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We consider the problem of optical tomographic imaging in the mesoscopic regime where the photon

mean-free path is on the order of the system size. It is shown that a tomographic imaging technique can be

devised which is based on the assumption of single scattering and utilizes a generalization of the Radon

transform which we refer to as the broken-ray transform. The technique can be used to recover the extinction

coefficient of an inhomogeneous medium from angularly resolved measurements and is illustrated with nu-

merical simulations. The forward data for these simulations were obtained by numerically solving the radiative

transport equation without any approximations. Tomographic imaging in slabs of different widths was consid-

ered and it was shown that the technique can tolerate a maximum width that corresponds to approximately six

scattering events. It is also shown that the use of broken rays does not result in additional ill posedness of the

inverse problem in comparison to the classical problem of inverting the Radon transform. Applications to

biomedical imaging are described.

DOI: 10.1103/PhysRevE.79.036607 PACS number�s�: 42.30.Wb

I. INTRODUCTION

There has been considerable recent interest in the devel-
opment of experimental methods for three-dimensional opti-
cal imaging of biological systems. Applications range from
imaging of optically thin �by which we mean nearly trans-
parent� cellular and subcellular structures to optically thick

systems at the whole organ level in which multiple scattering

of light occurs. In optically thin systems, confocal micros-

copy �1� and optical coherence microscopy �2� can be used to

generate three-dimensional images by optical sectioning. Al-

ternatively, computed imaging methods such as optical pro-

jection tomography �OPT� �3� or interferometric synthetic

aperture microscopy �ISAM� �4,5� may be employed to re-

construct three-dimensional images by inversion of a suitable

integral equation. In the case of OPT, the effects of scattering

are ignored and geometrical optics is used to describe the

propagation of light. The sample structure is then recovered

by inversion of a Radon transform which relates the extinc-

tion coefficient of the sample to the measured intensity of the

optical field. In the case of ISAM, the effects of scattering

are accounted for within the accuracy of the first Born ap-

proximation to the wave equation. An inverse scattering

problem is then solved to recover the susceptibility of the

sample from interferometric measurements of the cross-

correlation function of the optical field.

In optically thick systems, multiple scattering of the illu-

minating field creates a fundamental obstruction to image

formation. If the medium is macroscopically large and

weakly absorbing, only diffuse light is transmitted. By mak-

ing use of the diffusion approximation �DA� to the radiative

transport equation �RTE� and solving an appropriate inverse

problem, the aforementioned difficulty may, to some extent,

be overcome. This approach forms the basis of diffusion to-
mography which can be used to reconstruct images with sub-
centimeter resolution of highly scattering media such as the
human breast �6�. The relatively low quality of reconstructed
images is due to severe ill posedness of the inverse problem.

Despite significant recent progress in optical imaging of
both optically thin and thick media, little has been done for
imaging of systems of intermediate optical thickness. This
represents the subject of this study. In radiative transport
theory, such systems are referred to as mesoscopic, meaning
that the photon mean-free path �also known as the scattering
length� is on the order of the system size �7�. In the mesos-
copic scattering regime, applications to biological systems
include engineered tissues and semitransparent organisms
such as zebra fish. In this case, light exhibits sufficiently
strong scattering, so that the image reconstruction methods
of computed tomography are not applicable, yet the detected
light is not diffuse and diffusion tomography cannot be em-
ployed.

In mesoscopic systems, the DA does not hold and the
RTE must be used to describe the propagation of light �7�. In

this study, light transport in the mesoscopic regime is de-

scribed by the first-order scattering approximation to the ra-

diative transport equation. This enables the derivation of a

relationship between the extinction coefficient of the medium

and the single-scattered light intensity, which represents the

basis for a unique three-dimensional optical imagining tech-

nique that we propose and refer to as single-scattering opti-

cal tomography �SSOT�. SSOT uses angularly selective mea-

surements of scattered light intensity to reconstruct the

optical properties of macroscopically inhomogeneous media,

assuming that the measured light is predominantly single

scattered. The image reconstruction problem of SSOT con-
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sists of inverting a generalization of the Radon transform in

which the integral of the extinction coefficient along a bro-

ken ray �which corresponds to the path of a single-scattered

photon� is related to the measured intensity.

Our results are remarkable in several regards. First, simi-

lar to the case of computed tomography, inversion of the

broken-ray Radon transform is only mildly ill posed. Second,

the inverse problem of the SSOT is two dimensional and

three-dimensional image reconstruction can be performed

slice by slice. Third, in contrast to computed tomography, the

experimental implementation of SSOT does not require ro-

tating the imaging device around the sample to acquire data

from multiple projections. Therefore, SSOT can be used in

the backscattering geometry. Finally, SSOT makes use of

intensity measurements, as distinct from the more technically

challenging experiments of optical coherence microscopy or

ISAM, which require information about the optical phase. At

the same time, SSOT enables three-dimensional imaging,

therefore going beyond surface-imaging techniques.

This paper is organized as follows. In Sec. II, we discuss

the single-scattering approximation appropriate for the me-

soscopic regime of radiative transport. We then derive a re-

lationship between the scattering and absorption coefficients

and the single-scattered intensity. This relationship is then

exploited in Sec. III to discuss the physical principles of

SSOT. In Sec. IV, numerical algorithms for both the forward

and inverse problems are presented and illustrated in com-

puter simulations.

II. MESOSCOPIC RADIATIVE TRANSPORT

We begin by considering the propagation of light in a

random medium of volume V. The specific intensity I�r , ŝ� is

the intensity measured at the point r and in the direction ŝ

and is assumed to obey the time-independent RTE

�ŝ · � + �a�r� + �s�r��I�r, ŝ�

= �s�r�� A�ŝ, ŝ��I�r, ŝ��d2s�, r � V , �1�

where �a�r� and �s�r� are the absorption and scattering co-

efficients. The phase function A�ŝ , ŝ�� describes the condi-

tional probability that a photon traveling in the direction ŝ is

scattered into the direction ŝ� and is normalized, so that

�A�ŝ , ŝ��d2ŝ�=1 for all ŝ. Equation �1� is supplemented by a

boundary condition of the form

I�r, ŝ� = Iinc�r, ŝ�, ŝ · n̂�r� � 0, r � �V , �2�

where n̂ is the outward unit normal to �V and Iinc is the

incident specific intensity at the boundary.

The RTE �1� together with the boundary condition �2� can

be equivalently formulated as the integral equation

I�r, ŝ� = Ib�r, ŝ�

+� G�r, ŝ;r�, ŝ���s�r��A�ŝ�, ŝ��I�r�, ŝ��d3r�d2s�d2s�.

�3�

Here Ib is the ballistic �unscattered� contribution to the spe-

cific intensity and G is the Green’s function for the ballistic

RTE, which satisfies the equation

�ŝ · � + �a�r� + �s�r��Ib�r, ŝ� = 0 �4�

and obeys the boundary condition �2�. If a narrow collimated

beam of intensity I0 is incident on the medium at the point r1

in the direction ŝ1, then Ib�r , ŝ� is given by

Ib�r, ŝ� = I0G�r, ŝ;r1, ŝ1� , �5�

where the ballistic Green’s function G�r , ŝ ;r� , ŝ�� is ex-

pressed as

G�r, ŝ;r�, ŝ�� = g�r,r����ŝ� −
r − r�

�r − r��
	��ŝ − ŝ�� . �6�

Here

g�r,r�� =
1

�r − r��2
exp
− �

0

�r−r��
�t�r� + �

r − r�

�r − r��
	d��

�7�

and the Dirac delta function ��ŝ− ŝ�� is defined by

��ŝ − ŝ�� = ���ŝ − �ŝ�
���cos �ŝ − cos �ŝ�

� , �8�

where the extinction �attenuation� coefficient �t=�a+�s and

� and � are the polar angles of the respective unit vectors.

Note that g is the angularly averaged ballistic Green’s func-

tion

g�r,r�� =� d2sd2s�G�r, ŝ;r�, ŝ�� . �9�

By iterating Eq. �3� starting from I�0�= Ib, corresponding

to ballistic light propagation, we obtain

I�r, ŝ� = I�0��r, ŝ� + I�1��r, ŝ� + I�2��r, ŝ� + ¯ , �10�

where each term of the series is given by

I�n��r, ŝ� =� d3r�d2s�d2s�G�r, ŝ;r�, ŝ���s�r��A�ŝ�, ŝ��

�I�n−1��r�, ŝ�� . �11�

The Born series �10� can be regarded as an expansion

in the number of scattering events, each term corres-

ponding to a successively higher order of scattering �9�.
The convergence of this series requires that

��d3r�d2s�G�r , ŝ ;r� , ŝ���s�r��A�ŝ� , ŝ�����1, where � · �� is

the L� norm. For an isotropically scattering random medium,

this norm can be calculated to be on the order of ��s /�t��1
−exp�−�tR�� �9�, where R is the characteristic size of the

system. Thus, the convergence requirement for the Born se-

ries associated with the RTE is always satisfied. For the sys-

tem under investigation, this norm varies from 0.16 to 0.5, as

the amount of scattering is increased such that �sR varies

from 1.6 to 6.4, respectively. Therefore, very rapid conver-

gence is expected.

In general, the specific intensity can be decomposed as I

= Ib+ Is, where Is is the scattered part of the specific intensity.
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Within the accuracy of the single-scattering approximation,

Is is given by the expression

Is�r, ŝ� =� d3r�d2s�d2s�G�r, ŝ;r�, ŝ���s�r��A�ŝ�, ŝ��Ib�r�, ŝ�� .

�12�

Note that the single-scattering approximation is expected to

hold in the mesoscopic regime of radiative transport, where

the system size is on the order of the scattering length �de-

fined to be �s
−1�.

We now assume that the sample is a slab of width L and

that the beam is incident on one face of the slab at the point

r1 in the direction ŝ1 and that the transmitted intensity is

measured on the opposite face of the slab at the point r2 in

the direction ŝ2 �see Fig. 1�. We denote the scattered intensity

measured in an such experiment by Is�r1 , ŝ1 ;r2 , ŝ2�. Perform-

ing the integral in expression �12� with Ib given by Eq. �5�
and using Eq. �6� yields

Is�r1, ŝ1;r2, ŝ2�I0��	 − �1 − �2�����ŝ1
− �ŝ2

� − 	�

�
�s�R21�A�ŝ2, ŝ1�
r21 sin �1 sin �2

exp
− �
0

L1

�t�r1 + �ŝ1�d�

− �
0

L2

�t�R21 + �ŝ2�d�� , �13�

where ��x� is the step function, R21 is the position of the

turning point of the ray, r21=r2−r1, r21= �r21�, L1= �R21−r1�,
L2= �r2−R21�, and the angles �1 and �2 are defined by

cos �1,2= r̂21 · ŝ1,2. The details of the derivation of Eq. �13� are

presented in the Appendix. We note the following important

relations:

R21 = r1 + L1ŝ1 = r2 − L2ŝ2 �14�

L1 = r21

sin �2

sin��1 + �2�
, L2 = r21

sin �1

sin��1 + �2�
. �15�

The physical meaning of the various terms in Eq. �13� is

as follows. First, the angles �ŝ1,2
in the Dirac delta function

����ŝ1
−�ŝ2

�−	� are the azimuthal angles of the unit vectors

ŝ1,2 in a reference frame whose z axis intersects both the

position of the source and the detector �this axis is shown by

a dashed line in Fig. 1 and should not be confused with the z

axis of the laboratory frame shown by a solid line�. The

presence of this one-dimensional delta function is the mani-

festation of the fact that two straight rays exiting from the

points r1 and r2 in the directions ŝ1 and −ŝ2, respectively, can

intersect only if ŝ1 and ŝ2 and r21 are in the same plane

�equivalently, if �ŝ1
−�ŝ2

=0, 
	� and point into different

half planes �this requires that �ŝ1
−�ŝ2

= 
	�. Second, the

point of intersection exists within the plane only if �1+�2

�	, which is expressed by the step function ��	−�1−�2�.
We note that if, additionally, ŝ1 and ŝ2 are restricted, so that

ẑ · ŝ1�0 and ẑ · ŝ2�0 �ŝ1 points into the slab and ŝ2 points out

of the slab�, then R21 lies within the slab. Third, the factor

�s�R21�A�ŝ2 , ŝ1� is the “probability” that the ray is scattered

at the point r=R21 and changes direction from ŝ1 to ŝ2. This

factor is, in general, position dependent. Fourth,

1 /r21 sin �1 sin �2 is a geometrical factor. We note that it can

be equivalently rewritten as r21 /H21H12, where H21 and H12

are the two heights of the triangle �r1 ,R21 ,r2� drawn from

the vertices r1 and r2, respectively, as shown in Fig. 1. Fi-

nally, it can be seen that the integral of �t in the argument of

the exponential is evaluated along a broken ray which begins

at r1, travels in the direction ŝ1, turns at the point R21, travels

in the direction ŝ2, and exits the slab at r2.

Note that the mathematical developments of this section,

if viewed separately from the reminder of the paper, could be

understood by utilizing a simple intuitive picture of single

scattering. However, we have presented the detailed deriva-

tions for two reasons. First, the geometrical prefactor in front

of the exponent is important. Although it will not be used

directly in this paper, knowledge of this factor is needed for

separate and simultaneous reconstruction of the scattering

and absorption coefficients. Such reconstruction is, in fact,

possible and will be reported by us elsewhere. Note that

obtaining the geometrical prefactor from simple physical ar-

guments is not evident. Second, Eq. �13� can be viewed as

the starting point for obtaining higher-order scattering ap-

proximations. Notably, accounting for the second-order scat-

tering does not cause the problem to become three dimen-

sional and will be the subject of future work. It is important

to note, however, that the main content of this work is in

Secs. III and IV in which it will be shown how to utilize the

above mathematical result for tomographic image recon-

struction.

III. PHYSICAL PRINCIPLES OF SSOT

The physical principle of SSOT is illustrated in Fig. 2

where a slab-shaped sample is illuminated by a normally

incident beam. Angularly selective detectors measure scat-

tered light intensity on the opposite side of the slab. In the

absence of scattering, the beam would propagate ballistically,

as shown by the green ray. Detection of such unscattered

rays is the basis of computed tomography. In the presence of

FIG. 1. �Color online� Illustrating the geometrical quantities

used in Eq. �13�. BR denotes broken ray.
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scattering, the ray can change direction as shown in Fig. 2�a�.
Of course, scattering does not result in elimination of the

ballistic ray. However, it is possible not to register the bal-

listic component of the transmitted light. In the example

shown in Fig. 2�a�, it is assumed that only the intensity of the

broken ray shown by the red line is detected. To avoid de-

tection of the ballistic component of the transmitted light, the

angularly selective source and detector are not aligned with

each other. Moreover, the data can be collected either on

opposite sides of the slab �transmission measurements� or in

the backscattering geometry. In both cases, rotation of the

instrument around the sample is not required.

SSOT is based on radiative transport theory, which does

not allow for the description of interference and diffraction

effects. We can, however, estimate the importance of these

effects by considering the diffraction of Gaussian beams—an

effect not accounted for in the RTE. We first note that SSOT

is a modality for tomographic imaging of random media such

as biological tissues on scales which are larger than the scale

of microscopic fluctuations. Thus, we do not hope to be able

to reconstruct the positions of individual cells. This aspect

differentiates SSOT from the various microscopy techniques

mentioned in Sec. I and it also sets the theoretical resolution

limit of the method to the scale of the photon mean-free path

about 50–100 �m. Thus, the narrow beams used in SSOT

should be ideally Gaussian beams of about 100 �m in the

waist. Assuming the use of visible light with the central

wavelength of about �=0.5 �m, it is possible to show that

Gaussian beams with such parameters propagate over the

distances of a few centimeters without any noticeable diver-

gence. From this we also conclude that the effects of diffrac-

tion are not important for the problem at hand, unless the

width of the Gaussian beam is reduced below 100 �m.

However, due to the limitations mentioned above, there is no

particular need for such reduction. Consequently, we con-

clude that the theoretical limit of resolution we can achieve

with SSOT is a fraction of a millimeter in samples of a few

centimeters depth.

By utilizing multiple incident beams and detecting the

light exiting the sample at different points, as shown in Fig.

2�b�, we will see that it is possible to collect sufficient data to

reconstruct the spatial distribution of the attenuation coeffi-

cient in a fixed transverse slice of the slab. In addition to

varying the source and detector positions, one can also vary

the angles of incidence and detection. In principle, this can

provide additional information for simultaneous reconstruc-

tion of absorption and scattering coefficients of the sample, a

topic we will consider elsewhere.

The image reconstruction problem of SSOT is to recon-

struct �a, �s, and A from measurements of Is. For simplicity,

we assume that �s and A are known, in which case we wish

to determine �a. To proceed, we use Eq. �13� to separate the

known or measured quantities from those that need to be

reconstructed and define the data function


�r1, ŝ1;r2, ŝ2� = − ln
 r21 sin �1 sin �2� Is�r1, ŝ1;r2, ŝ2�d�ŝ2

I0�sA�ŝ1, ŝ2�
� ,

�16�

where we have assumed that A is position independent. Note

that if Is is experimentally measured, the angular integration

on the right-hand side of Eq. �16� does not need to be per-

formed numerically. The measured data are necessarily inte-

grated in a narrow interval of �ŝ2
due to the finite aperture

and acceptance angle of the detector. Note also that the

above definition is only applicable for such configurations of

sources and detectors such that �1+�2�	. Otherwise, any

measured intensity is due to higher-order terms in the colli-

sion expansion which are not accounted for in Eq. �13�.
By making use of definition �16� and Eq. �13�, we find

that �t obeys the integral equation


�r1, ŝ1;r2, ŝ2� = �
BR�r1,ŝ1;r2,ŝ2�

�t„r���…d� . �17�

Here the integral is evaluated along the broken ray �such as

the one shown in Fig. 1�, which is uniquely defined by the

source and detector positions and orientations, and � is the

linear coordinate along the ray.

According to Eq. �17�, the attenuation function is linearly

related to the data function. In this respect, the mathematical

structure of SSOT is similar to the problem of inverting the

Radon transform in computed tomography except that the

integrals are evaluated along broken rays. Since �t may be

regarded as a function of two variables, it is sufficient to

consider only two-dimensional measurements. One possible

choice is to vary the source and detector coordinates, y1 and

y2, while keeping the angles of incidence and detection, �1

and �2, fixed. By �1 and �2 we mean here the angles be-

tween the z axis of the laboratory frame and the unit vectors

ŝ1 and ŝ2, respectively. Note that these angles are not equal to

the angles �1 and �2 shown in Fig. 1. The latter can vary in

the measurement scheme described in this section, while �1

and �2 are fixed. Below, we omit �1 and �2 from the list of

formal arguments of the data function and consider the equa-

tion


�y1,y2� = �
BR�y1,y2�

�t„y���,z��…�d� , �18�

where 
�y1 ,y2� is the two-dimensional data function.

(a) (b)

FIG. 2. �Color online� �a� Source-detector arrangement for

SSOT. Reconstruction is performed independently slice by slice.

The rectangle represents the area in which a reconstruction can be

performed. �a� Schematic illustration of the broken-ray �or single-

scattered ray, denoted here by BR� trajectory.
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As explained above, the selection of the points and direc-

tions of incidence and detection defines a slice in which �t is

to be reconstructed. In Fig. 1, this slice coincides with the yz

plane of the laboratory frame. Assuming that the x coordinate

is fixed, we then regard �t as a function of y and z. Three-

dimensional reconstruction is then performed slice by slice.

IV. IMAGE RECONSTRUCTION

In this section we illustrate image reconstruction in SSOT

using a numerical technique based on discretization and al-

gebraic inversion of the two-dimensional integral �18�. We

note that more sophisticated image reconstruction procedures

which utilize the translational invariance of rays may also be

derived. These methods are conceptually similar to those

previously developed for optical diffusion tomography

�10,11� and will be described elsewhere.

A. Forward problem

We begin by describing a method to generate simulated

forward data to test the SSOT image reconstruction. Assum-

ing an isotropically scattering sample with A�ŝ , ŝ��=1 /4	, it

can be shown from Eq. �3� �12,13� that the specific intensity

everywhere inside the sample is related to the density of

electromagnetic energy u�r���I�r , ŝ�d2s by the formula

I�r, ŝ� = Ib�r, ŝ� +
1

4	
� G�r, ŝ;r�, ŝ���s�r��u�r��d3r�d2s�,

�19�

where u�r� satisfies the integral equation

u�r� = ub�r� +
1

4	
� g�r,r���s�r��u�r��d3r�. �20�

Here g�r ,r�� is given by Eq. �7� and ub�r���Ib�r , ŝ�d2s is

the ballistic energy density. We note that the assumption of

isotropic scattering is the most stringent test for SSOT.

The specific intensity is computed by first solving integral

�20� and then substituting the obtained solution u�r� into Eq.

�19� �where the ballistic part Ib may be ignored�. Note that

I�r , ŝ� calculated from Eq. �19� satisfies the boundary condi-

tions at all surfaces. We also stress that this numerical ap-

proach is nonperturbative and includes all orders of scatter-

ing.

In the simulations shown below, Eq. �20� is discretized on

a rectangular grid and solved by standard methods of linear

algebra. The energy density u�r� is assumed constant within

each cubic cell and the corresponding values un=u�rn�,
where rn is the center of the nth cubic cell, obey the alge-

braic system of equations obtained by discretizing Eq. �20�.
The off-diagonal elements of the matrix of this system cor-

responding to the integral on the right-hand side of Eq. �20�
are given by ��sh

3
/4	�g�rm ,rn�, where h is the discretiza-

tion step. Here we can take advantage of the fact that �s was

set to be constant throughout the sample, while the inhomo-

geneities were assumed to be purely absorbing. Computation

of the diagonal elements is slightly more involved because

g�r ,r�� diverges when r→r�. In this case, we need to find an

approximation for the integral

S =
�s

4	
�

Vn

g�rn,r�d3r , �21�

where the integration is carried out over the nth cell. While

integration over a cubic volume is difficult, the important

fact is that the singularity in g�r ,r�� is integrable. We then

write, approximately,

S � �s�
0

Req

g�0,r�r2dr , �22�

where Req= �3 /4	�1/3h is the radius of a sphere of equivalent

volume. For a sufficiently fine disctretization, �tReq�1,

which allows us to write g�0,r��1 /r2. This leads to S

=�sReq, and the discretized version of Eq. �20� becomes

�1 − �sReq�un −
�sh

3

4	
�

m�n

g�rn,rm�um = ub�rn� . �23�

We note that this set of equations is an accurate approxima-

tion to integral �20� if �sReq��sh�1. However, since in

practice this inequality may be not very strong, the term

�sReq on the left-hand side of Eq. �23� is not neglected.

Equation �23� can be written in matrix notation as

W�u� = �b� , �24�

where

�n�W�m� =
1

�
�nm −

h2

�rn − rm�2

�exp�− �
0

rn−rm

�t�rm + û�rn − rm���d���1 − �nm�

�25�

with �nm being the Kronecker delta function, � being a di-

mensionless coupling constant defined by

� =
�sh

4	�1 − �sReq�
, �26�

�n �u�=un, and �n �b�=4	ub�rn� /�sh. Note that the quantity

ub�rn� is defined as an average over the nth cell, namely,

ub�rn�=h−3�Vn
ub�r�d3r.

Computing the elements of the matrix W requires the

evaluation of the integrals on the right-hand side of Eq. �25�.
For a homogeneous sample, this can be performed analyti-

cally. For an inhomogeneous sample, it is done numerically.

Once this is accomplished, Eq. �24� is then solved by matrix

inversion. We note that the symmetric matrix W is well con-

ditioned �14�. This is illustrated in Fig. 3 where we plot all

the eigenvalues of W for �s=0.08h−1 with the set of absorb-

ing inhomogeneities described in Sec. IV C. We also note

that W is positive definite, so that u and ub are positive. Also,

it was verified in all simulations that the diffuse component

of the density, defined as the quantity u−ub, was positive

everywhere inside the sample.
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Special attention must be given to the effects of discreti-

zation when computing the single-scattered intensity, the

data function, and the forward data. Since the computations

involve discrete rays, employing expressions �13� and �16�
that contain the delta function ����ŝ1

−�ŝ2
�−	� and the geo-

metrical factor 1 /r21 sin �2 sin �1 becomes cumbersome. In-

stead, we have derived the discrete analogs of these expres-

sions starting from Eq. �12� from which Eq. �13� has been

obtained. In particular, the expression for the single-scattered

intensity �the discrete analog of Eq. �13�� is obtained from

Eq. �12� as

Is�r2, ŝ2;r1, ŝ1� =
�sh

3

4	
g�r2,R21�ub�R21� , �27�

where ub�R21� is the average of ub�r� over the cell that con-

tains R21. This expression and expression �5� for the ballistic

intensity suggest the definition of the data function of the

form


�r2, ŝ2;r1, ŝ1� = − ln
4	

h3

Is�r2, ŝ2;r1, ŝ1�
I0�s

� . �28�

This is the discrete analog of Eq. �16�. Finally, the data func-

tion is calculated according with this expression and using

the specific intensity obtained from the discretized version of

Eq. �19�,

I�r2, ŝ2;r1, ŝ1� =
�sh

3

4	
�

r2−rn=ŝ2�r2−rn�
g�r2,rn�un, �29�

where un must be computed numerically for the selected

source. The condition on the sum means that summation is

performed only over cells that are intersected by the ray ex-

iting from the detection point r2 in the direction ŝ2. The

above formula is valid for the specific measurement scheme

which obtains when the intersection length of all such rays

with any cubic cell is constant. Otherwise, a more compli-

cated numerical integration must be employed. We note that

while Eqs. �28� and �29� are employed for simulated data,

Eqs. �13� and �16� must be used when experimental data are

available. Also, the use of experimental data avoids many

mathematical complications that arise due to discretization of

rays, needed to solve the forward RTE problem, which is

usually computationally intensive.

In order to model the noise in measured data, the specific

intensity obtained from the forward solver was scaled and

rounded, so that it was represented by 16-bit unsigned inte-

gers, similar to the measurement by a typical charge-coupled

device �CCD� camera. Then a statistically independent posi-

tively defined random variable was added to each measure-

ment. The random variables were evenly distributed in the

interval �0,nIav�, where n is the noise level indicated in the

figure legends below and Iav is the average measured inten-

sity �a 16-bit integer�. The dc part �the positive background�
of the intensity was not subtracted �this procedure is com-

monly applied to the digital output of CCD chips�. Then the

simulated intensity measurements, together with the appro-

priately scaled incident intensity I0 were substituted into Eq.

�16� to obtain the data function 
.

B. Inverse problem

We now describe the method by which we invert integral

�18�. The discrete version of Eq. �18� has the form

�
n

L�n�tn = 
�, �30�

where the same grid is employed as is used to solve the

forward problem and L�n is the length of the intersection of

the broken ray indexed by �= �y1 ,y2� with the nth cubic cell

�located within the selected x slice of the sample�. The ma-

trix elements L are determined from simple geometric con-

siderations. The matrix form of Eq. �30� is

L��t� = �
� . �31�

Equation �31� can be solved using a regularized pseudoin-

verse �15�, namely,

��t
+� = �L�

L�−1
L

��
� . �32�

Here �L�L�−1 is understood in the following sense:

�L�
L�−1 = �

n

���n
2 − ��

�fn��fn�

�n
2

, �33�

where ��x� is the step function, � is a small regularization

parameter, and �fn� and �n are the singular vectors and sin-

gular values �15�, respectively, of the matrix L. These quan-

tities are the solution of the symmetric eigenproblem

L�L�fn�=�n
2�fn�. A typical spectrum of singular values of L

for �s=0.08h−1, 1600 measurements and 342=1156 un-

known values of �t �the size of L in this example is 1600

�1156, so that the problem is slightly overdetermined� is

shown in Fig. 4. It can be seen that matrix condition number

�14� for the inverse problem is much larger than for the for-

ward problem. In the example shown in Fig. 4, the condition

number is �103. Thus the inverse problem is very mildly ill

posed.

C. Numerical results

In what follows, we illustrate applications of SSOT to

biological imaging. In particular, the numerical simulations

FIG. 3. �Color online� All 53 680 eigenvalues wn of the matrix

W of Eq. �24� computed for �s=0.08h−1 and the set of absorbing

inhomogeneities described in Sec. IV B.
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presented here are relevant for “semitransparent” systems,

such as zebra fish or engineered tissues. Also, the physical

situations analyzed here are experimentally encountered for

organ tissues at certain wavelengths of the illuminating beam

�16�.
Reconstructions were carried out for a rectangular isotro-

pically scattering sample of dimensions Lx=25h, Ly =122h,

and Lz=40h. The background absorption coefficient of the

sample was equal to 0.01h−1 and was spatially modulated by

absorbing inhomogeneities �the target�. The target was a set

of absorbing inclusions formed in the shape of letters, with

absorption varying from 0.06h−1 to 0.2h−1. The inclusions

were concentrated only in three layers x=6h, x=13h, and x

=20h, as shown in the columns marked model of Figs. 5–7.

The scattering coefficient was constant throughout the

sample, with three different values used throughout the simu-

lations corresponding to �s=0.04h−1, �s=0.08h−1, and �s

=0.16h−1. Thus, for example, in the case �s=0.04h−1 the

contrast of �t �the ratio of �t in the target to the background

value� varied from 2.0 in the letters RADIOL to 4.8 in the

letters DEPT. In the case �s=0.16h−1, the contrast was

smaller and varied from 1.18 to 2.12. We note that the con-

trast in the total attenuation coefficient depends weakly on

the background absorption coefficient compared to its depen-

dence on the background scattering coefficient.

The sources were normally incident on the surface z=0.

The detectors were placed on the opposite side of the sample

and the specific intensity exiting the surface z=Lz at the

angle of 	 /4 with respect to the z axis was measured. In this

situation there are two possibilities: the exiting rays either

make an angle of 	 /4 or 3	 /4 with the y axis. In some

cases, data from both directions were used. Note that the

distance Lz corresponds to the slab thickness L used in Sec.

II. The optical depth of the sample, �sLz, varied from 1.6, for

�s=0.04h−1, to 6.4, for �s=0.16h−1. This corresponds to the

mesoscopic scattering regime in which the image reconstruc-

tion method of SSOT is applicable.

Reconstruction of the total attenuation coefficient �t was

performed in slices x=xslice separated by a distance �x=h.

For each slice, the source positions were x=xslice, y=nh, and

z=0 with n being integers. The reconstruction area inside

each slice was 44h�y�77h ,4h�z�37h with the field of

view 34h�34h. At the noise levels n=0 and n=1%, only the

rays making an angle of 	 /4 with the y axis were used; for

the noise level n=3%, the exiting rays which make an angle

of 3	 /4 with the y axis were also used in order to improve

image quality of the reconstructions. Also, the regularization

parameter � in the regularized pseudoinverse �33� was varied

to obtain the best visual appearance of images. Note that the

absolute values of the reconstructed �t are not sensitive to

the choice of �. Qualitatively, the same results are obtained

by setting �=0, although we have found that selecting a

small but nonzero value of � tends to slightly improve image

quality.

The results of image reconstructions for various noise lev-

els are presented in Figs. 5–7, where we show both slices

containing inhomogeneities and neighboring slices in which

inhomogeneities are not present. It can be seen that the spa-

tial resolution depends on the noise level and contrast and

can be as good as one discretization step h. Note that the

FIG. 4. �Color online� All 1156 nonzero singular values �n of

the matrix L defined by Eq. �30� �the size of L in this example is

1600�1156�.

FIG. 5. Image reconstruction for a slab with �s=0.04h−1 and

various noise levels n. The absorbing inhomogeneities are placed in

the slices x=6h, x=13h, and x=20h and the rows show the slices

x=6h, 7h, 12h, 13h, 14h, 19h, and 20h. The same color scale is

used for all slices, with the target maximum �white� corresponding

to �t=0.24h−1 and the minimum to �t=0.
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reconstructed images are in very good quantitative agree-

ment with the model �all panels in each figure are plotted

using the same color scale� and stable in the presence of

noise. When �s=0.16h−1 �Fig. 7� the optical depth of the

sample is �sLz=6.4. This is a borderline case when scattering

is sufficiently strong, so that the single-scattering approxima-

tion of SSOT may be expected to be inaccurate. Indeed, the

image quality in Fig. 7 is markedly worse than in Figs. 5 and

6, yet the letters in the image remain legible.

We emphasize that the reconstructed images presented

here are based on simulated data obtained by solving the

RTE exactly, thereby accounting for all orders of scattering.

For samples which are optically thick, the resulting recon-

structions evidently exhibit artifacts due to the breakdown of

the single-scattering approximation �which is not possible

physically but achievable in simulations�. Such would be ab-

sent if only single-scattered light were detected. To illustrate

this idea, we present in Fig. 8 reconstructed images for the

case �s=0.16h−1 using forward data in which only single-

scattered light is retained. Here, instead of solving the full

RTE, the data function was directly calculated from Eq. �17�.
The aforementioned procedure of generating data overesti-

mates the performances of the imaging method. It can be

seen from Fig. 8 that, as expected, significantly better recon-

structions result.

V. DISCUSSION

We have investigated the problem of optical tomography

in the mesoscopic regime. Within the accuracy of the single-

scattering approximation to the RTE, we have derived a re-

lation between the absorption and scattering coefficients and

the specific intensity. In particular, for a homogeneously

scattering medium, we have shown that the intensity mea-

sured by an angularly selective detector is related to the in-

tegral of the attenuation coefficient along a broken ray. By

inverting this relation, we are able to recover the attenuation

coefficient of the medium. The practical implementation of

this method could be affected by too low or too high scatter-

ing strength or diffraction. However, issues related to these

FIG. 6. Image reconstruction for a slab with �s=0.08h−1. The

same color scale is used for all slices, with the target maximum

�white� corresponding to �t=0.28h−1 and the minimum to �t=0.

All the other details are as for Fig. 5.

FIG. 7. Image reconstruction for a slab with �s=0.16h−1. The

same color scale is used for all slices, with the target maximum

�white� corresponding to �t=0.36h−1 and the minimum to �t=0.

All the other details are as for Fig. 5.
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factors could be overcome by carefully considering the ex-

perimental situation. For instance, by using prior knowledge

of the scattering strength of various biological systems, one

could determine if the scattering is too low or too high for

this method to be applied and choose the appropriate imag-

ing technique. On the other hand, diffraction effects could be

negligible if, for instance, Gaussian pulses of waist on the

order of 0.1 mm are used.

The image reconstruction technique we have implemented

breaks down in the multiple-scattering regime. It is therefore

of interest to explore corrections to the single-scattering ap-

proximation considered here. In addition, since electromag-

netic waves in random media are, in general, polarized, ex-

ploring the effects of polarization within the framework of

the generalized vector radiative transport equation �8� may

provide additional information about the inhomogeneities in

the system. Finally, we note that a technique for fluorescence

imaging of mesoscopic objects has recently been reported

�17�. It would thus be of interest to investigate the fluores-

cent analog of SSOT.
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APPENDIX: DERIVATION OF EQ. (13)

Substitution of Eq. �5� into Eq. �12� with r=r2 and ŝ= ŝ2

results in the following expression for the single-scattered

intensity:

Is�r1, ŝ1;r2, ŝ2� = I0A�ŝ2, ŝ1�� �s�r�g�r2,r�g�r,r1��„û�r2 − r�

− ŝ2…�„û�r − r1� − ŝ1…d3r , �A1�

where we have used the notation û�r�=r /r. In the following

analysis, the manipulation of delta functions is done in ac-

cordance with the theory of generalized functions �18�.
We now make the change in variables r=r1+R, R=RR̂,

and d3r=d3R=R2dRd2R̂. The integral over d2R̂ is immedi-

ately evaluated and Eq. �A1� becomes

Is�r1, ŝ1;r2, ŝ2� = I0A�ŝ2, ŝ1�� g�r2,r1 + Rŝ1�g�r1

+ Rŝ1,r1��s�r1 + Rŝ1��„û�r21 − Rŝ1�

− ŝ2…R2dR . �A2�

We then write the remaining delta function as

��û − ŝ2� = ���û − �ŝ2
���cos �û − cos �ŝ2

� . �A3�

Here u=r21−Rŝ1 and � and � are polar angles of the respec-

tive unit vectors. It is convenient to work in a reference

frame whose z axis coincides with the source-detector line.

We then find that �û=�ŝ1

	. Consequently,

���û − �ŝ2
� = ����ŝ1

− �ŝ2
� − 	� . �A4�

We next write

��cos �û − cos �ŝ2
� = �„f�R�… , �A5�

where

f�R� =
r21 − R cos �1

�r21
2 − 2r21R cos �1 + R2

− cos �2. �A6�

It can be verified that if �1+�2�	, the equation f�R�=0 has

no positive roots. In the opposite limit, however, there is one

positive root R=L1. Note that the lengths L1 and L2 are de-

fined by Eq. �15� and illustrated in Fig. 1. We thus have

R2�„f�R�… = ��	 − �1 − �2�L1
2��R − L1�

�f��L1��
. �A7�

Computation of the above derivative is straightforward and

yields

FIG. 8. Image reconstruction for �s=0.16h−1 for a data function

corresponding only to single-scattered light and calculated accord-

ing to Eq. �18�. All the other details are as for Fig. 7.
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�f��L1�� =
L1

r21L2 sin2��1 + �2�
. �A8�

Collecting everything, we arrive at

R�„û�r21 − Rŝ1� − ŝ2… = ����ŝ1
− �ŝ2

� − 	�

���	 − �1 − �2�
r21L1L2��R − L1�

sin2��1 + �2�
. �A9�

We then recall that r1+L1ŝ=R21, L1= �R21−r1�, and L2= �r2

−R21� and obtain

g�r2,r1 + L1ŝ1� =
1

L2
2
exp
− �

0

L2

�t�R21 + ŝ2��d�� ,

�A10�

g�r1 + L1ŝ1,r1� =
1

L1
2
exp
− �

0

L1

�t�r1 + ŝ1��d�� .

�A11�

Finally, using Eq. �15�, we arrive at the result �13�.
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