 8.2 is subtly different. In
this peephole-optimized handshake circuit, latehes in a variabie are made transpar­
ent only after the two sequencers that are involved in a communication have syn­
chronized through the join component. The latehes are thus normally opaque. The
latehes in variabie y, for instance, are opened after the first delay-matching phase
through f(x), rather than immediately after y has been copied to z, as in Fig. 8.1.

Which implementation of the pipeline control is preferred depends on the per­
formance characteristics that are required. The direct implementation (Fig. 8.1) has
reduced latency, but can consume more power when the data from f makes spurious
transitions.

In four-phase, the implementation costs (circuit area) of the two handshake cir­
cuits are almost equal. In two-phase, however, the implementation of the passiv­
ator requires a latch per bit. Therefore, in two-phase, the handshake circuit from
Fig. 8.2 should be chosen. The two-phase implementations of the transferrer and the
sequencer consist of wires only. The join is implemented with a single C-element.
The repeater is required only for initialization (start up) purposes and corresponds to
the combination of the bubble and the reset of the C-element from Sutherland' s im­
plementation. The two-phase implementation of the handshake circuit from Fig. 8.2
thus is equivalent to the normally-opaque implementation as described in [63].

In the AMULET project at Manchester University a lot of different two-phase
and four-phase micropipeline control circuits have been investigated, see for in­
stance [32, 63, 25]. The condusion seems to be that a four-phase control circuit is
more area-efficient and leads to significant faster circuits. Famsworth proposes to
apply some of these control circuits in the implementation ofTangram-programmed
pipelines [30]. Basically, any dedicated micropipeline control circuit can be applied
in Tangram pipelines through peephole optimization. Pipeline structures can thus
be programmed straightforwardly in Tangram and compiled to efficient circuit im­
plementations.

8.1.4 Synchronous circuits

The main difference between an asynchronous and a synchronous datapath is in the
enabling of the latehes and flip-flops. The doek in a synchronous circuit enables

164 8. Condusion

all flip-flops at all clock ticks, unless clock gating is applied. In a single-rail circuit,
latehes are enabled only if a data-transfer really has to take place. The distributed
handshake control in combination with the high enable efficiency makes the single­
rail circuits potentially highly power efficient.

Por the DCC error detector we have demonstraled an interesting power advant­
age: the single-rail realization consumes only a fifth of the energy (and power) of
the synchronous realization (see Chapter 7 and [10]). A more extensive discussion
of the asynchronous low-power potential, annotated with various examples, and
including a quantification of the power efficiency of synchronous circuits, can be
found in [17].

In many asynchronous circuits the supply voltage can be tuned without risk­
ing malfunctioning of the circuit. This feature can be exploited to control the sup­
p1y voltage such that the resulting performance of the circuit exactly matches the
required performance [62], thus delivering the specified performance at minimum
(average) voltage and hence at minimum power. In a synchronous implementation
this adaptive sealing of the supply-voltage is less straightforward.

An important difference between synchronous circuits and single-rail asynchron­
ous circuits is the way timing is dealt with. In a synchronous circuit the clock is
specified such that the worst-case computation time can be accommodated within
a full or half clock cycle (depending on the particular clocking scheme that is ap­
plied). In a single-rail circuit, delays are implemented on chip to achieve essentially
the same goal: safe data transfer.

The handshake signaling in a single-rail circuit, which is used to replace the
doek of a synchronous equivalent, in general implies that the asynchronous real­
ization requires more silicon area. The area overhead depends on the application,
but need not be more than 20%; a tigure that was demonstrated for the DCC error
detector.

There are several reasans why the area overhead can be relatively small. First
of all, our single-rail circuits arebasedon latehes rather than flip-flops. This means
that starage effectively may require less area. (Sometimes, however, two latehes
are required to imptement operations on state variables, in which case the latch ad­
vantage disappears.) The logic in a single-rail datapath is equivalent to the syn­
chronous logic, so this does not result in an area overhead either. The distributed
control, which is required to achieve the power efficiency of asynchronous circuits,
does contribute to the extra area. Part of the area required for the asynchronous con­
trol cancels against the area required for the central synchronous controller, which
is often implemenled in ROM.

In situations where raw speed is the main design criterion, synchronous circuits
are generally more applicable than asynchronous circuits based on handshakes. The
handshaking overhead is part of the critical timing path and thus directly lirnits the

8.2. 165

maximum attainable speed.

The availability of a global doek, in combination with flip-flops, makes the test­
ability of a synchronous circuit a manageable task. Scan techniques can be straight­
forwardly applied to achieve complete observability of the state of the circuit. The
overhead of full scan is limited to the 1arger scan flip-flops and the routing of a test
control signal and the scan path. In a single-rail circuit, withits latch-based datapath
and local enabling, full observability is less straightforward. The cost of full scan
is high if this implies that alllatehes are simply replaced by flip-flops. In the Tan­
gram project, partial scan in combination with design-for-test has been successfully
applied to obtain full observability at acceptable (low) cost [69, 79].

8.2 Strengtbs

The main contribution of the single-rail design flow as advocated in this thesis is
its push-button aspect. It turned out to be feasible to compile handshake circuits
to single-rail netlists automatically, with high confidence in the correctness of the
resulting silicon. This design flow has actually been implemented and resulted in
first-time-right silicon in the form of a single-rail DCC error detector.

A secoud strength is that a generic standard-celllibrary proved to be sufficiently
powerlul to implement all asynchronous elements (C-elements, delays, and even
arbiters [15]). Throughout the project this has helped us in easily retargeting the
design-flowtoother celllibraries. The addition of a new 0.5J1. CMOS technology
(not scaled from the original 0.8J1. library, with a different latch, and several cells
that were not available in the 0.8tt library) as target to the design-flow, for instance,
was a matter of hours rather than days.

The only assumptions that have to be verified in the mapping onto the celllib­
rary are those of the isochronie fork, the timing assumptions in the actual imple­
mentation of the delay elements, and the driver strategy.

Throughout this thesis the power of peephole optimization has been illustrated
in numerous examples and on various levels of representation. Silicon compilers
based on syntax-directed translation are often criticized because they supposedly
lead to inefficient circuit realizations. These critics generally neglect the combined
power of simple representations and peephole optimizations, techniques that are
common in software design and compilers. A clear advantage of peephole optimiz­
ation is that additional rules can straightforwardly be added to the design flow. The
effect of this leads to a learning curve, as is illustrated in Table 8.3 for single-rail
implementations of the DCC error detector.

From the table one may abserve that the area efficiency of the single-rail im­
plementation of handshake circuits is still improving. The extra improverneut in

166 8. Condusion

Version • #MOSts #cells #gate eq. perc. date
SR core of chip 21,796 3,296 5,035 105% Jun 94
SR layout 20,288 3,101 4,783 100% Feb95
SR netlist 19,912 3,017 4,684 98% Dec95
SR netlist 21,542 2,904 4,559 95% Dec95

Table 8.3: Single-raillearning curve for the DDD. The first three entties refer to the
0.8,u celllibrary that is also assumed throughout the rest of the thesis. The lastentry
applies toa richer (0.5,u) celllibrary. (The unit for gateequivalentsis the celi-area
of a two-input NAND.)

the last entry in the table is due to a slightly richer cell library, which is exploited
in a few additional peephole rules. The transistor count is higher because of the
different implementation of the latch.

A key advantage of single-rail handshake circuits is their low power consump­
tion. The DCC error detector demonstrated a factor six advantage over synchron­
ous, and a factor two over double-rail.

A nice feature of the true four-phase protocol, which is used in this thesis to
imptement the single-rail handshake circuits, is that (performance wise) it is an ef­
.ficient four-phase protocol, in the sense that all phases of the handshake are func­
tional. The down phase of a four-phase handshakeis generally called retum-to-zero
phase, and is often also used like this, which means that all workis performed dur­
ing the up phase of the handshake. We have been able (at least in the datapath) to
spread the work over all four phases.

This true four-phase protocol allowed us to imptement symmetrie delays. In­
terestingly, Seitz [72, Sec. 7.8.2] does nat mention this option when he addresses
the implementation of single-rail datapaths:

The addition of a delay to any ordinary combinational net converts it to a

se(f-timed combinational element operating on single-rail data. IJ 2-cycle

request-acknowledge signaling is used, the delay should be symmetrical, and

for 4-cycle signaZing asymmetrical. Depending on the data-validity coding

scheme employed, the outputs may need to be loaded in latehes by a signa/

producedas Request and not Acknowledge.

The data-va lid scheme that is referred to in this text is the early scheme. This scheme
indeed requires asymmetrie delays, and has a (functionally) redundant retum-to­
zero phase.

8.3. Weaknesses 167

8.3 Weaknesses

In its current status, a weakness of the single-rail design-flow is the conservative
delay-matching that is used. During netlist generation, delays are matebed on a
worst-case basis. Mter the peephole optimization phase, some of these delays can
be reduced because the datapath has actually become faster. Furthermore, control
overhead can sametimes be discounted. None of these techniques have thus far
been implemented. They would require the use of timing analyzers to estimate the
worst-case computation times in the datapath and propagation times in the control
and through delay elements.

Low power is an important selling point for single-rail handshake circuits, but
there are also some weak points with respect to power. Most notably, ·we have not
restricted the number of spurious transitions in the datapath. In deep combinatorics
this may lead to a waste of power.

This also relates to another potential weakness, namely a loss in transparency
with respect to power from the VLSI progranuner's point of view. Most notably, in
double-rail handshake circuits, the energy required for an assignment is determined
by the number of bits in the variable, and its number of read ports (the number of
occurrences of the variabie in expressions). With single-rail implementations, the
energy required for an assignment also depends on the structure of the expressions
in which the variabie occurs.

Another potential weak point is raw speed. Handshake circuits are aimed at low
power, and achieve this by enabling datapatbs only when required. This, howcver,
introduces a handshaking overhead that cannot always be afforded, for instance, if
high performance is required. In that case a synchronous solution, possibly com­
bined with clock-gating, may result in better performance at acceptable cost.

8.4 Opportunities

Given the strengtbs and weaknesses of single-rail handshake circuits, the best op­
portunities are expected in applications in which low or medium range performance
is sufficient, low power is a key issue, and where a small (20%) area overhead over
synchronous circuits is acceptable.

The range of consumer-electronic products to which this applies includes port­
able, battery-powered products, such as phones, personal digital assistants (PDAs),
personal communicators, CD players, and video games. One of the targets of the
Tangram project therefore is to find an application in which asynchronous tech­
niques make a difference, in the sense that they contribute to a langer battery life­
time or a lighter product.

168 8. Condusion

Other potential applications for single-rail, or asynchronous techniques in gen­
era!, are circuits that have to deal with a highly variabie work load in a Iow-power
environment. In such applications the property that handshake circuits consume
zero stand-by power and require no additional wake-up time (for example to await
a well-defined doek signal) may proveto be essential.

Furtbermore, applications that are asyncbronous by nature, such as sample-rate
converters, or interfaces to DRAM, I2C, and I2S, can profit from single-rail imple­
mentations.

The target application for single-rail handshake circuits excludes high-perform­
ance microprocessors, since in that case any asynchronous control directly limits
the maximum speed. Another implementation style that is not suited for single-rail
circuits is that of pipelined digital signa! processing in which clock rate and sample
frequency are about the same. Handshaking is then pure overhead and potentiai
average-case processing times cannot easily be exploited.

8.5 Threats

Although the potential advantage of single-rail handshake circuits over synchron­
ous circuits has been demonstrated, the success of asynchronous circuits is still not
guaranteed. On the one hand, advances in synchronous techniques may diminish
some of the key advantages; on the other hand, weaker points of single-rail may
turn out to be definite roadblocks.

A serious threat for the low-power advantage is clock-gating. Although this is
not expected to achieve the same low level of granularity in enabling as single-rail
techniques, it may be that in many applications clock gating doses a significant part
of the !ow-power gap. Clock gatingalso requires additional gates, so the low-power
advantage comes at the price of an increase in silicon area. This technique, ho wever,
could make the handshake overhead fortherest of the low-power gap unacceptable.

In today's technology, delay matching is relatively easy to implement because
wiring capacitances can be predicted rather accurately before routing, and transition
timescan be bounded. With very sma1l dimensions and many layers of interconnect,
this situation may change. Given the need to accommodate variations in processing
and operating conditions, it may become increasingly hard to implcment the delay
elements efficiently and still achieve acceptable performance.

Another threat for asynchronous circuits is that it is harder to come up with a
cost-effective push-button test strategy (automatic generation of test hardware and
test patterns) then for synchronous circuits. In a synchronous circuit one can chain
the flip-flops together in a scan chain and then use the clock to step-wise operate
both this chain and the circuit. The combination of the doek and the scan chain

8.6. Remaining issues 169

result in both high controllability and high observability at relatively low cost.

Single-rail implementations ofhandshake circuits have two properties that make
testing harder. First of all the handshake control results in circuits that are highly
autonomous. This makes if harder to control the operation of the circuit dming test,
for instance, if IDDQ testing is required. The addition of test-hardware may then be
required to introduce quiescent statesin which IDDQ measurements can take place.
Another complication is the use of latehes in the datapath. Although this has ad­
vantages during normal operation of the circuit, it makes it harder to introduce scan
ebains in a straightforward way. One could of course reptace the latehes by scan
flip-flops, but this would imply relatively high cost for testing. A more attractive
solution is to try to combine latehes into flip-flops.

8.6 Remaining issues

Single-rail has replaced double-rail as the implementation standard for handshake
circuit<; in the Tangram project. Although the single-rail design flow has already
resulted in working silicon, it is not yet mature enough to finish the investigation
into single-rail techniques. Some of the work that still has to be done is addressed
in this section.

8.6.1 Synthesis

Both in the control and the datapath we have foliowed an approach based on sub­
stituting gate implementations for handshake components and then using peephole
optimization to eliminate inefficiencies at component boundaries. Although this has
tumed out to be an effective strategy, it may be that the use of dedicated synthesis
tools results in better (smaller, faster) circuits.

For asynchronous controllers, quite a few automatic synthesis tools exist. These
tools are directly applicable to the control part of Tangram handshake circuits. The
ASSASSIN compiler from IMEC [85], for instance, can be applied to improve hand­
shake control circuits [51]. A likely consequence of the synthesis approach is a loss
in transparency.

Logic synthesis tools, which generally form a combination of logic optimizers
and technology mappers, can straightforwardly be applied to the data part of Tan­
gram handshake circuits. This might lead to more efficient realizations, although
improvements of more then 10% are very unlikely.

8.6.2 Performance

The emphasis throughout the thesis bas been on area and energy efficiency of the
implementations ofhandshake circuits. This led to the choice ofthe true four-phase
protocol for implementing operations in the datapath. Within this protocol, higher
performance can be achieved in the datapath by tighter delay-matching and by elim­
inating completion detection. This requires additional timing assumptions to be
made and thus comes at the costof more verification effort and possibly more spuri­
ous transitions in the datapath.

Another way to achieve higher performance may be to choose the early variant
of the four-phase handshake protocol, both in the control and the datapath. In the
datapath, the early scheme does notlead to fa.:;ter cycle times, since matching delays
cannot be reduced (their implementation cost increases, due to the quick reset), and
the complexity of lateh-control circuits increases. In the control, however, the pro­
tocol allows the (then functionally redundant) return-to-zero phases to be in paral­
lel withother (productive) phases. This may actually result in faster circuits. Fora
handshake variable, for instance, the true four-phase protocol requires at least eight
sequentia[handshake events for a read plus write handshake. In the early scheme
this number may be reduced to four sequentia! events. The higher degree of paral­
lelism of the early scheme, however, generally leads to more C-elements (to resyn­
chronize forked handshake events), which makes it hard actually to gain speed.

Bibliography

[1] Morteza Afghahi and Christer Svensson. A unified single-phase clock:ing
scheme for VLSI systems. IEEE Joumal of Solid-State Circuits, 25(1):225-
232, January 1990.

[2] Andrew Bailey and Mark Josephs. Sequencer circuits for VLSI programming.
In Asynchronous Design Methodologies, pages 82-90. IEEE Computer Soci­
ety Press, May 1995.

[3] H. B. Bakoglu. Circuits, Interconnections, and Packagingfor VLSJ. Addison­
Wesley, 1990.

[4] Peter Beerel and Teresa Meng. Semi-modularity and self-diagnostic asyn­
chronous control circuits. In Carlo H. Séquin, editor, Advanced Research in
VLSI: Proceedings ofthe 1991 UC Santa Cruz Conference, pages 103-117.
MIT Press, March 1991.

[5] C. H. (Kees) van Berkel, Martin Rem, and Ronald W. J. J. Saeijs. VLSI pro­
gramming. In Proc. International Conf Computer Design (!CCD), pages
152-156. IEEE Computer Society Press, 1988.

[6] C. H. (Kees) vanBerkeland Ronald W. J. J. Saeijs. Compilation of commu­
nicating processes into delay-insensitive circuits. In Proc. International Conf
Computer Design (/CCD), pages 157-162. IEEE Computer Society Press,
1988.

[7] Kees van Berkel. Beware the isochronie fork. Integration, the VLSI journal,
13(2):103-128, June 1992.

[8] Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, volume 5 of International Series on Parallel Computa­
tion. Cambridge University Press, 1993.

171

172

[9] Kees van Berkel and Arjan Bink. Single-track handshaking signaling with
application to micropipelines and handshake circuits. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, March 1996.

[10] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
Frits Schalij, and Rik van de Wiel. A single-rail re-implementation of a DCC
error detector using a generic standard-cell library. In Asynchronous Design
Methodologies, pages 72-79. IEEE Computer Society Press, May 1995.

[11] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
and Frits Schalij. Asynchronous circuits for low power: A DCC error cor­
rector. IEEE Design & Test of Computers, 11(2):22-32, Summer 1994.

[12] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Ron­
eken, and Frits Schalij. A fully-asynchronous low-power error corrector for
the DCC player. IEEE Joumal of Solid-State Circuits, 29(12):1429-1439,
December 1994.

[13] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
and Frits Schalij. A fully-asynchronous low-power error corrector for the
DCC player. In International Solid State Circuits Conference, pages 88-89,
February 1994.

[14] Kees van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken, and Frits
Schalij. Characterization and evaluation of a compiled asynchronous IC.
InS. Furber and M. Edwards, editors, Asynchronous Design Methodologies,
volume A-28 of IFIP Transactions, pages 209-221. Elsevier Science Publish­
ers, 1993.

[15] Kees van Berkel, Ferry Huberts, and Ad Peeters. Stretching quasi delay in­
sensitivity by means of extended isochronie forks. In Asynchronous Design
Methodologies, pages 99-106. IEEE Computer Society Press, May 1995.

[16] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits
Schalij. The VLSI-programming language Tangram and its translation into
handshake circuits. In Proc. European Conference on Design Automation
(EDAC), pages 384-389, 1991.

[17] Kees van Berkel and Martin Rem. VLSI programming of asynchronous
circuits for low power. In Graham Birtwistle and Al Davis, editors, Asyn­
chronous Digital Circuit Design, Workshops in Computing, pages 152-210.
Springer-Verlag, 1995.

173

[18] Erik Brunvand and Robert F. Sproull. Translating concurrent programs
into delay-insensitive circuits. In Proc. International Conf. Computer-Aided
Design (/CCAD), pages 262-265. IEEE Computer Society Press, November
1989.

[19] Steven M. Burns. Pelformanee Analysis and Optimization of Asynchronous
Circuits. PhD thesis, California Institute of Technology, 1991.

[20] Steven M. Burns and Alain J. Martin. Syntax-directed translation of concur­
rent programs into self-timed circuits. In J. Allen and F. Leighton, editors, Pro­
ceedings of the F~fth MIT Conference on Advanced Research in VLS/, pages
35-50. MIT Press, 1988.

[21] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and
arbiter circuits. IEEE Transactions on Computers, C-22(4):421-422, April
1973.

[22] Hsi-Chuan Chen and David Hung-Chang Du. Path sensitization in critica!
path problem. IEEE Transactlans on Computer-Aided Design, 12(2):196-
207, February 1993.

[23] Wesley A. Clark. Macromodular computer systems. In AF/PS Conference
Proceedings: 1967 Spring Joint Computer Conference, volume 30, pages
335-336, Atlantic City, NJ, 1967. Academie Press.

[24] D. Cohen. On holy wars and a plea for peace. Computer, 14(10):48-54, Oc­
tober 1981.

[25] Paul Day and J. Viv Woods. Investigation into micropipeline latch design
styles. IEEE Transactions on VLSI Systems, 3(2):264-272, June 1995.

[26] Mark E. Dean, David L. Dill, and Mark Horowitz. Self-timed logic using
current-sensing completion detection (CSCD). In Proc. International Conf.
Computer Design (/CCD), pages 187-191. IEEE Computer Society Press, Oc­
tober 1991.

[27] Mark E. Dean, David L. Dill, and Mark Horowitz. Self-timed logic using
current-sensing completion detection (CSCD). Journat of VLSI Signal Pro­
cessing, 7(1/2):7-16, February 1994.

[28] Daniel W. Dobberpuhl et al. A 200-MHz 64-b dual-issue CMOS micropro­
cessor. IEEE Journalof Solid-State Circuits, 27(11):1555-1564, November
1992.

174

[29] Jo C. Ebergen. Translating Programs into Delay-lnsensitive Circuits,
volume 56 of CWI Tract. Centre for Mathernaties and Computer Science,
1989.

[30] C. Farnsworth, D. A. Edwards, Jianwei Liu, and S. S. Sikand. A hybrid asyn­
chronous system design environment. In Asynchronous Design Methodolo­
gies, pages 91-98. IEEE Computer Society Press, May 1995.

[31] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V. Woods.
The design and evaluation of an asynchronous microprocessor. In Proc. In­
ternational Conf. Computer Design (/CCD). IEEE Computer Society Press,
October 1994.

[32] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A mi­
cropipelined ARM. InT. Yanagawa and P.A. Ivey, editors, Proceedings of
VLS/93, pages 5.4.1-5.4.10, September 1993.

[33] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, andJ. V. Woods. AMULET1:
A rnicropipelined ARM. In Proceedings IEEE Computer Conference (COM­
PCON), pages 476-485, March 1994.

[34] Jim D. Garside. A CMOS VLSI implementation of an asynchronous ALU.
InS. Furber and M. Edwards, editors, Asynchronous Design Methodologies,
volume A-28 of /F/P Transactions, pages 181-207. Elsevier Science Publish­
ers, 1993.

[35] W. Wayt Gibbs. Turning back the doek. Scientific American, 272(6), June
1995.

[36] Bruce Gilchrist, J. H. Pomerene, and S. Y. Wong. Fast carry logic for digital
computers. /RE Transactions on Electronic Computers, EC-4(4):133-136,
December 1955.

[37] E. Grass and S. Jones. Asynchronous circuits based on multiple localised
current-sensing completion detection. In Asynchronous Design Methodolo­
gies, pages 170--177. IEEE Computer Society Pre ss, May 1995.

[38] Jaco Haans. VLSI programming of multipliers in Tangram. Master's thesis,
Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1992.

[39] Jaco Haans, Kees van Berkel, Ad Peeters, and Frit<> Schalij. Asynchronous
multipliers as combinational handshake circuits. InS. Furber and M. Edwards,
editors, Asynchronous Design Methodologies, volume A-28 of /FIP Transac­
tions, pages 149-163. Elsevier Science Publishers, 1993.

Bibliography 175

[40] Pieter J. Hazewindus. Testing Delay-Insensitive Circuits. PhD thesis, Califor­
nia Institute of Technology, 1992.

[41] R. Hitchcock. Timing verification and the timing analysis program. In Proc.
A CM/IEEE Design Automation Conference, pages 594-604, 1982.

[42] Albert S. Hoagland. Digital Magnetic Recording. John Wiley & Sons, 1963.

[43] C.A. R. Hoare. Communicating sequentia! processes. Communications of
the ACM, 21(8):666-677, August 1978.

[44] C.A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[45] Abraham Hoogendoorn. Digital compact cassette. Proceedings ofthe IEEE,
82(10):1479-1489, October 1994.

[46] Kai Hwang. Computer Arithmetic: Principles, Architecture, and Design.
John Wiley & Sons, 1979.

[47] Anne Kaldewaij. A Formalismfor Concurrent Processes. PhD thesis, Dept.
ofMath. and C.S., Eindhoven Univ. ofTechnology, 1986.

[48] Joep Kessels. VLSI programming of a low-power asynchronous Reed­
Salomon decoder for the DCC player. In Asynchronous Design Methodolo­
gies, pages 44-52. IEEE Computer Society Press, May 1995.

[49] Joep Kessels, Kees van Berkel, Ronan Burgess, Marly Roncken, and Frits
Schalij. An error decoder for the compactdisc player as an example of VLSI
programming. In Proc. European Conference on Design Automation (EDAC),
pages 69-74, 1992.

[50] Lindsay Kleeman and Antonio Cantoni. Metastable behavior in digital sys­
tems. IEEE Design & Test of Computers, 4:4-19, December 1987.

[51] Tilman Kolks, Steven Vercauteren, and Bill Lin. Control resynthesis for
control-dominated asynchronous designs. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, March 1996.

[52] A. P. Kostelijk. Vera, a rule-balsed verification assistant for VLSI circuit
design. In Proc. ofthe VLS/89 Conference, pages 89-98, August 1989.

[53] A.P. Kostelijk. Verification ofelectronic designs by reconstruction ofthe hier­
archy. PhD thesis, Eindhoven University ofTechnology, September 1994.

176

[54] G. C. P. Lokhoff. Digital compact cassette. IEEE Transactions on Comsumer
Electronics, 37(3):702-706, August 1991.

[55] Lisa Maliniak. Single-rail DCC error detector ups speedandreduces sice and
power. Electronic Design, page 48, June 12 1995.

[56] Alain J. Martin. The limitations to delay-insensitivity in asynchronous cir­
cuits. In William J. Dally, editor, Sixth MIT Conference on Advanced Research
in VLSI, pages 263-278. MIT Press, 1990.

[57] Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in Con­
currency and Communication, UT Year of Programming Series, pages 1-64.
Addison-Wesley, 1990.

[58] Alain J. Martin. Asynchronous datapatbs and the design of an asynchronous
adder. Pormal Methods in System Design, 1(1):119-137, July 1992.

[59] W. M. McKeeman. Peephole optimization. Communications of the ACM,
8(7):443-444, 1965.

[60] Noel Menezes, Satyamurthy Pullela, and Lawrence T. Pileggi. Simulateous
gate and interconneet sizing for circuit-level delay optimization. In Proc.
A CM/IEEE Design Automation Conference, pages 690-695, 1995.

[61] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching, pages
204-243. Harvard University Press, Apri11959.

[62] L. S. Nielsen, C. Niessen, J. Spars0, and C.H. van Berkel. Low-power opera­
tion using self-timed and adaptive sealing of the supply voltage. IEEE Trans­
actfans on VLSI Systems, 2(4):391-397, December 1994.

[63] N. C. Paver. The Design and Implementation of an Asynchronous Micro­
processor. PhD thesis, Department of Computer Science, University of
Manchester, June 1994.

[64] Ad Peeters. The 'Asynchronous' Bibliography (in BIBTBX format). Uniform
Resource Locator: :I I . win. tue .nl/pub/tex/async. bib. z.
Corresponding email address: async-bib@win. tue.nl.

[65] Ad Peeters and Kees van Berkel. Single-rail handshake circuits. InAsynchron­
ous Design Methodologies, pages 53-62. IEEE Computer Society Press, May
1995.

Bibliography 177

[66] Marcel J. M. Pelgrom, Aad C. J. Duinmaijer, and Anton P. G. Welbers. Match­
ing properties of MOS transistors. IEEE Joumal of Solid-State Circuits,
24(5):1433-1440, 1989.

[67] J. Peterson. Petri net theory and modeZing of systems. Prentice-Hall, 1981.

[68] Miros1av Peehoueek Anomalous response times of input synchronizers.
IEEE Transactions on Computers, 25(2):133-139, February 1976.

[69] Marly Roncken. Partial scan test for asynchronous circuits illustrated on a
DCC error corrector. In Proc. International Symposium on Advanced Re­
search in Asynchronous Circuits and Systems, pages 247-256, November
1994.

[70] Manoj Sachdev. Iddq and voltage testable CMOS flip-flop configurations. In
Proceedings of International Test Conference, October 1995.

[71] Frits D. Schalij. Tangram manual. Teehuical Report UR 008/93, Philips Re­
search, Eindhoven, 1993.

[72] Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway,
editors, Introduetion to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[73] J. Spars~, C. D. Nielsen, L. S. Nielsen, and J. Staunstrup. Design of self-timed
multipliers: A comparison. InS. Furber and M. Edwards, editors, Asynchron­
ous Design Methodologies, volume A-28 of IFIP Transactions, pages 165-
179. Elsevier Science Publishers, 1993.

[74] Misheli J. Stucki, Severo M. Omstein, and Wesley A. Clark. Logical design of
macromodules. In AF/PS Conference Proceedings: 1967 Spring Joint Com­
puter Conference, volume 30, pages 357-364, Atlantic City, NJ, 1967. Aca­
demie Press.

[75] Ivan E. Sutherland. Micropipelines. Communications ofthe ACM, 32(6):720-
738, June 1989.

[76] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using
peephole optimization on intermediate code. ACM Transactions on Program­
ming Lanuages and Systems, 4(1):21-36, January 1982.

[77] Stephen H. Unger and Chung-Jen Tan. Clocking schemes for high-speed di­
gital systems. IEEE Transactions on Computers, 35(10):880-895, October
1986.

178 Bibliography

[78] Jan L. A. van de Snepscheut Trace Theory and VLSI Design, volume 200 of
Leefure Notes in Computer Science. Springer-Verlag, 1985.

[79] Rik van de Wiel. High-level test evaluation of asynchronous circuits. InAsyn­
chronous Design Methodologies, pages 63-71. IEEE Computer Society Press,
May 1995.

[80] Harry J. M. Veendrick. Short-circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits. IEEE Joumal of Solid-State Cir­
cuits, 19(4):468-473, August 1984.

[81] Harry J.M. Veendrick. The behavior of flip-flops used as synchronizers
and prediction of their failure rate. IEEE Joumal of Solid-State Circuits,
15(2):169-176, 1980.

[82] Tom Verhoeff. Delay-insensitive codes-an overview. Distributed Comput­
ing, 3(1):1-8, 1988.

[83] Tom Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of
Math. and C.S., Eindhoven Univ. ofTechnology, May 1994.

[84] Neil H.E. Weste and Kamran Eshraghian. Principles ofCMOS VLSI Design:
a Systems Perspective. Addison-Wesley, 1993. Second Edition.

[85] Chantal Ykman-Couvreur, Bill Lin, and Hugo de Man. Assassin: A synthesis
system for asynchronous control circuits. Technica} report, IMEC, September
1994. User and Tutorial manual.

[86] Jiren Yuan, Ingemar Karlsson, and Christer Svensson. A true single-phase­
clock dynamic CMOS circuit technique. IEEE Joumal ofSolid-State Circuits,
22(5):899-901, October 1987.

Summary

Nearly all digital ICs that are made today are synchronous, which means that for
their operation they depend on a clock signal. This perioctic signal essentially dic­
tates the pace at which the circuit is supposed to work. At Philips Research Labor­
atones Eindhoven the design of asynchronous I Cs is investigated. These circuits do
not use a clock signal, but instead employ handshaking to control the computation.

An important potential benefit of these asynchronous ICs is low energy con­
sumption, especially in applications in which the full computational potential of
the IC is not always required. This thesis starts at the point where this advantage
has been proven in an experimental DCC player, containing asynchronous ICs that
only consume a fifth of the energy of their synchronous contemporaries. Two is­
sues, however, hindered the application of asynchronous circuits at a large scale:
the ICs were clearly too large compared totheir synchronous counterparts and fur­
thermore required a dedicated standard-celllibrary. These two problems formed the
main motivation for the research doeurnenled in this thesis.

In order to understand the reason bebind these handicaps we should have more ·
insight into the design of asynchronous circuits, especially into the approach that is
pursued at the Nat.Lab. The metbod is based on the combination of VLSI-program­
ming and silicon compilation. In this approach a designer describes a function in
a VLSI-programming language, called Tangram. Tangram is a conventional pro­
gramming language with additional constrocts for parallelism, communication, and
reuse of hardware (sharing). Several tools are available to support the designer in
making trade-offs with respect to the area, speed, energy consumption, and testabil­
ity of a design.

The compilation from Tangram to silicon is performed in two steps. Firstly, the
Tangram program is compiled into an intermediale representation that we call hand­
shake circuits. In a secoud step the handshake circuit is mapped onto the required
standard-cell library. Subsequently, a layout can be made and based on that an IC
can be processed.

In the DCC chips, data was encoded using the double-rail scheme, which im­
plies that two wires per bit are used. Such a data-encoding scheme requires only

179

180

a minimum of timing assumptions and, therefore, the compilation from handshake
circuits to standard-celllibraries is simple. Although double-rail encoding leads to
highly reliable communication and robust I Cs, it is also the cause of the two prob­
Ierus identified above. The use of two wires per bit automatically leads to extra area
compared to synchronous circuits, in which one wireperbit suffices. Furthermore,
the efficient implementation of operations such as addition, in double-rail requires
a number of dedicated cells that are not available in present standard-cell libraties.

The single-rail part in the title of this thesis refers to the use of only one wire per
bit in combination with a separate wire to indicate the validity of the complete word.
The use of one wire per bit directly leads to a significant area reduction compared
to double-rail. Furthermore, using this encoding, operations on data can readily be

realized in any common standard-celllibrary. In addition tothese advantages, the
resulting circuits are faster and more energy efficient.

One of the contributions of this thesis is an inventory of single-rail handshake
protocols. It turns out that there are numerous ways to combine single-rail data en­
coding with handshake communication. This leads to a surprisingly rich domain of
alternatives to choose from.

The innovation of the research as documented in this thesis is neither single-rail,
nor handshake circuits in isolation, but the combination of these two in the context
of silicon compilation and a standard-celllayout style. Moreover, in the implement­
ation a four-phase handshake protocol is applied in which none of the phases is re­
dundant. lt was commonly believed that this was not possible.

The expansion of handshake circuits into single-rail realizations in a standard­
celllibrary is extensively documented in this thesis. The compilation has also been
automated completely in such a way that only minimal verification is required after
layout generation. It was not befarehand obvious that this could indeed be realized.

An important aspect of the design flow that we have implemented is peephole
optimization, a technique to improve the implementation efficiency stepwise that is
well known in compiler construction. We have chosen to keep the various compila­
tion steps and the respective representations simple. At each level peephole optim­
ization is applied to replace frequent combinations of elements by more efficient
ones (smaller, faster, and more energy efficient).

With the reimplementation of one of the DCC chips we have proven that the
single-rail design flow can indeed be applied successfully. The single-rail IC turns
out to be fully functional, both on a tester and in the experimental DCC player,
which really plays music.

Compared to the previously realized double-rail IC, the single-rail version is a
third smaller, uses only half the energy, and is a quarter faster. With respect to the
best present synchronous counterpart the single-rail demonstrator IC is about a sixth
larger, but uses only a sixth of the energy.

181

Single-rail handshake circuits appear to be an attractive technique to design low­
power ICs against little additional costs. Especially for portable products, which
are battery powered, the single-rail implementation of digital functions can make
an interesting contribution to a Jonger battery lifetime, a lighter product, or more
appealing functionality.

182

Samenvatting

Bijna alle digitale I Cs die gemaakt worden zijn synchroon, wat betekent dat ze voor
hun werking afhankelijk zijn van een klok. Dit periodieke signaal geeft in feite het
tempo aan waarin de chip geacht wordt te werken. Op het Philips Natuurkundig
Laboratorium wordt gewerkt aan de ontwikkeling van asynchrone I Cs, die voor hun
werking geen klok gebruiken. In plaats daarvan wordt handshaking gebruikt om de
berekening te sturen.

Een belangrijk potentieel van deze asynchrone ICs is laag energieverbruik, met
name in toepassingen waarin de volle rekenkracht van het IC niet altijd ingezet hoeft
te worden. Dit proefschrift begint op het punt waar dit energievoordeel is aange­
toond in een experimentele opstelling voor een DCC speler, met daarin asynchrone
ICs die slechts een vijfde van de energie van hun synchrone tijdgenoten gebruiken.
Twee feiten belemmerden echter grootschalige toepassing van deze asynchrone cir­
cuits: de ICs waren duidelijk te groot in vergelijking met synchrone tegenhangers
en vereisten bovendien een eigen bibliotheek van standaard cellen. Aan beide pro­
blemen moest dringend iets gedaan worden.

Om te begrijpen waardoor deze handicaps werden veroorzaakt moeten we iets
meer weten over het ontwerp van asynchone circuits zoals dat op het Nat. Lab. plaats­
vindt. De ontwerpaanpak is gebaseerd op een combinatie van VISI-programmeren
en siliciumcompilatie. Binnen deze aanpak beschrijft een ontwerper de te ontwer­
pen functie in Tangram, een VLSI-programmeertaal met, behalve de gewoonlijke
taalconstructen, ook constructen voor parallellisme, communicatie en hergebruik
van hardware. Diverse gereedschappen ondersteunen de ontwerper bij het maken
van afwegingen over oppervlakte, snelheid, energieverbruik en testbaarheid van zijn
ontwerp.

De vertaling van Tangram naar silicium verloopt in feite in twee stappen. Al­
lereerst wordt het Tangram programma vertaald naar een tussenrepresentatie die
we handshake circuits noemen. Daarna wordt het handshake circuit afgebeeld op
de gewenste standaard-cell bibliotheek en kan een layout en vervolgens een IC ge­
maakt worden.

Om de vertaling van handshake circuits naar standaard-een bibliotheek eenvou-

183

184

dig te houden werd in het verleden een minimum aan timing-aannames gemaakt.
De data werd daartoe gecodeerd in double-rail, wat inhoudt dat twee draden per
bit gebruikt worden. Hoewel deze codering tot zeer betrouwbare communicatie en
robuuste ICs leidt, is ze ook de oorzaak van de twee hierboven gesignaleerde pro­
blemen. Het gebruik van twee draden per bit leidt vanzelf tot extra oppervlakte ten
opzichte van synchrone circuits, waarin één draad per bit volstaat. Bovendien ver­
eist efficiënte implementatie van operaties zoals optellen in double-rail een aantal
speciale cellen die men niet in een hedendaagse standaard-een bibliotheek aantreft.

Het single-rail uit de titel van dit proefschrift verwijst naar het gebruik van één
draad per bit in combinatie met een aparte draad om de geldigheid van die data aan
te geven. Binnen deze codering kunnen operaties op data eenvoudig gerealiseerd
worden in elke standaard-een bibliotheek. Bovendien leidt dit tot een reductie in
oppervlakte en worden de schakelingen sneller en zuiniger.

Eén van de bijdragen van dit proefschrift is een inventarisatie van de mogelijke
manieren om single-rail codering van data te combineren met handshake communi­
catie. Dit leidt tot een verrassend groot aantal alternatieven en maakt het bovendien
mogelijk om een weloverwogen keuze te maken voor de beste variant.

Het vernieuwende aspekt van het onderzoek zoals beschreven in dit proefschrift
betreft niet single-rail of handshake circuits op zichzelf, maar de combinatie van
deze twee in de context van siliciumcompilatie en een standaard-een layout stijL
Bovendien is in de implementatie gebruik gemaakt van een vier-fasen handshake
protocol waarin geen van de fasen overbodig is, iets waarvan algemeen werd aan­
genomen dat dit niet mogelijk was.

In dit proefschrift wordt de vertaling van handshake circuits naar single-rail rea­
lisaties in een standaard-een bibliotheek uitgebreid beschreven. Deze vertaling is in
zijn geheel ook geautomatiseerd en wel zodanig dat er na het maken van de layout
slechts minimale verificatie noodzakelijk is. Vooral van dit laatste aspekt was op
voorhand verre van duidelijk dat het realiseerbaar was.

Een belangrijk aspekt van de ontwerpaanpak die we hebben geïmplementeerd is
peephole optimalisatie, een techniek om stapsgewijs de efficiency van implementa­
ties te verbeteren, die bij compilerbouw vrij algemeen wordt toegepast. We hebben
ervoor gekozen om de diverse vertaalstappen en de daarbij behorende representa­
ties eenvoudig te houden. Op elk niveau wordt peephole optimalisatie toegepast
om veel voorkomende combinaties van elementen te vervangen door efficiëntere
tegenhangers (kleiner, sneller, zuiniger).

Aan de hand van een herimplementatie van een van de DCC chips is bewezen
dat de single-rail ontwerpaanpak inderdaad succesvol kan zijn. Het single-rail IC
blijkt volledig functioneel, zowel op een tester als in de experimentele DCC speler,
waarmee werkelijk naar muziek geluisterd kan worden.

In vergelijking met de eerder gerealiseerde double-rail chip is de single-rail ver-

185

sie een derde kleiner, gebruikt hij de helft van de energie, en is hij een kwart sneller.
Ten opzichte van de beste huidige synchrone tegenhanger is de single-rail proefchip
ongeveer een zesde groter, maar gebruikt hij maar een zesde van de energie.

Single-rail handshake circuits lijken een aantrekkelijke manier om tegen ge­
ringe extra kosten energiezuinige ICs te ontwerpen. Vooral voor draagbare pro­
dokten, die door een batterij worden gevoed, kan een single-rail implementatie van
digitale functies een interessante bijdrage leveren aan een langere levensduur, een
lichter produkt, extra functionaliteit en, in het algemeen, tot een aantrekkelijker pro­
dukt.

186

Curriculum Vitae

Ad Peeters was bom on February 26, 1966, in Dongen, the Netherlands. After at­
tending the John F. Kennedy Atheneum in Dongen, he started his study Computing
Science at Eindhoven University of Technologyin September 1984. With an M.Sc.
thesis on extensions to trace theory for expressing lifeness properties he graduated
cum laude in September 1988.

Subsequently, he followed the two-year post-graduate designers course Soft­
ware Technology at the Stan Ackermans Institute, Eindhoven University. As part of
this course and inspired by the approach followed at Philips Nat.Lab., the design of
delay-insensitive circuits was investigated. After completing the course in Septem­
ber 1990, he started to work towards a doctorate in the area of asynchronous silicon
compilation.

When ESPRIT Project 6143 EXACT was initiated in July 1992, Ad started as a
researcher on this project, actually working for Eindhoven University, butspending
most of his time at Philips Nat.Lab., one of the partners in EXACT. Much of the
research documented in this thesis was carried out during this period, which ended
with the successful completion of EXACT in Summer 1995.

Since May 1995 Ad works as a research scientist in the IC Design Centre at
Philips Nat.Lab. in Eindhoven, the Netherlands.

Current address

Philips Nat.Lab., Bldg. WAY-41
Prof. Holstlaan 4
5656 AA Eindhoven
The Netherlands
E-mail: apeeters@ natlab.research. philips.com

187

Stellingen

behorende bij het proefschrift

Single-Rail Handshake Circuits

van

Ad M. G. Peeters

Technische Universiteit Eindhoven

juni 1996

1. Single-rail handshake circuits kunnen efficiënt worden gerealiseerd in syn­
chrone standaard-cel bibliotheken. Met het toevoegen van een paar asyn­
chrone cellen kan echter nog winst worden geboekt, in de zin dat circuits ge­
maakt kunnen worden die zowel kleiner, sneller, energiezuiniger als testbaar­
der zijn.

[lit] Dit proefschrift.

2. De verlengde isochrone vork, in het bijzonder de asymmetrische variant daar­
van, is een nuttig hulpmiddel bij het ontwerpen van asynchrone circuits. Het
biedt de mogelijkheid om het gat tussen quasi-vertragingsongevoelig en data
bundling stapsgewijs te dichten.

[lit] Kees van Berkel, Ferry Huberts, and Ad Peeters, Stretching quasi
delay insensitivity by means of extended isochronie forks. In Pro­
ceedings of the 2nd Working Conference on Asynchronous Design
Methodologies, pp. 99-106. IEEE Computer Society Press, (1995).

3. De combinatie van een krachtige VLSI-programmeertaal, transparante ver­
taling en peephole optimalisatie is concurrerend met logische synthese.

[lit] Dit proefschrift.

4. Asynchrone circuits zullen een steeds grotere rol gaan spelen in digitale VLSI
systemen, zowel vanuit het oogpunt van laag energieverbruik als uit snel­
heidsoverwegingen.

5. Adiabatisch schakelen, meerwaardige logica en wave pipelining zijn onuit­
roeibare niches binnen het VLSI ontwerp.

6. Hoewel S.T. Dougherty in [2] beweert dat zijn bewijs van het niet bestaan
van twee orthogonale Iatijnse vierkanten van orde zes anders is dan dat van
D. R Stinson in [1], zijn beide bewijzen op de volgorde van de argumenten
na identiek. Ze zijn beide gebaseerd op lineare algebra over GF(2) en zijn bo­
vendien, afgezien van het feit dat deelruimtes over GF(2) vaak lineaire codes
worden genoemd, niet code-theoretisch van aard.

[1] D. R Stinson, A short proof ofthe nonexistence of a pair of orthogo­
nallatin squares of order six, Joumal of Combinatorial Theory, Se­
ries A, 36, 373-376 (1984).

[2] S.T. Dougherty, A coding theoretic salution to the 36 officer problem,
Designs, Codes and Cryptography, 4, 123-128 (1994).

7. Het is beter een bijdrage te leveren aan de ontwikkeling van zwakke econo­
mieën dan elke hulp te onthouden zolang nog niet alle mensenrechten in zo'n
land worden gerespecteerd.

8. Het negeren van tijdsvariërende volatiliteit kan leiden tot significante afwij­
kingen van de veelgebruikte Black-Scholes formule voor het waarderen van
financiële opties.

[lit] F. Black and M. Scholes, The pricing of options and corporate liabi­
lities, Joumal of Politica/ Economy, 81, 637-659 (1973).

[lit] R. J. Mahieu and P.C. Schotman, An application of stochastic volati­
lity models. Submitted to Joumal of Applied Econometrics, (1996).

9. De onder runderen voorkomende erfelijke afwijking 'paardenhoef' heeft als
voordeel dat dieren met dit gebrek niet vatbaar zijn voor tussenklauwontste­
king. Het verdient daarom wellicht aanbeveling om deze afwijking middels
genetische manipulatie te cultiveren.

10. Het succes van de Nederlandse snijbloemenindustrie is voor een groot deel
te wijten aan gesubsidieerde verwarming van kassen en accijnsloze brandstof
voor vliegtuigen vanaf Schiphol. Samen met de Ethiopische aardbeien die
we in het vroege voo:rjaar aantreffen in de supermarkten en de varkens die
we voeren met soja uit hongergebieden om ze vervolgens levend naar Italië
te brengen en ze daar te verslachten tot Parma-ham illustreert dit dat de kosten
van brandstof onverantwoord laag zijn.

11. Bij de techniek van het hardlopen wordt de afstand van een voetplaatsing tot
het zwaartepunt remafstand (braking distance) genoemd. Dit suggereert ten
onrechte dat een landing voor het zwaartepunt vermeden moet worden. Mi­
chael Johnson en Haile Gebrselassie weerleggen deze aanname op een on­
geëvenaard wereldniveau.

12. Uit onderzoeken naar de relatie tussen fitheid en sportbeoefening blijkt ge­
woonlijk dat mensen gezonder zijn naarmate ze intensiever sporten. Bij een
onderzoek in de Verenigde Staten bleek dat tieners die volgens het volwas­
senrecht zijn veroordeeld na hun detentie gemiddeld crimineler zijn dan tie­
ners die volgens het jeugdrecht worden berecht (en dus gemiddeld lichtere
straffen krijgen). Hoewel dit soort onderzoeken veel interessant cijfermate­
riaal opleveren definiëren ze eerder een kip-ei-probleem dan dat er harde con­
clusies aan verbonden kunnen worden.

13. De hogere aaibaarheid van het konijn ten opzichte van de muis hindert on­
derzoek naar het ontstaan van prenatale afwijkingen bij de mens.

14. Zowel in de industrie als in de sport wordt openheid over successen en mis­
lukkingen, en dan vooral over de manier waarop deze zijn bereikt, onderschat
als instrument ter verbetering.

