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theory of light. Three years later he participated with his 

Mémoire sur la Diffraction de la Lumière in the Grand Prix 

of the French Academy of Sciences [2]. It was on this occa-

sion that Siméon Poisson predicted that an opaque disc illu-

minated by parallel light would create a bright spot in the 

center of a shadow. This phenomenon was experimentally 

confirmed by Francois Arago and led to the victory of the 

wave over the particle theory. In the present article we dis-

cuss an effect related to the Poisson spot which is the one-

dimensional analogue of the camera obscura [3, 4].

Indeed, we have recently found  [5] that a rectangular 

matter wave packet which undergoes free time evolution 

according to the Schrödinger equation focuses before it 

spreads. This phenomenon has been confirmed for light [6], 

water and surface plasmon waves [7]. In the present article 

we illustrate this effect in Wigner phase space and verify it 

using classical light in real space.

Our article is organized as follows: in Sect.  2 we first 

give a brief history of the diffraction of waves, and then 

review several focusing effects especially those associated 

with the phenomenon of diffraction in time introduced in 

Moshinsky [8].

We dedicate Sect. 3 to the discussion of the focusing of a 

rectangular wave packet from the point of view of the time-

dependent wave function. In particular, we show this effect 

Abstract We illustrate the phenomenon of the focusing 

of a freely propagating rectangular wave packet using three 

different tools: (1) the time-dependent wave function in 

position space, (2) the Wigner phase-space approach, and 

(3) an experiment using laser light.

1 Introduction

In July 1816, the civil engineer Augustin-Jean Fresnel 

published his preliminary results  [1] confirming the wave 
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manifests itself in the time-dependent probability density as 

well as the Gaussian width [5] of the wave packet. For this 

purpose we derive exact as well as approximate analytical 

expressions for the time-dependent probability amplitude 

and density.

In Sect.  4 we verify these predictions reporting on an 

experiment using laser light diffracted from a single slit. 

Here we take advantage of the analogy between the par-

axial approximation of the Helmholtz equation of classical 

optics and the time-dependent Schrödinger equation of a 

free particle. We measure the intensity distributions of the 

light in the near-field of the slits and obtain the Gaussian 

width of the intensity field. Moreover, we make contact 

with the predictions of non-paraxial optics.

Section  5 illuminates this focusing effect from quan-

tum phase space using the Wigner function. In particular, 

we show that the phenomenon of focusing which reflects 

itself in a dominant maximum of the probability density 

on the optical axis follows from radial cuts through the ini-

tial Wigner function at different angles with respect to the 

momentum axis. Moreover, we analyze the rays and enve-

lopes of the Wigner function in more detail.

We conclude in Sect. 6 by summarizing our results and 

by providing an outlook. Here we allude to the influence of 

the number of dimensions on the focusing and emphasize 

the importance of corrections to paraxial optics.

To keep our article self-contained while focusing on the 

central ideas we have included three appendices. Indeed, 

“Appendix A” contains the calculations associated with the 

Gaussian width of our wave packet and “Appendix B” pre-

sents a detailed discussion of the Wigner function approach 

towards diffractive focusing. As an outlook we compare 

in “Appendix C” the paraxial and non-paraxial results 

obtained for diffraction by slits and circular apertures.

2  Diffraction theory

In this section we first provide a historical overview of dif-

fraction and then address the phenomenon of diffractive 

focusing. Due to their different nature we distinguish in this 

discussion between light and matter waves. Moreover, we 

briefly review the concept of diffraction in time.

2.1  A brief history

Following the experimental demonstration of the wave 

nature of light by Thomas Young  [9] and the first theory 

on diffraction by Fresnel  [1] the nineteenth century was 

extremely successful in the investigation of wave phe-

nomena, specially in optics. The unifying electromagnetic 

theory of James Clerk Maxwell  [10] was the culmination 

of all previous developments on electromagnetism. Gustav 

Kirchhoff readdressed the diffraction of scalar waves and 

put it on a rigorous mathematical foundation  [11]. The 

Fresnel diffraction arises now as a special case of the Kirch-

hoff diffraction. Arnold Sommerfeld and Lord  Rayleigh 

[4, 12, 13] improved the Kirchhoff theory correcting the 

boundary conditions at the aperture and with that eliminat-

ing the discrepancy arising between the solutions and the 

boundary conditions chosen by Kirchhoff. Friedrich Kottler 

proposed another reason for this discrepancy by showing 

that the Kirchhoff integral can be interpreted not as a solu-

tion of the boundary value problem but as a solution for the 

“saltus” at the boundary  [14, 15]. Moreover, he extended 

the scalar theory to electromagnetic waves [16, 17].

During the twentieth century numerous theoretical and 

experimental contributions to diffraction theory emerged. 

Julius Stratton and Lan Jen Chu extended the scalar Kirch-

hoff diffraction theory to vector waves [18] accounting for 

polarization. Hans Bethe found analytical solutions for the 

diffraction of electromagnetic waves by an aperture much 

smaller than the wavelength  [19]. His theory and the cor-

rections later introduced by Christoffel Bouwkamp  [20] 

became important because of the invention of the near-

field scanning microscope (SNOM or NSOM)  [21] and 

the developments related to near-field optics  [22–24]. In 

1998, Thomas Ebbesen and collaborators observed that 

light transmission through an array of subwavelength aper-

tures drilled in noble metal thin films can largely surpass 

the value predicted by Bethe [25]. This extraordinary opti-

cal transmission is dependent on the geometry of the array, 

on the illumination conditions and on the size and shape 

of the apertures  [26, 27]. It results from the excitation of 

surface plasmon modes near the aperture. In plasmonic 

gratings with narrow slits it may also lead to an attenuation 

of the transmitted light stronger than that predicted by the 

Bethe–Bouwkamp theory [28].

2.2  Focusing of waves

Focusing of waves by diffraction due to slits or apertures 

falls into two categories: (1) near-field focusing effects aris-

ing mainly in the diffraction of electromagnetic waves, and 

(2) focusing resulting from diffraction of slits or apertures 

larger than the wave length, where the focus is located in 

the Fresnel zone.

In the first category we include the focusing of light 

resulting from the confinement of surface plasmons in 

nanostructured apertures in plasmonic materials  [25, 26, 

29]. Frequently scalar and electromagnetic diffraction 

theories assume the apertures to be located in infinite and 

perfectly absorbing screens, and thus surface plasmons 

are ignored. Hence, these theories cannot account for 

plasmonic modes and their optical effects. To accurately 

describe the effects produced by the excitation of surface 
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plasmons a full electromagnetic theory using the optical 

properties of real materials is required.

The focusing of light by apertures smaller than the 

wave length has been investigated theoretically several 

times in the last decades  [30, 31]. However, this near-

field focusing is dependent on the polarization of light 

and restricted to small apertures.

The properties of the focus in laser beams and atomic 

beams is of interest in microscopy and atom optics. 

Standard laser beams such as Laguerre–Gaussian, or 

Hermite–Gaussian beams can be strongly focused. The 

smallest order Hermite–Gaussian beam called TEM
00

 has 

the highest confinement and is, therefore, preferred in 

confocal microscopy. Other beams such as Airy and Bes-

sel beams [32, 33] have non-diffracting properties.

To increase the field confinement, and thus the resolu-

tion of a microscope, novel laser beams and illumination 

mechanisms have been proposed [22, 29, 34–36].

In parallel, a similar interest exists in the confinement 

and squeezing of matter wave packets  [37–39]. Focus-

ing effects in atomic beams resulting from the interac-

tion with laser fields diffracted by apertures in metal-

lic screens were investigated recently  [40]. Indeed, the 

interaction of matter waves with light fields has been 

the subject of intensive research in atom and quantum 

optics  [41]. However, this spatial confinement, or focus-

ing is of different nature than that of diffraction. In the 

latter, the field confinement created is solely determined 

by the properties of the incoming wave and the aperture. 

No other optical element is involved.

Self-focusing of light may also arise in nonlinear 

media [42]. However, we will not discuss this phenomenon 

in this article, but rather concentrate in our analysis in the 

focusing effects arising from diffraction in free space due to 

slits larger than the wavelength.

In 2012, the focusing of light waves by a slit larger than 

the wavelength was experimentally observed  [6]. The dif-

fraction pattern is similar to that of a circular aperture of 

several wavelengths in diameter [43, 44]. The main differ-

ence between a slit and a circular aperture is the value of 

the dominant maximum, relative to the intensity of the inci-

dent wave. For a circular aperture it reaches 4.0, whereas 

for a slit is only 1.8 stronger than the incoming wave  [6, 

43].

The diffraction patterns of slits and circular apertures 

for scalar waves and non-polarized electromagnetic waves 

can be accurately calculated using the Rayleigh–Sommer-

feld diffraction integrals, even in the case of apertures of 

the size of the wavelength, without using any mathematical 

approximation. Moreover, analytical solutions for the on-

axis field intensity were found for the circular aperture [43, 

45], and the oscillations of the intensity on-axis were con-

firmed for electromagnetic waves [44, 46].

2.3  Diffraction in time

Moshinsky [8] introduced the concept of diffraction in time 

using matter waves. Remarkably the time evolution of the 

probability density of a wave packet suddenly released by 

a shutter is mathematically identical to the intensity pat-

tern behind a semi-infinite plane. This analogy stands out 

most clearly when we substitute the time coordinate of the 

wave packet by the corresponding space coordinate in dif-

fraction. Then the solution of the Schrödinger equation for 

the problem of the Moshinsky shutter is identical to that 

of the Fresnel diffraction by a semi-infinite plane, and the 

probability density reaches a maximum of 1.3. Moreover, 

Moshinsky analyzed later the time–energy uncertainty 

associated with the shutter arrangement  [47] and Godoy 

investigated the Fresnel and Fraunhofer diffraction in time 

of initially stationary states [48].

Recently, the diffraction in time of the double-shutter 

problem was analyzed [5]. An initially confined rectangu-

lar wave packet in one dimension is suddenly released and 

evolves in time. Again, the solution of the corresponding 

Schrödinger equation has the same form as the Fresnel dif-

fraction of scalar waves by a single slit of infinite length.

However, we emphasize that Fresnel diffraction only 

holds true in the paraxial approximation of optics. The gen-

eral solution of the diffraction by a slit is found by solv-

ing the Kirchhoff, or the Rayleigh–Sommerfeld diffraction 

integrals.

The mathematical analysis of the classical diffraction 

problems makes use of wave functions expressed in real, 

or reciprocal space. It is also very common in the investiga-

tion of the diffraction of matter waves [8, 49–51].

However, since Wigner introduced his famous distri-

bution function  [52] an increasing number of publica-

tions has used the Wigner phase space representation to 

study the dynamics of light beams  [53–57] and matter 

waves  [58–65]. Other phase space distribution functions 

related to the Wigner function have been also used in mat-

ter waves phenomena. They are interrelated and belong to 

the Cohen class  [66]. In this article we employ both the 

wave function and the Wigner representations of matter 

wave packets.

The evolution in time of matter waves with zero angu-

lar momentum, so-called s-waves, strongly depends on 

the number of space dimensions [67]. For instance, in two 

dimensions, an initial ring-shaped wave packet first con-

tracts reaching a minimum, reducing the radius of the ring, 

and then monotonically expands. In three dimensions, the 

radius only increases. This effect is attributed to a quantum 

anti-centrifugal force [67–69]. This example shows that the 

focusing effect of a free wave packet is a more general phe-

nomenon than that arising from the free time evolution of a 

one-dimensional rectangular wave packet.
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We conclude with a brief reference to the type of bound-

aries of the slit, or shutter. Most of the classical treatments 

of diffraction problems define the edges of the slit, or of 

other aperture shape as sharp transitions between a per-

fectly absorbing surface and a homogeneous fully trans-

mitting medium. In quantum matter waves, the Moshinsky 

shutter or the sudden release of rectangular wave packet is 

also an example of sharp boundaries. The effects arising in 

the diffraction patterns due to non-sharp boundaries have 

been investigated recently [5, 50, 70–73].

3  Wave function approach

In this section we use the solution of the time-dependent 

Schrödinger equation, that is the wave function, to show that 

a freely propagating rectangular wave packet exhibits the 

phenomenon of focusing. For this purpose we first express 

the time-dependent wave function in terms of a Fresnel 

integral, and then derive analytic approximations for the 

wave function as well as the probability density. To bring 

out most clearly the focusing effect we finally calculate the 

Gaussian width [5] of the wave packet and demonstrate that 

it exhibits a clear minimum at the time of the focusing.

3.1  Time evolution

Central to our discussion is the free propagation of a wave 

packet corresponding to a non-relativistic particle of mass 

M. The initial wave function

is of rectangular form with a length L. Here � denotes the 

Heaviside step function.

With the help of the propagator [74]

of a free particle connecting the initial coordinate y with x 

at time t, and the abbreviation

containing the reduced Planck constant ℏ, we find from the 

Huygens principle of matter waves

the expression

(1)�0(x) ≡ �(x, t = 0) ≡
1
√

L

�

�
L

2
− �x�

�

(2)G(x, t|y, 0) ≡

√
�(t)

i�
e

i�(t)(x−y)2

(3)�(t) ≡
M

2ℏt

(4)�(x, t) = ∫
∞

−∞

dy G(x, t|y, 0)�0(y)

(5)�(x, t) =

�

1

i�L ∫
√

�(t)(x+L∕2)

√

�(t)(x−L∕2)

d� ei�2

,

for the time-dependent probability amplitude. Here we have 

introduced the integration variable � ≡ �1∕2(x − y).

When we decompose the integral in Eq.  5 into two 

parts each starting from x = 0, the wave function

consisting of the difference of two Fresnel integrals

is thus determined by the interference of the diffraction pat-

terns originating from two semi-infinite walls located at 

x = L∕2 and x = −L∕2. The amplitude and phase of each 

contribution are given by the Fresnel integral F, whose real 

and imaginary parts

and

follow from the Cornu spiral [75] represented in the com-

plex plane.1

In Fig. 1 we present the probability density |�(x, t)|2 as 

a function of space and time. Here and in the remainder 

of our article we represent the coordinate x in units of L 

and the time t in units of the characteristic time

The curious inclusion of the factor 2� is motivated by the 

asymptotic expressions of |�|2 discussed in the appendices. 

Moreover, the probability density |�|2 is always in units of 

1 / L.

Whereas on the top of Fig. 1 we show |�(x, t)|2 in con-

tinuous space-time in the bottom panel we select specific 

time slices corresponding to (1) short times where the 

probability distribution oscillates strongly, (2) intermedi-

ate times leading to focusing, and (3) longer times repre-

senting the ballistic regime.

(6)
�(x, t) =

�

1

2iL

�

F

�

√

�(t)(x + L∕2)
�

−F

�

√

�(t)(x − L∕2)
��

(7)F(w) =

√

2

� ∫
w

0

d� ei�2

,

(8)C(w) ≡
√

2

� �
w

0

d� cos �2

(9)S(w) ≡
√

2

� �
w

0

d� sin �2

1 The Cornu spiral was studied for the first time by Jacques Bernoulli 

in the context of elastic deformations and Leonhard Euler defined it 

in more rigorous terms. Alfred Cornu associated this curve with the 

Fresnel integrals C and S and achieved excellent numerical accuracy. 

Due to the work of the Italian mathematician Ernesto Cesaro it is also 

called clothoid.

(10)T ≡
ML

2

2�ℏ
≡

ML
2

h
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At t = 0 the probability density starts from its initial 

rectangular shape and immediately develops two peaks 

at the edges decorated with fringes. However, after this 

transitional phase the two peaks disappear and a domi-

nant maximum at the origin x = 0 forms. It is most pro-

nounced at t ≈ 0.342 corresponding to the focus when the 

width of the wave packet assumes a minimum. Indeed, 

here the probability density assumes a maximum, which 

is about a factor 1.8 larger then at t = 0 where it is unity. 

After the focus, that is for larger times, the wave packet 

displays the familiar spreading effect.

3.2  Analytic approximations

Next we give approximate but analytical expressions for 

the time-dependent probability amplitude and probability 

density. Since our interest is to obtain the behavior at early 

times, that is before the ballistic expansion occurs, we shall 

consider small values of t, corresponding to the regime 

where �(t) is large.

With the help of the asymptotic expansion [76]

valid for 1 ≪ a the expression Eq.  5 for the probability 

amplitude reduces to

and the probability density reads

This expression simplifies further when we neglect terms 


[

t
2∕(1 ± 2x∕L)2

]

 and takes the form

In Fig. 2 we compare and contrast the resulting probability 

densities at x = 0 as a function of time and find excellent 

agreement between the numerical result following from the 

evaluation of the integral of Eq. 5, and the approximations 

based on Eqs. 13 and 14. We emphasize that our approxi-

mations break down for very large values of t, but they 

succeed in giving the maximum of the distribution corre-

sponding to the focusing effect.

We also test in Fig.  3 our approximate but analytic 

expressions, Eqs.  13 and  14, for the probability density 

against the exact numerical result given by Eq. 5 at charac-

teristic times confirming again the focusing effect.
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������
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�������

2

.
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��(x, t)�2 ≅
1

L

�
1 +

sin
�
�(t)(L∕2 − x)2 − �∕4

�
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+
sin

�
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�
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�
.

Fig. 1  Time evolution of a rectangular wave packet represented 

by its probability density |�(x, t)|2, given by Eq. 5, depicted in con-

tinuous space-time (top) and at specific times (bottom) correspond-

ing to a strongly oscillatory behavior, the focus, and the ballistic 

expansion. To bring out the characteristic features in the early-time 

evolution we have represented the time axis by a logarithmic scale. 

For a better comparison the initial wave packet at t = 0, that is for 

log(t = 0) = −∞ is moved to log(t) = −3.0 since our time axis 

extends only to this value
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3.3  Focusing expressed by the Gaussian width

So far we have analyzed the phenomenon of diffractive focus-

ing of our rectangular wave packet by considering the com-

plete probability density in space and time. We now charac-

terize this effect by the Gaussian measure [5]

(15)�x
2(t) ≡ 1

�2

[
1 − �

∞

−∞

dx e−(�x)2 |�(x, t)|2
]

discussed in more detail in “Appendix A”. Here � is a con-

stant with units of an inverse length.

For our rectangular wave packet we obtain the Gaussian 

width by numerically evaluating Eq.  15 using the integral 

representation Eq.  5 of the probability amplitude. In Fig.  4 

we depict the corresponding curve normalized to its initial 

value �x
2(0) for � = 6.0 which displays a clear minimum at 

t ≈ 0.39, thus confirming the focusing effect.

However, we note that the location of the minimum of 

�x
2 = �x

2(t) deviates slightly from the location of the maxi-

mum of |�(x = 0, t)|2 which occurs at t = 0.342 as indicated 

in Fig.  2. This deviation is the result of the integration in 

Eq. 15.

4  Experimental approach

In the preceding section we have shown that a rectangu-

lar matter wave packet first focuses before it spreads. We 

now describe an experiment to observe the diffraction pat-

tern and, in particular, the focusing arising close to the slit. 

Here we take advantage of the familiar analogy between the 

Schrödinger equation

of a free particle, and the paraxial wave equation

of classical optics. In this situation z denotes the coordinate 

of propagation and k the wave vector of the electromagnetic 

wave.

(16)iℏ
��

�t
= −

ℏ2

2M

�2�

�x2

(17)2ik
��

�z
= −

�2�

�x2

Fig. 2  Comparison between the exact numerical (red) and two 

approximate analytical expressions (blue and green) for the probabil-

ity density |�(x = 0, t)|2 as a function of time. Our curves are based 

on Eqs.  5,  13 and  14, respectively. The oscillations near t = 0 are 

well approximated both in amplitude and phase by the blue and green 

curves. A maximum occurs for t ≈ 0.342. Both approximations fail 

for large times

Fig. 3  Comparison between the exact numerical position-dependent 

probability density (red) given by Eq. 5 with the approximate formu-

lae (blue and green) represented by Eqs. 13 and 14, respectively. In 

the four panels the axes cover identical domains

Fig. 4  Comparison between the numerical and experimental Gauss-

ian width �x
2(t)∕�x

2(0) of a focusing rectangular wave packet. To 

have the same domain in the abscissa the z-coordinate of the experi-

mental data (blue curve) was scaled using L = 2.44μ m. The time 

coordinate t of the theoretical evaluation (green curve) based on Eq. 5 

was scaled according to Eq. 18 with � = 0.2. For both curves we have 

chosen � = 6.0
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Indeed, the two wave equations are identical when we 

make the substitution

where � is the wave length. In the last step we have recalled 

the definition, Eq.  10 of the characteristic time T. Hence, 

time in the Schrödinger equation translates into propaga-

tion distance z.

As a consequence of the analogy between Eqs.  16 

and 17 with the scaling given by Eq. 18, it suffices to per-

form our experiment with light rather than matter waves.

4.1  Setup

We use a confocal microscope for measuring the light 

intensity diffracted by a one-dimensional slit milled in an 

aluminum film.2 The slit of length 50 μm and width 2440 

nm is illuminated by laser light of wavelength 488 nm as 

shown in Fig. 5a. A single mode optical fiber with collima-

tor was used for the illumination. The collimated laser 

beam has a diameter of approximately 1 mm and is, there-

fore, much larger than the slit. For this reason we assume 

the illumination of the slit as a plane wave.

To generate images in different planes above the slit 

we employ a confocal laser scanning microscope (WITec 

GmbH). The objective used for light collection was an infi-

nitely corrected Olympus MPlan with 100× magnification 

and numerical aperture NA = 0.9. The collected light was 

focused into a multimode optical fiber connected to an ava-

lanche photodiode. The light diffracted by the slit is meas-

ured in a rasterized way. Each point corresponds to a pixel 

of an image generated by scanning in the horizontal, or in 

the vertical direction, as outlined in Fig. 5a.

4.2  Results

In Fig. 5b, c, we present images of the light intensity in the 

plane of the slit, and perpendicular to the sample, respec-

tively. In the latter case, we scan the confocal microscope 

in the vertical direction with a minimum scan step of 

Δz ≈ 50 nm. The pixel size in the horizontal direction cor-

responds to a dislocation of Δx = Δy = 10 μm∕512–20 nm. 

(18)z ≡
ℏk

M
t =

2�ℏ

ML2

L

�
Lt =

L

�
L

t

T

2 The slit was fabricated using focused ion beam milling (FIB) of a 

75 nm Al thin film, evaporated at a pressure of approximately 10
−6 

mbar on top of a glass substrate of 1 mm thickness.

(a)

(b)

(c)

Fig. 5  Experimental verification of diffractive focusing from a single 

slit: setup (a) based on a confocal microscope viewing a section of 

the slit, and light intensity measured in the x − y plane of the slit (b), 

and in the x − z plane perpendicular to the substrate and slit (c)

▸
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Thus, each pixel is much smaller than the wavelength and 

the optical resolution, which according to the Rayleigh cri-

terion is Δr ≡ 0.61 × �∕NA. The horizontal fringes appear-

ing in the light intensity of Fig. 5c are due to the mechani-

cal motion of the microscope when scanning vertically the 

diffracted light. We note the dominant maximum of the 

intensity at z ≈ 4.1 μm which confirms our prediction of the 

focusing effect.

To analyze the phenomenon in a quantitative way we use 

the experimental intensity distribution of Fig 5c to obtain 

the Gaussian width �x
2 defined by Eq.  15. The so-calcu-

lated curve, now displayed in Fig.  4 as a function of the 

propagation distance z and scaled according to Eq. 18, fol-

lows nicely the theoretical prediction. In particular, it dis-

plays the characteristic minimum indicating focusing at the 

same location as the theoretical curve.

The rapid modulation of the experimental curve is a 

consequence of the horizontal fringes emerging due to the 

mechanical motion of the microscope as mentioned above, 

and thus of the measurement technique. An average over 

these oscillations leads to a smooth curve following the 

theoretical curve.

4.3  Paraxial versus non-paraxial optics

To compare our experimental results to the theoretical pre-

dictions of classical optics we have calculated the intensity 

and phase for a slit of width L = 2.44 μm illuminated by 

light of wave length � = 0.488 μm corresponding to the 

same ratio L∕� = 5 as in the experiment. For this purpose 

we use the Fresnel and the Rayleigh–Sommerfeld diffrac-

tion integrals familiar from paraxial and non-paraxial 

optics, respectively. In particular, we have chosen the Ray-

leigh–Sommerfeld integral of the first kind (RS-I)  [4, 12, 

13]3 and made use of numerical integration and algorithms 

reported in [77]4.

3 The integral RS-I is often preferred to the integral of the second 

kind, RS-II, because it describes more accurately the value of the 

lobes close to the aperture. However, RS-II predicts locations of the 

lobes that are identical to that of RS-I.
4 Mielenz developed numerical algorithms for the calculation of the 

diffraction by slits and circular apertures in paraxial and non-paraxial 

optics [77–83]. We note, however, that the Mielenz definition of the 

Lommel functions employed in the calculation of the Fresnel dif-

fraction of a circular aperture is not correct. Correct definitions were 

provided by Lommel [84], Born and Wolf [85] and Daly et al.  [86]. 

Moreover, we note that the abbreviations of the Rayleigh–Sommer-

feld integrals RS-I and RS-II by Mielenz as RS
(s) and RS

(p) are mis-

leading, since the indices usually refer to s- and p-polarization of vec-

tor waves, and the Rayleigh–Sommerfeld theory applies only to scalar 

waves.

In Fig. 6a, b we depict the intensities following from the 

Rayleigh–Sommerfeld and Fresnel integrals, respectively. 

Moreover, in Fig. 7a, b we show the corresponding phases. 

For a direct comparison with Fig. 5 we have refrained from 

using normalized coordinates for both axis.

We note three characteristic features: (1) the number of 

intensity lobes is finite for RS-I, whereas it is infinite for 

Fresnel. (2) The phase pattern predicted by RS-I evolves 

almost as a plane wave in the propagation direction. In 

contrast, the Fresnel phase shows small oscillations around 

zero radians in the propagation direction, but rapid oscil-

lations in the transverse direction, and (3) the Fresnel and 

RS-I intensity tend to agree as we move away from the slit. 

(a)

(b)

Fig. 6  Comparison of the intensities of a plane wave of wave 

length � = 0.488 μm diffracted by a slit of width L = 2.44 μm calcu-

lated either from the Rayleigh–Sommerfeld integral RS-I (a), or the 

Fresnel integral (b). In both cases focusing occurs at z ≈ 4, where the 

intensity reaches the value of 1.8. However, in contrast to the Fresnel 

diffraction the number of lobes for the RS-I diffraction is finite
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In particular, the focus occurs approximately in the same 

position for both calculations, as we show later.

We conclude this section by noting that although RS-I 

is only valid for scalar waves its intensity map still fits well 

with the optical intensity obtained experimentally.

5  Wigner function approach

In the preceding sections we have analyzed the focus-

ing of a rectangular wave packet with the help of the 

time-dependent Schrödinger equation and have confirmed 

the effect using optical waves. We now consider this phe-

nomenon from a different point of view, that is from phase 

space taking advantage of the Wigner function. This for-

malism has the remarkable feature that the time evolution is 

identical to the classical one, consisting of a shearing of the 

initial Wigner function. The latter contains the interference 

nature of quantum mechanics.

5.1  Probability density from tomographic cuts

The Wigner function has several unique properties. The 

ones most relevant for the present discussion are: (1) the 

time evolution of a free particle follows by a replacement of 

the phase space variables according to the classical motion, 

and (2) the corresponding probability densities originate 

from the integration of the Wigner function over the con-

jugate variable, that is by an appropriate tomographic cut. 

We now discuss these features in more detail and derive 

an expression for the probability density which is different 

from, but equivalent to the one discussed in Sect. 2.

5.1.1  A brief introduction

Wigner functions are quasi-probability distributions first 

introduced by Wigner [52] in the context of quantum cor-

relations in statistical mechanics. They belong to the Cohen 

class of distributions  [66] and are, therefore, related to 

other quadratic kernel distributions.

There exist extensive applications of the Wigner function, 

not only in quantum physics, but also in optics and signal 

processing [57, 87]. Indeed, Wigner functions are frequently 

used to represent quantum systems in phase space [60, 62, 

88, 89]. Moreover, they describe the time evolution of wave 

packets in a similar way as classical phase space distribu-

tions in terms of the trajectories of classical particles  [63] 

and have also been used in the study of diffraction in time 

of wave packets [51, 61, 90], a topic that has been addressed 

several times since the seminal article of Moshinsky [8].

5.1.2  Definition and time evolution

In this section we first define the Wigner function and 

discuss its time evolution in phase space. We then use its 

property to provide us with the marginals to compute the 

time- and space-dependent probability density. Here we 

take advantage of the fact that the Wigner function at arbi-

trary times is easy to obtain [63].

Indeed, for a given wave function � = �(x) we find the 

corresponding Wigner function from the definition

(19)W(x, p) ≡  �
∞

−∞

d� eip�∕ℏ�

(

x −
1

2
�

)

�∗
(

x +
1

2
�

)

(a)

(b)

Fig. 7  Comparison of the phase patterns of a plane wave of wave-

length � = 0.488 μm diffracted by a slit of width L = 2.44 μm calcu-

lated either from the Rayleigh–Sommerfeld integral RS-I (a), or the 

Fresnel integral (b). The wavefronts for the non-paraxial case evolve 

in the forward direction almost parallel with small perturbations. 

However, the paraxial phase shows a much more complicated behav-

ior with small fluctuations around zero radians on the optical axis and 

rapid oscillations in the lateral direction close to the slit
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with the normalization factor  ≡ 1∕(2�ℏ), and a free par-

ticle undergoing time evolution is described in phase space 

by the time-dependent Wigner function

Here W0 ≡ W(x, p;t = 0) denotes the Wigner function of 

the initial wave function �0 ≡ �(x, t = 0).

The probability density

at a given point in space and time is obtained by integration 

over p which after the change of variables y ≡ x − (p∕M)t 

reads

This representation is particularly useful in the discus-

sion of the asymptotic behavior of the probability density 

addressed in more detail in “Appendix B”.

5.2  Time evolution: rectangular wave function

We are now in the position to consider the time evolution 

of our rectangular wave function. For this purpose we first 

calculate the Wigner function corresponding to this wave, 

and then analyze the shearing in phase space. Although we 

mainly study the motion of the complete Wigner function 

we also concentrate on those contributions in phase space 

which lead to the focusing.

5.2.1  General case

According to “Appendix B” the Wigner function of the rec-

tangular wave packet, Eq. 1 reads

and is shown in Fig. 8a. Here we identify three character-

istic features: (1) since the rectangular wave function is 

(20)W(x, p;t) = W0

(

x −
pt

M
, p

)

.

(21)|�(x, t)|2 = ∫
∞

−∞

dp W0

(
x −

pt

M
, p

)

(22)|�(x, t)|2 =
M

t ∫
∞

−∞

dy W0(y, M(x − y)∕t).

(23)W0(x, p) =
1

�L
�

(
L

2
− |x|

)
1

p
sin

[ p

ℏ
(L − 2|x|)

]
restricted to the interval |x| ≤ L∕2 also the Wigner function 

is limited in phase space to this domain. (2) The Wigner 

function assumes positive as well as negative values. (3) 

(a)

(b)

(c)

(d)

Fig. 8  Time evolution of the Wigner function corresponding to a 

rectangular wave packet represented by three density plots illustrating 

the shearing in phase space together with the associated probability 

densities in position space. The Wigner function of the initially rec-

tangular wave packet is depicted in a at t = 0. The distribution shears 

with time, as shown in b at time t = 0.0628, and the moment of focus-

sing c at t = 0.342. At the bottom d we display the corresponding 

probability densities in the coordinate x obtained by integration over 

the conjugate variable p. The momentum p is expressed in units of 

ℏ∕L as suggested by the argument of the sine function in the expres-

sion, Eq. 23, for the Wigner function

▸
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We recognize a dominant positive contribution along the 

x-axis with a maximum at the origin.

The time evolution given by Eq.  20 manifests itself 

in a shearing of the initial Wigner function W
0
 shown 

in Figs.  8b, c. Indeed, every point (x,  p) of the Wigner 

phase space moves according to the Newton law, that is 

x → x + pt∕M while p is a constant of the motion.

Especially the Wigner function of Fig. 8c is interesting 

since it represents the moment of focusing. Indeed, by 

this time all negative contributions of W have moved 

away5 from the positive peak centered at the x-axis but 

now subtract from its wings. This fact stands out more 

clearly in the position distribution shown in Fig. 8d which 

can be understood as the result of an integration of W 

over the momentum variable.

In this active approach the Wigner function evolves in 

time but the axes of phase space which define the tomo-

graphic cuts, that is integration over x or p remain fixed. 

An alternative formulation follows from Eq.  22. Here 

the Wigner function remains static, while the line of 

integration evolves in time according to x + (p∕M)t = 0.  

In Fig.  9, we show the probability density at x = 0 as 

5 We emphasize that our interpretation is different from [57], in page 

320, which states: “... a peak in the axial intensity is achieved, associ-

ated with the vertical alignment of some of the main positive regions 

of the Wigner function”.

obtained from the Wigner function through integration 

from this passive point of view.

The cut at t = 0 runs along the momentum axis. Here 

the oscillations in the Wigner function W
0
 along p aver-

age out and the main contribution to the probability den-

sity arises from the positive domain along the x-axis. For 

small times the lines of integration enclose small angles 

with respect to the p-axis and the oscillations in W
0
 trans-

late in an oscillatory probability density. A dominant 

maximum occurs when the cut feels the central posi-

tive ridge along the x-axis. The density decays for larger 

times, that is as the cut approaches the x-axis, since there 

is a decreasing overlap.

5.2.2  Rays and envelopes

According to Eq. 20 each point in Wigner phase space fol-

lows its classical trajectory. Thus, the value of W
0
 at (x0, p0) 

will move from x
0
 to

at time t. We now use these rays to show that the minima 

of the Wigner function generate the regions in space-time 

where the probability density |�(x, t)|2 assumes small val-

ues as exemplified by Fig  10. Thus, they indicate the x 

values of the minima of |�(x, t)|2 as the system evolves in 

time.

(24)x = x
0
+

p
0

M
t

Fig. 9  Diffractive focusing of a rectangular wave packet explained 

from Wigner phase space. At the center we depict the Wigner func-

tion of the initial rectangular wave packet as a surface on top of the 

x − p plane. The blue curve projected onto the surface of a cylinder 

represents the probability density |�(0, t)|2, and is the result of an 

integration along the red linesx + pt∕M = 0 at different times cor-

responding to different angles with respect to the x−axis. Clearly, 

the focusing occurs for a line sweeping only positive values of the 

Wigner function at the approximate time t ≈ 0.342

Fig. 10  Probability density |�(x, t)|2 represented in space-time and 

overlaid with the envelopes (gray lines) of the diffraction in time cre-

ated by a rectangular wave packet of initial width L = 1. The time t 

has been scaled using the characteristic time T. Here the envelopes 

given by Eqs. 32 and 36 approximate well the motion of the minima 

of |�(x, t)|2
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The explicit expression Eq.  23 for the initial Wigner 

function W
0
 tells us that the minima of W

0
 are given by the 

condition

for p positive, and

for p negative, with n = 0, 1, 2,…

We substitute these expressions for p
(n)

0
 into the motion, 

Eq. 24, and rearrange the terms, which yield

for x
0
 positive, and

for x
0
 negative. The upper signs in Eqs. 27 and 28 are for 

positive p
(n)

0
, that is for a positive slope in the (x,  t) plane, 

and the lower signs for negative p
(n)

0
.

The envelope of a set of curves F(x, t;x0) = 0, each 

determined by a parameter x
0
, follows  [91] from the 

requirements

We consider the two cases, x
0
> 0 and x

0
< 0 in turn.

For positive x
0
, the first condition gives

which, when substituted into Eq. 27, yields the relation

Thus, only negative values of p
(n)

0
 contribute to this enve-

lope and we obtain the space-time trajectories

of the minima.

According to this expression they are parabolas 6 emerg-

ing from x = L∕2 with a steepness inversely proportional to 

(2n + 3∕2). Hence, the largest steepness corresponds to the 

case of n = 0 with the parabola crossing the t-axis, that is 

x = 0, at the time

(25)
p
(n)

0

ℏ
(L − 2|x

0
|) = �

(
2n +

3

2

)

(26)
p
(n)

0

ℏ
(L − 2|x

0
|) = −�

(
2n +

3

2

)

(27)(x − x
0
)(L − 2x

0
) ∓

(

2n +
3

2

)

�ℏ

M
t = 0

(28)(x − x
0
)(L + 2x

0
) ∓

(

2n +
3

2

)

�ℏ

M
t = 0

(29)
�F

�x
0

= 0 and F = 0.

(30)x0 =
L + 2x

4
,

(31)−
1

2

(

L

2
− x

)2

= ±

(

2n +
3

2

)

�ℏ

M
t.

(32)t =
(L∕2 − x)2

2n + 3∕2

M

2�ℏ

6 For a circular aperture these lines are rectilinear [92].

(33)t =
1

6

ML
2

2�ℏ
=

1

6
T ,

where in the last step we have recalled the definition, 

Eq. 10 of the characteristic time T.

For negative x
0
, the first condition in Eq. 29 provides us 

with the relation

which, when substituted into Eq. 28, gives

Since in this case only positive values of p
(n)

0
 contribute to 

this envelope we arrive at the space-time trajectory

corresponding to parabolas emerging from x = −L∕2. They 

are the mirror image of the ones given by Eq. 32.

In Fig.  10 we present the envelopes, Eqs.  32 and  36, 

along with the corresponding probability density |�(x, t)|2. 

Hence, these minima coincide with the minima of the 

intensity pattern and are harbingers of the maxima and, in 

particular, of the focus.

6  Summary and outlook: beyond slits

The spreading of a wave packet in the absence of a poten-

tial is a well-known phenomenon in quantum physics. 

However, also the opposite effect, that is a focusing of 

the wave packet can be achieved. In this case we have to 

imprint an appropriate position-dependent phase onto the 

initial wave function. Is it possible to achieve focusing even 

in the absence of any phase factors, that is for a real-valued 

initial wave function?

In the present article we have provided such an example 

in the form of a rectangular wave packet and have illumi-

nated the resulting focusing in position as well as in phase 

space. Here we have used the time-dependent wave func-

tion and the Wigner distribution. Moreover, we have con-

firmed this phenomenon using laser light being diffracted 

from a slit building on the analogy between classical 

Fresnel optics and Schrödinger wave mechanics.

Throughout our article we have concentrated on rectan-

gular wave packets created by a slit, that is by a one-dimen-

sional aperture. However, similar effects appear in the dif-

fraction from a two-dimensional aperture. In “Appendix C” 

we briefly summarize the literature on this problem, and 

discuss the similarities and differences between the one- 

and two-dimensional case using the examples of a slit and a 

circular aperture.

(34)x0 = −

L − 2x

4
,

(35)
1

2

(

L

2
+ x

)2

= ±

(

2n +
3

2

)

�ℏ

M
t.

(36)t =
(L∕2 + x)2

2n + 3∕2

M

2�ℏ
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Figures 11 and 12 bring out most clearly the character-

istic features of this dependence on the number of dimen-

sions: (1) for the slit the relative intensity at the focus 

reaches the value of 1.8, whereas for the circular aperture 

the maximum is 4.0. (2) The position of the focus in the 

case of the circular aperture is closer to the opaque screen 

than in the slit, and (3) the focus originating from a circular 

aperture is more confined, since its decay towards the far-

field region is faster.

This analysis shows that in two dimensions the focus-

ing effect is more pronounced. Moreover, it is possible to 

optimize this effect by choosing different apertures, either 

by appropriate apodization, or by creating an optimal wave 

packet. Unfortunately, this topic goes beyond the scope 

of the present article and has to be postponed to a future 

publication.
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(a)

(b)

Fig. 11  Rayleigh–Sommerfeld intensity pattern for a slit of width 

L = 5� and illumination wave length � = 0.488 μm (a), together with 

a comparison between the on-axis intensities predicted by the Ray-

leigh–Sommerfeld and Fresnel integrals (b). In contrast to Figs. 5, 6 

and 7 the horizontal axes are normalized

(a)

(b)

Fig. 12  Rayleigh–Sommerfeld intensity pattern for a circular aper-

ture of diameter L = 2a = 5� and illumination wavelength � = 0.488μ

m (a), together with a comparison between the on-axis intensities pre-

dicted by the Rayleigh–Sommerfeld and Fresnel integrals (b). Again 

the axes are normalized
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Appendix A: Gaussian width

In this appendix we summarize the evaluation of the time-

dependent Gaussian width defined by Eq. 15 of our rectan-

gular wave packet. To gain some insight into this unusual 

definition of width we first discuss several of its general 

properties and then rederive the familiar spreading of a 

Gaussian wave packet undergoing free expansion employ-

ing this measure. We conclude by considering the case of 

the rectangular wave packet.

A.1: General properties

We start our discussion of the Gaussian width

of the probability density P = P(x) with the average

by noting that for � → 0 the familiar expansion

leads us to

Hence, in this limit the Gaussian width �x
2 reduces to the 

second moment ⟨x2⟩ of P = P(x).

Whenever P displays oscillations in the position vari-

able x around an average value P that are rapid on the decay 

length 1∕� of the Gaussian in the definition, Eq. 37, of �x
2 

the oscillatory part averages out, and the familiar integral 

relation

yields

The other extreme occurs when P = P(x) is slowly varying 

compared to exp[−(�x)2]. In this case we can evaluate P at 

x = 0, factor it out of the integral and perform the integral 

with the help of Eq. 41. Thus, we arrive at the approximate 

expression

(37)�x
2
≡

1

�2

�
1 − ⟨e−(�x)2⟩

�

(38)⟨e−(�x)2⟩ ≡ �
∞

−∞

dx e
−(�x)2

P(x)

(39)e
−(�x)2 ≅ 1 − (�x)2

(40)�x
2
≅ ⟨x2⟩.

(41)∫
∞

−∞

d� e
−��2

=

√

�

�

(42)�x
2
≅

1

�2

�

1 −

√

�

�
P

�

.

which implies that the dependence of �x
2 on an additional 

parameter, such as time is governed by the dependence of 

the probability density P at the origin on that parameter.

Obviously, the most interesting case emerges when P 

and exp
[

−(�x)2
]

 vary on approximately the same length 

scale. This situation is of special interest when P exhibits 

a dominant maximum at x = 0. Indeed, with the help of the 

Taylor expansion

around this point we find from the identity

the Gaussian approximation

of P. Here prime denotes differentiation with respect to x.

As a result, we obtain the expression

where we have used again the integral relation, Eq. 41.

A.2: Gaussian wave packet

Next we evaluate the Gaussian width for a freely spreading 

Gaussian wave packet of initial form

with  ≡ (2�∕�)1∕4 and a real-valued constant �.

From the Huygens integral, Eq.  4, together with the 

propagator, Eq. 2, we obtain with the help of the integral 

relation

the wave function

and thus the probability density

(43)�x
2 ≅

1

�2

�

1 −

√

�

�
P(x = 0)

�

,

(44)P(x) ≅ P(0) −
1

2

|
|P

��(0)||x
2

(45)P(x) = exp {ln [P(x)]}

(46)P(x) ≅ P(0) exp

[
−

1

2

|P��(0)|
P(0)

x
2

]

(47)�x
2 ≅

1

�2

⎡
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1 −

√
�P(0)�

�2 +
�P��(0)�
2P(0)

⎤
⎥⎥⎥⎥⎦
,
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0
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2
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√

�
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e
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When we now substitute this expression into the definition, 

Eq. 37 of the Gaussian measure �x
2 of width and recall the 

identity, Eq. 41, we arrive at the result

or

We note that for �2∕(2�) ≪ 1 and (�∕�)2 < 1 correspond-

ing to early times this expression reduces to

that is to the second moment ⟨x2⟩ of the Gaussian, Eq. 51, 

as predicted by Eq. 40.

Even more interesting is the limit 1 ≪ (�∕�)2 corre-

sponding to large times where Eq. 53 takes the form

According to the definition, Eq.  3, of � we find � ∝ 1∕t 

and thus �x
2 increases in a monotonic way tending towards 

the constant 1∕�2. This time dependence of the Gaussian 

width is in sharp contrast to the one of the second moment 

x
2 given by Eq. 54 which increases quadratically with time 

without a bound.

A.3: Rectangular wave packet

Finally we turn to the Gaussian width �x
2 of the rectangular 

wave packet. Here we use the approximations developed in 

Sect.  A.1 together with the properties of the approximate 

expressions, Eqs.  14 and  89 for the probability density 

P(x, t) = |�(x, t)|2.

Indeed, for early times Eq. 14 predicts rapid oscillations 

around P = 1∕L due to the fact that �, which according to 

Eq. 3 is inversely proportional to t, is large. Hence, we find 

from Eq. 42 the approximation

In the other extreme, that is for large times Fig.  1 shows 

that P is slowly varying. As a result, we obtain from Eq. 43 

the formula

(52)�x
2 =

1

�2

⎡
⎢⎢⎣
1 −

�
2�2�

�2(�2 + �2) + 2�2�

⎤⎥⎥⎦
,

(53)�x
2 =

1

�2

⎛
⎜⎜⎝
1 −

�
1 +

�2

2�

�
1 +

�
�

�

�2
��−1∕2⎞⎟⎟⎠

.

(54)�x
2
≅

1

4�

[

1 +

(

�

�

)2
]

,

(55)�x
2 ≅

1

�2

[

1 −

√

2

�

�(t)

�

]

.

(56)�x
2
≅

1

�2

�

1 −

√

�

�L

�

.

and the time dependence of �x
2 is determined by the one 

of the probability density at the origin. Hence, a maximum 

in |�(x = 0, t)|2 translates into a minimum of �x
2 and vice 

versa.

However, in the neighborhood of the focus it is neces-

sary to use the approximation Eq.  47 which requires P(0) 

and P��(0). According to Fig. 3 the expression for P, Eq. 14, 

approximates well the exact distribution. Therefore, it suffices 

to expand Eq. 14 up to the second order in x and we find

and

In Fig.  13 we compare and contrast the three approxima-

tions Eqs. 56,  57, and 47 together with 58 and 59 to the 

numerically obtained curve based on the Fresnel integral, 

Eq.  5. We note that Eq.  56 provides us with the correct 

starting point of �x
2. Moreover, when we use Eq.  89 for 

(57)�x
2(t) ≅

1

�2

�
1 −

√
�

�
��(x = 0, t)�2

�
,

(58)P(0, t) =
1

L

[

1 + 4

√

2ℏt

�ML2
sin

(

ML
2

8ℏt
−

�

4

)

]

(59)

P
��(0, t) =

32

L3

√

2ℏt

�ML2

{[

2

(

ML
2

8ℏt

)2

− 1

]

× sin

(

ML
2

8ℏt
−

�

4

)

+
ML

2

8ℏt
cos

(

ML
2

8ℏt
−

�

4

)}

.

Fig. 13  Comparison of the numerically obtained Gaussian width �x
2 

as a function of time for the freely spreading rectangular wave packet 

(green curve), and its approximations for early and large times given 

by Eqs. 56 and 57 and depicted by blue and red curves, respectively, 

together with the Gaussian approximation, Eq. 47, around the focus 

using Eqs. 58 and 59. Here we have chosen the value � = 6.0 as in 

Fig. 4. Equation 57 was evaluated using the approximation for large 

times, Eq. 89. In the graphic representation of Eq. 47 we have used 

Eqs. 58 and  59
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|�(x = 0, t)|2 the approximation Eq. 57 describes well the 

long-time behavior but breaks down for short times. It is 

slightly off close to the focus. Here, only Eq.  47 together 

with Eqs. 58 and 59 yields a good fit to the exact curve.

Appendix B: Wigner dynamics of rectangular 
wave packet

In this appendix we analyze the time evolution of the rec-

tangular wave packet from the point of view of Wigner 

phase space. For this purpose we first rederive the Wigner 

function of the initial rectangular wave packet and then 

obtain by integration over the momentum variable the time-

dependent probability density in position space. The result-

ing integral representation for the probability density at 

x = 0 allows us to derive analytical approximations in three 

different time domains: (1) early and intermediate times, 

(2) around the focus, and (3) very long times. We conclude 

by presenting an exact expression as well as several approx-

imations for the location of the focus.

B.1: Initial Wigner function

We start by computing the Wigner function

with the normalization constant  ≡ 1∕(2�ℏ) for the 

square packet given by the wave function

When we substitute this expression into the definition of 

W0, Eq. 60, we find

The step functions imply the inequalities −
L

2
< x −

�

2
<

L

2
 

and −
L

2
< x +

�

2
<

L

2
, which can be expressed as 

−L + 2x < � < L + 2x and −L − 2x < � < L − 2x, leading 

us to the relation −L + 2|x| < � < L − 2|x|. These bound-

aries establish the limits of integration. Indeed, the inte-

gral vanishes for 2|x| − L ≥ L − 2|x| giving rise to a factor 

�(L − 2|x|).

Hence, the Wigner function corresponding to the rec-

tangular wave packet reads

(60)W0(x, p) ≡  �
∞

−∞

d� eip�∕ℏ�0

(

x −
1

2
�

)

�∗
0

(

x +
1

2
�

)

(61)�
0
(x) ≡

1
√

L

�

�
1

2
L − �x�

�
.

(62)

W0(x, p) =

L �

∞

−∞

d� eip�∕ℏ

× �

(
1

2
L − |x − 1

2
�|
)
�

(
1

2
L − |x + 1

2
�|
)

.

(63)W0 =

L �

L−2|x|

−L+2|x|

d� eip�∕ℏ�(L − 2|x|),

which after integration takes the form

and is shown in Fig. 9.

B.2: Time-dependent probability density

Next we derive the time-dependent probability den-

sity |�(x, t)|2 by integrating the time-dependent Wigner 

function

over p, using the form

When we substitute the expression Eq. 64 for W
0
 with the 

appropriate arguments into Eq. 66 we arrive at the integral

which reduces with the help of the Heaviside step function 

to

We conclude by introducing the abbreviation

and the change of variable � ≡ 2y∕L and arrive at the exact 

expression

for the time-dependent probability density.

B.3: Two exact expressions for x = 0

Next we evaluate the integral in Eq. 70 at x = 0 and note 

that the resulting integrand is symmetric with respect to 

� = 0. As a result, Eq. 70 takes the form

(64)W0(x, p) =
1

�L
�

(
L

2
− |x|

)
1

p
sin

[
(L − 2|x|) p

ℏ

]
,

(65)W(x, p;t) ≡ W0

(

x −
p

M
t, p

)

(66)|�(x, t)|2 =
M

t ∫
∞

−∞

dy W0

[
y,

M(x − y)

t

]
.

(67)

|�(x, t)|2 =
1

�L ∫
∞

−∞

dy�

(
L

2
− |y|

)

×
sin

[
(L − 2|y|)M(x − y)∕(ℏt)

]

x − y
,

(68)

|�(x, t)|2 =
1

�L ∫
L∕2

−L∕2

dy
1

x − y

× sin

[
ML2

ℏt

(x − y

L

)(
1 − 2

||||
y

L

||||

)]

(69)�(t) ≡
ℏt

ML2

(70)

|�(x, t)|2 =
1

�L ∫
1

−1

d�
1

2x∕L − �

× sin

[
1

2�(t)

(
2x

L
− �

)
(1 − |�|)

]
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We can obtain an alternate form by the change of vari-

ables � ≡ 4�(1 − �) and � covers the interval [0, 1] twice 

as � moves from 0 to 1. Indeed, for 0 < � < 1∕2 we have 

� ≡
1

2
(1 −

√

1 − �), while for 1∕2 < � < 1 we have 

� ≡
1

2
(1 +

√

1 − �) and the corresponding differentials are 

d� = 4
√

1 − �d� and d� = −4
√

1 − � d�, respectively.

When we decompose the integral

into these two domains we find

or

Hence, we obtain the alternate exact expression

for the time-dependent probability density at x = 0.

B.4: Approximations

Now we analyze the integrals of Eqs.  71 and  75 in three 

different time regimes. Our main interest is to estimate the 

probability density around the time of focusing.

B.4.1: Early times

In this domain we use the integral representation, Eq. 71, of 

|�(0, t)|2 and note that for t → 0, that is for � → 0 two dom-

inant terms emerge. Indeed, when we complete the square 

in the argument of the sine function we find

indicating a point of stationary phase at � = 1∕2.

Moreover, due to the factor 1∕� in the integrand 

another contribution arises. These observations suggest to 

(71)|�(0, t)|2 =
2

�L ∫
1

0

d�
1

�
sin

[
�

2�(t)
(1 − �)

]
.

(72)I ≡ �
1

0

d�
1

�
sin

[

�

2�
(1 − �)

]

(73)

I = ∫
1

0

d�
sin

�

�∕(8�)
�

2
√

1 − �

�

1 −
√

1 − �

�

− ∫
0

1

d�
sin

�

�∕(8�)
�

2
√

1 − �

�

1 +
√

1 − �

� ,

(74)I = ∫
1

0

d�
sin

�

�∕(8�)
�

�

√

1 − �

.

(75)��(0, t)�2 =
2

�L ∫
1

0

d�
sin

�
�∕(8�(t))

�

�

√
1 − �

,

(76)�(1 − �) =
1

4
−

(

� −
1

2

)2

,

decompose the integral into two parts: one around the ori-

gin and one containing the point of stationary phase, that is

with

Here a is a constant parameter such that 0 < a < 1∕2.

In the first integral, we approximate �(1 − �) ≅ � and 

take the limit � → 0. This procedure leads us to

where we have used the representation

of the Dirac delta function.

We evaluate the second integral in Eq. 77 with the help 

of the method of stationary phase [93] which yields

Finally, we combine the two results and arrive at the 

approximate expression

which reproduces the initial value of the wave packet and 

yields a strongly oscillatory correction with a square root 

envelope. Indeed, these features stand out most clearly 

when we express this formula in terms of the characteristic 

time

which yields

The simplicity of this asymptotic expression for |�|2 clearly 

motivates the inclusion of the sometimes mysterious factor 

2� in the definition of T.

Equation  82 is in perfect agreement with Eq.  58, that is 

with our expression of Eq. 14 for x = 0. Needless to say, for 

(77)∫
1

0

d� f (�) = ∫
a

0

d� f (�) + ∫
1

a

d� f (�)
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�
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1
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�(1 − �)

]

.
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0
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�

≅ � ∫
a

0

d� �(�) ≅
�

2
,

(80)lim
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sin(x∕�)

x

= ��(x)

(81)∫
1

a

d� f (�) ≅ 2

√

2�� sin

�

1

8�
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�

4

�

.

(82)|�(0, t)|2 ≅
1

L
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1 + 4

√
2ℏt

�ML2
sin

(
ML

2

8ℏt
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�

4
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,

(83)T =

ML
2

2�ℏ

(84)|�(0, t)|2 =
1

L

{
1 +

4

�

√
t

T
sin

[
�

4

(
T

t
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)]}
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t → ∞ this approximate formula, originally constructed for 

small times, breaks down. Indeed, we find

leading to unphysical negative probabilities.

B.4.2: Time of maximum and long-time approximation

Next we use the representation of |�(x = 0, t)|2 given by 

Eq. 75 to obtain an estimate for long times, that is for 1 < �

, which captures the focusing effect as it manifests itself in a 

dominant maximum of the probability density. Since in this 

regime, the function sin(�∕8�) does not display oscillations 

in the interval 0 < � < 1, we may approximate it by a line 

secant to the curve sin(�∕8�)∕� at the end points, that is

With this approximation and the integral relations

and

(85)|�(0, t)|2 ≅
1

L

[
1 −

4

�

√
t

T
sin

(
�

4

)]

(86)
1

�
sin

(

�

8�

)

≅
1

8�
+

[

sin

(

1

8�

)

−
1

8�

]

� .

(87)∫
1

0

d�
1

√

1 − �

= 2

we can carry out the integration in Eq.  75 to obtain the 

formula

or when expressed in terms of T

This expression clearly shows the asymptotic behavior 

T / t, as well as the presence of a maximum due to the sign 

change of the second term.

B.4.3: Very long times

A rather straight-forward approximation valid for extremely 

long times results from a Taylor expansion of the integral 

representation, Eq.  66, of the probability density in 1  /  t. 

Indeed, for M(x − y)∕t ≅ 0, we obtain

which together with the expression Eq.  64 of the Wigner 

function for p = 0, that is with

yields after integration the approximate but analytical 

formula

which is independent of the coordinate x. In particular, 

Eq. 93 is valid for x = 0 and it coincides with the first term 

of our previous estimate, Eq. 89, as shown in Fig. 14 by the 

blue and green curves.

B.5: Location of the focus

We are now in the position to determine the exact location 

of the dominant maximum of |�(x = 0, t)|2, that is of the 

focus by solving a transcendental equation. For this pur-

pose we differentiate the exact expression for |�(x = 0, t)|2 

in terms of the integral, Eq.  71, with respect to t which 

leads us to the equation

or

(88)∫
1

0

d�
�

√

1 − �

=

4

3

(89)|�(0, t)|2 ≅
ML

2�ℏt
+

8

3�L

[
sin

(
ML

2

8ℏt

)
−

ML
2

8ℏt

]
,

(90)|�(0, t)|2 ≅
1

L

{
T

t
+

8

3�

[
sin

(
�

4

T

t

)
−

�

4

T

t

]}
,

(91)|�(x, t)|2 ≅
M

t ∫
∞

−∞

dy W0(y, 0),

(92)W0(x, 0) =
2

�ℏL
�

(
1

2
L − |x|

)(
1

2
L − |x|

)

(93)|�(x, t)|2 ≅
ML

2�ℏt
=

1

L

T

t
,

(94)∫
1

0

d� (1 − �) cos

[

�(1 − �)

2�

]

= 0,

Fig. 14  Comparison between different approximations of the prob-

ability density |�(x = 0, t)|2. The red line represents the exact result 

obtained numerically from the Fresnel diffraction integral, Eq.  5, 

and the black curve shows the early-time estimate given by Eq.  82. 

In blue we depict the intermediate and long-time estimate defined 

by Eq. 89, and the green curve shows the 1 / t-behavior at very long 

times following from Eq. 93. The different curves show progressively 

the behavior of |�(x = 0, t)|2 as time increases, or equivalently, as one 

moves from the near-field to the far-field. Near-field: the square root 

envelope is visible and agrees perfectly with the exact result both in 

amplitude and in phase. Focusing: all approximations—except for 

the very long time curve in green—show a peak located close to 

the actual maximum. Far-field: all the approximations reproduce the 

asymptotics, except for the black curve at very long times
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Here we have recalled the definitions Eqs. 8 and  9. When 

we solve Eq. 95 numerically we find �f ≈ 0.054.

A comparison between the definition, Eq.  83, of the 

characteristic time T with the definition, Eq.  69 of �, 

yields the relation

which translates into tf∕T ≡ 2��f ≅ 0.34, in complete 

agreement with the analysis of Sect.  2, and in particular 

Figs. 1 and 2.

It is interesting that our estimates based on the vari-

ous approximations for |�(x = 0, t)|2 discussed before are 

very close to this value. Indeed, our early-time approxi-

mation, Eq. 82, provides us with the condition

leading to the value �
e
≈ 0.058.

Remarkably, our long-time approximation, Eq.  89, 

which yields the transcendental equation

with the solution �
l
≡ 3∕(16�) ≈ 0.059 is also accurate up 

to two digits.

Appendix C: Circular apertures

Slits are frequently employed in diffraction problems 

because of the mathematical simplicity of the resulting 

diffraction integrals and the physical interpretation being 

limited to one space dimension only. However, circular 

apertures are often preferred due to their direct application 

in microscopy, photography and transmission between dif-

ferent regions of space. Indeed, early optics problems such 

as the camera obscura [3], the transmission by an aperture 

smaller than the wave length  [19, 20, 22, 31], the Fourier 

optics of pupils and their optical transfer functions  [94] 

are only but a few examples illustrating this point. In this 

Appendix, we first briefly review the history of diffraction 

from a circular aperture, and then discuss the similarities 

and differences between the diffractive focusing of scalar 

waves arising from slits and circular apertures.

C.1: Cusps and multiple diffraction

We start by recalling that the Poisson–Arago spot is the 

intensity map resulting from the illumination of a circular 

(95)cos

�

1

8�

�

C

�

1

2
√

��

�

+ sin

�

1

8�

�

S

�

1

2
√

��

�

= 0.

(96)� =

1

2�

t

T
,

(97)cot

(

1

8�
−

�

4

)

= 4�

(98)cos

(

1

8�

)

+
1

2
= 0

disk. Therefore, the field distribution is the complement 

of that generated by a circular aperture and can be calcu-

lated using the Babinet principle [95–98].

In 1922, Coulson and Becknell7 have investigated 

experimentally a variant of the Poisson–Arago spot [101, 

102] by measuring the intensity patterns generated by a 

disk rotated around its diagonal and illuminated by a 

point light source. The geometric shadow of this arrange-

ment is an ellipse and the intensity pattern in the far-field 

is a diamond-like figure with four cusps being the evolute 

of the edge of the shadow. It is interesting that a few 

years earlier, Raman has also observed cusps in the dif-

fraction patterns generated by an elliptical 

aperture [103].

Cusp are examples of catastrophe optics  [99]. The 

interaction of light with a sharp-edge aperture was math-

ematically reformulated recently [104].

Finally, we turn to Letfullin and collaborators who 

have analyzed  [105–109] theoretically and experimen-

tally the phenomenon of multiple diffractive focusing, 

which occurs when we apply a second circular aperture 

of radius a
2
 to the diffraction pattern generated by a first 

circular aperture of larger diameter a
1
, placed in the sym-

metry axis. Provided the distance L between the second 

and the first apertures is such that the Fresnel number 

N
1
≡ a

2

1
∕(�L) is an odd integer, the second diffraction 

pattern has a maximum that can reach 10.0 times the 

illuminating intensity of the first aperture. Based on this 

observation they proposed a lens for matter waves [110].

Slit and circular aperture: paraxial versus non-paraxial 

optics

In Sect.  4 we have studied the diffraction from a slit of 

width L illuminated by light of wave length � using the 

Fresnel and the Rayleigh–Sommerfeld integrals. The 

evaluation of the RS-I integral requires the numerical 

integration of Hankel functions  [77]. We now briefly 

summarize an analogous discussion for the case of a cir-

cular aperture of radius a = L∕2.

In the Fresnel diffraction from a circular aperture we 

make use of Lommel functions in the calculation algo-

rithm  [77, 84–86]. For the non-paraxial calculation, the 

RS-I and RS-II integrals are evaluated numerically using 

the GNU Scientific Library (GSL) [111]. The results for 

the slit and the circular aperture are depicted in Figs. 11 

and 12 in Sect. 6.

The fields and the corresponding normalized intensi-

ties on-axis based on the Rayleigh–Sommerfeld integrals 

7 Surprisingly, this pioneering work is neither referred in  [99], nor 

in [100].
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for a circular aperture of radius a illuminated by a plane 

wave [43, 45, 77] read

and

From these expressions,8 especially the one for I
RS−II

∕I
0
, 

several properties of the non-paraxial diffraction stand out: 

the number of maxima, or minima of each intensity func-

tion is finite. Indeed, the maxima follow from the condition

or equivalently, k(
√

a2 + z2 − z) = (2m + 1)�, with 

m = 0, 1, 2,… The minima occur when

with n = 1, 2,…

The argument of the cosine function never vanishes, 

except for the trivial case of a = 0, or in the asymptotic 

limit z → ∞. On the other hand, the intensity at the origin 

(z = 0) oscillates between 0 and 4.0, depending only on a. 

In contrast, the intensity I
RS-I

∕I
0
 always converges to 1.0.

The representation of the on-axis intensities I
RS-I

 and 

I
RS-II

 using a logarithmic scale for z permits us to find 

another interesting property of the non-paraxial diffraction: 

the separation between maxima, or minima along the log(z)

-axis is constant. This property is due to the argument of 

cosine function.

We note that Forbes has investigated the scaling prop-

erties of the Fresnel diffraction patterns for circular aper-

tures  [92], but he did not mention this feature as it arises 

only in non-paraxial diffraction.

The Fresnel diffraction intensity on-axis of a circular 

aperture reads

with the argument of the cosine-function being inversely 

proportional to z. Thus, the number of maxima and minima 

is infinite.

(99)

⎧⎪⎨⎪⎩

U
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(z) = U
0

�
e

ikz −
z√

a2 + z2

e
ik

√
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�

U
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(z) = U
0

�
e

ikz − e
ik

√
a2+z2

�

(100)
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I
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I
0

= 1 +
z

2

z
2
+ a

2

− 2
z√

z2 + a2

cos

�
k

�√
a2 + z2 − z

��

I
RS-II

I
0

= 2 − 2 cos

�
k

�√
a2 + z2 − z

��
.

8 We emphasize that the z-values of the maxima and the minima 

coincide for I
RS−I

 and I
RS−II

.

(101)
cos

�

k(
√

a2 + z2 − z)

�

= −1,

(102)k(
√

a2 + z2 − z) = 2n�,

(103)IFc(0, 0, z) = 2 − 2 cos

(

ka2

2z

)

,

We can find the location z
m
= a∕� of the last maximum 

from Eq. 103. If we normalize this length by L2∕� we obtain

that is the position of the focus.

In the case of the slit no analytic expressions are known 

for the non-paraxial intensity, but the graphical representa-

tions of the RS-I intensities in Fig. 11 show that the number 

of lobes in the intensity map of a slit of width L = 2a is 

equal to that for a circular aperture of the same diameter. It 

depends only on the ratio L∕�.

However, the maxima are differently distributed along 

the z-axis, and the dominant lobe containing the focusing 

maximum is much more elongated than that of the circular 

aperture.

The Fresnel intensity on-axis is approximated by

which shows why the position of the focus is shifted 

towards larger z values, compared to the circular aperture. 

After the normalization by L2∕� we find

Moreover, the maxima of the Fresnel intensity decay in 

amplitude converging to 1.0 for z → 0, unlike in the circu-

lar aperture.
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