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Abstract

Building high dynamic range (HDR) images by com-

bining photographs captured with different exposure times

present several drawbacks, such as the need for global

alignment and motion estimation in order to avoid ghost-

ing artifacts. The concept of spatially varying pixel expo-

sures (SVE) proposed by Nayar et al. enables to capture in

only one shot a very large range of exposures while avoid-

ing these limitations. In this paper, we propose a novel

approach to generate HDR images from a single shot ac-

quired with spatially varying pixel exposures. The proposed

method makes use of the assumption stating that the distri-

bution of patches in an image is well represented by a Gaus-

sian Mixture Model. Drawing on a precise modeling of the

camera acquisition noise, we extend the piecewise linear es-

timation strategy developed by Yu et al. for image restora-

tion. The proposed method permits to reconstruct an irra-

diance image by simultaneously estimating saturated and

under-exposed pixels and denoising existing ones, showing

significant improvements over existing approaches.

1. Introduction

The idea of using multiple differently exposed images

to capture high dynamic range (HDR) scenes can be traced

back to the middle of the 19th century, when the French

photographer Gustave Le Gray captured a high dynamic

range scene at the sea by combining two differently ex-

posed negatives. This idea was introduced in digital pho-

tography by Mann and Picard [9] in 1995. Several meth-

ods followed, proposing different ways to combine the im-

ages [4, 11, 13, 5].

In the case of a static scene and a static camera, the com-

bination of multiple images is a simple and efficient solu-

tion for the generation of HDR images. However, several

problems arise when either the camera or the elements in

the scene move. Global alignment techniques must be used

to align images acquired with a hand-held camera and de-

ghosting methods must be used to correct the artifacts due

to object motion. These kind of artifacts are particularly

annoying on the fused result.

An alternative to HDR imaging from multiple frames

was introduced by Nayar and Mitsunaga in [12]. They pro-

pose to perform HDR imaging from a single image using

spatially varying pixel exposures (SVE). An optical mask

with spatially varying transmittance (see Figure 2) is placed

adjacent to a conventional image sensor, thus controlling

the amount of light that reaches each pixel. This gives dif-

ferent exposure levels to the pixels according to the given

transmittance pattern, allowing a single shot to capture an

increased dynamic range compared to that of the conven-

tional sensor. In [7], Hirakawa and Simon argue that differ-

ent sensitivities are already implied by the different translu-

cencies of the three color filters in a regular Bayer Pattern.

They propose a clever demosaicking-inspired algorithm to

jointly perform demosaicking and HDR imaging from a sin-

gle shot, with specially taylored color-filter translucencies.

The greatest advantage of the SVE acquisition method is

that it allows HDR imaging from a single image, thus avoid-

ing the need for alignment and motion estimation, which is

the main drawback of the classical multi-image approach.

Another advantage is that the saturated pixels are not or-

ganized in large regions. Indeed, some recent multi-image

methods tackle the camera and objects motion problems by

taking a reference image and then estimating motion rela-

tive to this frame or by recovering information from other

frames through local comparison with the reference [17, 2].



Figure 1: Example of the acquisition of an HDR scene us-

ing spatially varying pixel exposures. Left: Tone mapped

HDR scene restored from the raw image. Right top: Raw

image with spatially varying exposure levels. Right bot-

tom: Mask of correctly exposed pixels (white) and under

or over exposed pixels (black).

A problem encountered by this approach is the need for in-

painting saturated and underexposed regions in the refer-

ence frame, since the information is completely lost in those

areas. The SVE acquisition strategy prevents from having

large saturated regions to inpaint. In general, all scene re-

gions are sampled by at least one of the exposures thus sim-

plifying the inpainting problem.

The main drawback of the SVE acquisition is that, un-

like the multi-image approach where all scene regions are

assumed to be correctly exposed in at least one of the in-

put images, for the brighter and darker regions of the scene

some exposure levels will be either too high or too low

and the corresponding pixels will be under or over exposed.

Hence, those pixels are unknown and need to be somehow

reconstructed. Figure 1 illustrates this problem. It shows

an example of an HDR scene and the mask of known and

unknown pixel values of a single shot of the scene using

SVE. Known pixels (white) are the correctly exposed ones

and unknown (black) pixels are those either under or over

exposed. Moreover, noise reduction is of particular impor-

tance in this kind of acquisition setup since the pixels of

the lower exposures tend to be quite noisy (mostly in dark

regions) thus producing images with high noise levels.

In the approach proposed by Nayar and Mitsunaga [12],

the varying exposures follow a regular pattern as shown in

Figure 2. Two methods are proposed to reconstruct the un-

der and over exposed pixels. The so called aggregation

approach consists in averaging the local irradiance values

produced by the correctly exposed pixels. The interpola-

tion approach consists in using a bi-cubic interpolation to

simultaneously retrieve the unknown pixels and denoise the

known ones. A generalization of this kind of pixel varying

acquisition, and its application to high dynamic range and

multi-spectral imaging is presented in [18].

Figure 2: Regular (left) and non-regular (right) optical

masks for an example of 4 different filters.

Motivated by the aliasing problems of regular sampling

patterns, Schöberl et al. [15] propose to use spatially vary-

ing exposures in a non-regular pattern. Figure 2 shows ex-

amples of both acquisition patterns. The reconstruction of

the irradiance image is then performed using a frequency se-

lective extrapolation algorithm [16] which iteratively gener-

ates a sparse model for each image patch as a weighted su-

perposition of the two-dimensional Fourier basis functions.

In [14], Schöberl et al. present a practical methodology for

the construction of a spatially varying exposures mask with

a non-regular pattern.

In this work, we propose a new method to reconstruct

the irradiance information of a scene from a single shot ac-

quired with spatially varying pixel exposures following a

random pattern. We take advantage of the Gaussian mixture

models (GMM), which have been proven accurate at rep-

resenting natural image patches [19, 8], to reconstruct the

unknown pixels and denoise the known ones. The proposed

reconstruction method is an extension to the SVE acquisi-

tion strategy of the general framework introduced by Yu et

al. [19] for the solution of image inverse problems. This

allows us to greatly improve the irradiance reconstruction

with respect to the previous approaches.

The paper is organized as follows. Section 2 presents

the SVE acquisition model. Section 3 introduces the irra-

diance reconstruction problem and the proposed solution.

A summary of the performed experiments is presented in

Section 4. Conclusions are presented in Section 5.

2. Spatially varying exposure acquisition

model

In this section we introduce a noise model for images

captured using the SVE acquisition strategy. This image

model is afterward used to develop the irradiance recon-

struction method.

As presented in [12, 18, 14], an optical mask with spa-

tially varying transmittance can be placed adjacent to a con-

ventional image sensor to give different exposure levels to

the pixels. This optical mask does not change the acqui-



sition process of the sensor, whether using a conventional

CCD or CMOS sensor. The main noise sources for this

kind of sensors are: the Poisson photon shot noise, which

can be approximated by a Gaussian distribution with equal

mean and variance; the thermally generated readout noise,

which is modeled as an additive Gaussian noise; the spa-

tially varying gain given by the photo response non unifor-

mity (PRNU); dark currents and quantization noise [1, 3].

Therefore, we consider the following noise model for the

non saturated nor under-exposed raw pixel value Zp at po-

sition p

Zp ∼ N (gopapτFp + µR, g
2opapτFp + σ2

R), (1)

where g is the camera gain, op is the variable gain due to

the optical mask, ap models the PRNU factor, τ is the ex-

posure time, Fp is the irradiance reaching pixel p, µR and

σ2

R are the readout noise mean and variance. Dark currents

and quantization noise are neglected. Some noise sources

not modeled in [3], such as blooming, might have a consid-

erable impact in the SVE acquisition strategy and should be

considered in a more accurate image modeling.

Two main aspects must be defined for the SVE acqui-

sition strategy. One is the number of different filters to be

used, i.e. the different exposure levels to capture. This is re-

lated to the problem of how many exposure times should be

used in the classical HDR acquisition strategy. The solution

to this problem depends on the scene. Since the acquisition

using SVE uses an a priori fixed optical mask, the number

of different exposures is fixed. In general, 2 to 4 images are

used for HDR imaging. An optical mask with 4 different

exposure levels appears a reasonable choice [12].

The second choice is whether the spatial distribution of

the different filters is done randomly or with a regular pat-

tern. This determines the way the scene irradiance is sam-

pled. Figure 2 shows examples of the two sampling strate-

gies. This point is important in the acquisition strategy

since, due to unknown under and over exposed pixels, some

regions of the image will almost certainly be sub-sampled

and some kind of interpolation will be needed to retrieve

these pixels values. If the sampling pattern is regular, alias-

ing artifacts will appear due to the characteristics of the

spectrum of the pattern (delta functions at the sampling fre-

quencies). On the contrary, the spectrum of a random pat-

tern is concentrated in a single delta and has negligible val-

ues for the rest of the frequencies, thus avoiding aliasing.

This fact led us to choose a random pattern to perform the

acquisition.

3. Irradiance reconstruction

In order to reconstruct the dynamic range of the scene

we need to solve an inverse problem, that is, to find the ir-

radiance values from the input pixel values. Several widely

known methods solve image inverse problems decomposing

the image into patches so as to take advantage of accurate

models developed to represent patches. These models as-

sume that the patches are redundant in the image and that all

patches can be represented by a limited number of classes.

In particular, Yu et al. [19] introduced a general framework

to solve this kind of problems using piecewise linear esti-

mators (PLE). They propose to decompose the image into

patches and model these patches using a GMM. Then an

expectation-maximization-like iterative procedure is intro-

duced to alternately reconstruct the patches and update the

GMM parameters. In this work we propose to use an exten-

sion of the work by Yu et al. [19], also based on a GMM for

image patches, which is adapted to the acquisition model

with variable exposure.

3.1. An inverse problem

The problem we want to solve is that of estimating the

irradiance image F from the input image Z, knowing the

exposure levels and the camera parameters. Let us consider

Yp the normalization of the input pixel Zp to the irradiance

domain

Yp =
Zp − µR

gopapτ
. (2)

We take into account the effect of saturation and under-

exposure by introducing the exposure degradation factor Up

given by

Up =

{

1 if µR < Zp < zsat,
0 otherwise

(3)

with zsat equal to the pixel saturation value. From (1), Yp

can be modeled as

Yp ∼ N
(

UpFp,
g2opapτUpFp + σ2

R

(gopapτ)2

)

, (4)

Notice that (4) is the distribution of Yp for a given Up, since

Up is itself a random variable that depends on Zp. The ex-

posure degradation factor must be included in (4) since the

variance of the over or under exposed pixels no longer de-

pends on the irradiance Fp but is only due to the readout

noise σ2

R.

Then the problem of irradiance estimation can be stated

as retrieving F from the image Y, which implies denoising

the known Yp pixel values (Up = 1) and estimating the

completely unknown ones (Up = 0).

3.2. Piecewise linear estimators for noise with vari­
able variance

In order to reconstruct F from Y we extend the general

framework proposed by Yu et al. [19], by adapting it to the

noise present in the raw irradiance values given by (4).



Patch model Based on [19], we decompose the irradiance

image Y into overlapping patches yi of size
√
N ×

√
N ,

i = 1, . . . , I with I the number of patches in the image.

From (4), each patch yi taken as a column vector of size

N × 1 can be modeled according to

yi = Uif i +Σ1/2
wi

wi, (5)

where the degradation operator Ui is a N × N diagonal

matrix with the diagonal elements equal to the degradation

image U restricted to the patch i, f i is the patch on the irra-

diance image we seek to estimate, Σwi
is a N×N diagonal

matrix with the j-th diagonal element given by

(Σwi
)j =

g2ojajτ(Uif i)j + σ2

R

(gojajτ)2
, (6)

where (Uif i)j is the j-th element of vector Uif i and wi

is a Gaussian noise with zero mean and identity covariance

matrix.

A GMM is chosen to describe image patches with K
Gaussian distributions N (µk,Σk)1≤k≤K parametrized by

their means µk and covariance matrices Σk. Each patch

f is assumed to be drawn independently from one of these

Gaussians, whose probability density functions are given by

p(f) =
1

(2π)N/2|Σk|1/2
exp

(

−1

2
(f − µk)

TΣ−1

k (f − µk)

)

.

(7)

To simplify notation, we consider in the following µk = 0
∀k = 1, . . . ,K since we can always center the patches with

respect to their means.

Patch reconstruction Assuming that the class k and the

corresponding Gaussian parameters µk and Σk are known,

we propose to estimate the patch f̃ i as the linear estimator

W̃yi that minimizes the Bayesian mean squared error

W̃ = argmin
W

E[(Wyi − f i)
2]. (8)

Notice that since f i is a random variable (following

Model (7)), the expectation operator is with respect to the

joint probability density function p(yi, f i).
The linear estimator Wyi that minimizes the Bayes

quadratic risk must satisfy

E[(Wyi − f i)y
T
i ] = 0, (9)

thus (see Appendix A)

W̃ = E[f iy
T
i ]E[yiy

T
i ]

−1 (10)

= ΣkU
T
i (UiΣkU

T
i +Σwi

)−1. (11)

Hence we propose to estimate f̃ i as

f̃
k

i = Wk,iyi, (12)

where Wk,i is the Wiener filter

Wk,i = ΣkU
T
i (UiΣkU

T
i +Σwi

)−1. (13)

Notice that the same estimator is obtained if we compute the

maximum of the posterior probability p(f i|yi,Σk) ignoring

the dependence of Σwi
on f i.

In the original framework studied by Yu et al. [19],

the noise is assumed to have constant variance (σ2, i.e.

Σwi
= σ2Id). In this simpler case, the linear estimator (13)

fully corresponds to the MAP estimator and can be shown

to minimize the Bayesian quadratic risk and not only the

risk among linear estimators.

As defined in (6), the noise covariance matrix Σwi
de-

pends on the irradiance f i. An iterative procedure could be

used to alternatively compute f i and Σwi
from (12). We

opt here to compute Σwi
directly from the input samples,

i.e., taking f i = yi, since this approximation of the noise

variance was proved robust in previous irradiance estima-

tors [5, 3].

Class selection and update In the previous step, follow-

ing (12), the class k and its parameters µk and Σk are sup-

posed to be known. In practice, they must be determined.

The best model k̃i is selected as the one maximizing the

posterior probability p(f |yi,Σk) over k assuming f = f̃
k

i

k̃i = argmax
k

(

log p(yi|f̃
k

i ,Σk) + log p(f̃
k

i ,Σk)
)

(14)

= argmin
k

(

(yi −Uif̃
k

i )
TΣ−1

wi
(yi −Uif̃

k

i ) (15)

+ (f̃
k

i )
TΣ−1

k f̃
k

i + log |Σk|
)

. (16)

Given that the Gaussian parameters µk and Σk are un-

known, and following [19], an iterative procedure is pro-

posed to alternately compute (f̃
k

i , k̃i) and update the GMM

parameters. The Gaussian parameters for the K classes are

first initialized from synthetic images (see [19] for a de-

tailed explanation of the initialization procedure). At the

estimation step, f̃ i and k̃i are computed according to equa-

tions (12) and (16) respectively. At the model estimation

step, the classes parameters µk and Σk are updated by com-

puting the corresponding maximum likelihood estimators

from the patches assigned to each class (the k̃i assigned at

the previous step),

µ̃k =
1

|Ck|
∑

i∈Ck

f̃ i, Σ̃k =
1

|Ck|
∑

i∈Ck

(f̃ i− µ̃k)(f̃ i− µ̃k)
T ,

(17)



with Ck the set of all patches assigned to class k and |Ck|
its cardinality.

The covariance matrix Σ̃k may not be well conditioned

as a result, for example, of a small number of patches in

the class. For this reason a regularization term ε is added

to ensure the correct inversion of the matrix [19] (Σ̃k =
Σ̃k + εId).

At convergence, the proposed method determines a

GMM that represents the set of image patches, it assigns

each patch to its corresponding class and restores it accord-

ingly.

The final step of the method consists in combining all the

restored patches to reconstruct the image. As it is classical

with patch-based methods, the value of each pixel in the

final image is the average of the values the pixel takes in all

the restored patches that contain it.

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Summary of the proposed method

Compute the irradiance image Y from the input image1

Z using (2).

Compute the degradation mask U from the input2

image Z using (3).

Decompose Y and U into overlapping patches.3

Initialize the K Gaussian parameters µk and Σk as4

in [19].

for it=1 to max its do5

for all patches do6

Compute f̃ i using (12).7

Compute k̃i using (16) assuming f = f̃
k

i .8

end9

Update µk and Σk using (17).10

Combine all restored patches to generate the11

reconstructed image.

end12

Important algorithm precisions Following [19], the in-

put image is decomposed into regions of size 128×128 and

the proposed approach is applied to each region separately.

Regions are half-overlapping to avoid boundary effects. Be-

cause the image content is more coherent semi-locally than

globally, this treatment allows for a better reconstruction

with a fixed number of classes K. This semi-local treat-

ment is especially important in the case of HDR images,

where the considered dynamic range may be very high and

the number of classes needed to represent the image treated

as a whole would be very large. In [19], the authors show

that 20 classes gives a good trade-off between performance

and computational cost. We used K = 20 in all our ex-

periments. The algorithm is found to converge in 3 to 4

iterations.

4. Experiments

The proposed reconstruction method was thoroughly

tested in several synthetic and real data examples. A sum-

mary of the results is presented in this section.

4.1. Synthetic data

Experiments using synthetic data are carried out in or-

der to be able to compare the reconstruction obtained by

the proposed method and previous ones from the literature

against a ground-truth. This is not possible (or highly prone

to errors) using real data. For this purpose, sample images

are generated according to Model (1) using the HDR im-

ages in Figures 3 and 4 as ground-truth. Both a random and

a regular pattern with four equiprobable exposure levels are

simulated. For the lamp example (Figure 3), the exposure

levels are set to o = {1, 2, 5, 10}, and the exposure time

is set to τ = 1/250 seconds. For the bridge example (Fig-

ure 4), the exposure levels are set to o = {1, 10, 20, 40}, and

the exposure time is set to τ = 1/500 seconds. For both ex-

amples, the camera parameters are those of a Canon 400D

camera set to ISO 200 [3] (g = 0.66, σ2

R = 17, µR = 256,

zsat = 4057). A patch size of 8 × 8 is used for the lamp

example and a size of 6× 6 for the bridge example. In both

cases the parameter ǫ is set to 5.

Figure 3 shows the results obtained by the proposed

method and by Schöberl et al. [15] for the random pattern,

as well as the results obtained by the bi-cubic interpola-

tion proposed by Nayar et Mitsunaga [12] using the reg-

ular pattern for the lamp example. Three extracts of the

image are shown together with their corresponding masks

of known (white) and unknown (black) pixels. The per-

centage of unknown pixels for the first extract is 65% (it is

nearly the same for both the regular and non-regular pat-

tern). For the other two extracts most of the pixels are

known (99%) so that the proposed method mostly performs

denoising in these extracts. Table 1 shows the PSNR val-

ues obtained in each extract by each method. The proposed

method manages to correctly reconstruct the irradiance in-

formation from the input samples. Moreover, its denoising

performance is much better than both those of Schöberl et

al. and Nayar and Mitsunaga, giving a similar reconstruc-

tion quality on the unknown areas.

Figure 4 shows on the right the result obtained by the

proposed method for the full test image. On the left, it

shows extracts of the results obtained by the proposed ap-

proach and by Schöberl et al. [15] for the random pattern

as well as the results obtained by the bi-cubic interpola-

tion proposed by Nayar et Mitsunaga [12] using the regular

pattern for the bridge example. Table 1 shows the PSNR

values obtained in each extract by each method. This ex-

ample shows a quite extreme case in terms of noise. The

extracts shown in the second and third rows correspond to



Figure 3: Synthetic data. First column (top to bottom): Ground-truth with indicated extracts, full image result obtained

by the proposed approach, full image result by Schöberl et al. [15] Second to fifth column (left to right): Extracts of the

ground-truth, result by the proposed approach, Schöberl et al. [15], Nayar and Mitsunaga [12]. Sixth column: Random (top)

and regular (bottom) mask for each extract. Black represents unknown and white known pixels. The percentage of unknown

pixels for the first extract is 65% (it is nearly the same for both the regular and non-regular pattern). For the other two extract

most pixels are known (99%) so that the proposed method mostly performs denoising in these extracts.

PSNR (dB)

Lamp extract 1 (green) extract 2 (blue) extract 3 (red)

Proposed method 35.8 50.1 41.9

Schöberl et al. 34.6 43.2 37.0

Nayar and Mitsunaga 35.9 43.9 35.4

Bridge extract 1 (green) extract 2 (blue) extract 3 (red)

Proposed method 30.6 29.1 41.0

Schöberl et al. 25.1 22.5 34.4

Nayar and Mitsunaga 31.3 18.5 31.4

Table 1: PSNR values for the extracts in Figures 3 and 4.

quite dark regions where the signal to noise ratio of the sam-

ples is very low, specially for the lower exposure levels. In

this extreme conditions, the reconstruction capacity of the

proposed method clearly outperforms that of the compared

methods.

We observed that for synthetic scenes with a very high

dynamic range (e.g. 17 stops), the reconstructed HDR im-

ages could present some artifacts. This limitation never oc-

curred in the experiments using real data that we conducted.

We suspect that the Gaussian mixture model used in the

PLE approach is not fully adapted when the dynamic range

of image patches is too large. We are currently working on

a refinement of the stochastic model taking into account this

specificity.

4.2. Real data

The feasibility of the SVE random pattern has been

shown in [14] and that of the SVE regular pattern in [18].

Nevertheless, these acquisition systems are still not avail-

able for general usage. However, as stated in Section 2, the

only variation between the classical and the SVE acquisi-

tion is the optical filter, i.e. the amount of light reaching

each pixel. Hence, the noise at a pixel p captured using

SVE with an optical gain factor op and exposure time τ/op
and a pixel captured with a classical camera using expo-

sure time τ should be very close. We take advantage of this



Figure 4: Synthetic data. Left: Result obtained by the proposed method for the full test image with indicated extracts. Right

(left to right): Ground-truth, result by the proposed approach, Schöberl et al. [15], Nayar and Mitsunaga [12]. The extracts

shown in the second and third rows correspond to quite dark regions where the signal to noise ratio of the samples is very

low, specially for the lower exposure levels. In this extreme conditions, the reconstruction capacity of the proposed method

clearly outperforms that of the compared methods.

fact in order to evaluate the reconstruction performance of

the proposed approach using real data. For this purpose we

generate an SVE image drawing pixels at random from four

raw images acquired with different exposure times. The

four different exposure times simulate the different filters

of the SVE optical mask. The images are acquired using a

remotely controlled camera and a tripod so as to be perfectly

aligned. Otherwise, artifacts may appear from the random

sampling of the four images to composite the SVE frame.

Notice that the SVE image thus obtained is very similar to

the one obtained if such an optical filter was placed adjacent

to the sensor.

This protocol does not allow us to take scenes with mov-

ing objects. Let us emphasize, however, that using a real

SVE device, this, as well as the treatment of moving cam-

era, would of course not be an issue.

Given the procedure we use to generate the SVE image

form the input raw images, the Bayer pattern of the latter is

kept in the generated SVE image. The proposed irradiance

reconstruction method is thus applied to the raw SVE image

with an overlap of
√
N − 2 between patches (i.e. a shift of

two pixels) in order to compare pixels of the corresponding

color channels. A patch size of 6×6 is used for the examples

in Figures 6 and 7, and a patch size of 8×8 for the example

in Figure 5. The ǫ parameter is set to 5 for all experiments.

The demosaicking method by Adams and Hamilton [6] is

then used to obtain a color image from the reconstructed

irradiance. To display the results we use the tone mapping

technique by Mantiuk et al. [10].

A comparison against the methods by Nayar and Mit-

sunaga and Schöberl et al. is not presented since they do

not precise in their works how to treat raw images with a

Bayer pattern (how to treat color) and therefore an adapta-

tion of their methods should be made in order to process our

data.

Figures 5 to 7 show the results obtained in three real

scenes, together with the input raw images and the mask

of known (white) and unknown (black) pixels1. Recall that

among the unknown pixels, some of them correspond to

saturated pixels and some of them to under exposed pix-

els. The proposed method manages to correctly reconstruct

the unknown pixels even in extreme conditions where more

than 70% of the pixels are missing.

These examples show the capacity of the proposed ap-

proach to reconstruct the irradiance information in both

very dark and bright regions simultaneously. See for in-

stance the example in Figure 6, where the dark interior of

the building (which can be seen through the windows) and

the highly illuminated part of another building are both cor-

1A reduced version of the images is included in the pdf due to

file size restrictions. Originals are available at http://perso.

telecom-paristech.fr/˜gousseau/single_shot_hdr



Figure 5: Real data. Left: Tone mapped HDR image obtained by the proposed approach (11.4 stops). Middle top: Raw

image with spatially varying exposure levels. Middle bottom: Mask of unknown (black) and known (white) pixels. In the

regions with unknown pixels, the percentage of missing pixels varies between 25% to 40%. Right: Extracts of the scene

rectly reconstructed (please consult the pdf version of this

article for better visualization).

5. Conclusions

In this work, we have proposed a novel approach for the

generation of HDR images from a single shot using spatially

varying pixel exposures. The SVE acquisition strategy al-

lows the creation of HDR images without the drawbacks of

multi-image approaches, such as the need for global align-

ment and motion estimation to avoid ghosting problems.

Nevertheless, existing restoration methods from HDR SVE

images lacked a mechanism for jointly denoising and inter-

polating the image effectively. The proposed method fol-

lows a recent and popular trend in image restoration, mod-

eling patch distributions by Gaussian Mixture Models. We

make use of the piecewise linear estimators proposed by

Yu et al. [19], and we extend the approach to the case of a

complete camera noise model, where noise variance is both

variable and dependent on the signal.

The proposed method could also be applied to recon-

struct the irradiance map when using the acquisition tech-

nique proposed by Hirakawa and Simon [7]. This strategy

can be seen as a very practical implementation of SVE, with

certain constraints on the optical filters.

The resulting method manages to simultaneously de-

noise and reconstruct the missing pixels, even in the pres-

ence of (possibly complex) motions, improving the results

obtained by existing methods. Examples with real data ac-

quired in very similar conditions to those of the SVE acqui-

sition show the high capabilities of the proposed approach.

The presence of artifacts was noted in the HDR reconstruc-

tion of synthetic scenes with a very high dynamic range.

This limitation never occurred in the experiments using real

data that we have conducted. We suspect that the Gaus-

sian mixture model used in the PLE approach is not fully

adapted when the dynamic range of image patches is too

large and we are currently working on a refinement of the

stochastic model taking into account this specificity. More

precisely, we are currently developing a famework gener-

ating the PLE strategy in the spirit of the recent state-of-

the-art denoising method [8], but allowing the treatment of

missing data.

Let us conclude by observing that, in the proposed ap-

proach, both saturated and under-exposed pixels are equally

treated as missing pixels. However, valuable information

exists in the fact that a pixel is either saturated or under-

exposed [3]. Hence, future work should explore the possi-

bility of different treatments for each of these two kind of

pixels. It would not be surprising that this strategy, if well

implemented, may improve current results.

A. Appendix

We look for the linear estimator Wyi that minimizes

the Bayes quadratic risk. Thus W must satisfy E[(Wyi −
f i)y

T
i ] = 0 and we have (the dependence on the patch po-

sition i is avoided to simplify notation)

W = E[fyT ]E[yyT ]−1. (18)

From the patch model (5), the (p, q) element of matrix

E[fyT ] is given by

E[fyT ]p,q = E[fp(Uf)Tq + fp(Σ
1/2
w w)Tq ] (19)

= (ΣkU
T )p,q, (20)



Figure 6: Real data. Left: Tone mapped HDR image obtained by the proposed approach (15.6 stops). Right top: Extracts

of the scene. Right bottom: Mask of unknown (black) and known (white) pixels. In the brightest part of the building 73%

of the pixels are unknown. Despite this fact, the reconstructed HDR image does not exhibit any visible artifact.

Figure 7: Real data. Left: Tone mapped HDR image obtained by the proposed approach (13.4 stops). Right top: Raw

image with spatially varying exposure levels. Right bottom: Mask of unknown (black) and known (white) pixels. In the

lamp area 70% percent of the pixels are unknown.

since wq is independent of fp and has zero mean. From

the patch model (5), the (p, q) element of matrix E[yyT ] is

given by

E[yyT ]p,q = E[(Uf)p(fU)Tq + (Uf)p(Σ
1/2
w w)Tq (21)

+ (Σ1/2
w w)p(Uf)Tq + (Σ1/2

w w)p(Σ
1/2
w w)Tq ]

(22)

= (UΣkU
T )p,q + (Σw)p,q. (23)

Hence we have,

W = ΣkU
T (UΣkU

T +Σw)
−1. (24)
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Study of the digital camera acquisition process and sta-

tistical modeling of the sensor raw data. Preprint HAL

http://hal.archives-ouvertes.fr/docs/00/

73/35/38/PDF/camera_model.pdf, 2012.

[2] C. Aguerrebere, J. Delon, Y. Gousseau, and P. Musé. Si-
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[14] M. Schöberl, A. Belz, A. Nowak, J. Seiler, A. Kaup, and

S. Foessel. Building a high dynamic range video sensor with

spatially nonregular optical filtering, 2012.
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