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Abstract

We constructed a large-scale multi-quality multi-modal

biometric score database to advance studies on quality-

dependent score-level fusion. In particular, we focused

on single sensor-based multi-modal biometrics because of

their advantages of simple system construction, low cost,

and wide availability in real situations such as CCTV

footage-based criminal investigation, unlike conventional

individual sensor-based multi-modal biometrics that re-

quire multiple sensors. As for the modalities of multiple bio-

metrics, we extracted gait, head, and the height biometrics

from a single walking image sequence, and considered spa-

tial resolution (SR) and temporal resolution (TR) as quality

measures that simultaneously affect the scores of individual

modalities. We then computed biometric scores of 1912 sub-

jects under a total of 130 combinations of the quality mea-

sures, i.e., 13 SRs and 10 TRs, and constructed a very large-

scale biometric score database composed of 1,814,488 gen-

uine scores and 3,467,486,568 imposter scores. We finally

provide performance evaluation results both for quality-

independent and quality-dependent score-level fusion ap-

proaches using two protocols that will be beneficial to the

score-level fusion research community.

1. Introduction

Multi-modal biometrics [1] have gained considerable at-

tention because they enhance the accuracy of biometric per-

son authentication as well as security against attack [2].

Combinations of such multi-modal biometrics are diverse:

fingerprint and iris [3]; iris and face [4]; face and ocular [5];

face and gait [6, 7]; and face, gait, and the height [8].

An important process in multi-modal biometrics is to ap-

propriately fuse individual modalities. The fusion of multi-

ple modalities can be considered at different levels: sensor,

feature, score, rank, and decision levels. Among the given

fusion levels, score-level fusion has been studied exten-

sively [9–14] because of its wide application range, where

multiple scores are fused into a single score by considering

discrimination capabilities and/or joint score distributions

of the individual modalities.

In addition to the score itself, we sometimes consider

a sort of auxiliary information, or quality measure [15],

that affects the score but does not identify the subject. A

variety of these quality measures have been proposed up

to now: the degree of occlusion and blur in iris recogni-

tion [16]; signal-to-noise ratio for speaker verification [17];

image size, or spatial resolution (SR), for image-based bio-

metrics such as fingerprint, iris, and face; and frame-rate, or

temporal resolution (TR), for video-based biometrics such

as gait. For example, SR and TR affect the face and gait

recognition score (i.e., lower SRs and TRs make the gen-

uine and impostor score distributions more confusing) even

though they do not contain any subject identity information.

The quality measure plays an important role in score-

level fusion; the effectiveness of quality-dependent score-

level fusion has been proven for various combinations of

multiple biometrics [15, 18, 19]. Because multi-modal bio-

metrics are often captured by individual sensors (e.g., for

combined face and fingerprint biometrics, face and finger-

print images are captured by a camera and scanner, respec-

tively), quality measures are usually associated with each

modality’s score.

Conversely, some studies capture multi-modal biomet-

rics using a single sensor [6–8] (e.g., simultaneously cap-

turing face and gait images from a single camera). Sin-

gle sensor-based multi-modal biometrics are promising be-

cause they can be implemented using a low cost, simple

system that widens the range of real applications (e.g., a

forensic application to verify a perpetrator or suspect cap-

tured by CCTVs [20, 21]). Note that the quality measures

generally affect all the multi-modal biometric scores in the

single sensor-based approaches (e.g., SR affects both face

and gait biometric scores), whereas they are associated only

with each corresponding modality’s score in the individual

sensor-based approaches.
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In this work, we therefore construct a large-scale multi-

quality multi-modal biometric score database, called BS-

MultiQ (The OU-ISIR Biometric Score Database, Set 5),

to advance the state-of-the-art quality-dependent score-level

fusion for promising single sensor-based multi-modal bio-

metrics. More specifically, we consider single sensor-based

multi-modal biometrics from gait, head, and the height as

well as the SR and TR quality measures that significantly

affect individually biometric scores, as reported in many re-

search projects such as the DARPA Human identification at

a distance program [22]. The contributions of this paper are

two-fold.

1. Construction of single sensor-based multi-quality

multi-modal biometric score database1

We constructed a large-scale database composed of gait,

head, and height biometric scores as well as two qualities,

SR and TR, drawn from the OU-ISIR Gait Database, the

Large Population dataset comprising 1912 subjects [23].

Whereas previously released multi-modal biometric score

databases such as BANCA [24], BA-Fusion [25], Biose-

cure DS2 [26], and NIST BSSR1 [27] consider individ-

ual sensor-based approaches, our database focuses on sin-

gle sensor-based multi-modal biometrics. Moreover, our

database contains a very large number of scores because of

the diversity of subjects and qualities, i.e., 1,814,488 gen-

uine scores and 3,467,486,568 imposter scores, and hence

it will serve the research community as a benchmark for

score-level fusion approaches to multi-modal biometrics.

2. Performance evaluation

We provide two protocols for the constructed database

and conducted a performance evaluation with a variety of

score-level fusion approaches: transformation-based ap-

proaches [9], classification-based approaches [13], proba-

bility density-based approaches [10–12, 14], and some of

their quality-dependent versions. The results of this perfor-

mance evaluation will serve as a baseline for future research

on quality-dependent score-level fusion.

2. Single Sensor-based Multi-quality Multi-

modal Biometric Score Database

2.1. Overview

We drew walking image sequences from a publicly avail-

able gait database, i.e. the OU-ISIR Gait Database, the

Large Population data set [23]. Each subject was asked

to walk straight along a corridor twice (i.e., the gallery

and probe, respectively) and each of the walking image se-

quences was captured by 640 × 480 pixels at 30 fps, as

shown in Fig. 1(a). A silhouette sequence was then ex-

tracted by background subtraction-based graph-cut segmen-

1The constructed database with detailed protocoles (e.g., training/test

sets divisions for cross-validation) is available at http://www.am.

sanken.osaka-u.ac.jp/BiometricDB/BioScore.html.

(a) Original image (b) Silhouette

Figure 1: Original walking image and extracted silhouette.

Although the size of the silhouette region is dependent on

the subject, its average is approximately 90 × 180 pixels.

tation [28], as shown in Fig. 1(b), and gait and height bio-

metrics were extracted after lens distortion removal, rectifi-

cation, and cropping.

Here, the rectification was done using camera calibra-

tion parameters such that the x and y coordinates of the

image plane were parallel to the walking and vertical direc-

tions, respectively. This rectification process is beneficial

for computing the height biometrics for two reasons: (1)

we can easily obtain the vertical positions of the bottom of

the foot and the top of the head from bounding box infor-

mation, and (2) we can easily convert the subject’s height

in the rectified image into their corresponding height in the

real world based on the calibration parameters because the

distance between the camera and the walking course is the

same for all the subjects in this database.

We describe the details of the subsequent procedures to

construct the single sensor-based multi-quality multi-modal

biometric score database in the following subsections.

2.2. Matchers

In this subsection, we briefly describe matchers of indi-

vidual gait, head, and the height biometrics. We refer the

reader to [8] for more details.

Gait: We used the averaged silhouette [29], or gait en-

ergy image (GEI) [30], as the gait feature since the GEI is

the most widely used feature in the gait recognition commu-

nity. The GEI is a simple yet effective gait representation

that has achieved state-of-the-art performance in an evalu-

ation using a large-population data set of more than 4000

subjects [23]. We first constructed a 88 × 128 pixel-sized

normalized silhouette sequence (see Fig. 4) from the silhou-

ette sequence (see Fig. 1(b)) based on the bounding box of

the subject, and then averaged them over one gait period to

compute the GEI (see Fig. 2(a)). Once the GEIs of a probe

and gallery have been computed as feature vectors Gp and

Gg, respectively, the dissimilarity score between the probe

and gallery is calculated by Euclidean distance as

Sgait = ‖Gp −Gg‖2, (1)

where ‖ · ‖2 denotes the L2 norm.

520



(a) (b) (c) (d) (e) (f)

Figure 2: GEIs extracted from silhouette sequences at 30

fps of various sizes: (a) 640 × 320, (b) 320 × 240, (c) 160

× 120, (d) 80 × 60, (e) 40 × 30, and (f) 20 × 15 pixels. The

given sizes are for the original/scaled-down images. Note

that the final size of the GEI (and also the normalized sil-

houette sequence) is consistent (88 × 128 pixels) through-

out the various SRs.

(a) Original (b) Half (c) Quarter (d) One-eighth

Figure 3: Head templates extracted from original images

as well as scaled-down images. The sizes are indicated in

reduction rate from the original images. Note that the head

template size is dependent on a subject, and the size of this

specific subject is 27×22 pixels for (a), 13×11 pixels for

(b), 6×6 pixels for (c), and 3×2 pixels for (d).

Head: Although most of the face recognition approaches

focus on the interior region of the face excluding the hair

and face contour parts, we cannot achieve high recognition

accuracy using only the interior region when the SR is ex-

tremely small (e.g., less than 25 × 25 pixels). In an anal-

ogous fashion to the extension from iris biometrics to peri-

ocular biometrics [31], we extend the region used from the

inside face region to the head region, including the hair and

face contour parts. More specifically, we keep the color tex-

tured image of the head region with the silhouette mask (see

Fig. 3(a)) as a gallery template. The size of the head region

is dependent on the subject and it ranges from 18 × 20 pix-

els to 31 × 25 pixels for a 640 × 480 pixel image before it

is scaled down.

We calculate the dissimilarity score between two head

images based on a conventional template matching algo-

rithm as follows. Let Fpi
be a head feature (color tex-

ture image) of a probe at the i-th frame, and let Fgj,k be

a head feature of a gallery at the j-th frame with k-th spa-

tial displacement within the search regions. The dissimilar-

ity score between the probe and the gallery is calculated by

correlation-based template matching as

Shead = min
i,j,k

[1−NCC(Fpi
, Fgj,k)], (2)

where NCC(Fpi
, Fgj,k) is the normalized cross correlation

(NCC) between Fpi
and Fgj,k within the region of interest

(silhouette mask).

Note that the other advanced approaches, including the

feature extraction process [32], pose normalization [33],

and/or face alignment [34] do not consistently work for a

wide range of SR: from middle-level SR (see Fig. 3(a))

to extremely low-level SR (see Fig. 3(d)). We therefore

adopted the NCC-based template matching because it con-

sistently works for various SRs, even though it is not a state-

of-the-art face recognition algorithm.

The height: As described in Section 2.1, we can easily

compute the apparent height of the subject in the rectified

image based on the bounding box of the silhouette. Because

the camera calibration is done in advance and each subject

walks along a straight line at a fixed depth from the cam-

era, we convert the apparent height into actual height in the

real 3D world simply by multiplying the ratio of the focal

length and depth from the subject. Moreover, because the

heights are defined frame-by-frame and vary because of the

up-and-down motion caused by gait, we define the height

of the subject as the average of the heights over the image

sequence. In short, height h is calculated as

h =
1

Nf

Nf∑

i=1

Zi, (3)

where Zi is the height of the i-th frame, and Nf is the num-

ber of frames in the image sequence.

Given a pair of heights, we then calculate the dissimilar-

ity score as the absolute difference of the heights as

Sheight = |hp − hg|, (4)

where hp and hg are the heights of the subjects in the probe

and gallery.

2.3. Quality measures

To simulate the multi-biometric scores under various

quality conditions, we scaled down the image sequences in

terms of the SRs and TRs and then computed the dissimi-

larity scores for individual gait, head, and height biometrics

in the same way as described above.

SR: We considered a total of 13 variations of SRs in-

cluding the original image size. For this purpose, we scaled

down the original 640 × 480 pixel images by 3/4, 1/2, 1/3,

1/4, 1/5, 1/6, 1/7, 1/8, 1/10, 1/12, 1/16, 1/32, which corre-

spond to images of dimensions 480 × 360, 320 × 240, 213

× 160, 160 × 120, 128 × 96, 106 × 80, 91 × 68, 80 × 60,

64 × 48, 53 × 40, 40 × 30, and 20 × 15 pixels, respec-

tively. These scaled-down images simulated the difference

with respect to not only the image size itself but also the

distance from the camera to the subject.2 Examples of head

2Although the weak perspective projection assumption with respect to

the subject needs to hold to accurately simulate different distances, this

assumption is almost true in our case since the distance to the subject is

sufficiently large compared with the size of the subject.
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Figure 4: Normalized silhouette sequences (top: half period

at 30 fps, bottom: half period at 5 fps)

30 15 7.5 5 3 1

Figure 5: GEIs extracted from silhouette sequences of fixed

size (640×480 pixels) at various TRs [fps]

templates and GEIs for the scaled-down images are shown

in Figs. 2 and 3.

TR: We considered 10 variations of TRs including the

original frame-rate (30 fps). For this purpose, we re-

duced the TR by selecting images at specific frame intervals

from an original image sequences (hereafter called frame-

skipped image sequences) at frame rates of 15, 10, 7.5, 6,

5, 3.75, 3, 2, and 1 fps. Normalized silhouette sequences at

30 and 5 fps are shown in Fig. 4. GEIs extracted from the

normalized silhouette sequences at various TRs are shown

in Fig. 5.

2.4. Constructed database

We drew 1912 subjects from the OU-ISIR Gait Database

Large Population Dataset [23] and selected a pair of subse-

quences from the 85-deg view (almost side view) for two

different sessions for each subject, one as a gallery and the

other as a probe.

Because we had multiple possible starting frames when

reducing the TR (e.g., we could pick image sequences of

odd or even number frames, respectively, at 15 fps), we

used all of the frame-skipped image sequences starting from

various frames for a probe, while we used a single frame-

skipped image sequence starting from the first frame for the

gallery to avoid a quadratic increase of scores. We therefore

prepared 2, 3, 4, 5, 6, 8, 10, 15, and 19 frame-skipped image

sequences per probe3 for 15, 10, 7.5, 6, 5, 3.75, 3, 2, and 1

fps, respectively, and denote the number of frame-skipped

image sequences as NTR.

We then computed the dissimilarity matrices of the gait,

head, and height between 1912 NTR probes and 1912 gal-

leries for all combinations of the 13 variations of SRs and 10

3Although 30 frame-skipped image sequences are available for 1-fps

down-sampling from an original 30-fps video in principle, they are lim-

ited to 19 frame-skipped image sequences. This is because the number of

frames per complete gait cycle is only 19 for some subjects and we wished

to maintain consistency among subjects.

variations of TRs including the original resolution, which

sums up to 130 combinations of SRs and TRs. The con-

structed score database comprises these dissimilarity ma-

trices with the subject ID list as well as the quality mea-

sures (i.e., SRs and TRs). As a result, we can draw 1912

NTR genuine (true match) scores and 1912 NTR × 1,911

= 3,653,832 NTR imposter (false match) scores for each

biometric modality and quality, which results in a very

large-scale database, i.e., 1,814,488 genuine scores and

3,467,486,568 imposter scores for each biometric modality.

3. Performance evaluation

3.1. Protocols

Protocol 1: This protocol aims to benchmark quality-

independent score-level fusion approaches for each quality,

i.e., the performance evaluation is done within each qual-

ity independently in protocol 1. We considered four typi-

cal qualities by combining high and low SRs and TRs: 640

× 480 pixels at 30 fps (QHH ), 640 × 480 pixels at 1 fps

(QHL), 53 × 40 pixels at 30 fps (QLH ), and 53 × 40 pix-

els at 1 fps (QLL). The score database was then randomly

divided into training and test sets, disjoint with respect to

subjects, and this two-fold cross validation was repeated 10

times so as to reduce the influence of the random divisions.

The scores were normalized based on the average and stan-

dard deviation computed with the training set of the quality

QHH for each modality4. Finally, performances in verifi-

cation and identification scenarios were evaluated with typ-

ical measures such as ROC curves, EERs, FRRs at specific

FARs, area under curves (AUCs), CMC curves, and rank-n

identification rates for each quality independently.

Protocol 2: This protocol aims to benchmark quality-

dependent score-level fusion approaches where the score

database is disjoint in terms of not only subjects but also

qualities, unlike protocol 1, where the same qualities are

shared between training and test sets. More specifically, the

qualities for the training and test sets are defined as shown

in Table. 1. Thereafter, we follow the same processes as for

protocol 1: 10-times two-fold cross validation and score-

normalization with the training set of the quality QHH . Fi-

nally, performances are evaluated in verification scenarios

for the test scores including all the test qualities.

3.2. Benchmarks

Protocol 1: Score-level fusion approaches mainly fall

into three categories: transformation-based, classification-

based, and probability density-based approaches, as sum-

marized in [14]. We therefore provide in total seven

benchmarks from a wide variety of score-level fusion ap-

4Note that the score normalization does not essentially affect perfor-

mance for training-based approaches (exceptions are Sum and Min) since

differences in score scales are absorbed in the training process.
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Table 1: Qualities for training and test sets in protocol 2.

Data set SR [pixels] TR [fps]

Training
640 × 480, 320 × 240, 160 × 120, 30, 15, 7.5,

106 × 80, 80 × 60, 53 × 40 5, 3, 1

Test
480 × 360, 213 × 160, 10, 6,

128 × 96, 91 × 68, 64 ×48 3.75, 2

proaches for protocol 1. We provide the sum rule (Sum)

and minimum rule (Min) for the transformation-based ap-

proaches [9]; a support vector machine (SVM) with a ra-

dial basis function kernel [13] for the classification-based

approach; and the Gaussian mixture model (GMM)5 [12],

linear logistic regression (LLR) [11], kernel density estima-

tion (KDE) [35], and non-parametric posterior estimation

using floating control point (FCP) [14] for the probability

density-based approaches.

Protocol 2: Because protocol 2 aims to evaluate quality-

dependent score-level fusions, we provide both quality-

independent and quality-dependent score-level fusion ap-

proaches to highlight the effectiveness of quality-dependent

approaches over quality-independent approaches. More

specifically, we first chose the three best approaches with

respect to verification performance in protocol 1: GMM,

LLR, and FCP (see 3.3) in addition to Sum as a baseline.

We then trained the parameters (or posteriors for FCP) with

the training set of the highest SR and TR (the same as QHH )

and used them regardless of qualities, resulting in quality-

independent approaches.

In addition to these quality-independent approaches,

we introduce Q-stack [36], a concatenated vector of the

multi-modal biometric scores and the quality measures for

quality-dependent approaches. In our database, the Q-stack

is defined as a five-dimensional vector composed of three

biometric scores, Sgait, Shead, and Sheight, as well as two

quality measures, SR qSR, and TR qTR. Note that we de-

fine qSR and qTR on a logarithm scale of spatial reduction

and frame rate for numerical stability. The Q-stack vectors

of the training sets are fed into each of the GMM, LLR, and

FCP methods to create quality-dependent versions (called

GMM (Q-stack), LLR (Q-stack), and FCP (Q-stack), re-

spectively).

Furthermore, we introduce another quality-dependent

version of LLR that interpolates the weights for each modal-

ity of a test quality measure from those obtained in the

training set using a Gaussian process regression [37] (called

LLR (GPR), see [19] for details).

3.3. Evaluation

Protocol 1: Performance evaluation results for protocol

5The number of mixture components are determined between 1 and

20 so as to optimize minimum description length criterion and random

selection process of initial seeds is repeated 10 times for each number of
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Figure 6: ROC curves for protocol 1 (the first cross-

validation set). Note that the scales differ among graphs.
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Figure 7: CMC curves for protocol 1. Note that scales differ

among graphs.

1 are shown by the ROC and CMC curves in Figs. 6 and

7. In addition, we selected some typical measures: EERs

mixture components to mitigate the effect of randomness.
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Table 2: EER, FRRs at 1% and 10% FARs (FRR1% and FRR10%, respectively), and AUC for protocol 1. Bold and italic bold

fonts indicate the best and second best accuracies throughout this paper.

Fusion EER [%] FRR1% [%] FRR10% [%] AUC [%]

rule QHH QHL QLH QLL QHH QHL QLH QLL QHH QHL QLH QLL QHH QHL QLH QLL

Sum 2.0 23.6 7.6 39.6 2.7 82.6 22.4 94.5 0.7 49.4 6.7 75.6 0.3 14.9 2.3 35.4

Min 4.4 18.1 11.8 44.8 9.3 93.7 23.6 98.5 2.0 45.8 13.3 85.6 0.6 10.8 4.9 41.4

SVM 1.6 17.8 8.4 44.2 1.5 79.2 22.4 94.8 1.5 35.6 6.7 76.9 0.8 10.1 3.3 41.8

GMM 1.5 10.6 6.5 35.5 1.5 44.5 21.4 94.1 0.4 9.0 4.5 74.8 0.3 3.6 1.6 28.8

LLR 1.5 9.9 6.3 32.5 1.9 49.3 21.2 93.3 0.4 9.2 4.8 68.5 0.2 3.8 1.6 25.1

KDE 1.6 11.9 9.4 49.8 1.9 41.7 26.2 97.8 0.6 9.7 8.7 87.7 0.3 5.2 4.1 49.5

FCP 1.5 10.2 6.7 32.3 1.9 44.5 21.5 93.4 0.3 9.8 5.5 68.3 0.2 3.6 1.7 24.9

Table 3: Rank-1/5 identification rates for protocol 1.

Fusion Rank-1 [%] Rank-5 [%]

rule QHH QHL QLH QLL QHH QHL QLH QLL

Sum 97.0 14.5 72.2 2.6 98.9 23.2 87.1 6.4

Min 89.8 1.7 68.5 1.3 95.4 6.1 80.5 3.8

SVM 97.4 12.7 71.4 1.6 98.4 25.2 85.4 4.0

GMM 97.1 34.7 67.9 1.9 98.7 58.2 84.7 5.5

LLR 97.9 32.6 69.4 2.5 99.3 53.9 85.1 6.7

KDE 96.8 35.9 62.5 0.6 98.2 58.2 77.4 1.7

FCP 96.6 32.3 59.6 2.6 98.8 55.3 84.0 6.8

and FRRs at 1% and 10% FARs as well as AUC for ROC in

Table 2 and rank-1 and rank-5 identification rates for CMC

in Table 3.

As a result, we can see that some of the probability

density-based methods such as GMM, LLR, and FCP per-

form well in the verification scenarios (see Fig. 6 and Table

2) because the probability density-based approaches guar-

antee optimality in terms of ROC [38] as long as the esti-

mated probability densities are correct.

However, the highest accuracies in the identification

scenarios (see Fig. 7 and Table 3) are relatively mixed.

Note that the identification performances are determined

by probe-dependent rank statistics, whereas the verification

performances are determined by aggregated score distribu-

tions, which may produce inconsistency between verifica-

tion and identification performances, as reported in [39].

Because the classification-based and density-based ap-

proaches to score-level fusion used in this paper also aggre-

gate the score distribution, we chose the three best methods

with respect to verification, GMM, LLR, and FCP, and used

them in the following performance analysis for protocol 2.

Protocol 2: We evaluated the accuracies of the verifi-

cation scenarios using ROC curves in Fig. 8 and the EERs

and FRRs at 1% and 10% FARs as well as AUCs in Ta-

ble 4. As a result, we can see that quality-independent ap-

proaches such Sum, GMM, LLR, and FCP do not perform

well, with EERs of more than 40%. Conversely, almost all

of the quality-dependent approaches such as LLR (Q-stack),

FCP (Q-stack), and LLR (GPR) achieve much higher accu-

racies than the quality-dependent approaches (e.g., the EER
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Figure 8: ROC curves for protocol 2 (the first cross-

validation set) (Left) and a selected portion of the curve

(right).

Table 4: EERs, FRRs at 1% and 10% FARs (FRR1% and

FRR10%, respectively) and AUC for protocol 2.

Fusion rule
EER FRR1% FRR10% AUC

[%] [%] [%] [%]

Sum 46.0 82.4 69.8 41.9

GMM 41.0 88.6 66.1 35.3

LLR 43.0 83.0 67.2 36.2

FCP 43.2 84.3 70.8 40.5

GMM (Q-stack) 44.1 99.0 89.9 40.8

LLR (Q-stack) 15.3 56.8 21.9 7.0

FCP (Q-stack) 14.4 52.0 17.7 6.5

LLR (GPR) 15.6 61.3 23.3 7.1

for the FCP (Q-stack) is less than 15%), except for GMM

(Q-stack). This exceptional worse performance by GMM

(Q-stack) is caused by degeneration of covariance matrices

of GMM due to discrete training qualities (see Table. 1).

As a result, the probability density for the test quality which

is different from the training quality, becomes zero both for

positives and negatives and therefore the fused score lose its

discrimination capability. Apart from this point, as we ex-

pect, it is essential to consider quality measures to achieve

better performances for protocol 2, and we believe that the

quality-dependent approaches used in this paper are appro-

priate baselines for benchmarking quality-dependent score-

level fusion approaches in future.
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4. Discussion and future work

Whereas we considered multiple scores derived from

multi-modal biometrics and provided a single matcher for

each modality in this paper, it is also possible to introduce

multiple scores derived from multiple matchers, as in the

existing biometric score database NIST-BSSR1 [27], which

contains scores derived from multiple face recognition al-

gorithms. From the viewpoint of quality-dependent score-

level fusion, it is particularly interesting to introduce match-

ers with different sensitivities to the quality measures used

in this paper (i.e., SR and TR). For example, gait feature

representations encoding more temporal and/or motion in-

formation (e.g., [40, 41] may be sensitive to TR (i.e., yield-

ing higher accuracy for higher TR and vice versa), while

those encoding more static (shape) information (e.g., [42])

may be insensitive to TR.

Moreover, we can improve the sensitivity to SR and TR

by incorporating spatial and/or temporal super resolution

techniques [43]. In fact, spatially super-resoluted face im-

ages are used to fuse gait and side-view faces in [44]. It

would therefore be one interesting future research avenue

to construct such an advanced multi-modal biometric score

database that includes multiple matchers as well as super

resolution techniques.

In addition, whereas we treat SR and TR as quality mea-

sures in the context of fusion of gait, head, and height bio-

metrics, there exist even more qualities to be considered in

a real situation. In particular, because our biometric score

database was built upon the OU-ISIR Gait Database Large

Population Dataset [23] collected in a relatively controlled

situation (e.g., indoors, controlled illumination, predefined

course), we need to consider a variety of covariate factors

that might arise in a real situation. For example, back-

ground motion artifacts caused by trees or additional per-

sons may degrade the silhouette qualities6 for gait biomet-

rics, while illumination change caused by cloud cover could

drastically change head texture. Furthermore, camera cali-

bration errors directly affect the height biometrics. As such,

it would be beneficial to collect biometric scores in real sit-

uations with additional quality measures (e.g., illumination

changes, view changes, clothing, silhouette qualities, etc.)

in future research.

Because it is more a challenging task to fuse a high-

dimensional Q-stack vector containing a plethora of multi-

modal multi-matcher biometric scores as well as the quality

measures as above, it is also essential to add a benchmark

for score-level fusion that incorporates dimension reduction

as preprocessing (e.g., [45]).

6Moreover, silhouettes extracted from lower-SR original images may

be worse than downscaled silhouettes used in this paper, since fore-

gronud/background blending at the bonudary may make silhouette extrac-

tion difficult. A possible solution to fill this gap is using alpha matting

instead of hard segmentation for better silhouette quality [7].

5. Conclusion

We constructed a single sensor-based multi-quality

multi-modal biometric score database. We extracted gait,

head, and height biometrics from a single walking image se-

quence, and considered SR and TR as the quality measures.

As a result, the database contains a large number of bio-

metric scores: 1,814,488 genuine scores and 3,467,486,568

imposter scores under a total of 130 combinations of SRs

and TRs. We defined two protocols: quality-independent

and quality-dependent score-level fusions, and also pro-

vided performance evaluation results with several bench-

marks for each protocol, which will advance studies on

quality-dependent score-level fusions.
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