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Abstract 
 

 This paper deals with a single server retrial queueing model in which 
customers arrive according to a Markovian arrival process. An arriving customer 
on finding a free server enters into service immediately; otherwise the customer 
enters into an orbit of infinite size. An orbiting customer competes for service by 
sending out signals at random times until a free server is captured. The server 
operates under two vacation mechanisms. During service the server may go for 
vacation to attend an emergency call and after completing the vacation, the server 
continues the service for the same customer. Upon completion of a service, with a 
certain probability the server takes multiple vacations depending on the orbit size. 
Assuming the service, retrial and vacation times follow a general distribution, the 
joint distribution of the state of the server and the number of customer in the orbit 
is derived in the steady state. The explicit expressions of some performances 
measures are given. In addition numerical results are presented. 
 

Keywords :  M/G/1 Retrial queue, Steady state equations, Stability condition, 
Multiple vacation, Emergency vacation 

 

1 INTRODUCTION 
 

 Recently, considerable attention has been paid to the analysis of queueing 
systems with repeated calls (or retrial queues, queues with returning customers,  
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etc.) see, for example, the reviews by Yang and Templeton [7], Falin [3], Kulkarni 
and Liang [5] and the book by Falin and Templeton [4]. 

Over the past two decades, queueing systems with vacation have been 
studied by many researchers due to their wide applications in manufacturing and 
telecommunication systems. Some comprehensive surveys on the recent results 
for a variety of vacation models can be found in [1, 2, 6]. In almost all these 
papers the server operates under any one of the vacation policies: single vacation, 
multiple vacation, gated vacation and so on. In this article an M/G/1 retrial 
queueing system with two simultaneous vacation mechanisms is discussed. 
During the service the server may leave the system to attend an emergency call 
termed as emergency vacation and after each service completion the server may 
take multiple vacation. 

 

2 MODEL DESCRIPTION 
 Assume that the customers arrive at the system in accordance with a 
Poisson process with rate λ. If an arriving customer finds the server idle, the 
customer enters the service immediately and leaves the system after service 
completion. If the server is found to be blocked, the arriving customer enters a 
retrial queue. The customer at the head of the retrial queue attempts to reach the 
server in a retrial time distributed with general distribution function  A(x), density 
function a(x) and Laplace – Stieltjes transform A*(s). The service times are 
independent, identically distributed with common distribution function B(x), 
density function b(x) and Laplace – Stieltjes transform B*(s) with first two 
moments b1 and b2. 

 During the service the server may take the emergency vacation distributed 
as exponentially with rate β. When the server is in emergency vacation, the 
customer in service either remains in the service position with probability p until 
the completion of vacation or enters a retrial orbit with probability l – p and keeps 
returning at times exponentially distributed with mean 1/θ until the server return. 
After completion of the emergency vacation, if the customer is not in service 
position, the server must wait for the interrupted customer to return. This time is 
referred as the ‘reserved time’. The server is not allowed to accept new customers 
until the customer in service leaves the system. The emergency vacation time has 
the distribution function H(x), density function h(x), Laplace – Stieltjes transform 
H*(s) with first two moments h1 and h2. 

 After each service completion, the server takes a vacation with probability 
r and with probability 1 – r the server waits for the next customer. At the end of 
the vacation period if the orbit is not empty, the server waits to serve a customer. 
Otherwise the server begins another vacation immediately and continues in this 
manner until he finds at least one customer in the orbit upon returning from a 
vacation. The distribution function, density function, Laplace – Stieltjes transform 
of vacation time are V(x), v(x), V*(s) respectively and first two moments are v1 
and v2. 
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If the functions η(x), μ(x), γ(x), α(x) are the conditional completion rates 
(at time x) for repeated attempts, for service, for emergency vacation, for multiple 
vacation respectively, then 

η(x)  =  
A(x)  1

a(x)
−

,   μ(x)  =  
B(x)  1

b(x)
−

,   γ(x)  =  
H(x)  1

h(x)
−

,   α(x)  =  
V(x)  1

v(x)
−

 

 The state of the system at time t can be described by the Markov process 
{N(t) ; t > 0} = {J(t), J*(t), X(t), ξ0(t), ξ1(t), ξ2(t), ξ3(t), ξ4(t)  ; t > 0} where J(t) 
denotes the server state 0, 1, 2, 3 and 4 according as the server being idle, busy, in 
emergency vacation, in reserved time and in multiple vacation. At the time of 
emergency vacation J*(t) = 0 means that the customer in service remains in 
service position and J*(t) = 1 means that the customer enters the orbit. Let X(t) 
denote the number of customers in the retrial queue at time t. If J(t) = 0 and X(t) > 
0, then ξ0(t) represents the elapsed retrial time; if J(t) = 1, 2, 3 or 4, ξ1(t) 
corresponds to the elapsed service time; if J(t) = 2, J*(t) = 0 or 1, ξ2(t) represents 
as the elapsed emergency vacation time; if J(t) = 3, ξ3(t) represents the elapsed 
reserved time; if J(t) = 4, ξ4(t) represents the elapsed multiple vacation time. 
 
 

3 STABILITY CONDITION 
 

 We first study the condition for system stability. The following theorem 
provides the necessary and sufficient condition for the system to be stable. 

Theorem: 

The inequality λb1(1+β((1-p)/θ+h1))+rλv1 < A*(λ) is a necessary and 
sufficient condition for the system to be stable. 

Proof : 
 Let S(K) be the generalized service time of the kth customer in service. 
Then {S(K)} are independent and identically distributed with distribution function  

B(x) = )y(dB)yx(He
!i
)yβ()p1(p

j
i )2(

ji
yβ

i
ji

0

ji

0j0i
−−∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑ −

−−∞

=

∞

=
, 

and Laplace transform 
B*(s) =  B*(s+β-β((ps+θ)/(s+θ)H*(s)) 
and expected value 
E(S(k)) = b1(1+β((1-p)/θ+h1)) 

where )x(H )2(
ji−  represents the two fold convolution of )i(H (x) which is i fold 

convolution of H(x) and the gamma distribution with the parameters i-j and 1/θ. 
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 Suppose the retrial queue has a large number of customers in the following 
discussion. 

Arrival rate at the retrial queue during service is λb1(1+β((1-p)/θ+h1)). 
Arrival rate at the retrial queue during multiple vacation is rλv1.Total arrival rate 
at the retrial queue is λb1(1+β((1-p)/θ+h1)) +  rλv1. 

Exit rate from the retrial queue by entering service is A*(λ). For stability, 
the arrival rate should be less than the exit rate. Hence, the necessary and the 
sufficient condition for the system to be in equilibrium state is λb1(1+β((1-
p)/θ+h1)) +  rλv1 < A*(λ). 

 

4 STEADY STATE DISTRIBUTION 
  

In this section, the steady state distributions for the system under consideration are 
obtained. For the process {N(t) ; t > 0} define the following probability densities. 

For t > 0 and x > 0 
Ιn (t, x) dx = P{J(t) = 0 ; X(t) = n ;  x < ξ0(t) < x + dx},      n > 1 
Wn (t, x) dx = P{J(t) = 1 ; X(t) = n ;  x < ξ1(t) < x + dx},    n > 0 
For  t > 0, x > 0, y > 0 and n > 0 
Ei,n(t, x, y) dx dy = P{J(t) = 2 ; J*(t) = i ;  X(t) = n ; x < ξ1(t) < x + dx ;                        
   y < ξ2(t) < y + dy}, i = 0,1 
Rn(t, x, y) dx dy = P{J(t) = 3 ; X(t) = n ; x < ξ1(t) < x + dx ; y < ξ3(t) < y + dy}  
Vn(t, x) dx  = P{J(t) = 4 ; X(t) = n ; x < ξ4(t) < x + dx} 
The steady state equations for the model under consideration are 

dx
)x( d nΙ  = − (λ + η(x)) Ιn(x),   n ≥ 1                                                         (1) 

dx
)x( Wd n  = − (λ + μ(x) + β) Wn(x)+ ∫

∞

0
E0, n (x, y) γ(y) dy + ∫

∞

0
θ Rn (x, y) dy  

   + (1 − δ0n) λ Wn−1(x),   n ≥ 0                                               (2) 

y
y) (x,E n i,

∂

∂
 = − (λ + γ(y)) Ei, n(x, y)+(1−δ0n) λEi, n−1(x, y), n ≥ 0,  i = 0,1     (3) 

y
y) (x,R n

∂
∂  = − (λ + θ) Rn(x, y) + (1 − δ0n) λ Rn−1(x, y),  n ≥ 0           (4) 

dx
)x(V d n  = − (λ + α(x)) Vn(x) + (1 − δ0n) λ Vn−1(x),  n ≥ 0                       (5) 

 
 
The steady state boundary conditions are 
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Ιn(0)  = ∫
∞

0
Vn(x) α(x) dx + (1 − r) ∫

∞

0
Wn(x) μ(x) dx,  n ≥ 1        (6) 

Wn(0)  = ∫
∞

0
Ιn+1(x) η(x) dx + (1 − δ0n) λ ∫

∞

0
Ιn(x) dx,  n ≥ 0           (7) 

E0, n(x, 0) = p β Wn(x),  n ≥ 0                                                                    (8) 
E1, n(x, 0) = (1 − p) β Wn(x), n ≥ 0                                                        (9) 

Rn(x, 0) = ∫
∞

0
E1, n(x, y) γ(y) dy,  n ≥ 0                                          (10) 

V0(0)  = ∫
∞

0
W0(x) μ(x) dx + ∫

∞

0
V0(x) α(x) dx                    (11) 

Vn(0)  = r ∫
∞

0
Wn(x) μ(x) dx,  n ≥ 1                                                      (12) 

The normalizing condition is 

∑
∞

=1 n 
 ∫
∞

0
Ιn(x) dx + ∑

∞

= 0 n 
 ∫
∞

0
Wn(x) dx + ∑

∞

= 0 n 
 ∫
∞

0
∫
∞

0
E0, n (x, y) dx dy +  

∫ ∫∑
∞ ∞∞

= 0 00 n 
  E1, n(x, y)dx dy + ∫ ∫∑

∞ ∞∞

= 0 00 n 
  Rn(x, y) dx dy + ∑ ∫

∞

=

∞

0 n 0
 Vn(x) dx = 1              (13) 

Define the probability generating function,  
P(z, ⋅) = ∑

n
 pn (⋅) zn for any probability pn (⋅). 

 Then the steady state distributions of {N(t) ; t > 0} are given by, 
Ι(z, x)  = Ι (z, 0) e−λx [1 − A(x)]                     (14) 
W(z, x) = W(z, 0) e−G(λ(1-z)) x [1 − B(x)]                    (15) 
where G(x) = x + β − β ((xp + θ) / (x + θ)) H*(x) 
E0(z, x, y) = E0(z, x, 0) e−λ (1-z) y [1 − H(y)]                    (16) 
E1(z, x, y) = E1(z, x, 0) e−λ (1-z) y [1 − H(y)]                    (17) 
R(z, x, y) = R(z, x, 0) e− [λ (1-z) + θ] y [1 − H(y)]                               (18) 
V(z, x)  = V(z, 0) e−λ (1-z) x [1 − V(x)]                    (19) 
W0(0)  = V0(0) [1 − V*(λ)] / B*(G(λ))                    (20) 
Ι(z, 0)  = V0(0) z [1 − r + r V*(λ)] [1−V*(λ(1−z))] / D(z)                   (21) 
W(z, 0) = V0(0) [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
   [A*(λ)(1 − z) + z] / D(z)                                   (22) 
E0(z, x, 0) = V0(0) pβ [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
   [A*(λ)(1 − z) + z] e− G(λ(1-z))x [1 − B (x)] / D(z)                     (23) 
 E1(z, x, 0) = V0(0) (1− p)β [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
   [A*(λ)(1 − z) + z] e− G(λ(1-z))x [1 − B (x)] / D(z)                     (24) 
R(z, x, 0) = V0(0) (1− p)β [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
   H*(λ(1 − z))[A*(λ)(1 −z) + z] e− G(λ(1-z))x [1−B (x)] / D(z)   (25)                             
V(z, 0)  = V0(0) [1 − r + r V*(λ)] [k(z) (A*(λ)(1 − z) + z) −z] / D(z)   (26) 
where D(z) = k(z) (A*(λ)(1 − z) + z) (1 − r + r V*(λ(1 − z))) −z   
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and       k(z) = B*(G(λ(1 − z)))                     (27)  

Define the partial generating function ψ(z) = ∫
∞

0
ψ(z, x) dx, for any generating 

function ψ(z, x). Then we have 
Ι(z) = V0(0) z [1 − r + r V*(λ)] [1 − V*(λ(1 − z))] [1− A*(λ)] / [λ D(z)]   (28) 
W(z) = V0(0) [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
  [A*(λ) (1 − z) + z] [1 − k(z)] / [D(z) G(λ(1 − z))]                            (29) 
E0(z) = V0(0) pβ [1−r+r V*(λ)] [1−V*(λ(1−z))] [A*(λ)(1−z)+z] [1−k(z)]  
  [1 − H*(λ1 − z))] / [λD(z) G(λ(1 − z)) (1 − z) ]                   (30) 
E1(z) = V0(0) (1−p)β [1−r + r V*(λ)] [1 − V*(λ(1−z))]  
  [A*(λ)(1−z) +z] [1−k(z)] [1−H*(λ1−z))] / [λD(z)G(λ(1−z))(1−z)] (31) 
R(z) = V0(0) (1−p)β [1 − r + r V*(λ)] [1−V*(λ(1−z))]  
  H*(λ(1−z)) [A*(λ)(1−z)+z][1−k(z)] / [D(z)G(λ(1−z))[λ (1−z)+θ]] (32) 
V(z) = V0(0) [1 − r + r V*(λ)] [1 − V*(λ(1 − z))]  
  [k(z) (A*(λ) (1 − z) + z) − z] / [λ D(z) (1 − z)]                             (33)  
Using the normalizing condition, the expression for V0(0) is obtained as 
V0(0) = [A*(λ) − λb1[1 + β ((1−p) / θ + h1)] −rλv1] / [v1(1 − r + r V*(λ))]   (34) 

 

5 PERFORMANCE MEASURES 

 

 Performance measures for the system under steady state are derived is this 
section. 

1. The steady state probability that the server idle during the retrial time is   
  Ι(1)   =   1 − A*(λ) 
2. The steady state probability that the server busy is W(1)  =  λ b1 
3. The steady state probability that the server is in emergency vacation and 

the customer in service remains in the service position is   
  E0(1)    =    λpβb1h1       
4. The steady state probability that the server is in emergency vacation and 

the customer in service enters the retrial orbit is   
  E1(1)    =    λ(1 − p)βb1h1       
5. The steady state probability that the server is in reserved time is  
  R(1)    =    λ(1 − p)βb1 / θ 
6. The steady state probability that the server is in vacation is 
  V(1)    =   A*(λ) − λb1 [1 + β ((1 − p) / θ + h1) 
7. The steady state probability that the system is empty while the server is on 

vacation is  
 V0 = V(0) =   [A*(λ) − λb1 [1 + β ((1 − p) / θ + h1)] − rλv1] [1 − V*(λ)] /        
       [λv1(1 − r + r V*(λ))]  

8. The steady state probability that the orbit is empty while the server is busy is  
 W0 = W(0) =   [A*(λ) − λb1 [1 + β ((1 − p) / θ + h1)] − rλv1] 
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          [1 − V*(λ)] [1 − B*(G(λ))] / [G(λ)v1B*(G(λ))  
          (1 − r + r V*(λ))]  
9. The steady state probability that the orbit is empty is 
 V0 + W0 =  [A*(λ) − λb1 [1 + β ((1 − p) / θ + h1)] − rλv1]  
    [1 − V*(λ)] [G(λ) B*(G(λ)) + λ (1 − B*(G(λ)))] / 
    [λ v1G(λ)B*(G(λ)) (1 − r + r V*(λ))]  
10. The steady state probability that the server is idle or on emergency 

vacation or on multiple vacation or on reserved time is 
 Ι(1) + E0(1) + E1(1) + R(1) + V(1) = 1 − λ b1 
11. The probability generating function of the mean number of customer in the 

system is given by 
 P(z) = Ι(z) + z W(z) + z E0(z) + z E1(z) + z R(z) + V(z) 

  = [A*(λ)−k′(1)−rλv1] [1−V*(λ(1−z))] [A*(λ) (1−z) +z] k(z) / 
[pλv1D(z)] 

  The mean number of customers in the system is Ls = P′(1) given by, 
 Ls = [v1(1 − A*(λ) + k′(1)) + λv2 / 2] / v1 + T2 / T1 
12. The probability generating function for the number of customers in the 

orbit is given by,  
 H(Z) = Ι(z) + W(z) + E0(z) + E1(z) + R(z) + V(z) 
  = [A*(λ) − k′(1) − rλv1] [1 − V*(λ(1−z))] [A*(λ)(1−z) + z] / 

[λv1D(z)] 
13. The mean number of customers in the orbit is Lq = H′(1), given by 
 Lq = [v1(1 − A*(x) + λv2 / 2] / v1 + T2 / T1 

 Where, k′(1) = λb1 [1 + β ((1 − p) / θ + h1)] 
  k″(1) = λ2 {b2 [1+β((1−p) / θ+h1)]2 + 2αb1[(1−p) (1 /  
     θ+h1) / θ+h2 / 2]} 

  T1  = A*(λ) − k′(1) − rλv1 
  T2 =  k′(1) [1 − A*(λ) + rλv1] + rλv1[1 − A*(λ)]  
    + [k″(1) + rλ2v2] / 2 
 

 

6 NUMERICAL RESULTS 

 

 In this section we calculate the numerical results based on the cases of 
exponential, Erlangian of order 2 and hyper exponential distributions for the 
retrial, service, emergency vacation, multiple vacation time distributions having 
rates η, μ, γ and α respectively. The graphs illustrated in figure. (a) – (c) compare 
the behaviour of Ls against the parameters, i) η, the retrial rate ii) α, the multiple 
vacation rate iii) p, the probability of customer remains in the system during 
emergency vacation for the above three distributions. 
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(a) 

 

 
 
 
 

(b) 

 

 
 
 
 
 
(c) 
 
 
 
 
Figure   (a) Ls versus η with parameters (λ,α,β,θ,p,r,γ,μ) = (1,10,5,10,0.2,0.5,5,15) 

(b) Ls versus α with parameters (λ,η,β,θ,p,r,γ,μ) = (1,6,5,10,0.2,0.5,5,15) 
(c) Ls versus p with parameters (λ,α,β,θ,η,r,γ,μ) = (1,10,5,10,6,0.5,5,15) 
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