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ABSTRACT We propose a single-shot high dynamic range (HDR) imaging algorithm with row-wise

varying exposures in a single raw image based on a deep convolutional neural network (CNN). We first

convert a raw Bayer input image into a radiance map by calibrating rows with different exposures, and

then we design a new CNN model to restore missing information at the under- and over-exposed pixels

and reconstruct color information from the raw radiance map. The proposed CNN model consists of three

branch networks to obtain multiscale feature maps for an image. To effectively estimate the high-quality

HDR images, we develop a robust loss function that considers the human visual system (HVS) model, color

perception model, and multiscale contrast. Experimental results on both synthetic and captured real images

demonstrate that the proposed algorithm can achieve synthesis results of significantly higher quality than

conventional algorithms in terms of structure, color, and visual artifacts.

INDEX TERMS Spatially varying exposure (SVE) image, high dynamic range (HDR) imaging, convolu-

tional neural network (CNN), and human visual system (HVS).

I. INTRODUCTION

D
ESPITE significant recent advances in digital imaging

technology, conventional cameras can capture only a

limited range of intensity levels perceptible by the human

eye. For example, images captured by conventional cam-

eras cannot represent bright light sources or scenes with a

bright exterior and a dark interior. To overcome the limita-

tions of these conventional imaging systems, high dynamic

range (HDR) imaging was developed to represent, store,

and reproduce the full visible luminance range of real-world

scenes [1], [2]. Because of the advantages of HDR imaging

over conventional imaging systems, extensive research ef-

forts have been made to acquire high-quality HDR images.

One approach is to design specialized camera systems to

extend the dynamic range of conventional cameras [3]–[5].

For example, a beam splitter to reflect the light on multiple

sensors [3], a modulo sensor to keep only the least significant

bits [4], and programmable sensors to optimize per-pixel

shutter functions [5] have been developed. However, the

devices designed to acquire HDR images directly are too

complex and expensive to be used in practical applications.

Instead, most researches have focused on the effective syn-

thesis of HDR images using conventional low dynamic range

(LDR) imaging devices.

The most common approach to HDR image acquisition

with conventional cameras is to combine multiple LDR

images captured with different exposure times [6]–[9]. The

main challenge of this approach is the misalignment of the

images due to movements of the camera or objects in the

scene, which results in ghosting artifacts in the synthesized

HDR image. To address this problem, many algorithms for

the removal of such ghosting artifacts in HDR synthesis

have been proposed [10]–[19]. Conventional ghost-free HDR

imaging algorithms can be categorized into three groups dif-

ferentiated by how they handle motion. The first category of

algorithms attempts to estimate the correspondences between

the input LDR images in the stack and then merge the aligned

images [10]–[12]. However, when the reference image con-

tains poorly exposed regions, these algorithms may fail to

find accurate correspondences, thus degrading the quality of

the results. The second category of algorithms alleviates the

contributions of regions that contain object movements by
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identifying the ghost regions [13]–[15]. These algorithms

achieve high-quality results but may fail when the scene

contains objects with complex motions. The algorithms of the

third category attempt to detect ghost regions and estimate

correspondences simultaneously [16]–[19]. These algorithms

formulate and solve joint optimization problems and achieve

high-quality synthesis results. However, a common drawback

of these ghost-free HDR imaging algorithms is that they gen-

erally require high computational costs for correspondence

estimation and numerical optimization.

Recently, convolutional neural networks (CNNs) have

been applied to HDR imaging. CNN-based algorithms recon-

struct an HDR image from a stack of LDR images captured

with different exposure times by using encoder–decoder

structures that learn to handle misaligned pixels and merge

LDR images into the final HDR images [20]–[25]. These

models have the advantage of exploiting information learned

from training data and compensating for missing details

in the HDR synthesis. Although each algorithm addresses

an important issue, no algorithm has enough robustness

to completely handle the misalignment caused by object

motion in images. Concurrently, another approach attempts

to infer an HDR image directly from a single LDR image

using CNNs [26]–[31], which is also known as inverse tone-

mapping (ITM). Although the networks in this approach can

recover missing details in under- and over-exposed regions,

one limitation of this approach is its high dependence on a

single input LDR image, thereby lacking underlying infor-

mation. For example, if an image has a large area of under-

and over-exposure, the ITM algorithms may fail to restore

those regions faithfully because no information is available

in their neighboring regions.

Another effective approach to avoid ghosting artifacts in

synthesizing an HDR image is to employ spatially varying

exposure (SVE) images [32]. In SVE imaging, a scene is

captured with pixel-wise varying exposures in a single image,

and then multiple sub-images corresponding to each expo-

sure are merged to synthesize the HDR image. The SVE-

based algorithm, which is called single-shot HDR imaging,

benefits from multiple exposures in a single image and

thereby exploits more information than the ITM approaches,

where a single exposure is used. Because of these merits,

several algorithms have recently been developed, which im-

prove the HDR synthesis performance [33]–[39]. In single-

shot HDR imaging, poorly exposed pixels in the SVE image

are recovered using differently exposed neighboring pixels.

For example, Gu et al. [33] applied cubic interpolation with

optical flow. Cho et al. [37] employed the bilateral filter with

edge-directional weights and obtained HDR images using a

demosaicing algorithm. However, interpolation makes these

algorithms susceptible to causing blurring artifacts in the

synthesized HDR images when they fail to faithfully recover

the missing pixels in poorly exposed regions. Choi et al. [39]

developed sparse representation with dual dictionary learning

to construct HDR videos via SVE frames. Although their

algorithm provides high-quality HDR frames, it relies on a

SVE raw Bayer 

image

CRF

Raw radiance map HDR image

Concatenate

FIGURE 1. Overview of the proposed end-to-end CNN architecture for

directly synthesizing full-color HDR images from raw SVE Bayer images. The

proposed CNN is composed of multiple branches to mine different aspects of

an input image. Missing values in the raw radiance map, which are caused by

poor exposures, are illustrated in white.

dictionary trained from a set of LDR images to synthesize

the HDR frames.

Recently, deep learning-based approaches to single-shot

HDR imaging were developed [40], [41], which can recon-

struct over- and under-exposed pixels in raw SVE Bayer

images. While these algorithms synthesize high-quality HDR

images, two persistent issues must be addressed. First, these

algorithms use conventional demosaicing techniques to ob-

tain a full-color HDR image after recovering missing pixels,

which does not confer any additional information to the

final output. Moreover, the demosaicing increases the com-

putational complexity and may yield color artifacts. Second,

both networks in [40], [41] are optimized with an L2 loss,

which is sensitive to large and small errors and does not

correlate well to human perception [42]–[44]. Therefore,

these algorithms often provide over-smoothed HDR images

that are inconsistent with human visual perception, as we will

discuss in Section IV.

In this work, to address the aforementioned issues, we

propose a novel single-shot HDR imaging algorithm using

a deep CNN that takes raw SVE Bayer images as input and

directly synthesizes full-color HDR images in an end-to-end

manner, as shown in Figure 1. Specifically, we make the

following contributions:

• We develop an end-to-end CNN to synthesize full-color

HDR images directly from raw SVE Bayer images, as

shown in Figure 1, by learning semantic information of

an input image. Specifically, we design a multibranch

network architecture, each branch of which mines the

features of a particular aspect of the input image to

reconstruct the HDR image progressively in a coarse-

to-fine manner.

• We develop a robust loss function, which incorporates

the human visual system (HVS) model, color perception

model, and multiscale contrast, to recover under- and

over-exposed regions better and minimize perceptual

distortions.

• We experimentally show, with both synthetic and real

image datasets, that the proposed CNN model trained

with the robust loss function produces clear and natural-

looking HDR images of significantly higher quality than

the conventional algorithms [33], [37], [39]–[41].

The remainder of this paper is organized as follows: Sec-

tion II describes the proposed single-shot HDR synthesis
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FIGURE 2. Illustration of the raw SVE Bayer image with row-wise varying

exposures.

algorithm. Section III presents the robust loss function, and

Section IV discusses the experimental results. Finally, Sec-

tion V concludes this paper.

II. PROPOSED SINGLE-SHOT HDR IMAGING

Figure 1 shows an overview of the proposed single-shot HDR

imaging algorithm, which takes an SVE raw Bayer image as

input and reconstructs a full-color HDR image. First, we con-

vert the input SVE image into a raw radiance map. Then, the

proposed multibranch network synthesizes the HDR image in

a coarse-to-fine manner by learning semantic information of

the input image. In this section, we first present an overview

of the raw SVE Bayer images and the conversion of these

images into radiance maps. Then, we provide the details of

our network architecture for HDR imaging.

A. SPATIALLY VARYING EXPOSURE (SVE) IMAGE

In this work, we consider the SVE image with row-wise

varying exposures in a single raw Bayer image using two

different exposure times: a short exposure time ∆tS and a

long exposure time ∆tL, as in [37]–[40]. We also consider

the 2× 2 RGGB color filter array, as shown in Figure 2. The

input image Z with a resolution of H ×W is modeled as

Z =

{

ZS , on 4n+ 1 and 4n+ 2-th rows,

ZL, on 4n+ 3 and 4n+ 4-th rows,
(1)

where ZS and ZL denote the short- and long-exposure sub-

images, respectively, and n = 0, 1, . . . , H
4 . In this work, we

assume that Z is an 8-bit image.

B. RADIANCE MAP RECONSTRUCTION

The input SVE raw Bayer image Z is first converted into

the radiance map E for HDR imaging, assuming that the

camera response function (CRF) [7] is known a priori. In this

work, the CRF is calibrated with actual luminance values.

Specifically, let f denote the CRF, then the image acquisition

can be modeled as

Zj = f(E∆tj), (2)

where j ∈ {S,L} indexes the exposure time. As f is

invertible [7], we can normalize the model in (2) using the

logarithm as

g(Zj) = ln(E) + ln(∆tj), (3)

where g = ln(f−1). We then obtain radiance map E for the

pixel value in Zj with exposure time ∆tj by

ln(E) = g(Zj)− ln(∆tj). (4)

As the input raw SVE Bayer image Z contains poorly ex-

posed pixels, radiance map E obtained by (4) includes un-

reliable radiance values at the corresponding pixel locations,

which are represented by white in Figures. 1 and 3. We define

the well-exposed pixels as Zth ≤ Z ≤ 255 − Zth, where Zth

is the threshold value. In this work, we fix Zth = 15. Addi-

tionally, two color values in each pixel should be estimated

to obtain a full-color radiance map from E.

C. MULTIPLE BRANCH NETWORK FOR HDR IMAGING

Multibranch networks have been shown to achieve better

results than single networks in image enhancement [45], [46]

and HDR imaging [28], [47]. Inspired by these recent works,

in this work, we develop a multiscale CNN to reconstruct

missing information effectively and synthesize high-quality

HDR images. Note that the missing information is caused

by both poor exposures and the Bayer filter of the image

sensor. The architecture of the proposed network, which

takes the raw radiance map E as input and reconstructs the

full-color HDR image, is shown in Figure 3. Specifically, the

proposed network is designed to synthesize a full-color HDR

image directly with three different network branches: global,

medium, and local. Each branch is a convolutional encoder–

decoder network that accepts a radiance map as input with

a different scale of initial feature maps and decodes them

to feature maps at the final resolution. In other words, each

branch is responsible for a particular aspect of an input

image: global branch for high-level features, medium branch

for medium-level features, the local branch for fine details.

Although the proposed CNN builds on recent works, it

has the following novelties over conventional algorithms.

First, each branch of the proposed CNN is an encoder–

decoder structure, whereas conventional multibranch net-

works, e.g., [28], are constructed without downsampling and

upsampling. By progressively downsampling the input in

the encoder, each branch of the network can fully exploit

well-exposed information with a larger receptive field, and

thus can learn semantic information with high-level under-

standing of the images more faithfully than conventional

networks. Second, initial feature maps of each branch are

learned at different resolutions using different kernel sizes,

unlike in conventional multibranch networks. This enables

the proposed network to extract more important information

with larger receptive fields. Finally, the proposed network is

trained with a robust loss function, which considers human

perception on luminance, chrominance, and contrast. The

network is described in detail below.

The four types of blocks used in the proposed network are

shown in Figure 3. The convolutional block, which is com-

posed of a convolutional layer (Conv), batch normalization

(BN) [48], and parametric rectified linear unit (PReLU) [49],

extracts feature maps from the input. Note that both positive
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Raw radiance map𝐸
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(Conv + BN + PReLU)
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Global branch

Medium branch

Local branch

FIGURE 3. Proposed CNN architecture, which is composed of three branches: global, medium, and local. The output features of the branches are concatenated,

and then fused using 3 × 3 convolutions to form a full-color HDR image.

TABLE 1. Architecture of the global branch network, which contains five

convolutional blocks, two residual blocks, two deconvolutional blocks, and two

skip connections.

Layer Activation size

Input 32× 32× 1

3× 3× 128 conv, stride 1, pad 1, BN 32× 32× 128

Resdiual block 32× 32× 128

2× 2× 256 conv, stride 2, BN 16× 16× 256

Resdiual block 16× 16× 256

2× 2× 512 conv, stride 2, BN 8× 8× 512

3× 3× 512 conv, stride 1, pad 1, BN 8× 8× 512

3× 3× 512 conv, stride 1, pad 1, BN 8× 8× 512

4× 4× 256 deconv, stride 2, pad 1, BN 16× 16× 256

Skip connection 16× 16× 256

4× 4× 128 deconv, stride 2, pad 1, BN 32× 32× 128

Skip connection 32× 32× 128

and negative values contain important information for image

restoration [46]. We employ the residual block [50] to learn

larger receptive fields. The deconvolutional block that con-

sists of the deconvolutional layer (Deconv), BN, and PReLU

upsamples the feature maps. The skip connection connects

the feature maps of two layers using element-wise sum to

construct the new feature maps. Finally, the last convolutional

layer in the proposed network includes three filters of size

3×3, stride 1, and zero padding to synthesize the HDR image

from multiscale feature maps.

Global branch: The global branch learns large receptive

fields that represent high-level features of the input. It first

extracts initial feature maps with the same resolution as the

input. As the global branch represents the coarse feature

maps, we use the residual block [50] after convolutional

layers in the encoder to recover unreliable information and

TABLE 2. Architecture of the medium branch network, which contains a

convolutional block, a residual block, and two deconvolutional blocks.

Layer Activation size

Input 32× 32× 1

4× 4× 512 conv, stride 4, BN 8× 8× 512

3× 3× 512 conv, stride 1, BN 8× 8× 512

2× 2× 1024 conv, stride 2, BN 4× 4× 1024

3× 3× 1024 conv, stride 1, BN 4× 4× 1024

4× 4× 512 deconv, stride 2, pad 1, BN 8× 8× 512

Skip connection 8× 8× 512

4× 4× 256 deconv, stride 2, pad 1, BN 16× 16× 256

4× 4× 128 deconv, stride 2, pad 1, BN 32× 32× 128

missing color information of each pixel. Further, we use

two additional convolution layers after a third convolution

layer to enlarge the receptive field for learning high-level

features. Further, to prevent information loss caused by the

convolution operations, we use skip connections from resid-

ual blocks in the encoder to deconvolutional blocks in the

decoder. Table 1 summarizes the details of the global branch

network.

Medium branch: The medium branch in the network learns

to represent mid-level feature maps and extracts useful neigh-

boring features. Because the input raw radiance map E has

information missing in under- and over-exposed regions, as

well as missing color values to be estimated, the input is

first downsampled by a factor of four using the convolutional

block to obtain the initial feature maps. Three convolutional

blocks are then used to ensure that the receptive field is

large enough to extract the mid-level features. At the end

of the encoder structure, one convolutional layer is used

as a nonlinear mapping to connect the encoder features to

the decoder. Table 2 lists the details of the medium branch
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TABLE 3. Architecture of the local branch network, which contains two

convolutional blocks and three deconvolutional blocks.

Layer Activation size

Input 32× 32× 1

8× 8× 1024 conv, stride 8, BN 4× 4× 1024

1× 1× 512 conv, stride 1, BN 4× 4× 512

3× 3× 512 conv, stride 1, pad 1, BN 4× 4× 512

3× 3× 512 conv, stride 1, pad 1, BN 4× 4× 512

1× 1× 1024 conv, stride 1, BN 4× 4× 1024

4× 4× 512 deconv, stride 2, pad 1, BN 8× 8× 512

4× 4× 256 deconv, stride 2, pad 1, BN 16× 16× 256

4× 4× 128 deconv, stride 2, pad 1, BN 32× 32× 128

network.

Local branch: The local branch of the proposed network

extracts the feature maps of the input at the finest resolution.

To this end, the input raw radiance map is downsampled by

a factor of eight by the convolutional block to provide the

finest initial feature maps. The small receptive field of the

finest features provides learning at the pixel-level to preserve

high-frequency details in images. Convolutional layers with

a kernel size of 1 × 1 are used to reduce the number of pa-

rameters. Table 3 summarizes the details of the local branch.

Fusion: The outputs of the global, medium, and local

branches are concatenated to construct multiscale features.

Then, a convolutional layer with a kernel of size 3× 3, stride

1, and padding 1 is applied to fuse the coarse-to-fine feature

maps extracted from the three branches, providing the full-

color HDR image.

III. LOSS FUNCTIONS

The L2 loss was used in [40]. However, the L2 loss penalizes

larger errors and is tolerant of smaller errors, regardless of the

underlying structures in an image [51]. Furthermore, the L2

loss does not correlate well with the human perception of im-

age quality [43]. Therefore, An and Lee’s algorithm [40] re-

sults in visible artifacts in the synthesized results, especially

in highly textured regions. To overcome these limitations, we

develop a new and robust loss function for HDR imaging that

considers the HVS model, color perception, and multiscale

contrast.

Given a reconstructed HDR image H and the ground-truth

HDR image Y , we define the robust loss LRobust as

LRobust = LHVS(H,Y ) + αLC(H,Y ) + βLMC(H,Y ), (5)

where LHVS, LC, and LMC are the HVS, chromatic, and mul-

tiscale contrast losses, respectively. The hyper-parameters α
and β in (5) control the balance between the three losses. In

this work, unless otherwise specified, α and β are fixed to 0.5

and 0.75, respectively. We now describe the different losses

in (5).

A. HUMAN VISUAL SYSTEM (HVS) LOSS

For the HVS loss, we employ the just-noticeable difference

(JND) to consider the human perception model [1], [44].

Specifically, the JND l(·) determines the perceptually uni-

form integer values via conversion from absolute luminance

values y in units of cd/m2. In this work, we use the model

in [52], [53], which is given by

l(y) =











ay, if y < yl,

byc + d, if yl ≤ y < yh,

e ln(y) + f, if yh ≤ y,

(6)

where the coefficients a, b, c, d, e, f , yl, and yh are 17.554,

826.81, 0.10013, −884.17, 209.16, −731.28, 5.6046, and

10.469, respectively [52], [53].

Then, we define the HVS loss as

LHVS(H,Y ) =
1

N

N
∑

i=1

‖l(Hi)− l(Yi)‖1, (7)

where N is the number of training samples. The L1 loss

function is less sensitive to outliers than the L2 loss function

in [40], which yields visual artifacts [43]. In the backpropa-

gation, the backward function computes the partial derivative

of the loss in (7) with respect to each luminance value in H
as

∂LHVS

∂H
=

1

N

N
∑

i=1

∂l(Hi)

∂Hi

sign
(

l(Hi)− l(Yi)
)

(8)

with

∂l(y)

∂y
=











a, if y < yl,

bcyc−1, if yl ≤ y < yh,
e
y
, if yh ≤ y,

(9)

and

sign(x) =











−1, if x < 0,

0, if x = 0,

1, if x > 0.

(10)

In (8), since the L1 norm is not differentiable, we use its

subgradient instead of the gradient.

B. CHROMATIC LOSS

As the proposed network incorporates demosaicing, we also

define the chromatic loss to minimize the visible color differ-

ences, based on the color perception model. To this end, we

first compute the chrominance values u and v [53], given by

u = 410 ·
4X

X + 15Y + 3Z
, (11)

v = 410 ·
9Y

X + 15Y + 3Z
, (12)

where X , Y , and Z are the tristimulus values in the XYZ

color space.

Then, we define the chromatic loss as

LC(H,Y ) =
1

2N

N
∑

i=1

(

‖u(Hi)− u(Yi)‖1

+ ‖v(Hi)− v(Yi)‖1

)

, (13)
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where the parameter 1
2 is used to compute the average of

the two chrominance differences. We also use the L1 loss to

reduce visual artifacts. The derivative of LC with respect to

each luminance value in H for the backpropagation is given

by

∂LC

∂H
=

1

2N

N
∑

i=1

{

∂u(Hi)

∂Hi

sign
(

u(Hi)− u(Yi)
)

+
∂v(Hi)

∂Hi

sign
(

v(Hi)− v(Yi)
)

}

(14)

with

∂u(Hc
i )

∂Hc
i

=



















410 ·
(

4t11
A

− 4(t11+15t21+3t31)X
A2

)

, c = R,

410 ·
(

4t12
A

− 4(t12+15t22+3t32)X
A2

)

, c = G,

410 ·
(

4t13
A

− 4(t13+15t23+3t33)X
A2

)

, c = B,

(15)

and

∂v(Hc
i )

∂Hc
i

=



















410 ·
(

9t21
A

− 9(t11+15t21+3t31)Y
A2

)

, c = R,

410 ·
(

9t22
A

− 9(t12+15t22+3t32)Y
A2

)

, c = G,

410 ·
(

9t23
A

− 9(t13+15t23+3t33)Y
A2

)

, c = B,

(16)

where c ∈ {R,G,B} indexes the RGB color channel and

tij ∈ R
3×3 is the value of the transformation matrix that

converts the RGB color space to the XYZ color space [1].

Further, we denote A = X+15Y +3Z for simpler notations.

C. MULTISCALE CONTRAST LOSS

The contrast of the images can be considered in CNNs

using the structural similarity index (SSIM) in the loss func-

tion [43], [46]. The SSIM is computed using three terms: lu-

minance, contrast, and structure. However, as the luminance

component is already used in the HVS loss L HVS in (7), we

only consider contrast and structure as

cs(x, y) =
2σxy + C2

σ2
x + σ2

y

, (17)

where σx and σy are the standard deviations for images x and

y, respectively, and σxy is the cross-covariance.

In this work, to consider the contrast and structure of

the image more faithfully at different scales, we employ

multiscale SSIM (MS-SSIM) to compute cs(·) in (17). Ad-

ditionally, we compute cs(·) in the perceptually uniform

domain via (6). Specifically, the multiscale contrast loss LMC

is defined as

LMC(H,Y ) = 1−
1

N

N
∑

i=1

M
∏

j=1

csj
(

l(Hi), l(Yi)
)

, (18)

where M is the number of scales and csj denotes the contrast

and structure term in (17) at the jth scale. Then, as was sim-

ilarly done in [43], the derivative of the multiscale contrast

loss is given by

∂LMC

∂H
= −

1

N

N
∑

i=1

{(

M
∑

j=1

1

csj(l(Hi), l(Yi))

×
∂csj(l(Hi), l(Yi))

∂Hi

)

M
∏

k=1

csk(l(Hi), l(Yi))

}

(19)

with

∂csj(l(Hi), l(Yi))

∂Hi

=
2

σ2
l(Hi)

+ σ2
l(Yi)

+ C2
◦

(

Gσ ∗
∂l(Hi)

∂Hi

)

◦

{

(l(Yi)− µl(Yi))− csj(l(Hi), l(Yi)) ◦ (l(Hi)− µl(Hi))

}

,

(20)

where ◦ and ∗ denote the element-wise product and con-

volution operator, respectively; µYi
and µHi

are the local

means for images l(Yi) and l(Hi), respectively; and σYi
and

σHi
are the standard deviations for images l(Yi) and l(Hi),

respectively.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm

against four conventional single-shot HDR imaging algo-

rithms: Gu et al.’s algorithm [33] and Cho et al.’s algo-

rithm [37] are interpolation-based algorithms, Choi et al.’s

algorithm [39] is a sparse representation model-based algo-

rithm [39], and An and Lee’s algorithm [40] and Çoğalan and

Akyüz’s algorithm [41] are learning-based algorithms. The

performance of these algorithms is evaluated using synthetic

noncalibrated and calibrated images, and captured real SVE

images. To print the synthesized HDR images, we used the

tone-mapping algorithm [54] in all the experiments.

We set the parameters αs and αd in Cho et al.’s algo-

rithm [37] to 2 and 0.1, respectively, in all experiments. For

Choi et al.’s algorithm [39], we used the patch size of 6 × 6
and fixed the sparsity regularization parameter λ to 0.15.

For An and Lee’s algorithm [40] and Çoğalan and Akyüz’s

algorithm [41], we retrained their networks with our dataset,

which will be described subsequently. For reproducibility,

we provide the source codes and pretrained models on our

project website.1

A. EXPERIMENTAL SETTINGS

We collected 70 calibrated HDR images for training from

the Fairchild’s HDR database,2 HDR-Eye dataset,3 and cali-

brated HDR video sequences.4 To avoid overfitting, we per-

formed data augmentation to increase the size of training data

as done in [55], [56]. Specifically, we used geometric trans-

formations of 90, 180, and 270◦ rotations and horizontal flip-

ping, thereby producing six additional augmented versions of

1https://github.com/viengiaan/Single-Shot-HDR-Imaging-with-MSCNN
2http://rit-mcsl.org/fairchild/HDRPS/HDRthumbs.html
3https://mmspg.epfl.ch/hdr-eye
4http://www.hdrv.org/Resources.php
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(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 4. Synthesized results of the noncalibrated images. (a) Ground-truth, (b) synthetic raw Bayer images, (c) Gu et al.’s algorithm [33], (d) Cho et al.’s

algorithm [37], (e) Choi et al.’s algorithm [39], (f) An and Lee’s algorithm [40], (g) Çoğalan and Akyüz’s algorithm [41] , and (h) the proposed algorithm. (Top)

Full-resolution images. (Bottom) Magnified parts.

each image. Next, to synthesize a row-wise SVE image, we

set the short and long exposure values as EV = {−1,+1},

and then split them into a raw image with the RGGB pattern

as shown in Figure 2.

Further, we randomly selected 70% and 10% of the images

for training and validation, respectively, and used the remain-

ing images for testing. We extracted 200,000 patches of size

32×32 from the training images with a stride of 80. We used

the recent stochastic gradient descent solver, Adam [57], with

a batch size of 32 patches and learning rate of 10−4 with

momentums β1 = 0.9 and β2 = 0.999. All the experiments

were performed using the Caffe library [58]. The training

took approximately two days with an Nvidia Titan V GPU

using a PC with a 3.30 GHz Intel® Core™ i9-10900 CPU

and 32 GB memory.

B. SYNTHETIC IMAGES

We evaluate the performance of the proposed algorithm on

two synthetic image datasets: noncalibrated and calibrated

HDR images. The noncalibrated dataset contains 12 indoor

and outdoor scene images, and the calibrated dataset consists

of nine natural scene images. Because a noncalibrated HDR

image is not calibrated in units of cd/m2, we multiplied all

pixel values by a single constant to convert them to approxi-

mate luminance values, as done in [52], [53]. Specifically, we

assumed that the typical maximum luminance values of some

objects in specific environments, e.g., sky on a sunny day, are

known a priori.

Figure 4 compares the synthesized results obtained by

each algorithm from the raw SVE images in Figure 4(b),

for the noncalibrated images. Gu et al.’s algorithm [33]

in Figure 4(c) results in blurring and aliasing artifacts in

the highly textured regions, e.g., window, roof, and object

texture. This is because their algorithm uses bicubic interpo-

lation to upsample the subimages ZS and ZL to synthesize

the HDR image. Cho et al.’s algorithm [37] in Figure 4(d)

yields better results than Gu et al.’s algorithm, but still

produces artifacts. For example, the high-frequency details

in the window and roof are lost because the algorithm uses

bilateral interpolation to recover missing values. Choi et al.’s

algorithm [39] in Figure 4(e) recovers the shape of the texture

but yields blurring artifacts around the edges due to the

failure of sparse reconstruction, whose performance depends

on dual dictionary learning. As shown in Figures 4(f) and (g),

An and Lee’s algorithm [40] and Çoğalan and Akyüz’s

algorithm [41] produce higher-quality images and preserve

high-frequency details. However, these algorithms still yield

false-color artifacts because of demosaicing. On the contrary,

the proposed algorithm in Figure 4(h) achieves the highest-

quality synthesized images, preserving high-frequency de-

tails faithfully and avoiding visual artifacts. This is because

the proposed algorithm explicitly considers the HVS, chro-

matic, and multiscale contrast losses in (7), (13), and (18),

respectively, during training.

Figure 5 shows the synthesized HDR images from the cal-

ibrated dataset. Gu et al.’s algorithm in Figure 5(c) results in

blurring artifacts due to interpolation. Cho et al.’s algorithm

in Figure 5(d) yields artifacts around textures when the expo-
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(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 5. Synthesized results of the noncalibrated images. (a) Ground-truth, (b) synthetic raw Bayer images, (c) Gu et al.’s algorithm [33], (d) Cho et al.’s

algorithm [37], (e) Choi et al.’s algorithm [39], (f) An and Lee’s algorithm [40], (g) Çoğalan and Akyüz’s algorithm [41] , and (h) the proposed algorithm. (Top)

Full-resolution images. (Bottom) Magnified parts.

TABLE 4. Quantitative comparison of the synthesis performance using three objective quality metrics: pu-PSNR, log-PSNR, and HDR-VDP. Boldface numbers

denote the best scores, thus indicating the best quality.

Noncalibrated dataset Calibrated dataset

pu-PSNR log-PSNR
HDR-VDP HDR-VDP

pu-PSNR log-PSNR
HDR-VDP HDR-VDP

(P ) (Q) (P ) (Q)

Gu et al. [33] 32.80 32.13 0.80 69.00 31.77 26.48 0.80 68.93

Cho et al. [37] 40.02 30.40 0.62 70.80 39.37 28.00 0.60 69.64

Choi et al. [39] 36.17 35.10 0.48 69.23 36.30 28.51 0.57 70.14

An and Lee [40] 39.92 35.49 0.40 69.37 37.32 28.20 0.52 66.88

Çoğalan and Akyüz [41] 42.00 39.86 0.48 70.23 40.33 31.08 0.45 71.08

Proposed 44.20 40.18 0.48 73.66 42.55 31.34 0.46 73.76

sure difference between rows is large since no information is

available in neighboring pixels to recover missing regions.

Choi et al.’s algorithm in Figure 5(e) achieves better per-

formance than the interpolation-based algorithms, especially

in well-exposed regions, e.g., the leaf region in the second-

row image. However, when a region has poorly exposed

values, e.g., the characters in the fourth and sixth rows,

blurring artifacts around edges are brought in. An and Lee’s

algorithm and Çoğalan and Akyüz’s algorithm in Figures 5(f)

and (g), respectively, synthesize high-quality HDR images,

alleviating the artifacts via the learning-based approaches.

However, this is at the cost of splotchy artifacts appearing

around the strong edges because their networks are trained

with L2 loss functions. It is also observed that Cho et al.’s,

An and Lee’s, and Çoğalan and Akyüz’s algorithms produce

false color artifacts caused by demosaicing. In contrast, the

proposed algorithm provides the highest quality HDR images

without noticeable artifacts. This is because our model is

trained with the HVS, chromatic, and multiscale contrast

losses, and it effectively alleviates the effects of the outliers

via the L1 loss.

To complement the subjective assessment, we compare the

proposed algorithm with conventional algorithms using three

objective quality metrics: perceptually uniform extension to

PSNR (pu-PSNR) [59], log-PSNR [59], and high dynamic

range visible difference predictor (HDR-VDP) [60], [61].

Table 4 quantitatively compares the synthesis performance

of the proposed algorithm against those of the conventional

algorithms for the noncalibrated and calibrated test images.

For each metric on each dataset, the highest scores, which

indicate the best results in terms of the lowest differences, are

boldfaced. The pu-PSNR and log-PSNR metrics, which are
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(a) (b) (c) (d) (e) (f)

(g)

FIGURE 6. DRIM assessment on a test image. (a) Gu et al.’s algorithm [33], (b) Cho et al.’s algorithm [37], (c) Choi et al.’s algorithm [39], (d) An and Lee’s

algorithm [40], (e) Çoğalan and Akyüz’s algorithm [41], and (f) the proposed algorithm. The colormaps in (g) depict the predicted visible differences.

extensions of the PSNR metric, measure the quality of pixel

value reconstruction by considering the HVS model in ab-

solute luminance. As the proposed algorithm effectively re-

constructs missing information via multiscale CNN with the

robust loss function, it provides significantly higher scores

than the conventional algorithms in these metrics. HDR-VDP

measures perceptual differences between the reference and

test images by predicting the visibility and quality differences

at which an average human observer would detect. In this

work, we use the quality index score Q and the probability

score P [61]. Lower P and higher Q values imply that the

query image provides higher image quality with less differ-

ence compared to the reference image. Because the proposed

algorithm effectively synthesizes high-quality HDR images

via a multiscale CNN model with the HVS model-based

loss function, the proposed algorithm also achieves the best

performance in terms of the overall HDR-VDP scores.

Figure 6 shows the distortion map for the test images in

Figures 4 and 5 estimated by another quality metric: dynamic

range independent image quality metric (DRIM) [62]. DRIM

estimates the probability that the differences between two

images in structural changes in each local region would

be noticed by a viewer. The DRIM detects three types of

structural change, namely, loss of visible contrast (green),

amplification of invisible contrast (blue), and reversal of

visible contrast (red), as shown in Figure 6(g). Gu et al.’s

algorithm [33] in Figure 6(a) results in severe visible differ-

ences with significant losses in visible contrast because their

algorithm produces blurring artifacts that change the struc-

tures of the image. In Figure 6(b), Cho et al.’s algorithm [37]

produces less visible differences than Gu et al.’s algorithm,

but still results in visible differences with the amplification

of invisible contrast. Although Choi et al.’s algorithm [39]

in Figure 6(c) produces a smaller loss of visible contrast

and amplification of invisible contrast than the interpolation-

based algorithms, it contains a higher reversal of visible con-

trast (red color). Additionally, most of the differences appear

in under-exposed regions. An and Lee’s algorithm [40] in

Figure 6(d) synthesizes HDR images with a smaller amount

of artifacts, but the results still exhibit differences in the over-

exposed regions with the loss of visible contrast. Çoğalan and

Akyüz’s algorithm [41] in Figure 6(e) provides less artifacts

than An and Lee’s algorithm but still loses visible contrast

in the over-exposed regions. On the contrary, the proposed

algorithm in Figure 6(f) achieves high-quality results with

significantly less visible differences in terms of all the struc-

tural changes than the conventional algorithms.

C. CAPTURED IMAGES

Next, we evaluate the HDR synthesis performance on cap-

tured SVE images. We controlled the exposure times of

a FLIR Grasshopper®3 camera to capture two raw Bayer

images of a static scene. Then, we merged the images to syn-

thesize the row-wise SVE images, as shown in Figure 7(a).

The exposure times were set such that the longer exposure

was two stops more than the shorter exposure. In this test, the

synthesized images are only compared qualitatively, because

the ground-truth HDR images are unavailable.

The synthesis results in Figure 7 exhibit similar tendencies

to the results for the synthetic images in Figures 4 and 5. Gu

et al.’s algorithm in Figure 7(b) smears details and causes

blurry textures. Cho et al.’s algorithm in Figure 7(c) yields

severe artifacts around textures and edges. Choi et al.’s algo-

rithm in Figure 7(d) achieves better results but still produces

blurring around the edges. An and Lee’s and Çoğalan and

Akyüz’s algorithms in Figures 7(e) and (f), respectively, pro-

vide low performance since the image contains highly over-

exposed regions. Moreover, Cho et al.’s, An and Lee’s, and

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3078457, IEEE Access

A. G. Vien, C. Lee: Single-Shot High Dynamic Range Imaging via Multiscale Convolutional Neural Network

(a) (b) (c) (d) (e) (f) (g)

FIGURE 7. Synthesis results of the captured images. (a) SVE raw Bayer input image, (b) Gu et al.’s algorithm [33], (c) Cho et al.’s algorithm [37], (d) Choi et al.’s

algorithm [39], (e) An and Lee’s algorithm [40], (f) Çoğalan and Akyüz’s algorithm [41], and (g) the proposed algorithm.

TABLE 5. Ablation study of the proposed multiple-branch network against

different combinations of network architectures at the final epoch. Boldface

numbers denote the highest scores for each metric.

pu-PSNR log-PSNR
HDR-VDP HDR-VDP

(P ) (Q)

U-Net [63] 42.04 34.89 0.35 70.64

G 45.48 34.83 0.31 73.04

G+M 42.43 33.33 0.32 73.20

G+L 43.73 34.72 0.31 73.11

G+M+L 45.80 36.60 0.31 73.73

Çoğalan and Akyüz’s algorithms elicit false color artifacts.

The proposed algorithm in Figure 7(g) provides more faithful

results with less visible artifacts.

D. ABLATION STUDIES FOR NETWORK

ARCHITECTURES

We conduct ablation studies to analyze the contributions

of three different branch networks in the proposed algo-

rithm described in Section II-C: global, medium, and local.

Specifically, we analyze the effectiveness of each branch

network simultaneously by training the proposed networks to

synthesize HDR images using the following combinations:

• G: A single global branch network is used.

• G+M: Multiscale features, obtained using global and

medium branch networks, are combined.

• G+L: Multiscale features, obtained using global branch

and local branch networks, are combined.

• G+M+L: In addition to G+M, feature maps obtained

from local branch network are used as well (proposed

model). Thus, three-branch networks are used in total.

In addition, we analyze the effectiveness of the proposed

networks by comparing them with U-Net [63], which is

commonly used as a backbone for image restoration.

Table 5 shows a quantitative comparison of the synthesis

performance of the proposed multiple-branch networks and

U-Net in terms of pu-PSNR, log-PSNR, and HDR-VDP.

Note that all the models are trained with the robust loss func-

tion in (5). First, it can be observed that U-Net provides the

worst performance in all HDR image quality metrics, which

indicates that the proposed networks can synthesize HDR

images more effectively than general-purpose restoration

networks. Except for U-Net, G yields the worst performance

in Q-value. Second, a higher performance is achieved in Q-

value with multiscale features, which are obtained through

medium branch (M) or local branch (L) networks. Finally,

by combining the three branch networks (G+M+L), the

proposed network achieves the best score in all HDR image

quality metrics.

E. ABLATION STUDIES FOR LOSS FUNCTIONS

Finally, we conduct ablation studies to analyze the contri-

bution of each loss function described in Section III to the

synthesis performance. To this end, we trained the proposed

network using six different combinations of loss functions,

namely LHVS, LMC, LHVS +LC, LHVS +LMC, LC +LMC, and

LRobust. In addition, we compare the proposed loss functions

with the tone-mapped loss LTM developed in [20] as

LTM(H,Y ) = ‖T (H)− T (Y )‖22, (21)

where T (H) = log(1+µH)
log(1+µ) denotes the tone-mapping func-

tion, and the HVS loss LHVS,L2
using the L2 norm. After

training, we compute three objective quality metrics: pu-

PSNR, log-PSNR, and HDR-VDP.
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FIGURE 8. Convergence behavior for the different combinations of loss functions, measured via (a) pu-PSNR, (b) log-PSNR, and (c) HDR-VDP.

TABLE 6. Ablation study of the proposed robust loss function against

different combinations of losses at the final epoch. Boldface numbers denote

the highest scores for each metric.

pu-PSNR log-PSNR
HDR-VDP HDR-VDP

(P ) (Q)

LTM [20] 43.41 37.44 0.39 72.00

LHVS,L2
43.25 34.71 0.40 72.05

LHVS 43.85 35.55 0.39 72.14

LMC 41.76 33.91 0.30 72.82

LHVS + LC 42.70 34.73 0.41 72.51

LMC + LC 44.20 36.03 0.30 73.60

LHVS + LMC 45.05 35.34 0.30 73.00

LRobust 45.80 36.60 0.31 73.73

Table 6 shows a quantitative comparison of the synthe-

sis performance of the different loss functions at the final

epoch. First, since LTM considers human perception using

the logarithm function that approximates the HVS’s contrast

sensitivity [52], [53], it provides the highest log-PSNR but

the lowest Q-value, thereby producing lower perceptual qual-

ity. Second, since LHVS measures perceptual differences by

considering the HVS model, LHVS yields better performance

than LTM in terms of pu-PSNR and Q-value. Third, LHVS,L2

yields inferior performance than LHVS in terms of all metrics,

since the L2 norm is more sensitive to outliers than the

L1 norm [43]. Fourth, as LMC measures the structural and

contrast similarity of the images in a multiscale approach, it

achieves higher perceptual qualities corresponding to lower

P -value and higher Q-value than LHVS. Fifth, as LC mea-

sures color information with chroma functions to avoid color

artifacts, the combinations LHVS+LC and LMC+LC increase

Q-values of LHVS and LMC, respectively. Sixth, LHVS +LMC

takes advantage of pixel-wise quality estimation from LHVS

and multiscale structural and contrast similarity from LMC.

Therefore, it provides the second best pu-PSNR and the

lowest P -value. Finally, by combining LHVS, LC, and LMC,

the robust loss function LRobust achieves the highest pu-PSNR

and Q-value and the second best scores in terms of log-

PSNR and P -score, producing high-quality HDR images

with less visual artifacts than other loss functions. Therefore,

this analysis confirms the effectiveness of the proposed robust

(a) pu-PSNR (b) log-PSNR

(c) HDR-VDP (P ) (d) HDR-VDP (Q)

FIGURE 9. Synthesis performance evaluation for various combinations of α

and β in terms of (a) pu-PSNR, (b) log-PSNR, (c) HDR-VDP (P ), and (d)

HDR-VDP (Q).

loss function.

We also examine the convergence behavior and stability

of different combinations of the proposed loss functions.

Figure 8 shows the plots of three image quality metrics,

i.e., pu-PSNR, log-PSNR, and HDR-VDP, at all epoches in

training. The robust loss function LRobust achieves the best

performance with significantly less fluctuation than other

combinations on all quality metrics. This result also confirms

the stability as well as the effectiveness of the proposed

robust loss function in training.

F. EFFECTS OF PARAMETERS α AND β ON SYNTHESIS

PERFORMANCE

As discussed in Section III, α and β in (5) control the trade-

off between the HVS loss LHVS, chromatic loss LC, and mul-

tiscale contrast loss LMC. We evaluate how those parameters

affect the synthesis performance. Figure 9 shows the average

performance for various combinations of α and β on the
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test dataset. More specifically, 25 combinations with α ∈
{0, 0.25, 0.5, 0.75, 1.0} and β ∈ {0, 0.25, 0.5, 0.75, 1.0}
were evaluated, and then the results were interpolated for

visualization.

As shown in Figure 9, the proposed algorithm provides

varying performance for different values of α and β in

terms all the objective quality metrics. More specifically, in

Figures 9(a) and (b), the pu-PSNR and log-PSNR scores are

considerably affected by both α and β. On the contrary, the

effects of α on the HDR-VDP scores is smaller than those of

β in Figures 9(c) and (d). This is in line with the fact that the

HVS is less sensitive to color than to luminance. An improper

combination of α and β may yield undesirable artifacts in the

synthesized image. Therefore, to achieve overall high synthe-

sis performance in terms of the objective quality metrics, we

fixed α and β to 0.5 and 0.75, respectively, in this work.

V. CONCLUSIONS

In this work, we proposed an end-to-end CNN-based single-

shot HDR image synthesis algorithm in this work. We first

designed a multiscale CNN that consists of multiple encoder–

decoder networks to obtain multiscale feature maps for an

SVE image. Then, we developed the robust loss function

composed of the HVS, chromatic, and multiscale contrast

losses, to effectively measure the differences in HDR images.

The experimental results showed that the proposed algorithm

outperforms the conventional algorithms in terms of both

subjective and objective quality metrics. In addition, the

ablation studies of network architecture and loss function

showed that the proposed network and robust loss function

achieve reliable and high-quality synthesis results.
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