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Abstract

Background: Gene set scoring provides a useful approach for quantifying concordance between sample transcriptomes

and selected molecular signatures. Most methods use information from all samples to score an individual sample, leading

to unstable scores in small data sets and introducing biases from sample composition (e.g. varying numbers of samples

for different cancer subtypes). To address these issues, we have developed a truly single sample scoring method, and

associated R/Bioconductor package singscore (https://bioconductor.org/packages/singscore).

Results: We use multiple cancer data sets to compare singscore against widely-used methods, including GSVA, z-score,

PLAGE, and ssGSEA. Our approach does not depend upon background samples and scores are thus stable regardless of

the composition and number of samples being scored. In contrast, scores obtained by GSVA, z-score, PLAGE and ssGSEA

can be unstable when less data are available (NS< 25). The singscore method performs as well as the best performing

methods in terms of power, recall, false positive rate and computational time, and provides consistently high and

balanced performance across all these criteria. To enhance the impact and utility of our method, we have also included a

set of functions implementing visual analysis and diagnostics to support the exploration of molecular phenotypes in

single samples and across populations of data.

Conclusions: The singscore method described here functions independent of sample composition in gene expression

data and thus it provides stable scores, which are particularly useful for small data sets or data integration. Singscore

performs well across all performance criteria, and includes a suite of powerful visualization functions to assist

in the interpretation of results. This method performs as well as or better than other scoring approaches in

terms of its power to distinguish samples with distinct biology and its ability to call true differential gene sets

between two conditions. These scores can be used for dimensional reduction of transcriptomic data and the

phenotypic landscapes obtained by scoring samples against multiple molecular signatures may provide insights for

sample stratification.

Keywords: Single sample, Gene set score, Singscore, Gene signature, Gene set enrichment, Transcriptome, Molecular

features, Molecular phenotypes, Dimensional reduction, Personalised medicine

Background

Several approaches have been developed to score

individual samples against molecular signatures (or gene

sets), including: ssGSEA (single sample gene set enrich-

ment analysis) [1], GSVA (gene set variation analysis)

[2], PLAGE (pathway level analysis of gene expression)

[3] and combining z-scores [4].

Hänzelmann et al. (2013) implemented all four of

these methods within the R/Bioconductor package GSVA

and performed a detailed comparison [2, 5]. It should be

noted that GSVA, PLAGE and z-scores use data from all

samples in the very first step to estimate gene distribu-

tions; GSVA performs kernel density estimation of the

expression profile for each gene across all samples, while

PLAGE and z-scores perform standardisation. Although

the ssGSEA implementation in the GSVA package nor-

malises the scores across samples, this is the final step
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and it can be disabled. The ssGSEA method is also im-

plemented through the GenePattern web-tool [6] which

does not normalise scores by default. Some methods

make assumptions about the data which may be unsuit-

able in certain cases, for instance, PLAGE and combined

z-scores are parametric methods that assume normality

of expression profiles, while the combined z-scores

method additionally makes an independence assumption

for genes in a gene set [7].

Here, we introduce a rank-based single sample scoring

method, singscore. Using breast cancer data and several

gene expression signatures we compare our approach to

the methods listed above. The singscore method is sim-

ple, making the scores directly interpretable (as a nor-

malised mean percentile rank), and our comparisons

show that it is not only fast, but it also produces stable

and reproducible scores regardless of the composition

and number of samples within the data. Finally, we in-

clude examples from breast cancer gene expression data

to show visualisation options and demonstrate the appli-

cation of the singscore method for molecular phenotyp-

ing in a clinical context.

Methods

The singscore method

For a sample transcriptome which has been corrected

for technical within-sample bias (i.e. RPKM, TPM, or

RSEM data for RNA-seq after filtering for genes with

low-counts), genes are ranked by increasing mRNA

abundance.

For bidirectional gene signatures (with separate up-

and down- regulated gene sets) or unidirectional signa-

tures with known direction (e.g. all genes are

up-regulated), genes are ranked based on their transcript

abundance in increasing order for the up-set and in de-

creasing order for the down-set. Mean ranks are separ-

ately normalised relative to the theoretical minimum

and maximum values, centered on zero and then

summed to provide the score (i.e. Stotal;i ¼ Sup;i þ Sdown;i)

which ranges between − 1 and 1. A sample with a high

score can be interpreted as having a transcriptome

which is concordant to the specified signature, and

scores reflect the relative mean percentile rank of the

target gene sets within each sample. The score (S) and

normalised score (S) are defined as:

Sdir;i ¼

P

gR
g
dir;i

Ndir;i

 !

ð1Þ

Sdir;i ¼
Sdir;i−S min;i

� �

S max;i−S min;i
ð2Þ

Where:

� dir is the gene set direction (i.e. expected up- or

down- regulated genes);

� Sdir, i is the score for sample i against the directed

gene set;

� R
g
dir;i is the rank of gene g in the directed gene set

(increasing transcript abundance for expected up-

regulated genes and decreasing abundance for ex-

pected down-regulated genes);

� Ndir, i is the number of genes in the expected up- or

down-regulated gene set that are observed within

the data (i.e. signature genes not present within the

RNA abundance data are excluded);

� Sdir;i is the normalised score for sample i against

genes in the signature, and;

� Smin, i and Smax, i are the theoretical minimum and

maximum mean ranks which can be derived from

an arithmetic sum (assuming unique ranks); for a

series of n numbers starting at a1 and with a constant

difference d, the sum can be calculated as ðn=2Þð2a1
þðn−1ÞdÞ. Setting a1 = 1, d = 1, n =Ndir, i and dividing

through by Ndir, i to obtain the mean:

S min;i ¼
Ndir;i þ 1
� �

2
ð3Þ

Similarly, the maximum value can be obtained by set-

ting a1 = (Ntotal – Ndir):

S max;i ¼
2N total;i−Ndir;i þ 1
� �

2
ð4Þ

Where:

� Ntotal, i is the total number of genes in sample i.

For undirected gene signatures (without a known or

expected direction for changes in expression), we com-

pute the average, absolute, median-centred rank (Eqs. 5

& 6). As the direction of genes in the gene-set are un-

known, this method only provides evidence of enrich-

ment of more-extreme gene ranks in either direction,

not necessarily information about the specific direction

(Additional file 1: Figure S1). Resulting scores range be-

tween 0 and 1; as shown in Eqs. 7 & 8, the normalisation

step is altered:

Si ¼

P

g R̂
g

i

N i

 !

ð5Þ

Si ¼
Si−S min;i

� �

S max;i−S min;i
ð6Þ

Where:
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� Si is the score for sample i against the undirected

gene-set;

� R̂
g

i is the absolute, median-centered rank of gene g

in the undirected gene set; i.e.

R̂
g

i ¼ jR
g
i −ceilð

N total

2
Þj, where ceil represents the

ceiling function;

� Ni is the number of genes in the undirected gene set

that are observed within the data (i.e. signature

genes not present in the RNA abundance data are

excluded);

� Si is the normalised score for sample i against the

undirected gene-set, and

� Smin, i and Smax, i are the theoretical minimum and

maximum mean ranks obtained from the arithmetic

series expansion. For undirected gene-sets, the mini-

mum (Smin, i) and maximum (Smax, i) values can be

derived as:

S min;i ¼
ðceilð

Ndir;i

2
Þ þ 1Þ

2
ð7Þ

S max;i ¼
ðN total;i−ceilð

Ndir;i

2
Þ þ 1Þ

2
ð8Þ

As shown above, scores are normalized against theoret-

ical minimum and maximum values, centered on zero (di-

rected signatures) and if applicable (bidirectional

signatures) scores are then summed. Centering and

normalization is performed in this manner to maintain in-

dependence between samples. This is similar to a Wilcoxon

rank-sum test when examining an expected up- or

down-regulated gene set.

If users have a gene set associated with a specific

cell phenotype and these genes undergo large changes

in expression, for example, the results from a differ-

ential expression analysis where genes are filtered by

significance (low FDR or adjusted p-value) and abun-

dance (high mean logCPM or logTPM), then, sing-

score can score individual samples with an estimate of

significance. Under the null hypothesis that members

of the expected up-regulated genes are not enriched

within high-abundance transcripts (and/or expected

down-regulated genes are not enriched within low

abundance transcripts), a permutation test with ran-

dom gene sets can be performed. Care should be

taken when interpreting such results without a spe-

cific biological hypothesis as gene sets expressed at

high levels and/or heavily influenced by the experi-

mental protocol (e.g. ribosomal gene RNAs) may lead

to spurious conclusions. As shown in Additional file 1:

Figure S2, when using a TGFβ-EMT gene set [8] to

score a TGFβ treated sample, the score greatly ex-

ceeds most permuted scores, while scores of control

samples appear near the lower tail of the null distribution.

When an individual (e.g. patient) sample is scored with an

appropriate signature, this can provide some confidence

that the transcriptome is concordant with the gene set

(which may be associated with response to specific therap-

ies or drugs).

Implementation of singscore

All statistical analyses were performed using R (v. 3.3

and greater) and Bioconductor (v. 3.4 and greater). We

have produced an R/Bioconductor package, singscore, to

implement this method, and have included several visu-

alisation functions that produce both static (using

ggplot2 [9]) and interactive (.html; using plotly [10])

plots.

Other scoring methods

The R/Bioconductor package GSVA (v1.26.0) was used

to evaluate the performance of the GSVA, ssGSEA,

z-score and PLAGE methods [7]. We have modified this

approach slightly to account for bidirectional signatures

where both expected up- and down-regulated gene sets

were available, with a method previously described in

Foroutan et al. [8]. As the ssGSEA method implemented

by GenePattern [6] does not normalise scores, we have

also included ssGSEA!Norm, by removing the (final) nor-

malisation step in the GSVA package implementation of

ssGSEA, to test performance in smaller data sets with

less samples. However, it should be noted that while

ssGSEA scores obtained from the GSVA package and

GenePattern are highly correlated, the scores are not dir-

ectly comparable (Additional file 1: Figure S3).

Data

In this study, we used The Cancer Genome Atlas

(TCGA) breast cancer [11] RNA-seq data (RSEM nor-

malised) and microarray data (RMA normalised from

Agilent4502A_07_03 microarray platform), the Cancer

Cell Line Encyclopaedia (CCLE) [12] breast cancer cell

line RNA-seq data (TPM normalised), raw fastq files for

breast cancer cell lines from Daemen et al. [13] (re-cal-

culated as RPKM; see Data processing below), and the in-

tegrated cell line TGFβ-EMT data from Foroutan et al.

[8] (Table 1).

Data processing

The SRA files from Daemen et al. were obtained July

2016 (GSE48213), and converted to fastq files using the

fastq-dump function in the SRA toolkit [14]. Reads were

aligned to the reference human genome hg19 using the

Rsubread package [15] in R/Bioconductor, and count

level data were obtained using the featureCount function
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with default parameters. The edgeR package [16] was

used to calculate RPKM values. All RNA-seq data were

filtered to remove genes with low counts in most sam-

ples; for example, for TCGA breast cancer data, genes

were retained if they had RSEM abundance > 2 in more

than 90% of samples. For all other data, we used proc-

essed versions available online (Table 1).

Simulations for comparing methods

Stability

Method stability was examined using 500 TCGA breast

cancer samples with both RNA-seq and microarray data

(Sample IDs in Additional file 2: Table S1), sub-sampled

to vary the number of samples and genes present for

each evaluation. To examine sample size effects upon a

given sample, si, two data sets were created by sampling

from both the RNA-seq and microarray data to select a

sample si and n − 1 other random samples. The score for

sample si was then computed using all listed methods,

and this process was repeated across all 500 samples at a

given sample size, such that there are 500 matched

scores in total from both the microarray data and

RNA-seq data. The Spearman’s rank correlation coeffi-

cient and concordance index were then calculated be-

tween sample scores from the microarray and the

RNA-seq data. We note that for some methods sampling

data in this manner can modify the background samples

for a sample of interest, reflecting the influence of over-

all sample composition on the final scores. A similar

analysis was performed by varying the number of genes,

sub-sampling genes from the gene set of interest.

We performed this analysis with both epithelial and

mesenchymal gene sets (expected up-regulated gene

sets) [17], and the bidirectional TGFβ-EMT signature

[8], varying the number of samples, NS = (2, 5, 25, 50,

500), and genes, NG = (1000, 3000, 5000, 10000, ALL-

GENES). All permutations were repeated 20 times to es-

timate error margins.

Power analysis and type 1 error

We evaluated the power of each method to differentiate

biologically distinct groups. For this, we simulated

RNA-seq data using methods from Law et al. [18]. An in-

verse chi-squared distribution was used to model dispersion

and the library size was left constant at 1.1 × 107. We simu-

lated NS = 30 samples and NG = 1000 genes, representing

two biological conditions (NS = 15 in each group) with 30

differentially expressed genes (DEGs) between them. This

simulation was repeated 100 times, each time creating three

gene sets of size 30 to represent the three scenarios with

different signal to noise ratios: (i) when 50% of the genes in

the gene set were differentially expressed (15 DEGs and 15

non-DEGs), (ii) when 80% of the genes were differentially

expressed (24 DEGs and 6 non-DEGs), and (iii) when none

of the genes were differentially expressed (30 non-DEGs).

We also varied the logFC of DEGs (effect size) across the

two conditions. We then used all methods to score samples

against these gene sets and applied a t-test on the scores to

evaluate the performance at separating the two conditions.

The statistical power and type 1 error (false positive rate)

were estimated at α = 0.05 for each effect size with a given

signal to noise ratio. The power was calculated as the pro-

portion of the positive tests (p-value < 0.05) in 100 simula-

tions for each scenario (50% DE and 80% DE). The type 1

error was calculated as the proportion of simulations where

non-DEG sets tested positive (i.e. false positives).

Gene-set recall

Next we compared methods for their ability to produce

different scores for two conditions with differentially

expressed gene sets. RNA-seq data were again simulated

using the method of Law et al. [18] with NS = 30 and NG

= 10,000, representing two biological conditions (NS = 15

in each group) with 2000 DEGs (logFC or effect size =

1.1). We repeated this simulation 100 times, each time

creating (i) 500 gene sets (of size 30) where 50% of genes

were DE, (ii) 500 gene sets where 80% of genes were DE,

and (iii) 500 gene sets where genes were randomly sam-

pled, representing gene sets with no signal. We then

scored samples against all 1500 gene sets in each simula-

tion and performed a t-test between the group scores.

Next, p-values from the 50% DEG set (500 p-values) and

non-DEG set (500 p-values) were combined and ad-

justed for multiple hypothesis testing to produce esti-

mated q-values [19]. These q-values were thresholded at

FDR = 0.05, with gene sets that tested positive consid-

ered as DEG sets. Performance of these predictions was

quantified using the F1 score which accounts for both

Table 1 List of data sets used in the current study

Data Source Date accessed Reference

TCGA RNA-seq The UCSC Cancer Genomics Browser [30] February 2016 PMID: 23000897

TCGA microarray The UCSC Cancer Genomics Browser [30] October 2015 PMID: 23000897

CCLE RNA-seq Cancer Cell Line Data Repository [31] April 2017 PMID: 22460905

Daemen et al. RNA-seq Gene Expression Omnibus [32] ID: GSE48213 July 2016 PMID: 24176112

TGFβ-EMT Data [33] from Foroutan et al. [8] September 2017 PMID: 28119430

GSE79235 Gene Expression Omnibus [32] April 2018 PMID: 27154822
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the precision and recall of each method. This was re-

peated for p-values from the 80% DEG sets and

non-DEG sets.

Comparing the computation time for scoring methods

To compare the computational time of each scoring

method, we randomly selected 10,000 gene sets from

MSigDB signatures [20, 21] and all methods were used

to score subsets of the TCGA breast cancer RNA-seq

data with either 25 samples or 500 samples. This was re-

peated 20 times to improve coverage of signatures on

MSigDB and allow variance estimates for the computa-

tion times. This comparison was performed on a UNIX

machine (Intel(R) Xeon ® CPU E5–2690 v3 @ 2.60GHz)

without code parallelisation.

Results

Technical considerations for singscore

Singscore results are highly stable compared to other

scoring approaches

Performance of the singscore method was compared to

GSVA, z-score, PLAGE, ssGSEA, and ssGSEA without

normalization (ssGSEA!Norm), using both microarray

and RNA-seq data from the TCGA breast cancer co-

hort. Overlapping samples between the two platforms

(NS = 500) were scored using three gene signatures: the

epithelial, mesenchymal, and TGFβ-induced EMT

(TGFβ-EMT) signatures [17], while the number of sam-

ples and genes in the data were varied (details given in

Methods). The Spearman’s correlation and concordance

index [22] between sample scores from the two plat-

forms were calculated. Our results show good stability

for singscore and ssGSEA!Norm compared to the other

methods when varying the sample number and number

of genes in the data (Fig. 1a, and Additional file 1: Fig-

ures S4 & S5), reflecting sample composition effects.

While all methods performed well for large data sets,

PLAGE had the worst performance with sub-sampled

data, whereas GSVA, z-score and ssGSEA showed a re-

duced stability compared to the singscore and ssGSEA!-

Norm in data sets with small sample sizes (NS < 25). This

demonstrates that the singscore may be particularly use-

ful in cases where sample numbers are relatively low, or

where there may be a heterogeneous sample compos-

ition (i.e. samples across different cancer subtypes with

unbalanced frequencies). We depict these effects by

changing the balance/composition of samples under

two settings: (1) overlaying mesenchymal scores for

control and TGFβ-treated cell lines (NS = 2–4) on to

the score distributions for a larger set of samples re-

lated to these groups (NS = 55–57; Additional file 1:

Figure S6), and (2) assessing the stability of scores in

data with a small number of control and TGFβ-treated

cell lines (NS = 2–4; Additional file 1: Figure S7).

Although PLAGE appeared to perform poorly in many

comparisons performed here, we believe this may

reflect the fact that the underlying metric was not de-

signed to account for directionality as discussed below.

Singscore has high power and gene-set recall ability

Using two simulation settings (see Methods) we com-

pared singscore to other approaches, assessing each

method’s power to distinguish biologically-distinct sam-

ple groups, and each method’s ability to call differential

gene sets between two groups. The power analysis

(Fig. 1b) showed that with the exception of PLAGE, all

methods performed equally well, and had similar false

positive rates or type 1 errors (Fig. 1c). Examining

gene-set recall (Fig. 1d), the singscore, GSVA and z-score

methods performed best when 80% of genes were differ-

entially expressed. All methods had relatively poor per-

formance when only 50% of gene set genes were

differentially expressed, however, singscore and GSVA

had slightly higher F1 scores.

The singscore method is computationally fast

An important factor for computational tools is run-time

and we note that ssGSEA!Norm and ssGSEA have much

longer compute times than all other methods when

tested with random signatures from MSigDB [20, 21]

(Additional file 1: Figure S8; details in Methods), whereas

singscore is very fast and comparable with GSVA,

PLAGE and z-score.

Application of singscore

Obtaining landscapes of molecular phenotypes

Scoring samples against multiple molecular signatures

and plotting them in 2D can be useful to stratify samples

based on the associated molecular phenotypes of sam-

ples. For example, scoring TCGA breast cancer samples

(NS = 1091 RNA-seq) and a collection of breast cancer

cell lines [13] (NS = 64 RNA-seq) against mesenchymal

and epithelial signatures from Tan et al. [17] (tumour

and cell line signatures, respectively) can refine the

stratification of patients and cell lines. Figure 2a shows

that samples with a high mesenchymal and low epithelial

score across the independent data sets [23] are particu-

larly enriched for a subset of aggressive, claudin-low

breast cancers. These samples have different expression

profiles when compared to samples with high epithelial

and low mesenchymal scores, enriched for a subset of

samples from a less aggressive subtype (e.g. luminal-A/B

tumours and luminal cell lines). Each sub-group can be

further analysed and contrasted, for example by compar-

ing different -omics data across these sub-groups, or by

examining their associations with patient survival or cell

line drug response.
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Comparing consistency of scores from independent data

sets

As singscore does not depend on the composition nor

size of a data set, it is tempting to speculate that cell line

scores for a given signature will be consistent across in-

dependent data sets. To examine this, we compared

transcriptomic data for breast cancer cell lines collected

from two studies [12, 13], and calculated both the epi-

thelial and mesenchymal scores across 32 overlapping

cell lines. As shown, the scores are largely consistent

(Fig. 2b), despite differences in computational pipelines,

gene expression metrics and experimental protocols for

the two datasets. For the small number of cell lines with

substantial variation in scores, we cannot exclude the

possibility that variation between the independently cul-

tured cells (i.e. cell line drift) may underpin observed

differences. We note that most cell lines with a large

variation in mesenchymal scores are from luminal

a b

c

d

Fig. 1 a Comparing the stability of scoring methods to changes in the number of samples and genes within transcriptomic data. For both Spearman’s

correlation coefficients and concordance index, a higher value indicates better performance, with 0 and 0.5, respectively, indicating poor performance for

each method. Similar results were observed when other signatures were used for scoring (Additional file 1: Figure S4 and S5); b Comparing the power of

methods to distinguish groups with distinct biology; c Comparing the type 1 error for different methods when distinguishing groups with distinct biology;

d Comparing the ability of methods to call true differential gene sets between two conditions
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sub-groups with consistently high epithelial scores

across the two datasets, while cell lines with the highest

variability in epithelial scores are from the claudin-low

sub-groups which also show consistently high mesen-

chymal scores (Fig. 2b). Variation in epithelial and mes-

enchymal scores for three representative cell lines

(HCC1428, HCC202, and MDAMB231) is illustrated in

Fig. 2c.

Assessment of scores: beyond a single value

When genes are ranked by increasing abundance,

higher ranks for expected up-regulated genes, and

lower ranks for expected down-regulated genes indi-

cate that the samples transcriptional profile is con-

cordant with the sample gene set being scored.

Considering gene set ranks which approach the max-

imum theoretical mean-ranks within a sample (see

Methods), the expected up- and down-regulated gene

sets should form an approximately bimodal distribu-

tion, with higher ranks for the up- and lower ranks

for the down-set. For samples that are not strongly

concordant with a signature, the distributions of

genes are less coordinated, and often uniformly dis-

tributed over a wide range of values.

To easily visualise the rank distribution of genes in the

up- and down-gene sets, the singscore R/Bioconductor

package provides static and interactive plots that display

density and barcode plots for gene ranks in individual

samples (Fig. 2d). These plots help to interpret the score

in the context of the ranked genes, and often demon-

strate that up- and down- gene sets can vary in their dis-

persion, contributing to the range of ranks we observe.

We often see that samples with a low score may have an

inverted pattern of expression (Fig. 2d, panel at left),

Fig. 2 a Epithelial and mesenchymal scores obtained from singscore for the TCGA breast cancer samples (hexbin density plot) and a collection of

breast cancer cell lines (circle markers, coloured by subtype). Note that as per the original study by Tan et al., the epithelial and mesenchymal signatures are

distinct (but overlapping) for tumours and cell lines; b Differences in epithelial and mesenchymal scores for 32 overlapping breast cancer cell lines

between Daemen et al. and the CCLE datasets. The majority of cell lines show relatively consistent scores in these two data sets (circled in the lower left

corner); c The HCC1428 cell line has very similar scores in each dataset, while the MDA-MB-231 cell line has a large shift in epithelial score, and the HCC202

cell line has a large shift in mesenchymal score; d Three microarray samples from the TGFβ- EMT data set [8] with low, medium and high scores for the

TGFβ-EMT signature; e Scatter plots demonstrating the relationship between rank dispersions (MAD) and scores obtained by singscore, for: total score

(combined up- and down-set scores), distinct expected up-regulated gene set scores, and distinct expected down-regulated gene set scores
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those with a score near the centre of the null distribu-

tion have no enrichment for the gene set (i.e. randomly

distributed gene ranks; Fig. 2d, middle panel), while high

scoring samples are concordant with the gene set tested

(Fig. 2d, panel at right).

To illustrate these differences, we alo calculate median

absolute deviation (MAD) of the gene set ranks to esti-

mate relative rank dispersion. Plotting scores against dis-

persion for the samples in the TGFβ-EMT data shows

that samples with a high total score also have lower dis-

persion, demonstrating more coordinated changes in the

up- and/or down-sets in these samples (Fig. 2e). The less

obvious yet useful application of this statistic is differen-

tiating samples with similar scores but distinct disper-

sion profiles; for example two samples may have a

similar gene set mean-rank, but in one sample these

may be tightly clustered and in the other they may be

uniformly distributed across a much larger range,

reflecting different regulation of this gene set. It is also

possible to look at the rank dispersion of the up- and

down- sets to assess the performance of each one separ-

ately. Fig. 2e shows that genes in the expected

up-regulated set of TGFβ-EMT signature are more coor-

dinated in samples compared to the down-set. These

visualisations may be used as diagnostic tools to help

users interpret gene set scores and possibly improve

them by identifying and filtering out less informative

genes.

Discussion

We have described a rank-based single sample gene set

scoring method, implemented in the R/Bioconductor

package singscore. Our method can easily be applied on

any high throughput transcriptional data from micro-

array or RNA-seq experiments. While our method is

non-parametric, genes with low read counts should be

filtered out, adjusted for gene length [24, 25], and ideally

for GC content bias [26] and other technical artefacts

[27, 28], because these may alter gene ranks within indi-

vidual samples. Accordingly, RNA abundance data for-

matted as RPKM, TPM, or RSEM can be used, with or

without log-transformation.

Using microarray and RNA-seq platforms of the

TCGA breast cancer data, we show that our singscore

approach yields stable scores for individual samples be-

cause they are treated independently from other sam-

ples, in contrast to GSVA, PLAGE, z-score, and ssGSEA

(Fig. 1a). Although modifying ssGSEA to exclude the

final normalization step (ssGSEA!Norm) also results in

stable scores, the raw scores produced by the ssGSEA!-

Norm algorithm cannot be directly interpreted (e.g. a

value of 0 carries no context). This issue became appar-

ent when comparing unnormalized ssGSEA scores from

either the GSVA or GenePattern implementations (using

the same parameters) where it was observed that while

the scores are highly correlated they are not directly

comparable (Additional file 1: Figure S3). While normal-

isation procedures used by GSVA and ssGSEA can be

useful with large representative data sets, scoring data

subsets where the relative composition of sample types

varies (such as can occur with permutation testing) can

cause the score of an individual sample to be unstable.

Evaluation of the type of small, imbalanced dataset

which may be encountered in a clinical context is shown

in Additional file 1: Figures S6 and S7. The singscore

method includes per sample normalisation and scaling

by considering the theoretical minima and maxima for

scores in each sample, and can be applied to a single

sample in isolation. We further show that this method

has a high power to distinguish samples with distinct

biology which is comparable to other methods, as well

as high F1 scores when identifying gene sets with differ-

ential expression, similar to the GSVA and z-score

methods (Fig. 1b, c and d).

We show that current implementations of both

ssGSEA!Norm and ssGSEA through the GSVA package

are computationally much slower than all other methods

when scoring samples against a large number of random

signatures (Additional file 1: Figure S8), while our

approach is fast. We note that while the performance of

PLAGE is poor across the majority of comparisons per-

formed in this study, this may be attributed to the fact

that the activity of a gene set is computed by projecting

samples onto the first eigen-vector of the expression

matrix. Due to this computation, scores vary a lot with

changes to sample composition, and the values may

rotate around 0, similar to how projections of observa-

tions can vary when performing PCA on sub-sampled

datasets. These observations suggest that the PLAGE

method is fundamentally different from all the other

scoring approaches and should be used only for within

dataset analysis and not analyses between data sets.

We compared breast cancer cell lines overlapping be-

tween the CCLE and Daemen et al. data and showed high

consistency in epithelial and mesenchymal scores obtained

by our scoring approach for the majority of cell lines

(Fig. 2b). Because only a small subset of cell lines show

large differences in epithelial or mesenchymal scores be-

tween the two data sets it is tempting to speculate that vari-

ations in scores are not due to the differences in technical

or computational pipelines, which would have affected all

the cell lines in the analysis. Rather it is possible that differ-

ences reflect real biological variation in the molecular phe-

notypes of some cells: the more-variable cell lines within

the Daemen et al. data have hybrid epithelial-mesenchymal

phenotypes (i.e. high epithelial and mesenchymal scores);

these cell lines may have a greater degree of

epithelial-mesenchymal plasticity allowing variations in
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their EMT phenotype under different experimental condi-

tions. Interestingly, all cell lines with relatively large varia-

tions along the mesenchymal axis and smaller differences

in epithelial scores are luminal cell lines which in general

are shown to have strong epithelial phenotype (Fig. 2b, and

[23]), while most cell lines with large shifts on the epithelial

axis and little change in mesenchymal scores are

claudin-low cell lines which have been shown to be strongly

mesenchymal (Fig. 2b, and [23]).

More recent single sample methods such as person-

alized pathway alteration analysis (PerPAS) [29] have

not been discussed here, as they are fundamentally

different from our approach. For example, PerPAS

needs topological information for each gene set to

perform pathway analysis, and further uses either a

control sample or a cohort of normal samples based

on which the gene expression data in single samples

are normalised [29]; these requirements make this

method unsuitable for many available datasets.

We also note that methods requiring a large num-

ber of samples and a balanced composition to calcu-

late a precise and stable score for individual samples

may need to be re-run several times across a large

data set when new samples are added. This adds

extra complexity which may not be obvious to most

users running such scoring methods. Our singscore

method provides a simple and easy-to-understand

pipeline which is also computationally fast. This

method performs as well as the comparable scoring

methods in large data sets in terms of stability, while

outperforming them in smaller data sets by providing

more stable scores, which are also easily interpretable.

We further show that, excluding PLAGE which had

relatively poor performance in these tests, all methods

had a similar power, type I error, and/or F1 score

when the signal to noise ratio was high, however, the

singscore, GSVA and z-score performed slightly better

for data with a less prominent signal. Several visual-

isation options at both the bulk and single sample

level are provided in the R/Bioconductor package

singscore to enable users to explore genes, gene

signatures, and samples in more depth.

Conclusion

In the context of personalised medicine there is an

increasing need to examine data from an individual

patient, or from a small number of samples in

pre-clinical experiments. Current scoring methods are

parametric and/or depend on a large number of sam-

ples to produce stable scores, while singscore gener-

ates scores that are stable across a range of sample

sizes and numbers of measured genes. This is due to

it being a non-parametric, rank-based, and truly single

sample method. Moreover, scores generated by our

method show high level of consistency across inde-

pendent data sets and can be normalised at a single

sample level, resulting in easily-interpretable scores.

Additional files
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the conclusions of the article. (DOCX 1948 kb)
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