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1 Introduction

Amplitudes in gauge theory develop infrared divergences when one or multiple external

partons become soft/collinear. Fortunately, in the soft/collinear limit, there exist univer-

sal factorization properties for such amplitudes, which are the foundation of higher-order

perturbative-QCD computations. Extensive discussion on the factorization of gauge-theory

amplitudes in the infrared region can be found, for example, in refs. [1–24].

In QCD, the radiation of an arbitrary number of soft gluons off a tree-level amplitude

can be obtained using the well-known Berends-Giele recursion relation [3]. Due to the

long-range properties of soft gluon radiation, amplitudes in the soft limit have non-local

color correlations. Compact expressions for tree-level amplitudes with two soft partons

have been obtained in the color space formalism in ref. [7]. Emission of a single soft gluon

from a generic one-loop amplitude have also been studied by several groups [8, 12, 14, 15].

These results have been proven to be important in the program of next-to-next-to-leading

order (NNLO) QCD computations for jet physics, see for example refs. [25–31].

While the NNLO revolution is under way, there is strong motivation for going one

order in αs further. This is driven by both experimental and theoretical demands. On

the experimental side, the discovery of Higgs boson marks one of the most important

progress in particle physics in the last few decades [32, 33]. It’s certainly important to

give the most precise theoretical prediction for its production cross section. On the theory

side, uncertainties estimated by scale variation for Higgs production is around ±10% at

NNLO [34–37], and improved to ±7% by including soft-gluon resummation up to next-

to-next-to-leading logarithmic accuracy [38]. Further decreasing the scale uncertainties to

percent level requires the computation of next-to-next-to-next-to-leading order (NNNLO)

QCD corrections.
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In this paper we consider single soft-gluon radiation at two loops, which plays an

important role in NNNLO QCD corrections, similar to the one-loop soft-gluon current

does in NNLO computations, see for example, refs. [25–27, 39]. To simplify the situation,

we confine ourselves to the case that only two hard partons are present. This corresponds to

the cases such as e+e− → dijet, deep-inelastic scattering, or Drell-Yan/Higgs production at

hadron collider. Previously, such amplitudes have been derived [19] by taking the soft limit

of collinear splitting amplitudes at two loops to order ǫ0, using the two-loop aamplitudes

for γ∗ → qq̄g [40, 41] and H → ggg [42]. However, for a NNNLO computation, one needs

the Laurent expansion in ǫ through the ǫ2 terms, which we have given for the first time

in this paper. Our results for the two-loop soft amplitude agree with the soft limit of the

two-loop splitting amplitudes [18, 19] through the ǫ0 terms, serving as a strong check of

our calculation.

As a by-product, we obtain the soft-gluon current in N = 4 Super-Yang-Mills theory

to order ǫ2, which coincides with the QCD result at leading transcendentality. We also

derive the soft limit of splitting amplitudes at three loops through order ǫ0 at leading order

of Nc → ∞, using the results of refs. [43, 44].

The paper is organized as follows. In section 2, we review the general result on the

factorization of the single soft-gluon current at tree level and one loop. In section 3 we

calculate the soft-gluon current to two loops. We conclude at section 4. We present some

details for the computation of one of the master integral in the appendix.

2 Review of the soft-gluon current

In this section we review the factorization of amplitudes in the soft limit, closely following

the notation in ref. [15]. It’s well-known [2, 4] that tree-level QCD amplitudes with two

hard partons and one soft gluon can be written as

|M(0)(q, p1, p2)|
2 ≃ 4g2sµ

2ǫCRS
(0)
12 (q)|M

(0)(p1, p2)|
2 (2.1)

where S
(0)
12 (q) =

p1·p2
2(q·p1)(q·p2)

, and M(0)(q, p1, p2) is the tree-level amplitude for 2 hard par-

tons (massless quark or gluon) and one soft gluon, and M(0)(p1, p2) is the corresponding

amplitude with the soft gluon stripped off. Dependence of the amplitudes on the extra

colorless particles in the process is left implicit. The symbol ≃ means that we have ne-

glected terms that are less singular than 1/q2. gs is the strong coupling constant, µ is the

mass scale introduced by continuing the space-time dimension to D = 4 − 2ǫ dimension.

CR is the quadratic Casimir invariant. CR = CA if parton 1 is a gluon, CR = CF if parton

1 is a quark, where CA = Nc and CF = N2
c−1
2Nc

, with Nc being the number of color. Note

that the functional dependence of the eikonal function S
(0)
12 (q) is uniquely determined by

its invariance under the rescaling of p1 and p2, which is a simple consquence of the QCD

Feynman rule in the eikonal limit. In our convention, all momenta are massless and have

positive-definite energies. The generalization of eq. (2.1) to processes with any number of

hard partons can be found, for example, in ref. [7].
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At the one-loop level, eq. (2.1) receives quantum corrections, which can be written as

M(0)(q, p1, p2)M
(1)(q, p1, p2)

∗ + c.c.

≃
(

4(gsµ
ǫ)2CRS

(0)
12 (q)M

(0)(p1, p2)M
(1)(p1, p2)

∗ + c.c.
)

+
(

4(gsµ
ǫ)2CRS

(1)
12 (q)|M

(0)(p1, p2)|
2 + c.c.

)

, (2.2)

where c.c. denotes complex conjugate. M(i) is the ith order in αs unrenormalized am-

plitudes in dimensional regularization, where UV and IR divergences are simutaneously

regularized by the dimensional regularization parameter ǫ. The one-loop corrections to the

eikonal function have been calculated to be [8, 12, 14, 15]

S
(1)
12 (q) = −S

(0)
12 (q)

αs

4π
CASǫ

eǫγEΓ3(1− ǫ)Γ2(1 + ǫ)

ǫ2Γ(1− 2ǫ)
, (2.3)

where

Sǫ =
(

4πe−γEeiσ12πµ2S
(0)
12 (q)

)ǫ
, (2.4)

and σ12 = −1 if both p1 and p2 are incoming, otherwise σ12 = 1. Note that the one-

loop eikonal function doesn’t depend on CR, which may be explained by the non-abelian

exponentiation theorem [45, 46], if one replaces the polarization summation for the soft

gluon by a cut propagator. Eq. (2.3), and its generalization to processes with any number of

hard partons have been used, for example, in the calculation of soft-virtual approximation

to Higgs production at NNLO [47–49], in the calculation of the two-loop soft function in

soft-collinear-effective theory [50–53], and in the construction of subtraction term in general

NNLO corrections [25–27, 39].

3 Calculation of the two-loop soft-gluon current

At two loops, the factorized soft-gluon current has the form

M(0)(q, p1, p2)M
(2)(q, p1, p2)

∗ + c.c.

≃ 4(gsµ
ǫ)2CR

[ (

S
(0)
12 (q)M

(0)(p1, p2)M
(2)(p1, p2)

∗ + c.c.
)

+
(

S
(1)
12 (q)M

(0)(p1, p2)M
(1)(p1, p2)

∗ + c.c.
)

+
(

S
(2)
12 (q)|M

(0)(p1, p2)|
2 + c.c.

) ]

. (3.1)

The two-loop generalization is consistent with the soft limit of two-loop collinear splitting

amplitudes [18, 19]. For the latter, it has been shown that similar factorization form holds

to all orders in αs [9]. The two-loop eikonal function, S
(2)
12 (q), is known through the order ǫ0

terms by taking the soft limit of the two-loop collinear splitting amplitudes [18, 19] or the

two-loop squared amplitudes for γ∗ → qq̄g andH → ggg [40–42]. However, for computation

accurate to NNNLO, one also needs the order ǫ and order ǫ2 terms. In this section, we

calculate the Laurent expansions of S
(2)
12 (q) in ǫ through order ǫ2, using a method different

from refs. [19].
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In ref. [15], the one-loop soft-gluon current is derived by taking the eikonal approxi-

mation of the integrand of the amplitudes before the loop integrals are carried out. This

has the advantage that the one-loop eikonal function can be directly obtained without

the subtraction of the product of the tree-level eikonal function and the one-loop squared

amplitude, that is, the second line of eq. (2.2). The same procedure can be used in the

calculation of the two-loop eikonal function.

Specifically, we generate the integrand corresponding to the interference of tree-level

and two-loop amplitudes, the first line of eq. (3.1). For this purpose, we consider the process

γ∗ → q(p1)q̄(p2)g(q), keeping in mind that the eikonal function is independent of the

colorless particles in the process. Summation of polarization for the external gluon is done

in Feynman gauge. We then take the eikonal approximation of the integrand, assumming

that the energy of the internal and external gluons are parametrically smaller then p01
and p02. The integrand after the eikonal approximation is taken can also be generated by

treating q(p1) and q(p2) as two out-going Wilson lines, whose directions are given by pµ1/p
0
1

and pµ2/p
0
2. We have checked that this indeed gives the same integrand.1 We note that after

the eikonal approximation is taken on the right hand side of eq. (3.1), the second and the

third lines of it vanish. The reason is that M(1)(p1, p2) and M(2)(p1, p2) become scaleless

integrals and vanish identically in dimensional regularization. Therefore, The two-loop

eikonal function can be obtained by evaluating the resulting integrand, without the need

of subtraction.

3.1 Warm up: one-loop soft-gluon current

For the convenience of reader, we reproduce the one-loop results in this section. At one

loop, there is only one non-zero diagram (from now on eikonal approximation is assumed

for the integrand), which is depicted in figure 1. All the remaining diagrams are zero in

dimensional regularization, because their loop integrals are scaleless. One example of such a

vanishing diagram is depicted in figure 2. We note that the external soft-gluon momentum

only enters the loop integral through q · p1. However, the invariance of the integral under

the rescaling of p1 and p2 demands that a factor of
(

µ2(p1·p2)
(q·p1)(q·p2)

)ǫ
must be generated per

loop. This is impossible for this diagram, leading to the conclusion that it must vanish.

We calculate the interference between the one-loop non-zero diagram, figure 1, and the

tree-level diagrams in figure 3. The one-loop eikonal function can then be extracted from

the one-loop integral in the interference term, which, after some simplification, reads

S
(1)
12 (q) = i4g2sCA(p1 · p2)µ

2ǫ

∫

dDk

(2π)D
1

[2k · p1][2(q − k) · p2][k2][(k − q)2]
, (3.2)

where the Feynman prescription i0+ is implicitly understood for all propagators in square

brackets, for example, [k2] ≡ k2 + i0+. Carrying out the loop integral, we reproduce the

one-loop eikonal function in eq. (2.3).

1We use QGRAF [54] extensively in generating various diagrams.
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p1

p2

Figure 1. Non-vanishing diagram for soft gluon emission at one-loop. Solid line are quark/anti-

quark lines in the high energy limit.

Figure 2. Diagram which vanishes in dimensional regularization.

Figure 3. Tree-level diagrams for single soft gluon emission.

3.2 Two-loop soft-gluon current

As explained above, the two-loop eikonal function S
(2)
12 (q) can be extracted from the cal-

culation of the non-vanishing diagrams at two-loop level, as depicted in figure 4. The grey

blobs represent all possible two-point and three point insertions, where no eikonal approx-

imation is made. We include Nf flavour of massless fermions and Ns flavour of massless

scalar in the blob, besides the gluon. In QCD, Nf = 5, Ns = 0. Before describing the

calculation of these diagrams, we comment on the diagrams that vanish identically. There

are two classes of vanishing diagrams. The first class vanishes due to color or Lorentz

algebra. An example of it is depicted in figure 5(a). The second class vanishes because

the corresponding loop integral is scaleless, as in figure 5(b). Because of the vanishing of

these two classes of diagrams, the actual number of diagrams that need to be evaluated is

significantly reduced.

We now come to the actual evaluation of the non-zero diagrams in figure 4. We

calculate the interference terms between the tree-level diagrams in figure 3 and the two-

loop diagrams in figure 4. After the evaluation of color factor and kinematical factor,
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Figure 4. Two-loop non-vanishing diagrams for single soft gluon emission.

Figure 5. Examples of diagrams which vanish identically.

p1

p2

q

(a) I1

p1

p2

q

(b) I2

p1

p2

q

(c) I3

Figure 6. Master integrals encountered in the computation. Eikonal approximations are taken on

the directions p1 and p2.

the resulting loop integrals are reduced to three master integrals in figure 6. To that

end, we use the techniques of Integration-By-Parts (IBP) [55, 56], implemented in the

MATHEMATICA package FIRE [57] using the Laporta algorithm [58]. The reduction to

master integrals has also been cross checked using a different MATHEMATICA package
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LiteRed [59]. The results after the IBP reduction procedure can be written as

S
(2)
12 (q) = g4s

p1 · p2
(q · p1)(q · p2)

×

{

CANf

[

2(−7 + 2D)(12− 6D +D2)

(−6 +D)(−3 +D)(−2 +D)(−1 +D)
I1

−
6(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ CANs

[

−
(−7 + 2D)(−4− 4D +D2)

2(−6 +D)(−2 +D)(−1 +D)
I1

+
3(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ C2
A

[

+
8

3
I3

−
(2(−156 +D(72 +D(11 + (−9 +D)D)))− 3(−4 +D)3Ds)

(−6 +D)(−4 +D)(−2 +D)(−1 +D)
I2

+

(

(−7 + 2D)(504− 1308D + 874D2 − 213D3 + 17D4)

3(−6 +D)(−4 +D)(−3 +D)(−2 +D)(−1 +D)

−
(−7 + 2D)(−4− 4D +D2)Ds

2(−6 +D)(−2 +D)(−1 +D)

)

I1

]}

, (3.3)

The parameter Ds selects the particular variant of dimensional regularization. For Ds =

4− 2ǫ the scheme is the conventional dimensional regularization scheme, while for Ds = 4

it is the four-dimensional helicity scheme (FDH) [60, 61].

There are three master integrals encountered in this computation. They are defined as

I1 = µ4ǫ
∫

dDk1d
Dk2

(2π)2D
p1 · p2

[2k1 · p1][2(q − k1) · p2][k22][(k2 − q)2][(k1 − k2)2]
,

I2 = µ4ǫ
∫

dDk1d
Dk2

(2π)2D
p1 · p2

[2k1 · p1][2(q − k1) · p2][k21][k
2
2][(k1 + k2 − q)2]

, (3.4)

I3 = µ4ǫ
∫

dDk1d
Dk2

(2π)2D
(q · p1)(q · p2)

2

[2k1 · p1][2(q − k1) · p2][2(k2 + q) · p2][k22][(k1 + k2)2][(k2 + q)2]
,

where i0+ dependences in the propagators are understood. The first two masters are

calculated to all orders in ǫ. For the last master integral, we give the Laurent expansion

of it to order ǫ2, which is the order relevant for NNNLO computation. The details of the

computation of the last integral are presented in the appendix. Here we only list the results

for the three master integrals:

I1 = −
1

(16π2)2
S2
ǫ

e2ǫγEΓ2(1− 2ǫ)Γ2(1− ǫ)Γ2(1 + 2ǫ)

8ǫ3(1− 4ǫ)Γ(1− 4ǫ)
,

I2 = −
1

(16π2)2
S2
ǫ

e2ǫγEΓ(1− 2ǫ)Γ3(1− ǫ)Γ2(1 + 2ǫ)

8ǫ3(1− 2ǫ)Γ(1− 3ǫ)
,

I3 = −
1

(16π2)2
S2
ǫ

[

−
1

8ǫ4
−

5ζ2
16ǫ2

+
25ζ3
48ǫ

−
17ζ4
16

+ ǫ

(

67ζ2ζ3
48

+
319ζ5
80

)

+ǫ2
(

101ζ23
36

+
1723ζ6
256

)

+O(ǫ3)

]

, (3.5)

where ζs is the Riemann zeta vaule, ζs =
∑∞

n=1
1
ns . It’s interesting to note that I3 coincides

with the soft limit of the corresponding master integral in full QCD, where no eikonal

approximation is taken in the denominator. The latter was calculated in ref. [62] to order ǫ0.
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This is probably due to the fact that the divergences in I3 have only infrared origin. While

we have only presented the Laurent expansions of I3 to order ǫ2 analytically, the higher-

order terms can easily be obtained numerically, using its two-fold Mellin-Barnes integral

representation derived in the appendix, and the MBintegrate routine of Czakon [63]. For

example, the next three terms in the ǫ expansion of I3 are given by

(82.1443689±0.0000007)ǫ3+(198.904248±0.000002)ǫ4+(726.325910±0.000007)ǫ5. (3.6)

However, it’s difficult to convert them into Riemann zeta values due to lack of signifi-

cant digits.

Substituting the master integral into eq. (3.3) and setting Ns = 0, we obtain the two-

loop eikonal function in QCD in the conventional dimensional regularization scheme (D =

Ds = 4− 2ǫ),

S
(2)
12 (q) = S

(0)
12 (q)

(

αs

4π

)2

S2
ǫ

{

CANf

[

1

6ǫ3
+

5

18ǫ2
+

19

54ǫ
+
ζ2
6ǫ

+
65

162
+

5ζ2
18

−
31ζ3
9

+ǫ

(

−
35ζ2
54

−
155ζ3
27

−
185ζ4
24

+
211

486

)

+ǫ2
(

−
31

9
ζ3ζ2 −

367ζ2
162

−
994ζ3
81

−
925ζ4
72

−
511ζ5
15

+
665

1458

)

]

+C2
A

[

1

2ǫ4
−

11

12ǫ3
+

−67
36 + ζ2

ǫ2
+

−193
54 − 11ζ2

12 − 11ζ3
6

ǫ
−

571

81
−

67ζ2
36

+
341ζ3
18

+
7ζ4
8

+ ǫ

(

−
7

6
ζ3ζ2 −

139ζ2
54

+
2077ζ3
54

+
2035ζ4
48

−
247ζ5
10

−
3410

243

)

+ǫ2
(

−
205ζ23
18

+
341ζ2ζ3

18
+

6388ζ3
81

−
436ζ2
81

+
12395ζ4
144

+
5621ζ5
30

−
3307ζ6
48

−
20428

729

)]

+O(ǫ3)

}

. (3.7)

Eq. (3.7) is the main result of this paper. We remind the reader that this result is for the

unrenormalized amplitudes. To obtain the renormalized ones, one only needs to perform a

renormalization on the strong coupling αs. We have checked eq. (3.7) against the two-loop

splitting amplitudes in the soft limit calculated in refs. [18, 19], and found full agreement

to order ǫ0. To the best of our knowledge, the order ǫ and ǫ2 terms presented in this paper

are new.

3.3 Single soft-gluon current in N = 4 super-Yang-Mills theory

Using the generic results presented above, it’s straightforward to obtain the single soft-

gluon current in N = 4 Super-Yang-Mills theory, by setting Nf = 4CA, Ns = 6CA, and

Ds = 4 (corresponding to FDH scheme [60, 61]) in eq. (3.3):

S
(2)
12,N=4(q) = g4sC

2
A

p1 · p2
(q · p1)(q · p2)

[

−
1− 4ǫ

3ǫ
I1 +

1− 2ǫ

ǫ
I2 +

8

3
I3

]

. (3.8)
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This result is remarkably simple. It becomes obvious that the result in N = 4 Super-Yang-

Mills theory has uniform transcendentality, as long as I3 does. Substituting the explicit

form of the master integrals into eq. (3.8), we obtain

S
(2)
12,N=4(q) = S

(0)
12 (q)

(

αs

4π

)2

S2
ǫC

2
A

×

[

1

2ǫ4
+
ζ2
ǫ2

−
11ζ3
6ǫ

+
7ζ4
8

+ ǫ

(

−
7ζ2ζ3
6

−
247ζ5
10

)

+ǫ2
(

−
205ζ23
18

−
3307ζ6
48

)

+O(ǫ3)

]

. (3.9)

We note that at leading transcendentality, the eikonal soft function in N = 4 Super-Yang-

Mills theory coincides with the one in QCD through ǫ2, as also happens in some other

context [64].

It’s also interesting to notice that eq. (3.9) can be reorganized as [65]2

S
(2)
12,N=4(q) ≡ 4S

(0)
12 (q)

(

αs

4π

)2

S2
ǫC

2
Ar

(2)
S (ǫ)

= 4S
(0)
12 (q)

(

αs

4π

)2

S2
ǫC

2
A

(

1

2

(

r
(1)
S (ǫ)

)2
+ f(ǫ)r

(1)
S (2ǫ)

)

+O(ǫ), (3.10)

where r
(1)
S (ǫ) = −eǫγE Γ3(1−ǫ)Γ2(1+ǫ)

2ǫ2Γ(1−2ǫ)
is the soft limit of the one-loop collinear splitting

amplitudes in N = 4 Super-Yang-Mills theory (up to an overall z-dependent factor, same

below), and f(ǫ) = −
∑∞

i=1 ζi+1ǫ
i−1 [65]. Eq. (3.10) makes explicit the iterative structure

of N = 4 splitting amplitudes and eikonal function [43]. Eq. (3.10) also determines the

soft limit of two-loop splitting amplitudes beyond order ǫ0,

r
(2)
S (ǫ) =

1

8ǫ4
+

ζ2
4ǫ2

−
11ζ3
24ǫ

+
7ζ4
32

+ ǫ

(

−
7ζ2ζ3
24

−
247ζ5
40

)

+ǫ2
(

−
205ζ23
72

−
3307ζ6
192

)

+O(ǫ3). (3.11)

At three loops, the soft limit of splitting amplitudes at leading color is predicted to be [43]

r
(3)
S (ǫ) = −

1

3

(

r
(1)
S (ǫ)

)3
+ r

(1)
S (ǫ)r

(2)
S (ǫ) + f (3)(ǫ)r

(1)
S (3ǫ) +O(ǫ), (3.12)

where f (3) has been calculated through order ǫ2 [44],

f (3)(ǫ) =
11ζ4
2

+ (5ζ2ζ3 + 6ζ5)ǫ+ aǫ2 +O(ǫ3), (3.13)

with a = 85.263± 0.004. Using the above results, we obtain

r
(3)
S (ǫ) = −

1

48ǫ6
−

3ζ2
32ǫ4

+
ζ3
12ǫ3

−
1487ζ4
2304ǫ2

−
13ζ2ζ3
144ǫ

+
71ζ5
30ǫ

+
11005ζ6
2048

+
167ζ23
96

−
a

18
+O(ǫ). (3.14)

2We are grateful to Lance Dixon for pointing us to the discussion in the rest of this section.
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For completeness, the N = 4 eikonal function at leading color is then given by

S
(3)
12,N=4(q) = 8S

(0)
12 (q)

(

αs

4π

)3

S3
ǫC

3
Ar

(3)
S (ǫ). (3.15)

We note that eq. (3.14) is actually exact through order ǫ−1 for finite Nc. There are potential
1
Nc

corrections, starting from order ǫ0. Unlike the one-loop and two-loop cases, these

corrections would depend explicitly on the color representation of the hard partons, through

the product of fourth order invariant tensor, dijklR dijklA . An explicit calculation of these

corrections would be necessary in obtaining them.

Using the iterative predictions for the N = 4 splitting amplitudes [43] and the cusp

anomalous dimension at leading color [66], the results above can further determine the

leading-color N = 4 eikonal function at four loops through order ǫ−2.

4 Conclusion

In this paper we have computed the single soft-gluon current to two-loop order. we have

compared our results with those in refs. [18, 19], and found full agreement to order ǫ0. The

order ǫ and order ǫ2 terms presented in this paper are new. As a by-product, we have

also given the soft-gluon current in N = 4 Super-Yang-Mills theory to order ǫ2, which in

turn enables us to derive the splitting amplitudes in the soft limit, or the single soft-gluon

current, at three loops and large Nc, using the results of refs. [43, 44]. We observe uniform

transcendentality for the single soft-gluon current in N = 4 Super-Yang-Mills theory, and

confirm that the leading transcendentality terms for the eikonal function are the same in

QCD and N = 4 Super-Yang-Mills theory at two loops, up to order ǫ2.

The main purpose of the computation done in this paper is to provide the necessary

ingredient for a calculation of Higgs production cross section at hadron collider at NNNLO.

A lot of progress have been made recently in this direction [67–72]. A useful step towards

the full NNNLO QCD corrections is the soft-virtual approximation at NNNLO. Using the

results presented in this paper, the cross section for Higgs + one gluon emission can be

computed by trivially integrating over the soft-gluon phase space. The cross section for

Higgs + 3 partons production in the soft limit has also been calculated recently in an

impressive paper [70]. The only missing piece is the cross section for Higgs + 2 partons

production at one loop in the soft limit. It’s reasonable to expect that the soft-virtual

approximation for Higgs production at hadron collider at NNNLO will be available in the

foreseeable future.

Besides Higgs physics, the soft gluon current at two loops is also useful in soft-collinear-

effective theory [50–53]. For example, the two-loop soft gluon current can be used to

calculate soft function at NNNLO. Finally, we have only computed this soft gluon current

with two energetic partons, or two Wilson lines. It’s certainly interesting to extend our

results to processes with an arbitrary number of Wilson lines. This will be relevant to

jet physics at NNNLO. It will also be useful in understanding the structure of infrared

divergences for multiple Wilson lines at three loops, see for example, ref. [73].
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A Evaluation of the master integral I3 to order ǫ
2

In this appendix, we briefly explain the evaluation of the most difficult master integral, I3.

In fact, I1 and I2 can be obtained by deleting two propagators from I3. We proceed by

first performing the k2 sub-loop integral by Feynman’s trick,

I ′3 =

∫

dDk2

iπD/2

1

[2(k2 + q) · p2][k22][(k1 + k2)2][(k2 + q)2]

= (−1)D/2Γ

(

4−
D

2

)
∫ ∞

0
dy2

∫ 1

0
dx1 dx2 dx3

δ(1− x1 − x2 − x3)

∆4−D/2
, (A.1)

where

∆ = x1x2[k
2
1] + x1x3[(q + y2p2)

2] + x2x3[(k1 − q − y2p2)
2]. (A.2)

The resulting Feynman parameter integral over dxi can be factorized by introducing a

two-fold Mellin-Barnes integral,

1

∆4−D/2
=

∫ +i∞

−i∞

dz1 dz2
(2πi)2

Γ(−z1)Γ(−z2)
Γ (4−D/2 + z1 + z2)

Γ(4−D/2)
(A.3)

×
(

x1x2[k
2
1]
)z1(

x1x3[(q + y2p2)
2]
)z2(

x2x3[(k1 − q − y2p2)
2]
)−z1−z2−4+D/2

,

where the contour for zi separates the poles of Γ(· · ·+ zi) from those of Γ(· · · − zi). After

this step, the Feynman parameter integral over dxi can be done in closed form in terms of

Γ functions. The remaining k1 sub-loop integral has the form
∫

dDk1

iπD/2

1

[k21]
1−z1 [(k1 − q − y2p2)2]4−D/2+z1+z2 [2k1 · p1][2(q − k1) · p2]

, (A.4)

which can be straightforwardly done. We then arrive at a two-fold Mellins-Barnes integral

representation for I3,

I3 =
1

8(16π2)2
S2
ǫ e

2ǫγEΓ(5−D)

×

∫ +i∞

−i∞

dz1 dz2
(2πi)2

Γ(−z1)Γ(−z2)Γ(z2 + 1)Γ

(

D

2
− z1 − 2

)

Γ

(

D

2
+ z1 − 2

)

×
Γ
(

D
2 − z2 − 3

)

Γ (−D + z2 + 6)Γ (1 + z1 + z2) Γ(D − z1 − z2 − 5)

Γ (1− z1) Γ (2 + z2) Γ
(

3D
2 − z2 − 7

) . (A.5)
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We were not able to find an all order in ǫ solution of this integral. Instead, we calculate

the Laurent expansion of the Mellin-Barnes integral to order ǫ2, which is relevant for

NNNLO phenomenology. To that end, we make use of the MATHEMATICA pachages

MB [63] and BARNESROUTINES of D. Kosower to resolve the singularity, to expand the

integrand in ǫ, and to apply the Barnes lemma in an automatic way, which results in a

series of one-fold and two-fold Mellin-Barnes integrals. The one-fold integral can easily

be done numerically using MATHEMATICA’s NIntegrate routine, and the results can be

converted into Riemann zeta values using the PSLQ algorithm [75, 76]. The only remaining

two-fold Mellin-Barnes integral is

∫ +i∞

−i∞

dz1 dz2
(2πi)2

Γ(−z1)2Γ(z1)Γ(−z2)Γ(1 + z2)Γ(−1− z1 − z2)Γ(1 + z1 + z2)

Γ(1− z1)
(A.6)

× (ψ(−1− z2) + ψ(2 + z2)) (2ψ(−1− z1 − z2) + ψ(−z1) + ψ(z1)) ,

where ψ(x) is the logarithmic derivative of Γ function, and the integration contours are

straight vertical lines defined by

Re(z1) = −
1091

1641
, Re(z2) = −

554

1671
. (A.7)

The integral can be performed by closing the contour to the left or right, and summing up

the residues at the poles. The results are double sums of the form

∞
∑

m,n=1

S~i1(m)

mj1

S~i2(n)

nj2

S~i3(m+ n)

(m+ n)j3
, (A.8)

where S~i(k) are nested harmonic sums defined in ref. [77]. The summation can be con-

veniently done using XSummer [78]. The final result for this master integral is checked

numerically using the package FIESTA [79] and the author’s personal tool, based on the

method of sector decomposition [80].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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