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Abstract

This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single

observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing

(CS), i.e., the classical ℓ1 minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ℓ0

minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for

Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated

and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike

the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms

(e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution

property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve

resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar

dataset.

Keywords: Compressive sensing; Angular sparsity; DOA estimation; Fourier beamformer; LASSO algorithm; SPICE
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1. Introduction
The problem of estimating the directions of arrival

(DOA) of a certain number of sources has been an

active research area for decades [1,2], with applications

to monostatic and multi-static radar systems [3-7] and

remote sensing [8,9]. The first approach to carrying out

space processing, i.e., DOA estimation, from data sam-

pled by an array of sensors was the well-known Fourier

beamformer (FB). However, the main drawbacks of the

FB are the high level of secondary lobes and poor angular

resolution [9]. In fact, the FB suffers from the Rayleigh

resolution limit, which is independent of the signal-

to-noise ratio (SNR). In order to overcome these limita-

tions, adaptive beamformers, such as Capon [10] and

MUSIC [11], have been proposed, and their perform-

ance is widely investigated, also in the presence of

multiplicative noise [8,9] and array errors [12]. How-

ever, most of these adaptive algorithms rely on asymp-

totic assumptions, e.g., high SNR level and large

number of snapshots. In many practical applications, for

example, in sonar processing, due to physical constraints,

e.g., sound speed, only a very small number of snap-

shots or, in the worst case, a single snapshot is available

for DOA estimation [13,14]. Another application in

which the number of available snapshots is a critical

parameter is the DOA estimation in automotive radar

systems (see, e.g., [15]). In the single-snapshot scenario,

the adaptive algorithms that require calculating the

inverse of the estimated noise covariance matrix, e.g.,

the Sample Covariance Matrix (SCM), cannot be used

since the estimate is rank deficient. Recently, new algo-

rithms, based on the emerging field of the Compressed

Sensing (CS) theory have been proposed in the array

processing literature (see e.g., [16-18]).

The aim of this paper is to investigate the statistical

properties of CS-based beamformers. The analysis is

carried out in the single-snapshot scenario, which is of

practical relevance in sonar and in automotive radar

applications. The multi-snapshot scenario is left to fu-

ture works. The focus here is on three statistical proper-

ties: (i) the estimation performance, i.e., the efficiency in

the DOA estimation; (ii) the detection performance, i.e.

evaluation of the receiver operating characteristic (ROC)
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curves; and (iii) the resolution capability. In particular, we

show that a CS-based DOA estimator is able to guarantee

the super-resolution property, typical of the adaptive esti-

mation algorithms.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the single-snapshot DOA estimation

problem. In particular, a brief description of the classical

FB and of the four considered CSBs is provided. In Sec-

tion 3, the estimation and detection performance of the

four CSBs are evaluated and compared with that of the FB

for two different noise models. The super-resolution prop-

erty of the CSBs is investigated in Section 4, whereas some

results on real sonar data are presented in Section 5.

Finally, our conclusions are summarized in Section 6.

2 Single-snapshot DOA estimation
2.1 The measurement model

Assume a uniformly linear array (ULA) of N omnidirec-

tional sensors spaced by d and a single narrowband

source impinging on the array from conic angle �θ .

Moreover, suppose that only one snapshot is collected at

the output of the matched filter for each range cell. In

the narrowband case, the vector snapshot can be mod-

eled as [1,19]:

y ¼ sþ n ¼ ρv �νð Þ þ n; ð1Þ

where �ν ¼ d=λ0 sin�θ is the source spatial frequency,

λ0 is the wavelength of the transmitted signal,

v �νð Þ ¼ 1; exp j2π�νð Þ;…; exp j2π N−1ð Þ�νð Þ½ �T is the N × 1

source steering vector and n is the complex N × 1 meas-

urement noise vector (either Gaussian or non-Gaussian),

with zero mean and covariance matrix C. Finally, ρ is a

complex scalar that accounts for the transmitted com-

plex amplitude, the radiation pattern of the array sen-

sors, the two-way path loss, the sonar or radar cross

section (RCS) of the slowly fluctuating source, and the

straddling losses.a The parameter ρ can be modeled as

a complex unknown scalar factor of the form ρ = |ρ|ejϕ

where the phase ϕ is a uniformly distributed random

variable in [0, 2π) and (i) the magnitude |ρ| is a deter-

ministic parameter or (ii) the magnitude |ρ| is a

Rayleigh random variable (rv) with statistical power

E{|ρ|2} = σρ
2, which is equivalent to assume that ρ is a

complex zero-mean Gaussian rv with variance σρ
2, i.e.,

ρ∈CN 0; σ2ρ

� �

. The model in Equation 1 is relative to a

single source; in the multi-source scenario [1,19], the

data model is

y ¼ sþ n ¼
X

K

k¼1

ρkv �νkð Þ þ n; ð2Þ

where K is the number of sources and �νkf gKk ¼ 1 are

their K spatial frequencies, relative to the K DOAs

�θk

� �K

k ¼ 1
, which are the parameters to be estimated. In

this paper, when the random signal model is adopted to

characterize the multi-source scenario, the sources are

assumed to be independent.

2.2 Classical beamforming

Due to the fundamental importance of the DOA esti-

mation problem in a multitude of practical applications,

many estimation algorithms have been proposed in the

literature. Without claiming to be complete, the estima-

tion methods associated with Equations 1 and 2 can be

categorized in two large classes: the non-parametric (spec-

tral-based) algorithms and the parametric algorithms [2].

The non-parametric algorithms (e.g., Fourier, Capon, and

MUSIC beamformers) exploit some spectrum-based func-

tion of the parameters to be estimated, e.g., the DOAs.

More precisely, the DOA's estimation problem is solved

by finding the locations of the highest peaks of a spectrum-

based function. The parametric techniques, e.g., Determin-

istic [20] and Stochastic [21] Maximum Likelihood (DML

and SML) algorithms, on the other hand, fully exploit

the statistical characterization of the measurements

and, in general, require a simultaneous search over all

the unknown parameters to be estimated. The latter

approach often guarantees higher estimation performance

than the spectral-based algorithm, albeit at the expense of

an increased computational complexity.

However, almost all these algorithms (both spectral-

based and parametric methods) have to work in the so-

called asymptotic region, i.e., they need high SNR

values and a large enough number of snapshots in

order to provide reliable estimates. However, in some

applications, e.g., sonar applications, due to physical

constraints, only a very small number of snapshots or, in

the worst case, a single snapshot is available for DOA esti-

mation. In the single-snapshot scenario, adaptive algo-

rithms (such as e.g., Capon, MUSIC, DML, and SML) that

rely on an estimate of the noise covariance matrix C cannot

be applied. In fact, if the standard Sample Covariance

Matrix (SCM) estimator is used, the resulting estimate of C

would be rank deficient (see, e.g., [22]). In the single snap-

shot case then, the only feasible algorithm is the FB.

Under the following three assumptions,

1. The noise vector n is a complex zero-mean

Gaussian-distributed random vector with covariance

matrix C = σn
2
I.

2. The number of sources K in the scenario is equal to 1.

3. ρ is a deterministic unknown complex factor.

The maximum likelihood (ML) estimator for �ν is given

by the location of the maximum of the data periodogram

pF(ν) (see e.g., [1,2]):
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pF νð Þ ¼
X

N−1

n¼0

yne
−j2πnν

�

�

�

�

�

�

�

�

�

�

2

: ð3Þ

In Equation 3, ν is a continuous variable. However, in

practical applications, since the periodogram is evaluated

using the fast Fourier Transform (FFT), then pF(ν) is

calculated only on a discrete set of spatial frequencies

ϒ ¼ νf g
ϒj j
j ¼ 1 , where |ϒ| is the cardinality of the set Υ.

Generally, the number of spatial frequencies used to

evaluate pF(ϒ) is chosen to be equal to N (the number

of array elements). This is the reason for the low reso-

lution of the Fourier beamformer. The resolution prop-

erty will be extensively discussed in the next section.

Then, an estimate of the source spatial frequency is

obtained as follows:

ν̂F ¼ argmax
ϒ

pF ϒð Þ: ð4Þ

Again, it must be stressed that the FB suffers of two

main drawbacks: the high level of secondary lobes and the

Rayleigh resolution limit, which is a problem when K > 1.

2.3 A CS approach to single-snapshot DOA estimation

The application of the CS theory to the DOA estimation

problem has been investigated in many recent works

and it is based on the observation that the number of

possible sources in the scenario is much lower than the

‘number’ of all possible spatial frequencies, that is, in

general, a continuous parameter. As shown e.g., in [16],

the measurement model in Equations 1 and 2 can be re-

cast as a sparse linear problem by defining an overcom-

plete dictionary of steering vectors evaluated over a set

of possible spatial frequencies Ω = {ν1,…, νG}. In general,

the true source spatial frequencies could not belong to

this set, i.e., �νkf gKk ¼ 1⊄Ω , since Ω is arbitrary chosen

without any a priori knowledge on �νkf gKk ¼ 1 . However,

in order to guarantee a coherence between the signal in

Equations 1 and 2 and the CS-like signal model, we assume

that �νkf gKk ¼ 1⊂Ω . The effects of the violation of this as-

sumption (called off-grid effects) are discussed in Section 3.1.

An overcomplete representation matrix can be built by col-

lecting all the possible G steering vectors in a matrix:

A Ωð Þ ¼ v ν1ð Þ ⋯j jv νGð Þ½ �: ð5Þ

It must be noted that the representation matrix A does

not depend on the actual source spatial frequencies but

is only function of Ω. In this framework, the signal com-

ponent is represented by a G × 1 column vector x whose

gth entry is equal to ρg if a source has a spatial frequency

νg and zero otherwise. Since the cardinality G of Ω, i.e.,

the number of grid points used to cover the spatial fre-

quency domain, is much larger than the number of

possible sources, then the vector x is sparse. Finally, the

measurement model of Equation 2 can be recast in the

well-known linear CS measurement model:

y ¼ sþ n ¼ A Ωð Þxþ n: ð6Þ

Estimating the spectrum-like function pCS Ωð Þ ¼ x̂ Ωð Þj j2,
which is a sort of sparse periodogram, from Equation 6 is

equivalent to estimate the spatial energy as a function of

the set of assumed spatial frequencies Ω. By assuming to

have a single source in the scenario (K = 1), a CS-based

DOA estimator is given by the following:

ν̂CS ¼ argmax
Ω

x̂ Ωð Þj j2 ¼ argmax
Ω

pCS Ωð Þ ð7Þ

where a sparse estimate of x̂ is obtained from the meas-

urement vector y by solving the following constrained

optimization problem:

x̂ Ωð Þ ¼ argmin
x∈ℂG

xk k1 s:t: A Ωð Þx−yk k2≤δ: ð8Þ

Some consideration on the linear model in Equation 6

should now be done. It is well known from basic CS the-

ory that in order to reconstruct the sparse signal x using

the ℓ1 minimization problem given in Equation 8, the

matrix A in Equation 5 must satisfy the restricted isom-

etry property (RIP). It is easy to shown that the matrix A

does not satisfy the RIP, since a submatrix composed of

a very small number of contiguous columns is already

very close to singular [23]. However, in a recent paper

[24], the problem of reconstructing a sparse signal from

incomplete frequency samples is discussed and analyzed.

In particular, consider a discrete time signal x ∈ℂG and a

randomly chosen set of frequencies Ω. It has been

shown in [24] that it is still possible to exactly recon-

struct x from the partial knowledge of its Fourier coeffi-

cients on the set Ω. We return to this result later on,

when the super-resolution property is discussed. As it is

obvious from the previous discussion, also in the CS-

based approach, the spatial frequency ν is assumed to be

a discrete variable. It must be noted that recent works

deal with the more challenging case of continuous par-

ameter space (see e.g., [23,25]). However, these recent

results fall beyond the scope of this paper.

2.4 CS-based beamformers

In this work, four different algorithms are used to find a

feasible solution for the constrained optimization prob-

lem in Equation 8, i.e., the classical ℓ1 minimization (L1)

algorithm (or least absolute shrinkage and selection op-

erator, LASSO), the fast smoothed ℓ0 minimization

(SL0) algorithm, the sparse iterative covariance-based es-

timator (SPICE) algorithm and the iterative adaptive ap-

proach for amplitude and phase estimation (IAA-APES)
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algorithm. Even if these four algorithms have been de-

rived starting under different hypotheses, we will show

that they are strictly related. In the following, a brief de-

scription of the main advantages and drawback of each

algorithm is provided.

2.4.1 The ℓ1 minimization (L1)algorithm

In its most general form, the problem in Equation 8 be-

longs to the well-known class of constrained optimization

problem that can be solved using a LASSO solver (see e.g.,

[26]). One big advantage of the LASSO algorithm is that it

promotes sparse solutions irrespective of the particular

noise distribution. On the other hand, the LASSO solver re-

quires the setting of some additional parameters, which

have to be chosen heuristically by the user. A wrong choice

of these parameters could compromise the convergence of

the minimization algorithm. A LASSO-based algorithm is

used in [16] to solve the DOA estimation problem. An ex-

ample of a critical parameter is the threshold value δ in the

constraint of Equation 8. Clearly, δ is a function of the noise

covariance matrix C that is, in general, unknown, but there

are few theoretical studies on this point and the analytical

relation between δ and C has not been explicitly derived

so far. Moreover, an estimator of δ from the data snap-

shot y is not yet available in the literature. For the nu-

merical simulation, the NESTA [27] algorithm is used to

evaluate the LASSO solution of the minimization prob-

lem in Equation 8.

2.4.2 The fast smoothed ℓ0 minimization(SL0) algorithm

The SL0 algorithm is a suboptimal algorithm based on a

continuous approximation of the ℓ0 norm [28]. It is well

known that in order to force the solution of a minimization

problem similar to the one in Equation 8 to be the ‘spars-

est’ solution, the function to be minimized by definition of

sparsity is the ℓ0 norm and not the ℓ1 norm. Since the

problem is that the ℓ0 norm is a discrete and non-convex

function, then its minimization is a very difficult problem,

at least from a numerical point of view. In order to make

the problem more tractable, the ℓ1 norm is used and the

large majority of the theoretical results in CS have been

derived for this norm. However, it is also possible to exploit

some continuous (but, in general, not convex) approxima-

tion of the ℓ0 norm, as proposed in [28]. Instead of a prob-

lem similar to the one in Equation 8, in [28], the authors

propose to solve the following problem:

x̂ Ωð Þ ¼ argmin
x∈ℂG

F xð Þ s:t: A Ωð Þx ¼ y; ð9Þ

where F is some continuous function that approxi-

mates the ℓ0 norm. Of course, the SL0 is a suboptimal

algorithm for the DOA estimate. In fact, as it can be

seen from Equation 9, the SL0 algorithm does not take

into account the measurement noise. In [28], the authors

claim that the SL0 is robust with respect to the noise, but

there is no theoretical guarantee for this. However, the

SL0 algorithm has two advantages with respect to the

classical LASSO algorithm: (i) the numerical minimi-

zation algorithm (a gradient-based algorithm) is very

fast, and (ii) the SL0 algorithm requires the choice of a

very small number of critical parameters.

2.4.3 The SPICE algorithm

The SPICE algorithm is an iterative algorithm that, as

the previous two algorithms, provides an estimate of a

spectrum-like function pSPICE(Ω) of the data snapshot

on an assigned set Ω of possible spatial frequencies. The

SPICE algorithm was derived for the single snapshot

case in [29] and then generalized to the multi-snapshot

case in [30]. The SPICE algorithm has a different and

stronger statistical foundation with respect to the LASSO

algorithm. Moreover, it does not require any difficult and

heuristic selection of parameters, since they are jointly es-

timated within the iterations. In the following, a brief de-

scription of the fundamental concepts behind the SPICE

algorithm is provided.

Suppose that the noise vector n in the measurement

model in Equation 2 is a zero-mean Gaussian distrib-

uted complex random vector, with covariance matrix

C ¼ diag σ2n;1;…; σ2n;N

� �

. The covariance matrix of the snap-

shot y is then:

R ¼ E yyH
� �

¼
X

K

k¼1

pkv �νkð Þv �νkð ÞH þ C; ð10Þ

where

pk ¼
ρk
�

�

�

�

2
; deterministic signal model

σ2
ρ;k ; random signal model;

(

ð11Þ

where σρ,k
2 = E{|ρk|

2}. Using the notation introduced in

the previous section and by assuming a deterministic

signal model (the extension to the random signal model

is trivial), Equation 10 can be rewritten as follows:

~R ¼ E yyH
� �

¼
X

G

g¼1

pgv νg
� �

v νg
� �H

þ diag σ2n;1;…; σ2n;N

� �

; pg ¼ xg
�

�

�

�

2
; ð12Þ

where, as before, xg, the gth entry of x, is equal to ρg if a

source has a spatial frequency equal to νg and zero

otherwise. It must be noted that R ¼ ~R if and only if

�νkf gKk ¼ 1⊂Ω, i.e., the true source spatial frequencies be-

long to the set of the assumed possible frequencies. The
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parameters to be estimated are (1) the spectrum-like

function pSPICE Ωð Þ≜ pg

n oG

g¼1
and (2) the noise covari-

ance matrix C. The joint estimate of these parameters is

obtained by minimizing the following covariance-based

objective function [31]:

pSPICE Ωð Þ; Ĉ
� �

≜ p̂g

n o Ωj j

g¼1
; σ̂ 2

n;i

n oN

i¼1

	 


¼ argmin

pgf g
Ωj j

g¼1
; σ2n;if g

N

i¼1

� �

∈ℝ
þ
0

~R−1=2 yyH−~R
� �

�

�

�

�

2

F
;

ð13Þ

where ‖ ⋅ ‖F is the Frobenius norm. The minimization

problem in Equation 13 has an iterative closed form so-

lution [29,30]. Interestingly, even if they have been de-

rived from two completely different perspectives, the

SPICE and the LASSO algorithms are strictly related.

This connection is based on the Elfving theorem [32]

and it has been extensively discussed in [33] and [34].

2.4.4 The IAA-APES algorithm

The IAA-APES algorithm [35] is an iterative and non-

parametric algorithm that provides an estimate of a

spectrum-like function pIAA ‐APES(Ω) of the data snap-

shot on an assigned set Ω of possible spatial frequencies.

As for the SPICE algorithm, it does not require any se-

lection of parameters and can deal with the single snap-

shot case. In the following, a brief description of the

basic principles of the IAA-SPICE algorithm is provided.

Let P = diag(p1,… p|Ω|) be a diagonal matrix whose di-

agonal entries, defined as in Equation 11, represent the

power at each spatial frequency on the grid Ω. Further-

more, define a matrix Q(νg) to be:

Qg ¼ T−pgv νg
� �

v νg
� �H

; ð14Þ

where T =A(Ω)PA(Ω)H and A(Ω) is the overcomplete

matrix of steering vectors defined in Equation 5. Fol-

lowing [36] and [37], the spectrum-like function

pIAA‐APES Ωð Þ≜ pg

n o Ωj j

g¼1
is obtained by minimizing the ob-

jective function:

pIAA‐APES Ωð Þ≜ p̂g

n o Ωj j

g¼1
¼ argmin

pgf g
Ωj j

g¼1
∈ℝ

þ
0

n

y−ρgv νg
� �

�

�

�

�

�

�

2

Q−1
g

;

g ¼ 1;…; Ωj j ¼ G
o

;

ð15Þ

where ‖z‖W
2
≜ zHWz. A closed form solution of the prob-

lem in Equation 15 can be obtained as follows:

p̂g ¼
v νg
� �H

T−1y

v νg
� �H

T−1v νg
� �

; g ¼ 1;…; Ωj j ¼ G: ð16Þ

Since to estimate the spectrum-like function

pIAA‐APES Ωð Þ≜ p̂g

n o Ωj j

g¼1
, the IAA-APES algorithm requires

the matrix T, which itself depends on the unknown signal

power, it has to be implemented as an iterative algorithm

[35]. Remarkably, as shown in [35], the IAA-APES algo-

rithm is a close approximation of the ML estimator in the

multi-source scenario.

3 Estimation and detection performance
In this section, we investigate the estimation and the de-

tection performance of the CSB DOA estimators. Re-

garding the DOA estimation, the root mean square error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E �ν−νð Þ2
� �

q

in the estimation of the true

spatial frequency is evaluated for the three described CSBs

in the single snapshot-single target scenario and compared

with the RMSE of the FB and with the Cramér-Rao Lower

Bound (CRLB). The signal model assumed in the simula-

tions is the deterministic model. The RMSE and the ROC

curves are evaluated for two different kinds of disturbance:

Gaussian white noise and Gaussian white noise plus

spatially correlated Gaussian clutter. In this last case, the

clutter is modeled as an autoregressive (AR) process of

order 1, so its Power Spectral Density (PSD) is given by:

Sc vð Þ ¼ σ2c
1− ξj j2

1−ξe−j2πvj j2
; ð17Þ

where ξ is a complex scalar factor. The covariance

matrix of the noise vector n in Equations 1 and 2 is

C ¼
σ2nI; white noise only
σ2nIþ σ2cQ ξð Þ; noise plus clutter;



ð18Þ

where Q(ξ) has the Toeplitz structure typical of an AR

(1) process, i.e., [Q(ξ)]i,j = (ξ|i−j|)* where the asterisk de-

fines the conjugate operator.

3.1 RMSE and CRLB on DOA estimation

The Gaussian white noise case is considered first. The

CRLB on the accuracy of DOA estimation in white noise

has already been derived in the literature [19]:

CRLB �νð Þ ¼
6

4π2SNR
⋅

1

N N2
−1

� � : ð19Þ

In order to evaluate the RMSE, the measurement

model in Equation 1 has been adopted with the follow-

ing parameters:

� n is a white, zero-mean, complex Gaussian vector

with covariance matrix C = σn
2
I with σn

2 = 1.

� |ρ| is a complex unknown scalar factor with ρj j2

¼ SNR � σ2n, where SNR is the signal-to-noise ratio.
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� The number of independent Monte Carlo trials is 104.

� The number N of array sensors is 32.

� The nominal value of the target spatial frequency �ν

is chosen uniformly at random between −0.5 and

0.5, i.e., �νs∈U −0:5; 0:5½ Þð Þ.
� Since the number of grid points is chosen to be

equal to 29 for all the beamformers (FB and CSBs),

then |ϒ| = |Ω| =G = 29.

In Figure 1, the comparison between the RMSE of the

five beamformers and the CRLB is shown. In this scenario,

since the FB is the ML estimator, then it is, at least

asymptotically, the most efficient estimator. However, from

Figure 1, we also get that the FB and the CSBs have very

close performance. In particular, the FB and the SL0-CSB

algorithms have the same performance. This means that

even if the CSBs are suboptimal algorithms in terms of

RMSE (at least in the white noise case), the loss in estima-

tion accuracy is negligible. Moreover, we also observe that

for SNR below 0 dB, all the estimators are in the ‘low SNR’

region where the CRLB is not tight. From 0 to 10 dB, the

estimation accuracy of all the beamformers is close to the

CRLB. However, for SNR greater than 10 dB, the so-called

off-grid effects become evident. The off-grid effects are bias

errors in the DOA estimation that arise when the nominal

target spatial frequency �ν does not belong to the set Υ for

the FB and to Ω for the CSBs. Of course, the residual bias

depends on the ‘thinness’ of the grid: as the number of the

grid points G tends to infinity, the bias tends to zero. More-

over, the residual bias is upper-bounded by 1/2G: in fact,

this value is achieved when �ν falls exactly between two grid

points. In our simulations, the number of grid points is

chosen to be equal to 29 in order to make the grid-off ef-

fects significant only for high SNR.

In Figure 2, the comparison between the RMSE of the

five beamformers and the CRLB is shown for the

spatially correlated Gaussian clutter scenario. The CRLB

for this case has already been derived in the literature [38]:

CRLB �νð Þ ¼ 2 ρj j2dHC−1=2
ΣC−1=2d

� �−1

; ð20Þ

where Σ = I −C− 1/2v(vHC− 1v)− 1vHC− 1/2, d ¼ ∂v=∂�ν . For
notation simplicity, we omitted the dependence of the

steering vector v on the actual spatial frequency �ν . As

before, the measurement model in Equation 1 has been

adopted with the following parameters:

� n is a white, zero-mean, complex Gaussian vector

with covariance matrix σn
2I + σc

2Q(ξ), where σn
2 = 1,

[Q(ξ)]ij = (ξ|i−j|)*, ξ = 0.98ejϑ, ϑ is uniformly distributed

in [0, 2π), and σc
2 is chosen accordingly to the given

clutter-to-noise ratio (CNR) value, σ2c ¼ CNR � σ2n. In
this simulation, CNR = 15 dB.

� |ρ| is a complex unknown scalar factor with ρj j2

¼ SINR � σ2n þ σ2c
� �

, where SINR is the signal-to-

interference-plus-noise ratio.

� Since the number of grid points is chosen to be

equal to 210 for all the beamformers (FB and CSBs),

then |ϒ| = |Ω| =G = 210.

All the other parameters are equal to the ones used in

the white noise case. As we can see from Figure 2, also

in this case, the RMSEs of the five beamformers are very

close to each other. However, for high SINR values, i.e.,

greater than 25 dB, all the CSBs slightly outperform the

FB, that is, no more ML estimator in this scenario [2].

Figure 1 RMSE and CRLB for the DOA estimation in the white

noise case (G = 29).

Figure 2 RMSE and CRLB for the DOA estimation in the white

noise plus clutter case.
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3.2 The ROC curves

The ROC curves show the Probability of Detection (PD) as

a function of the Probability of False Alarm (PFA). More

precisely, given a cell under test (CUT) in the spatial fre-

quency domain and by defining H1 as the event of pres-

ence of the source in the CUT, PD can be defined as:

PD λð Þ≜ Pr H1 H1j g ¼ Pr p �νCUTð Þ≥λ H1j g;ff ð21Þ

where p(·) is one of the ‘periodograms’ described in

Section 2.4. For both the FB and the CSBs, the size of

the CUT is chosen to be equal to the Rayleigh resolution

limit (see Section 4).

On the other hand, by defining with H0 the event of

absence of source, PFA is defined as

PFA λð Þ≜ Pr H1 H0j g ¼ Pr p νð Þ≥λ; ∀ν≠�νCUT H0j g:ff ð22Þ

The signal model used to evaluate the ROC curves is the

random model. In Figures 3 and 4, the ROC curves relative

to the white-noise-only case and to the white noise plus

spatially correlated Gaussian clutter case are shown. The

measurement model in Equation 1 and the random signal

model are adopted. The simulation parameters (noise and

clutter powers, grid points, and so on) for both the scena-

rios are chosen to be equal to those used in Section 3.1,

except for the signal component ρ, which is assumed

to be a zero-mean complex Gaussian rv with

σ2ρ ¼ SINR⋅ σ2n þ σ2
c

� �

. In this simulation, SINR = −10, 0,

and 10 dB.

In Figure 3, the ROC curves relative to the white-noise-

only case are shown. In this case, the FB slightly outperforms

the CSBs. However, this behavior is somehow expected since,

as shown in Section 3.1, the FB is the ML estimator, so it is,

at least asymptotically, the most efficient. Nevertheless, the

loss in terms of PD for a given PFA of the CSBs with respect

to the FB is small. In particular, we observe that the FB and

the SL0-CSB algorithms have almost the same performance.

In Figure 4, the ROC curves for the scenario cha-

racterized by a spatially correlated clutter model are re-

ported. We note that in this case, all the three CSBs

outperform the classical FB. In particular, the SPICE and

the L1 algorithms have the best detection performance.

4. The super-resolution property
It is well known that the FB suffers from the Rayleigh

resolution limit, which is independent of the SNR.

Some adaptive methods, e.g., MUSIC and Capon, are

able to resolve two sources within a Rayleigh cell.

However, as discussed before, to achieve super-reso-

lution, they need a sufficiently high SNR level and a

suitable number of temporal snapshots (to estimate

the disturbance covariance matrix). In this section, we

investigate the super-resolution property of the four

proposed CSBs. The results show that unlike Capon

and MUSIC estimators, a CSB can achieve the super-

resolution with only one temporal snapshot, without

the need to estimate the disturbance covariance

matrix.

For a ULA of N array elements, the Rayleigh reso-

lution limit, i.e., the beamwidth in the spatial frequency

space, defined as the full width of the main lobe at the

half-power level, is [1]
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Figure 3 ROC curves in the white noise case for three different SNRs.
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Δν ¼
0:886

N
: ð23Þ

Then, if two sources are spaced by less than the Rayleigh

resolution limit Δv, they cannot be resolved by a classical

non-adaptive FB. Instead, providing a sufficient level of

SNR and a suitable number of grid points, a CSB is able to

resolve sources that are in the same Rayleigh resolution cell.

The ability of a CSB to achieve super-resolution has been

also discussed in recent works. For example, in [16], the au-

thors investigate the super-resolution property for a CSB

for the single and the multi-snapshot scenarios. However,

only a qualitative proof of this property is provided, neither

a strong theoretical justification nor a statistical charac-

terization of the CS super-resolution capability is reported

in [16]. In this paper, a fundamental result of the CS theory

is exploited to provide theoretical justification and a

rigorous definition of the CS super-resolution capabil-

ity. Moreover, this property of the CSB is also statisti-

cally characterized.

The ability of a CSB to resolve two sources below the

Rayleigh limit, even using a single snapshot, is strictly re-

lated to the fundamental Theorem 1.3 in [24]. Roughly

speaking, this theorem claims that under the sparsity as-

sumption, it is possible to exactly reconstruct (with over-

whelming probability) a complex signal x from a very low

number of its Fourier coefficients (or anti-coefficient).

This theorem is clearly related to the CS beamforming by

the Equation 6. In fact, as discussed previously, by assum-

ing that the true source spatial frequencies belong to the

set Ω Equation 6 is equivalent to the measurement model

of Equation 2, then it is clear from the particular structure

of the matrix A(Ω) that the entries of the measurement

vector y represent N Fourier (anti-) coefficients of the

complex vector x ∈ℂG (with N≪G = |Ω|) corrupted by

noise. Theorem 1.3 can be recast in the following form,

more suitable in the array processing framework.

Theorem 1.3 [24] (Array processing formulation). Let

K and N be the number of sources in a given range cell

and the number of array elements, respectively. Let Ω =

{ν1,…, νG} be the set of cardinality G of spatial frequen-

cies in the grid and let A(Ω) = [a(ν1)|⋯ |a(νG)] be the

overcomplete matrix of steering vectors on Ω. If the

sparse complex signal x (and consequently the source

DOA) is recovered from the single noise-free spatial snap-

shot y by solving the following optimization problem

x̂CS Ωð Þ ¼ argmin xk k1;
x∈ℂG

s:t: y ¼ A Ωð Þx; ð24Þ

with

Ωj j ¼ G≤e
Cd
K ; ð25Þ

then, with probability at least η = 1 −O(G−d), the solution

of the problem in Equation 24 is unique and is equal to x.

The value η represents the probability of exact recon-

struction, Pex≜ Pr x ¼ x̂CSf g ¼ η . The value of Cd is ex-

plicitly derived in [24] under asymptotic conditions, i.e.,

valid for N ≤G/4, d ≥ 2, and G ≥ 20, as Cd = 1 / (23(d + 1)).
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In particular, Cd depends on the desired value of Pex. Using

the result of Theorem 1.3, a CS super-resolution limit can

be defined. In fact, if it is possible to reconstruct x on a set

Ω of cardinality G with probability at least η then, with

probability at least η, it is also possible to resolve two

sources spaced by

Δ
―
ν≥e

CdN

K : ð26Þ

It can be seen that while the Rayleigh resolution limit

in Equation 23 decreases as N−1, the CS super-resolution

limit in Equation 26 decreases as exp ( −CdN/K). In par-

ticular, given a fixed number of array elements N, the
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minimum possible spatial frequency separation between

two sources is at least Δν = 0.886N− 1 if FB is used, while

it is at least Δ
―
v ¼ exp −CdN=2ð Þ if CSB is used. Roughly

speaking, the Rayleigh resolution limit decreases linearly
with the number N of sensors, while the CS super-
resolution limit decreases exponentially with N.

Finally, some comment needs to be made regarding

the constant Cd. As stated in [24], the asymptotic value

of Cd provided by Theorem 1.3 is a very conservative

value. In other words, the same value of Pex can be guar-

anteed by a smaller value of Cd than the one provided in

Theorem 1.3 and therefore, a finer resolution can be

achieved in practice. Additional theoretical investigations

are necessary to refine the value of Cd, and this is an

active research area within the CS community. A first

attempt to refine this constant can be found in [39].

Theorem 1.3 refers to the noise-free case. Moreover, the

true spatial frequency is assumed to belong to the set Ω.

In array processing applications, however, since a certain

amount of noise is always present, then the optimization

problem in Equation 24 should be replaced with the prob-

lem in Equation 8. Of course, in the noisy case and in the

presence of the off-grid events, one cannot expect exact

recovery [24] and Theorem 1.3 is no longer valid. In the

Figure 8 RMSE and CRLB for DOA estimation for source 2 in

the same resolution cell. RMSE and CRLB for the DOA estimation

in the white noise case for two sources in the same Rayleigh resolution

cell: source no. 2 (G = 210).

Figure 9 RMSE and CRLB for DOA estimation for source 1 in

different Rayleigh resolution cells. RMSE and CRLB for the DOA

estimation in the white noise case for two sources in different

Rayleigh resolution cells: source no. 1 (G = 210).

Figure 10 RMSE and CRLB for DOA estimation for source 2 in

different Rayleigh resolution cells. RMSE and CRLB for the DOA

estimation in the white noise case for two sources in different Rayleigh

resolution cells: source no. 2 (G = 210).

Figure 7 RMSE and CRLB for DOA estimation for source 1 in

the same resolution cell. RMSE and CRLB for the DOA estimation

in the white noise case for two sources in the same Rayleigh resolution

cell: source no. 1 (G = 210).
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following, the robustness of the previous results on CS

super-resolution is verified against the measurement noise

and the off-grid effects as a function of the SNR.

To perform this robustness analysis, a resolution cri-

terion is necessary [40]. To this purpose, we exploit the

procedure proposed in [41] to investigate the super-

resolution property of the MUSIC algorithm. Following

[41], a super-resolution event can be characterized by

means of the following random inequality:

γ ν1; ν2ð Þ≜
1

2
p ν1ð Þ þ p ν2ð Þ½ �−p νmð Þ > 0; ð27Þ

where νm = (ν1 + ν2)/2. Two sources located at spatial

frequencies ν1 and ν2 are said to be resolvable if the

inequality in (27) holds true and to be irresolvable other-

wise. Hence, this problem can be seen as a binary deci-

sion problem, where γ is the decision statistic. Finally,

the probability of resolution can be defined as:

Pres ¼ Pr γ > 0f g: ð28Þ

In the following, Pres is evaluated as a function of the

SNR and of the frequency separation between the two

sources. The measurement noise generated in the simu-

lation is white Gaussian.

Figure 5 shows the probability of resolution (Pres) of

the various beamformers as a function of SNR. The

simulation parameters are the following:

� |ϒ| = |Ω| =G = 29.

� νm = 0.3, while ν1 and ν2 are sampled, in the same

Rayleigh resolution cell (Δν≃ 0.0277), from two

uniform and independent probability density

functions, such that νi∼U μi−1=2G; μi þ 1=2Gð Þ
where μ1 = 0.2922 and μ2 = 0.3078. This allows us to

model the grid-off effects.

� The number of independent Monte Carlo trials is 103.

In accordance with the previous result on the estima-

tion accuracy (see Figure 1), for SNR lower than 0 dB,

all the estimators are in the non-asymptotic region: they

do not provide reliable DOA estimates. Beyond 0 dB,

the Pres of the four CSBs is much better than that of the

FB. In particular, the Pres of the FB is much lower than

that of the CSBs and independent of the SNR. Regarding

the CSBs, the best estimator, at least in terms of Pres, is

the SPICE algorithm: its Pres, as well as the one of the

IAA-APES, tends to 1 as the SNR increases.

Figure 11 Bistatic geometry during the COLLAB13 experiment.

A fixed source insonifies the surveillance region, while a 32-element

acoustic array towed by an AUV acts as a receiver to detect echoes

from the test target.

Figure 12 COLLAB 2013 scenario at scan time 08:55:12Z, 1 July 2013.
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In Figure 6, Pres is evaluated as a function of the source sep-

aration Δ in the spatial frequency domain, for SNR=10 dB

and |ϒ| = |Ω| =G= 29. The frequency separation, denoted as

Δ= 2l/G for l= 1, 2,…, L<G, is defined with reference fre-

quency νm∼U μm−1=2G; μm þ 1=2Gð Þ with μm =0.3 so that

the spatial frequencies of the two sources are given by ν1
= νm−Δ/2, ν2= νm+Δ/2. The number of Monte Carlo trials

is 103. Even in this case, the Pres of the CSBs is always higher

than that of the FB. Clearly, by decreasing Δ, Pres decreases.

The SPICE algorithm is the one that provides the best Pres.

In order to get a deeper insight in the performance of

the beamforming algorithms, in the presence of two

sources in the same Rayleigh resolution cell in Figures 7

and 8, the RMSE of the investigated beamformers have

been compared with that of the RELAX algorithm [42,9],

a well-known parametric DOA estimator, and with the

CRLB as function of the SNR. The deterministic signal

model is exploited; the CRLB is given by Eq. (4.1) in [19].

The simulation parameters are the following:

� |ϒ| = |Ω| =G = 210,

� νm = 0.3, while, in order to take into account the

grid-off effects, ν1 and ν2 are sampled, in the same

Rayleigh resolution cell (Δν≃ 0.0277), from two

uniform and independent probability density

function, such that νi∼U μi−1=2G; μi þ 1=2Gð Þ
where μ1 = 0.2930 and μ2 = 0.3066.

� The number of independent Monte Carlo trials is 105.

As expected, the FB presents a high RMSE and a bias

in the estimate of ν1 and ν2, since it is not able to resolve

the two sources. The CSBs and the RELAX beamformers

that have the super-resolution property provide better

estimation performance.

Finally, the RMSE in the DOA estimation of two sources

in different Rayleigh resolution cells is shown in Figures 9

and 10. The simulation parameters are the same used in

the previous case (i.e., sources in the same resolution cell)

except for the values of μ1 and μ2. In this simulation, we

set μ1 = 0.2803 and μ2 = 0.3193. The results highlight the

ability of the CSBs (except for the SL0 algorithm) and of

the RELAX algorithm to achieve better performances in

Figure 13 Matched filter average power at scan time 08:55:12Z, 1 July 2013. The target is visible at a BRS of 4,600 m. The direct blast is

clearly visible at a BRS of 2,800 m. The power is normalized with respect to the direct blast maximum power.

Figure 14 Fourier beamformer output at scan time 8:55:12Z, 1 July 2013. The target (red circle) is visible at a BRS of 4,600 m and spatial

frequency 0.3. The direct blast (green circle) is visible at a BRS of 2,800 m and spatial frequency −0.27. The map scale represents normalized

power in dB with respect to the direct blast maximum power.
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terms of RMSE with respect to the FB. However, such esti-

mation performance tends to be equal to the one obtained

in the single-source scenario as the distance in spatial fre-

quency between the two sources increases.

5 Testing on real sonar data
The Cooperative Littoral ASW Behaviour (COLLAB)

2013 experiment has been conducted by CMRE in La

Spezia waters, Italy, from 29 June to 7 July 2013. The pur-

pose of the experiment was to test environmentally adap-

tive, collaborative area search algorithms and behaviors

for Autonomous Underwater Vehicles (AUVs) which act

as the receiving nodes in the Generic Littoral Intelligent

Network Technology (GLINT) Autonomous Sensor Net-

works (AuSN) antisubmarine warfare (ASW) demonstra-

tion system [43,44].

Figure 11 shows an example of the bistatic geometry

used during the experiment. The transmitter, at fixed

known position, insonifies the surveillance region with a

pre-defined pulse repetition interval (PRI) by transmitting

a frequency-modulated chirp signal. An underwater towed

target (an echo repeater) was used to test detection and

tracking performance by a 32-element hydrophone array

towed by an AUV. Target and AUV navigation data has

been registered to allow the generation of ground truth

data to be used in the post analysis and validation of the

performance. The parameters of the bistatic geometry (see

Figure 11) include the following: the transmitter/target

distance Rtx, the receiver/target distance Rrx, and the

transmitter/receiver baseline L; θrx, θtx, and θtg are the

heading angles of receiver, transmitter, and target, respect-

ively; ϕ is the bearing angle of the target with respect to

an (x, y) local coordinate reference system on the array, as

depicted in Figure 11.

Figure 12 highlights the position of the AUV and the

target for the scan at time T1 = 08:55:12Z, 1 July 2013, as

well as the heading of the receiving array and the bistatic

geometry. The received scan data are processed to compare

CSBs against the classical Fourier beamformer. Pre-

processing of the received data includes baseband con-

version, complex matched filtering and normalization for

the bistatic range sum (BRS = Rtx + Rrx, estimated from the

echo time of arrival at the receiver) profile attenuation.

The attenuation profile has been estimated from the data

by using a set of mathematical morphology filters as in

[45] and [46]. Figure 13 shows the average power of the

array elements after the normalization for the attenuation

profile at scan time T1. The target echo is present at an

Figure 16 L1 beamformer output at scan time 8:55:12Z, 1 July 2013.

Figure 15 SPICE beamformer output at scan time 8:55:12Z, 1 July 2013.
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approximated BRS of 4,600 m. The average target excess

with respect to the mean clutter level is about 5 to 6 dB.

The direct echo from the transmitter is also present at

BRS of 2,800 m. The figure plots the power normalized

with respect to the direct blast maximum power.

The complex normalized data have been spatially proc-

essed using a spatial frequency grid of 180 points for each

range cell of a scan. Figure 14 shows the results of the FB

at scan time T1. The map scale represents normalized

power in decibel with respect to the direct blast maximum

power. The target (red circle) is visible at a BRS of 4,600 m,

as expected from Figure 9, and spatial frequency 0.3. The

direct blast (green circle) is visible at a BRS of 2,800 m and

spatial frequency −0.27. It is worthwhile to mention that

the results of the spatial beamforming are affected by the so

called left-right ambiguity [44] that shows up in linear

arrays, so the real target bearing (or spatial frequency) can

be actually the opposite of the one observed in the map.

Here, the disambiguation is achieved using the target and

the AUV navigation data, the transmitter position, and the

array parameters to locate the target within the map.

Figures 15, 16, 17, 18 show the SPICE, the L1, the SL0, and

the IAA-APES beamformer outputs, respectively, at scan

time T1. As showed in Figure 19, the resolution of the CSBs

is higher than the classical FB.

The analysis of the processing time per range cell per

iteration of the L1, SPICE, SL0, and IAA-APES solvers is

reported in Figure 20a for 289 different sonar scans (a

fixed spatial frequency grid of 180 points was consid-

ered).b The statistics were evaluated by processing 180

range cells per scan centered on the test target (the echo

repeater). The processing time averaged over the scans

is TL1 = 1.68 × 10− 4 s, TSPICE = 1.42 × 10− 3 s, TSL0 =

2.5 × 10− 4 s, and TIAA ‐APES = 4.27 × 10− 3 s for L1,

SPICE, SL0, and IAA-APES, respectively. The processing

time per range cell of the Fourier beamformer (TFFT =

5.79 × 10− 6 s) is also reported as a reference (conven-

tionally, the number of iterations of the Fourier beam-

former is set to 1). The L1 solver has lower processing time

than SPICE, SL0, and IAA-APES. In particular, SPICE and

IAA-APES solvers have a processing time that is an order

of magnitude higher than the two other CSBs. For a fair

comparison among the CSBs, the number of iterations to

reach the convergence is also evaluated and reported in

Figure 20b for the same scans. The average over the scans

is NI,L1 = 280, NI,SPICE = 95, NI,SL0 = 18, and NI,IAA-APES= 93

Figure 18 IAA-APES beamformer output at scan time 8:55:12Z, 1 July 2013.

Figure 17 SL0 beamformer output at scan time 8:55:12Z, 1 July 2013.
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for L1, SPICE, SL0, and IAA-APES, respectively. Consider-

ing a typical application setup, with a number of range cells

per scan NR = 4,916, a number of processors NP = 8 (eight

range cells are processed in parallel) and making the hy-

pothesis that the time per scan scales linearly, the average

processing time per scan, TS,(·) =T(·)NRNI,(·)/NP, of the four

CSBs is TS,L1 = 29 s, TS,SPICE = 83 s, TS,SL0= 2.8 s, and TS,

IAA-APES= 244 s. Even if a comprehensive and more detailed

analysis of the processing time is out of the scope of this

work, the preliminary tests here reported show that the

SL0 solver outperforms L1, SPICE, and IAA-APES by one

and two orders of magnitude, respectively, providing the

indication that the SL0 may be a candidate for a future

real-time implementation of the CSB.

6 Conclusions
In this paper, some CS-based beamformers, i.e., the clas-

sical ℓ1 minimization (or LASSO), the fast smooth ℓ0

minimization, the SPICE, and the IAA-APES algorithms,

have been analyzed and compared with the classical FB for

target DOA estimation in a single-snapshot scenario. We

analyze the estimation accuracy, the detection perform-

ance, and the resolution capability. The performance of the

CSBs has been investigated, both in the presence of white

Gaussian noise and in the presence of spatially correlated

Gaussian noise. Regarding the estimation performance, the

RMSE of the FB and of the four CSBs has been compared

with the CRLB in the white noise scenario (that is the case

when the FB is the ML estimator) and in the spatially cor-

related noise scenario. As concerning the estimation accur-

acy and the detection performance, we found that the FB

slightly outperforms the CSBs in the white noise scenario,

whereas the four CSBs outperform the classical FB in the

spatially correlated noise scenario. In particular, the SPICE

and the L1 algorithms have the best detection perform-

ance, especially at low SNR values. Concerning the reso-

lution capability, we verified that the CSBs can achieve

super-resolution beyond the Rayleigh limit even with a sin-

gle pulse, while classical super-resolution algorithms like

MUSIC need multiple snapshots. Theoretical arguments

have been proposed here to link the super-resolution prop-

erty of the CSBs to the CS theory, and a new rigorous def-

inition of CS super-resolution limit has been provided.

Moreover, a robustness analysis of the CS super-resolution

property has been carried out exploiting a classical method

already used in the array processing literature to statisti-

cally characterize the MUSIC super-resolution capability in

terms of probability of resolution. The simulations have

shown that the SPICE algorithm has the best super-

resolution capability. Finally, the performance of the four

CS-based beamformers has been tested on real sonar data.

In particular, the range-spatial frequency maps at the out-

put of the four CS-based beamformers have been evaluated

Figure 19 Main lobe beamwidth.

Figure 20 Processing time and number of iterations. (a) Processing time per range cell per iteration versus the scan number. (b) Number of

iterations to reach the convergence versus the scan number.
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and compared with the map at the output of the Fourier

beamformer. From this comparison, the ability of the CS-

based algorithms to reduce the secondary lobes and then,

to reduce the probability of false alarm, becomes clear.

Using the same range-spatial frequency maps, the super-

resolution capability of the CS-based beamformers has

been verified as well. As concerning the processing time of

the four CSBs, both the simulated and the real data ana-

lyses have shown that the SL0 algorithm is at least one

order of magnitude faster than SPICE, IAA-APES, and L1

algorithms. Since, in many practical applications, a low

processing time is a stringent requirement, the SL0 algo-

rithm could represent a good tradeoff between the statis-

tical optimality and the practical implementation.

Future research efforts will be devoted to the multi-

snapshot case. Moreover, a deeper comprehension of the

statistical properties of the CSBs in different noise and

clutter distributions, e.g., the widely known compound-

Gaussian distributions, has to be developed.

Endnotes
aThe straddling losses arise because a source is not al-

ways precisely centered in a range-Doppler gate, so the

acquired sample is not located at the maximum of the

matched filter output.
bThe tests were performed on an Intel® Xeon® E5620

2.40 GHz multicore processor (Intel Corporation, Sta

Clara, CA, USA) using a Matlab® (MathWorks Inc.,

Natick, MA, USA) implementation of the three CSBs.
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