
Single-Shot Scene Reconstruction

Sergey Zakharov1, Rareş Ambruş1, Vitor Guizilini1, Dennis Park1, Wadim Kehl2,

Fredo Durand3, Joshua B. Tenenbaum3, Vincent Sitzmann3, Jiajun Wu4, Adrien Gaidon1

1Toyota Research Institute, 2Woven Planet, 3Massachusetts Institute of Technology, 4Stanford University

Abstract: We introduce a novel scene reconstruction method to infer a fully ed-
itable and re-renderable model of a 3D road scene from a single image. We rep-
resent movable objects separately from the immovable background, and recover a
full 3D model of each distinct object as well as their spatial relations in the scene.
We leverage transformer-based detectors and neural implicit 3D representations
and we build a Scene Decomposition Network (SDN) that reconstructs the scene
in 3D. Furthermore, we show that this reconstruction can be used in an analysis-
by-synthesis setting via differentiable rendering. Trained only on simulated road
scenes, our method generalizes well to real data in the same class without any
adaptation thanks to its strong inductive priors. Experiments on two synthetic-real
dataset pairs (PD-DDAD and VKITTI-KITTI) show that our method can robustly
recover scene geometry and appearance, as well as reconstruct and re-render the
scene from novel viewpoints.

1 Introduction

Decomposing images into disjoint symbolic representations is the ultimate goal of robotics and
computer vision, as it allows semantic reasoning over all scene parts. Such a decomposition bene-
fits different possible applications (e.g., robotics, augmented reality, autonomous driving) where a
decomposed scene can be reassembled in different ways, enabling interaction or reenactment. Un-
fortunately, single image scene reconstruction is inherently ill-posed due to a variety of reasons.
Most prominently, ambiguity in projective geometry can only be resolved with prior knowledge
about the observed scene. Current state-of-the-art methods either do not provide a full decomposi-
tion of the scene and regress per-pixel depth [1, 2], or estimate the poses of already known objects
and ignore the rest of the geometry [3, 4].

In this work, we design a pipeline to obtain an interpretable, disentangled scene representation for
3D-aware manipulation of driving scenes. Our system is capable of reconstructing full geometries
and appearances of detected object instances from a single RGB image. Such a decomposition is
made possible by three components: (1) a scene decomposition network (SDN) that detects object
instances, recovers their partial geometries and poses, and predicts the full geometry of the back-
ground and RGB color behind the occluders; (2) a differentiable database of colored object priors
that encodes their full geometry and appearance in the form of signed distance fields (SDF) and
luminance fields (LF); and (3) a 2D/3D optimization pipeline that uses surfel-based differentiable
rendering to fit initial observations to the object database, leveraging their shape and appearance.

Our contributions are summarized as follows:

• A holistic single-shot scene reconstruction system that splits the scene into background and object
instances and recovers their full geometry and appearance;

• An optimization pipeline based on NOCS-SDF and RGB-LF fitting as well as surfel-based dif-
ferentiable rendering to refine geometries, appearances, and poses of detected instances;

• A scene manipulation and generation pipeline allowing to place and render objects of various
geometry and appearance, and change view points.

5th Conference on Robot Learning (CoRL 2021), London, UK.



(C)

(A)

MLPs

ID

E D

N
O
C
S

C
N
N ID

ID

RGB

Lat

Lat

Lat

Prior DB

(B)

Pose Estimation

D
e
p
th

2D/3D Optimization

DR

NOCS – SDF/LF RGB/NOCS/Mask – DR

(D)NOCS (Objects)

Depth (Background)

Recovered 3D scene

Figure 1: Scene Decomposition Network (SDN): Given an RGB image, our SDN recovers partial
canonicalized object shapes in the form of NOCS maps and predicts background depth. NOCS maps
are then used to directly estimate object poses using a PnP solver. We further fit learned object priors
to align with predicted partial shapes in terms of geometry, appearance, and poses.

2 Related Work

Single-Shot Scene Reconstruction Holistic single image scene reconstruction is a highly ill-
posed problem, tackled from different angles by a variety of works. The most common approach
is monocular depth estimation that predicts per-pixel depth values [5, 1, 2]. While achieving re-
markable results, these methods reconstruct the scene as a whole and do not incorporate knowledge
about the scene’s objects and layout. Alternatively, 3D detection pipelines detect separate objects
and recover their masks and 3D bounding boxes [3, 6, 7, 4], or incorporate relationships between
objects by using a graph or physical simulation [8, 9, 10]. While having understanding about the
object appearance in 2D and their 3D pose, these methods do not recover the shapes of the objects
nor the rest of the scene. There are also pipelines aiming at reconstructing objects from detections
by aligning 3D CAD models to fit the predicted masks and input images [11, 12, 13], albeit without
generalization to unknown instances outside the model database. Lastly, there are recent works that
recover room layouts together with full object geometries [14, 15], but restrict themselves to the
geometric components of the recovered instances. In our work we recover the geometry and appear-
ance for both background and detected objects by using a differentiable database of object priors
allowing us to smoothly interpolate between plausible object shapes.

6DoF Object Detection via Correspondence Regression Object detection and pose estimation
from RGB images is a well-established but ongoing research problem due to, among others, the in-
herent ambiguity of perspective projection. The myriad of existing solutions can loosely be grouped
in three categories: direct pose regression (using a neural net to output the pose directly by learning
from data) [16, 17, 18, 19], template-matching (comparing patches with a predefined set of tem-
plates either in pixel space or feature space) [20, 21, 22, 23, 24, 25], and correspondence-based
methods (directly utilizing correspondences between image coordinates and 3D models of inter-
est) [26, 27, 3, 4] - each having their own benefits and drawbacks. The current state-of-the-art
methods in object pose estimation almost exclusively belong to the latter group with such repre-
sentatives as PVNet [7], CDPN [28], EPOS [27], Pix2Pose [4], GDR-Net [29] and DPOD [3, 6].
They all regress per-pixel correspondences and use a PnP solver to estimate a 6DoF pose given a
set of 2D-3D correspondences and camera parameters, minimizing reprojection errors. While some
works regress manually defined UV correspondences, others regress Normalized Object Coordinate
Space (NOCS) maps [30] that represent visible xyz object coordinates in RGB space. The benefits
of NOCS are their straightforward creation through rendering, and their simultaneous definition of
both the object’s pose and shape. In our work we show how to effectively leverage this representation
for geometry retrieval as well.

2



Neural Implicit Representations Recently, a new prominent direction for 3D shape and appear-
ance representation has emerged with DeepSDF [31], Occupancy networks [32], and IM-Net [33],
using neural networks for scalar function approximation. All three methods take 3D coordinates as
input and output either a binary occupancy estimate or a continuous SDF value, encoding the object’s
surface. Subsequently, follow-up work such as Deep Local Shapes (DLS) [34], Neural Geometric
Level of Detail (NGLOD) [35] or NASA [36] improved the direction further. While DLS stores
SDFs as voxel grid cells to allow larger scenes, NGLOD uses an efficient Octgrid representation and
a feature composition scheme based on trilinear interpolation to further improve the reconstruction
quality, whereas NASA extends the approach to articulated objects.

Similar representations have been extended to represent object appearance. Scene Representation
Networks (SRN) [37] add a ray marching routine and also regress RGB colors at surface intersec-
tions to learn from multi-view images, and Differentiable Volumetric Rendering [38] which couples
an implicit shape representation with differentiable rendering. Alternatively, instead of regress-
ing SDF or RGB values for predefined 3D coordinates, NeRF [39] proposes to regress density
and color values along rays (5D coordinates) and compute the true color via numerical integra-
tion. This approach, drawing inspiration from Neural Volumes [40] and their volumetric represen-
tation, boosted interest in implicit volumetric rendering and resulted in a multitude of works tack-
ling problems from training and rendering time performance [41, 42, 43, 44], to covering dynamic
scenes [45, 46, 47, 48], scene relighting [49, 50, 51], and composition [52, 53, 54].

While providing realistic renderings, most NeRF-based methods overfit to a single scene (with the
exception of PixelNeRF [55]) and require a set of very dense view point annotations. Our pipeline,
on the other hand, is capable of reconstructing scenes never seen during training, and is also not
limited to viewpoints seen during training.

3 Methodology

Given a single RGB image of a typical driving scene, our pipeline holistically reconstructs the scene
by not only explaining every visible pixel, but also predicting the full geometry and appearance of
detected objects and the occluded areas that are not visible in the image. This is made possible by a
combination of three components: a scene decomposition network (SDN), a differentiable database
of object priors, and a 2D/3D optimization pipeline.

3.1 Scene Decomposition Network

The first component of our pipeline (Fig. 1) is the scene decomposition network, or SDN. Its main
role is to estimate the layout of the scene, detect and identify visible objects, and recover the geom-
etry of both the background and the detected objects. For clarity, it is divided into three separate
blocks: a detection transformer-based decomposition block, an object reasoning block, and a 3D
reasoning block.

Detection Transformer Block (Fig. 1a) The core of our SDN is a transformer-based decomposi-
tion. An encoder-decoder object detector based on transformers, a popular architecture for sequence
prediction and has been first applied to computer vision in DETR [56]. DETR first generates dis-
tinctive image features from an input RGB image, and feeds them to a transformer module to build
attention maps between features. This self-attention mechanism explicitly models all pairwise inter-
actions between elements in a sequence, making this architecture particularly suitable for specific
constraints of set prediction (e.g. duplicate suppression). Using the notion of object queries, we are
able to retrieve output features for each of the detected objects, which are then used as input to our
object reasoning block and 3D reasoning block.

Object Reasoning Block (Fig. 1b) Our object reasoning block takes output features of the detec-
tion transformer and uses a collection of MLPs to predict important object properties. Following [56]
we use a 3-layer perceptron with ReLU activation and a linear projection layer to regress object class
IDs and 2D bounding boxes. Additionally, we also regress SDF and LF feature vectors, denoted by
zsdf and zlf respectively. These feature vectors provide an initial state for object reconstruction and
are essential to effectively reason about and refine the 3D component of these objects, as described
in detail in Section 3.2.

3



NOCS

DR
ZSDF ZLF

SDF

MLP

RGB

MLP
+

P

Recovered Surface

Recovered Surface

Recovered Surface

NOCS + RGB

Rendered Predicted(A) (B)

Grid

ZSDF+

Figure 2: Differentiable database of object priors (A) and shape, appearance, and pose opti-
mization (B). Our object priors are learned using coordinate-based MLPs, taking positionally en-
coded features as input and recovering geometry in form of SDF and appearance on the object’s
surface. We use a 0-isosurface projection (marked P), to retrieve object’s surface from an SDF field.
Our initial recovered object is then refined to fit both predicted observations in terms of masks and
NOCS map, as well as ground truth RGB values from the input image.

3D Reasoning Block (Fig. 1c) Our 3D reasoning block aims to recover 3D scene information by
splitting it into two parts: a background containing road surfaces, buildings, and other objects not
detected by the detection transformer, and a foreground entirely consisting of detected objects. We
use the output of the transformer decoder for each object to compute multi-head attention scores of
this embedding over the output of the encoder, generating M attention heatmaps per object. These
masks are then used to regress the geometry for both foreground and background.

Figure 3: Partial shape recovery
from a predicted 2D NOCS map.

The foreground is predicted as a set of normalized shape maps.
Since they encode 3D coordinates via RGB, visualizing each
3D color component in 3D space allows us to recover a par-
tial 3D shape of the object in its normalized coordinate space
(Fig. 3). This representation is crucial for our pipeline to re-
trieve the object’s full geometry and pose.

The background, on the other hand, is represented as a depth
map since we solely care about its geometry. For view syn-
thesis applications, we also predict the depth and appearance
behind the detected objects by utilizing a GAN-like encoder-decoder generator architecture. This
architecture takes masked RGB and depth images and inpaints RGB and depth values for occluded
regions, employing a fully-convolutional PatchGAN discriminator to judge the genuineness of the
inpainted maps.

Given estimated object masks and NOCS maps, we recover three things enabling pose estimation:
(1) 2D coordinates of the object in the image, (2) 3D points of the partial object shape in the canon-
ical frame of reference, (3) and their 2D-3D correspondences. This unique representation frees us
from the need of storing a collection of 3D primitives and identifying them to find a detected model,
because both 3D and 2D information is contained in the form of a 3-channel map. We multiply the
recovered normalized shape by the per class scale factor to recover absolute scale. The 6DoF pose is
then estimated using PnP [57] that predicts the object pose from given correspondences and camera
intrinsics. Since we get a large set of correspondences for each model, we also combine PnP with
RANSAC to robustify against outliers. For the results presented in the evaluation section, we run
1000 RANSAC iterations per pose with a 1px reprojection error threshold.

3.2 Shape, Pose, and Appearance Optimization

The second crucial component of our pipeline is a 2D/3D optimization that is enabled by the dif-
ferentiable database of object priors (Fig. 2a) as well as our surfel-based differentiable rendering
pipeline (Fig 2b). Given output features corresponding to detected objects regressed by the object
reasoning block (Fig. 1b), our optimization procedure generates full shapes, appearances and poses
of all the objects in the scene.

We leverage a differentiable database of object priors - PriorDB - which encodes the shape and
luminance of the input models as Signed Distance Fields (SDFs) and Luminance Fields (LFs) with
associated latent feature vectors. Given a partial shape observation, we differentiate against PriorDB

4



and find the maximum likelihood latent vector that best explains the observed shape. The RGB
component is optimized similarly, with the complete procedure described in detail in Sec 3.2.1.

While NOCS-based SDF and LF optimization allows us to reconstruct plausible objects from im-
ages, it does not account for the pose component. It might very well be the case that estimated poses
are incorrect and are harming the full scene reconstruction. This can be alleviated via a 2D alignment
step, which can further be used as a complimentary source for shape optimization when predicted
NOCS maps are noisy, resulting in a lower reprojection error and better reconstructions. Thus, to
further constrain and improve the optimization, we define a differentiable rendering pipeline that al-
lows us to impose 2D image losses based on renderings of the recovered SDF shape and appearance,
as described in detail in Sec. 3.2.2.

3.2.1 Differentiable Database of Object Priors (Fig. 1d)

Our differential database of object priors or PriorDB represents objects as signed distance fields
(with positive and negative values pointing to exterior and interior areas respectively), in which each
value corresponds to the distance to the closest surface. A single MLP can be used to represent
multiple geometries using a single feature vector zsdf and query 3D locations x = {x1, ..., xN} as
fsdf (x; zsdf ) = s. Object appearances, on the other hand, are represented as luminance fields (LF),
defining the prior perceived luminance of the object as seen in the training set. Similarly to SDN,
the LF module is implemented as an MLP, but it takes a feature vector by concatenating zsdf and
zlf as well as query locations x as input, and outputs resulting luminance as flf (x; zsdf ; zlf ) = l.

Figure 4: Different octree levels
used for training SDF primitives.

Both SDF and LF modules are trained using synthetic data pro-
vided by Parallel Domain [58], containing high-quality realis-
tic road scene renderings together with ground truth annota-
tions. To train the SDF module, we use a collection of canon-
ical ground truth point clouds and associated surface normals
representing rendered objects. In total, we encode 27 cars in
our PriorDB. We first define a multi-level octree spanning the
volume [−1, 1]3, with points located at the corners of the imagi-
nary voxels of various sizes depending on the level. For each of
the point clouds we define unsigned distances by computing nearest neighbors to the octree points.
Next, we define the loss Lsdf as the distance to the surface at grid points starting from the coarsest
level, gradually increasing the resolution up to the highest level (we use 3 levels of granularity as
shown in Fig. 4), while only considering points located at pre-defined per-level distances to the sur-
face. To ensure that we learn a correct signed field, we additionally minimize the distance between
the ground truth surface normals and analytically-derived surface normals from the SDF module.
Moreover, to ensure that we always regress plausible shapes regardless the input feature vector, we
do an additional refinement round by sampling random feature vectors and enforcing the output to
be equal to the shape of the nearest plausible neighbor.

Once the SDF module is trained, we store SDF features zsdf associated with objects and use them
to train the LF module. Differently, it is trained on partial canonical shapes recovered from provided
RGB renderings (see Fig. 2a), associated depth maps and poses. We compute the luminance compo-
nent from RGB renderings and enforce the LF of each feature to be the same. The network weights
are then optimized to fit the average luminance per object using an L1 loss. Additionally, we define
a symmetry loss Lsymm enforcing colors on the left side of the car to be similar to those on the right
one. For that we compute nearest neighbors between the left side of the car and an inverted right
side and then minimize the L1 distance between these correspondences.

Optimization 3D Our optimizer takes partial canonical object shape and appearance observations
(recovered from predicted NOCS maps as shown in Fig. 1b), as well as initial PriorDB features.
Due to the robustness of NOCS regression, and despite the occasional noisy outliers, we set it as our
main optimization prior. The initially predicted SDF is used to recover the full surface of the object
in the form of a point cloud with surface normals using a 0-isosurface projection. Then we estimate
nearest neighbors between the two point clouds and minimize the distance between the points by
optimizing the feature vector zsdf . The RGB component is optimized similarly by minimizing the
color difference between the correspondences, but we also allow the LF module weights to vary for
a finer level of detail. In the case of RGB optimization we also use the Lsymm loss between the left
and right sides of the predicted shape.

5



Figure 5: VKITTI2 reconstructions. Our SDN recovers partial reconstructions (left), which are
then completed with shape priors from PriorDB using our 2D-3D optimization pipeline (right).

3.2.2 Surfel-based Differentiable Renderer

Differentiable rendering allows to optimize objects with respect to pose and shape, and is an essential
component of our optimization scheme. Since we use an SDF representation, we cannot directly
use differentiable renderers for triangulated meshes. Instead, we implemented a renderer that uses
surfels as the primary representation (inspired by [59]), estimating surface points and normals using
an 0-isosurface projection, followed by a surfel-based rasterizer.

Surface Tangent Discs Surface elements or surfels are a common concept in computer graphics
[60] as an alternative to connected triangular primitives. In order to render watertight surfaces, the
individual surface normals must sufficiently approximate the local region of the object’s geometry.

d =
ni · pi

ni · K−1(u, v, 1)T
(1a) P = K−1 · (u · d, v · d, d)T (1b)

To construct surface discs we first estimate the 3D coordinates of the resulting tangent plane given

the normal ni =
∂f(pi;z)

∂pi

of a projected point pi. The distance d of the plane to each 2D pixel (u, v)

is computed by solving a system of linear equations for the plane and camera projection as defined
in Eq. 1a, where K−1 is the inverse camera matrix. Then, we get a get a 3D plane coordinate by
backprojection (Eq. 1b). Finally, we estimate the distance between the plane vertex and surface point
and clamp if it is larger than a disc diameter to get final discs M = max(diam− ||pi − P ||2, 0).

Rendering Function Similarly to [59, 61], we combine colors from different surfel primitives
based on their depth values to compose a final rendering. The distance of the primitive to the camera
defines its final intensity contribution to the image. To ensure that all primitive contributions sum
up to 1 at each pixel we use a modified softmax function. The final rendering function is given in
Eq. 2a, where I is the output image, S the estimated NOCS map, and wi the weighting masks,

I =
∑

i

S(pi) ∗ wi, (2a) wi =
exp(−D̃iσ)Mi∑
j exp(−D̃jσ)Mj

. (2b)

Eq. 2b defines weighting masks wi, where D̃ is the normalized depth and σ is a transparency weight
with σ −→ ∞ defining a completely opaque rendering as only the closest primitive is rendered.

Optimization 2D Formally, we define three losses on the rendering output Lnocs2D , Llf2D , and
Lmask2D

. Lnocs2D compares the output of the renderer with predicted NOCS, Llf2D compares
the output of the renderer with input RGB images, and Lmask2D

compares the rendered and the
predicted masks. The exact definitions of these losses are provided in the appendix. The final
optimization loss is a weighted sum of both 2D and 3D components (see Sec. 3.2.1). While 3D
components ensure a robust shape optimization, 2D losses help to better align the object in 3D
space and allow a better luminance matching.

4 Experiments

In this section, we first evaluate the individual components of the SDN on common benchmarks for
stereo view synthesis, depth estimation and 3D object detection. Then we demonstrate the capabili-
ties of our full pipeline for the tasks of scene reconstruction, object recovery and manipulation. The
evaluation is performed on four datasets: PD, VKITTI2, DDAD, and KITTI.

6



Figure 6: Scene reconstruction using our pipeline on KITTI. Our pipeline decomposes the scene
into objects (c) and background (d) and recovers full geometries and appearances (e). This allows
for scene manipulation, view synthesis and novel scene arrangements (b). Despite being trained on
synthetic data, our pipeline generalizes well to real images without any adaptation.

VKITTI2 [62] and KITTI [63] Virtual KITTI [64] is a synthetic proxy to the KITTI dataset – the
standard benchmark for autonomous computer vision. It contains five virtual worlds rendered under
ten different conditions of weather and camera configuration, in total comprising 21,260 images.
VKITTI2 extends the original dataset with more photo-realistic renderings. In the experiments we
use the first 80% consecutive frames of each configuration for training and the last 20% of the clone
configuration for testing. To evaluate object detection and depth estimation on real data we use the
KITTI-3D [65] validation split consisting of 3769 images.

Parallel Domain (PD) [58] and DDAD [2] The Parallel Domain dataset is a procedurally-
generated collection of fully annotated photo-realistic renderings of urban driving scenes. It contains
200 180-frame sequences resulting in a total of 36000 images. Each sequence also contains an addi-
tional frame with extra ground truth modalities which we use to form the PD test split with a total of
200 images. The Dense Depth for Automated Driving (DDAD) dataset is a real-world counterpart
of the PD dataset mainly used as a depth evaluation benchmark. We consider only the front camera,
resulting in 50 validation sequences with 3950 images.

4.1 Scene Decomposition and 3D Reasoning

Stereo View Synthesis In this experiment we quantitatively evaluate our SDN for the task of view
synthesis by recovering a stereo-pair of the input image. We compare our results with state-of-the-
art generalizable NeRF-based view synthesis method PixelNeRF [55] and depth estimation method
PackNet-SfM [2]. All pipelines were trained on the same VKITTI2 training split and evaluated on
the VKITTI2 test split. From the results in Table 2, we observe that SDN can reliably re-generate the
scene from a novel view point thanks to its integrated prior and geometric nature, and outperforms
both baselines. Please refer to the appendix for qualitative results.

Depth Evaluation Next we evaluate the quality of our geometric output using common metrics
for depth evaluation. We argue that our NOCS maps, given estimated poses, can be transformed

Train Method Test

Lower is better Higher is better

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

V
K

IT
T

I2

Monodepth2

K
IT

T
I 0.239 3.217 8.425 0.354 0.469 0.655 0.767

PackNet-SfM 0.211 2.746 7.701 0.319 0.546 0.704 0.780
Ours 0.175 2.375 7.384 0.360 0.642 0.756 0.803

Monodepth2

D
D

A
D 0.437 15.621 26.578 0.731 0.025 0.118 0.241

PackNet-SfM 0.340 11.290 22.332 0.461 0.138 0.309 0.521
Ours 0.238 10.402 18.228 0.346 0.535 0.652 0.704

P
D

Monodepth2

K
IT

T
I 0.368 7.976 14.432 0.653 0.320 0.480 0.580

PackNet-SfM 0.332 3.779 9.205 0.395 0.318 0.672 0.836
Ours 0.176 2.407 7.687 0.372 0.696 0.795 0.840

Monodepth2

D
D

A
D 0.187 3.951 6.465 0.184 0.429 0.506 0.586

PackNet-SfM 0.165 2.500 6.017 0.165 0.366 0.591 0.620
Ours 0.139 3.808 6.612 0.231 0.497 0.559 0.590

Table 1: Depth estimation results for direct transfer from synthetic (VKITTI2 and PD) to real
(KITTI and DDAD) datasets. KITTI results are reported with the Garg crop at distances up to 80m,
and DDAD results are reported without cropping and at distances up to 80m.

7



Method PSNR↑ SSIM ↑ LPIPS↓

PixelNeRF 16.63 0.45 0.57
PackNet-SfM 17.88 0.64 0.36
Ours 18.51 0.66 0.31

Table 2: View synthesis.
We evaluate the performance
of our SDN for the task of
stereo-pair recovery on the
VKITTI2 dataset.

Method
BEV AP 3D AP

Easy Med Hard Easy Med Hard

SMOKE 14.30 9.51 5.94 11.47 7.40 5.31
Ours 16.50 11.88 10.15 10.94 7.54 6.72

Table 3: KITTI-3D detection.
Reported are AP|R40

metrics of
Car class with 50% IoU thresh-
old. Both methods are trained
on VKITTI2 train set.

Shape (mm) Mask (IoU) RGB (PSNR)

Mean Median Mean Median Mean Median

No opt. 46.57 14.87 83.85 87.34 16.27 16.34
2D 34.44 9.39 85.51 89.28 20.37 20.20
3D 31.63 9.20 86.44 89.99 20.10 19.85
2D + 3D 32.71 8.83 86.46 90.01 20.55 20.45

Table 4: Optimization ablation.
Effect of optimization on object
shape and luminance estimation,
and 2D amodal mask alignment.

to depth maps and significantly outperform standard depth estimation pipelines due to the prior ge-
ometry knowledge. To conduct this experiment, we choose current state-of-the-art depth estimation
pipelines, Monodepth2 [1] and PackNet-SfM [2], and train them on 2 synthetic datasets - VKITTI2
and PD - similarly to our method. Then we evaluate the depth quality for foreground objects on real
datasets - KITTI and DDAD - using a number of standard depth estimation metrics. This experiment
evaluates three aspects of our model: 1) the reconstructed object geometry, 2) the accuracy of the
estimated poses, and 3) transferrability across domains. Table 1 shows that our model consistently
outperforms the baselines for monocular depth estimation, demonstrating the superior geometric
accuracy and generalization qualities achieved thanks to the encoded object prior.

3D Detection In this experiment we aim to demonstrate how well our method generalizes to other
datasets in terms of 3D detection quality. We compare against a state-of-the-art method for KITTI
pose estimation, SMOKE [66], which is trained on the same VKITTI2 train set as our method.
To compare with our algorithm that has access to ground-truth size of 3D boxes, we substitute the
size of predicted boxes with the ones of nearest-neighbor ground-truth, when evaluating SMOKE.
Table 3 shows that we perform competitively with SMOKE, and demonstrates that our underlying
NOCS representation generalizes to diverse shapes and poses of objects in the real-world.

4.2 Scene Manipulation and Object Recovery

The section aims to demonstrate the capability of our full pipeline to reconstruct and manipulate the
scene. In Fig. 6, we show the scene decomposition results on the KITTI dataset. Our SDN takes as
input a single reference image (Fig. 6a) and recovers full 3D objects (Fig. 6c) as well as the scene
background (Fig. 6d). Recovered objects can be freely manipulated as shown in Fig. 6b. The full
3D scene reconstruction is shown in Fig. 6e. Note that our pipeline has been trained entirely on
synthetic data, and generalizes to real images without any adaptation. We refer the readers to our
supplementary videos for the visualization of the full capability of scene manipulation.

Optimization ablation Lastly, we investigate how different components of our optimization
pipeline affect the end result in terms of full shape and luminance estimation, as well as 2D amodal
mask alignment. All evaluations are performed on the PD test split. We observe a significant per-
formance increase for all considered metrics when compared to an unoptimized result as shown in
Table 4. While 3D optimization enables robust shape estimation, it does not align luminance in the
projective space and also ignores object’s pose since it is performed in the object’s canonical frame.
The 2D optimization step on the other hand is performed in the projective space and allows for exact
luminance matching and good mask alignment. However, it performs worse with respect to shape
optimization due to an additional ambiguity introduced by the pose component, which also affects
the amodal mask metric. Finally, using both 2D and 3D optimization combines their strengths and
yields the best overall performance.

5 Conclusion

We present a novel holistic scene reconstruction pipeline that disentangles the scene by representing
objects separately from the scene. Our Scene Decomposition Network detects and recovers partial
geometries and poses of objects, and estimates depth of the background. The partial geometries
are then completed using our differentiable database of object priors and a 2D-3D optimization
procedure. As a result, our pipeline explains every pixel on the image and more - the full object
geometries and appearances. Despite being trained only on synthetic data our experiments show
good generalization to real data on KITTI and DDAD datasets.

8



References

[1] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into self-supervised monoc-
ular depth prediction. In ICCV, 2019.

[2] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, 2020.

[3] S. Zakharov, I. Shugurov, and S. Ilic. Dpod: Dense 6d pose object detector in rgb images. In
ICCV, 2019.

[4] K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-wise coordinate regression of objects for
6d pose estimation. In ICCV, 2019.

[5] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a
multi-scale deep network. arXiv, 2014.

[6] I. Shugurov, S. Zakharov, and S. Ilic. Dpodv2: Dense correspondence-based 6 dof pose esti-
mation. TPAMI, 2021.

[7] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. Pvnet: Pixel-wise voting network for 6dof
pose estimation. In CVPR, 2019.

[8] Y. Chen, S. Huang, T. Yuan, S. Qi, Y. Zhu, and S.-C. Zhu. Holistic++ scene understanding:
Single-view 3d holistic scene parsing and human pose estimation with human-object interac-
tion and physical commonsense. In CVPR, 2019.

[9] Y. Du, Z. Liu, H. Basevi, A. Leonardis, B. Freeman, J. Tenenbaum, and J. Wu. Learning to
exploit stability for 3d scene parsing. In NeurIPS, 2018.

[10] S. Huang, S. Qi, Y. Xiao, Y. Zhu, Y. N. Wu, and S.-C. Zhu. Cooperative holistic scene under-
standing: Unifying 3d object, layout, and camera pose estimation. arXiv, 2018.

[11] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for 6d pose
estimation. In ECCV, 2018.

[12] F. Manhardt, W. Kehl, N. Navab, and F. Tombari. Deep model-based 6d pose refinement in
rgb. In ECCV, 2018.

[13] I. Shugurov, I. Pavlov, S. Zakharov, and S. Ilic. Multi-view object pose refinement with differ-
entiable renderer. RAL, 2021.

[14] Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang. Total3dunderstanding: Joint
layout, object pose and mesh reconstruction for indoor scenes from a single image. In CVPR,
2020.

[15] C. Zhang, Z. Cui, Y. Zhang, B. Zeng, M. Pollefeys, and S. Liu. Holistic 3d scene understanding
from a single image with implicit representation. In CVPR, 2021.

[16] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-time 6-dof
camera relocalization. In ICCV, 2015.

[17] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression with deep
learning. In CVPR, 2017.

[18] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers. Image-based
localization using lstms for structured feature correlation. In ICCV, 2017.

[19] F. Engelmann, K. Rematas, B. Leibe, and V. Ferrari. From Points to Multi-Object 3D Recon-
struction. In CVPR, 2021.

[20] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit. Mul-
timodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In
ICCV, 2011.

9



[21] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab. Model
based training, detection and pose estimation of texture-less 3d objects in heavily cluttered
scenes. In ACCV, 2012.

[22] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit. Hashmod: A hashing method for
scalable 3d object detection. In BMVC, 2015.

[23] P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d pose estimation.
In CVPR, 2015.

[24] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic. 3d object instance recognition & pose
estimation using triplet loss with dynamic margin. In IROS, 2017.

[25] M. Bui, S. Zakharov, S. Albarqouni, S. Ilic, and N. Navab. When regression meets manifold
learning for object recognition and pose estimation. In ICRA, 2018.

[26] O. H. Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann, and C. Rother. ipose: instance-
aware 6d pose estimation of partly occluded objects. In ACCV, 2018.

[27] T. Hodan, D. Barath, and J. Matas. Epos: estimating 6d pose of objects with symmetries. In
CVPR, 2020.

[28] Z. Li, G. Wang, and X. Ji. Cdpn: Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In CVPR, 2019.

[29] G. Wang, F. Manhardt, F. Tombari, and X. Ji. Gdr-net: Geometry-guided direct regression
network for monocular 6d object pose estimation. In CVPR, 2021.

[30] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Normalized object
coordinate space for category-level 6d object pose and size estimation. In CVPR, 2019.

[31] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning contin-
uous signed distance functions for shape representation. In CVPR, 2019.

[32] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR, 2019.

[33] W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Jacobson, and S. Fidler. Learning to
predict 3d objects with an interpolation-based differentiable renderer. In NeurIPS, 2019.

[34] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. Newcombe. Deep
local shapes: Learning local sdf priors for detailed 3d reconstruction. In ECCV, 2020.

[35] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson,
M. McGuire, and S. Fidler. Neural geometric level of detail: Real-time rendering with im-
plicit 3d shapes. In CVPR, 2021.

[36] B. Deng, J. P. Lewis, T. Jeruzalski, G. Pons-Moll, G. Hinton, M. Norouzi, and A. Tagliasacchi.
Nasa: neural articulated shape approximation. arXiv, 2019.

[37] V. Sitzmann, M. Zollhoefer, and G. Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations. NeurIPS, 2019.

[38] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable volumetric rendering:
Learning implicit 3d representations without 3d supervision. In CVPR, 2020.

[39] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[40] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. Neural volumes:
Learning dynamic renderable volumes from images. arXiv, 2019.

[41] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt. Neural sparse voxel fields. NeurIPS,
2020.

10



[42] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi. Derf: Decomposed
radiance fields. In CVPR, 2021.

[43] D. B. Lindell, J. N. Martel, and G. Wetzstein. Autoint: Automatic integration for fast neural
volume rendering. In CVPR, 2021.

[44] M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T. Barron, and R. Ng.
Learned initializations for optimizing coordinate-based neural representations. In CVPR, 2021.

[45] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R.-M. Brualla.
Deformable neural radiance fields. arXiv, 2020.

[46] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, 2021.

[47] W. Xian, J.-B. Huang, J. Kopf, and C. Kim. Space-time neural irradiance fields for free-
viewpoint video. In CVPR, 2021.

[48] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-NeRF: Neural Radiance
Fields for Dynamic Scenes. In CVPR, 2021.

[49] R. Martin-Brualla, N. Radwan, M. S. M. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duck-
worth. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In
CVPR, 2021.

[50] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch. Nerd: Neural reflectance
decomposition from image collections. In CVPR, 2021.

[51] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron. Nerv: Neural
reflectance and visibility fields for relighting and view synthesis. In CVPR, 2021.

[52] M. Niemeyer and A. Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In CVPR, 2021.

[53] W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove. Star: Self-supervised tracking and reconstruc-
tion of rigid objects in motion with neural rendering. In CVPR, 2021.

[54] J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide. Neural scene graphs for dynamic scenes.
In CVPR, 2021.

[55] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural radiance fields from one or few
images. In CVPR, 2021.

[56] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
detection with transformers. In ICCV, 2020.

[57] Z. Zhang. A flexible new technique for camera calibration. TPAMI, 2000.

[58] Parallel domain. https://paralleldomain.com/, May 2021.

[59] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon. Autolabeling 3d objects with differentiable
rendering of sdf shape priors. In CVPR, 2020.

[60] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as rendering
primitives. In SIGGRAPH, 2000.

[61] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differentiable renderer for image-based 3d
reasoning. In ICCV, 2019.

[62] Y. Cabon, N. Murray, and M. Humenberger. Virtual kitti 2. arXiv, 2020.

[63] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In CVPR, 2012.

[64] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as proxy for multi-object tracking
analysis. In CVPR, 2016.

11

https://paralleldomain.com/


[65] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In CVPR, 2012.

[66] Z. Liu, Z. Wu, and R. Tóth. Smoke: Single-stage monocular 3d object detection via keypoint
estimation. In CVPRW, 2020.

12


	Introduction
	Related Work
	Methodology
	Scene Decomposition Network
	Shape, Pose, and Appearance Optimization
	Differentiable Database of Object Priors (Fig. 1d)
	Surfel-based Differentiable Renderer


	Experiments
	Scene Decomposition and 3D Reasoning
	Scene Manipulation and Object Recovery

	Conclusion

