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Abstract

We show that measurements of the proton’s polarization in e+e− → pp̄ strongly
discriminate between analytic forms of models which fit the proton form factors in the
spacelike region. In particular, the single-spin asymmetry normal to the scattering
plane measures the relative phase difference between the timelike GE and GM form
factors. The expected proton polarization in the timelike region is large, of order of
several tens of percent.

1 Introduction

The form factors of hadrons as measured in both the spacelike and timelike do-
mains provide fundamental information on the structure and internal dynamics of
hadrons. Recent measurements [1] of the electron-to-proton polarization transfer in
−→e − p → e−−→p scattering at Jefferson Laboratory show that the ratio of Sachs form
factors [2] Gp

E(q2)/Gp
M(q2) is monotonically decreasing with increasing Q2 = −q2, in

strong contradiction with the GE/GM scaling determined by the traditional Rosen-
bluth separation method. The Rosenbluth method may in fact not be reliable, per-
haps because of its sensitivity to uncertain radiative corrections, including two-photon
exchange amplitudes [3]. The polarization transfer method [1, 4] is relatively insen-
sitive to such corrections.

The same data which indicate that GE for protons falls faster than GM at large
spacelike Q2 require in turn that F2/F1 falls more slowly than 1/Q2. The conventional
expectation from dimensional counting rules [5] and perturbative QCD [6] is that the
Dirac form factor F1 should fall with a nominal power 1/Q4, and the ratio of the Pauli
and Dirac form factors, F2/F1, should fall like 1/Q2, at high momentum transfers.
The Dirac form factor agrees with this expectation in the range Q2 from a few GeV2

to the data limit of 31 GeV2. However, the Pauli/Dirac ratio is not observed to fall
with the nominal expected power, and the experimenters themselves have noted that
the data is well fit by F2/F1 ∝ 1/Q in the momentum transfer range 2 to 5.6 GeV2.

The new Jefferson Laboratory results make it critical to carefully identify and
separate the timelike GE and GM form factors by measuring the center-of-mass an-
gular distribution and by measuring the polarization of the proton in e+e− → pp̄ or
pp̄ → `+`− reactions. The advent of high luminosity e+e− colliders at Beijing, Cor-
nell, and Frascati provide the opportunity to make such measurements, both directly
and via radiative return.

Although the spacelike form factors of a stable hadron are real, the timelike form
factors have a phase structure reflecting the final-state interactions of the outgoing
hadrons. In general, form factors are analytic functions Fi(q

2) with a discontinuity for
timelike momentum above the physical threshold q2 > 4M2. The analytic structure
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and phases of the form factors in the timelike regime are thus connected by dispersion
relations to the spacelike regime [7, 8, 9]. The analytic form and phases of the timelike
amplitudes also reflects resonances in the unphysical region 0 < q2 < 4M2 below the
physical threshold [7] in the JPC = 1−− channel, including gluonium states and di-
baryon structures.

At very large center-of-mass energies, perturbative QCD factorization predicts
diminished final interactions in e+e− → HH̄, since the hadrons are initially produced
with small color dipole moments. This principle of QCD color transparency [10] is
also an essential feature [11] of hard exclusive B decays [12, 13], and thus needs to
be tested experimentally.

There have been a number of explanations and theoretically motivated fits of the
F2/F1 data. Belitsky, Ji, and Yuan [14] have shown that factors of log(Q2) arise from
a careful QCD analysis of the form factors. The perturbative QCD form Q2F2/F1 ∼
log2 Q2, which has logarithmic factors multiplying the nominal power-law behavior,
fits the large-Q2 spacelike data well. Others [17, 18] claim to find mechanisms that
modify the traditionally expected power-law behavior with fractional powers of Q2,
and they also give fits which are in accord with the data. Asymptotic behaviors of the
ratio F2/F1 for general light-front wave functions are investigated in [15]. Each of the
model forms predicts a specific fall-off and phase structure of the form factors from
s ↔ t crossing to the timelike domain. A fit with the dipole polynomial or nominal
dimensional counting rule behavior would predict no phases in the timelike regime.

As noted by Dubnickova, Dubnicka, and Rekalo, and by Rock [16], the existence
of the T−odd single-spin asymmetry normal to the scattering plane in baryon pair
production e−e+ → BB̄ requires a nonzero phase difference between the GE and GM

form factors. The phase of the ratio of form factors GE/GM of spin-1/2 baryons in the
timelike region can thus be determined from measurements of the polarization of one
of the produced baryons. We shall show that measurements of the proton polarization
in e+e− → pp̄ strongly discriminate between the analytic forms of models which have
been suggested to fit the proton GE/GM data in the spacelike region.

2 Timelike Measures

The center-of-mass angular distribution provides the analog of the Rosenbluth method
for measuring the magnitudes of various helicity amplitudes. The differential cross
section for e−e+ → BB̄ when B is a spin-1/2 baryon is given in the center-of-mass
frame by

dσ

dΩ
=

α2β

4q2
D , (1)

where β =
√

1− 4m2
B/q2 and D is given by

D = |GM |2
(
1 + cos2 θ

)
+

1

τ
|GE|2 sin2 θ ; (2)
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we have used the Sachs form factors [2]

GM = F1 + F2 ,

GE = F1 + τF2 , (3)

with τ ≡ q2/4m2
B > 1.

As we shall show, polarization observables can be used to completely pin down the
relative phases of the timelike form factors. The complex phases of the form factors
in the timelike region make it possible for a single outgoing baryon to be polarized in
e−e+ → BB̄, even without polarization in the initial state.

There are three polarization observables, corresponding to polarizations in three
directions which are perhaps best called longitudinal, sideways, and normal but often
denoted z, x, and y, respectively. Longitudinal (z) when discussing the final state
means parallel to the direction of the outgoing baryon. Sideways (x) means perpen-
dicular to the direction of the outgoing baryon but in the scattering plane. Normal (y)

means normal to the scattering plane, in the direction of ~k×~p where ~k is the electron
momentum and ~p is the baryon momentum, with x, y, and z forming a right-handed
coordinate system.

The polarization Py does not require polarization in the initial state and is [16]

Py =
sin 2θ ImG∗

EGM

D
√

τ
=

(τ − 1) sin 2θ ImF ∗
2 F1

D
√

τ
. (4)

The other two polarizations require initial state polarization. If the electron has
polarization Pe then [16]

Px = −Pe
2 sin θ ReG∗

EGM

D
√

τ
, (5)

and

Pz = Pe
2 cos θ|GM |2

D
. (6)

The sign of Pz can be determined from physical principles. Angular momentum
conservation and helicity conservation for the electron and positron determine that
Pz/Pe in the forward direction must be +1, verifying the sign of the above formula.

The polarization measurement in e+e− → pp̄ will require a polarimeter for the
outgoing protons, perhaps based on a shell of a material such as carbon which has
a good analyzing power. However, timelike baryon-antibaryon production can occur
for any pair that is energetically allowed. Baryons such as the Σ and Λ which decay
weakly are easier to study, since their polarization is self-analyzing.

Polarization Py is a manifestation of the T-odd observable ~k × ~p · ~Sp, with ~Sp the
proton polarization. This observable is zero in the spacelike case, but need not be
zero in the timelike case because final state interactions can give the form factors a
relative phase.
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Notice the factor sin 2θ. Without polarization in the initial state, and with sin-
gle photon exchange, the only information transferred to the final state is the total
energy plus information for the photon’s polarization about the line—undirected—of
the electron and positron momentum in the initial state. Similarly, without using
polarization in the final state, we can use the undirected line of the baryon momenta.
We can define a directed normal by taking a cross product, providing a direction
by rotating from the lepton to the hadron direction through the smaller angle. The
observable is the dot product of this directed normal with the baryon polarization.
At 0◦ or 90◦, one cannot define a directed normal, hence one cannot obtain nonzero
polarization at these two angles, as reflected in the sin 2θ factor.

Any model which fits the spacelike form factor data with an analytic function
can be continued to the timelike region. Spacelike form factors are usually written in
terms of Q2 = −q2. The correct relation for analytic continuation can be obtained by
examining denominators in loop calculations in perturbation theory. The connection
is Q2 → q2e−iπ, or

ln Q2 = ln(−q2) → ln q2 − iπ . (7)

If the spacelike F2/F1 is fit by a rational function of Q2, then the form factors will
be relatively real in the timelike region also. However, one in general gets a complex
result from the continuation.

More sophisticated dispersion relation based continuations could give more reliable
results, if there is data also in the timelike region to pin down the magnitudes there.
So far, this is possible for the magnetic form factor alone [7] but not for both form
factors.

3 Polarization in the timelike region

We begin by selecting some existing fits to the spacelike data. Since we are concen-
trating on the polarizations, which depend only on the ratios of the form factors, we
concentrate in turn on fits to the ratio F2/F1, rather than fits to the individual form
factors. We attempt to present a representative selection of fits, and refer to others
that are similar to the ones included.

Odd-Q fits. The JLab experimenters themselves note that the polarization transfer
data is well fit for Q2 in the 2 to 5.6 GeV2 region by

F2

F1

=
1.25 GeV

Q
. (8)

There is theoretical work which obtains similar forms [17, 18, 19]. Because of its
simple analyticity, this form becomes purely imaginary in the timelike region. Simply
to get the right ratio at Q2 = 0, we choose to modify this form to

F2

F1

=

(
1

κ2
p

+
Q2

(1.25 GeV)2

)−1/2

, (9)
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where κp = 1.79 gives the anomalous magnetic moment of the proton. The numerical
effect of the 1/κ2

p term is hardly noticeable for Q2 above 2 GeV2.

Fits involving logarithms. A number of authors [14, 15] have given fits to the
F2/F1 data which have the power law fall-off expected from QCD, with logarithmic
corrections that enable a good fit to the data. Belitsky, Ji, and Yuan [14] have
motivated a form that has two powers of ln Q2, and one of their fits is, with Λ = 300
MeV,

F2

F1

= 0.17 GeV2 ln2(Q2/Λ2)

Q2
. (10)

We give here an improved fit which matches the above asymptotically and also
matches low Q2 data,

F2

F1

= κp
[1 + (Q2/0.791 GeV2)2 ln7.1(1 + Q2/4m2

π)]

[1 + (Q2/0.380 GeV2)3 ln5.1(1 + Q2/4m2
π)]

. (11)

This last form also contains the cut at the two-pion threshold in the timelike
region.

Two-component fits. In 1973, Iachello, Jackson, and Lande [20] presented a model
for the nucleon form factors based on a two-component, core and meson cloud, struc-
ture for the nucleon with parameters fit to the then existing data. The fit was updated
by Gari and Krumpelmann [21] and later by Lomon [22]. Iachello [23] has recently
noted that one of the original fits accords well with the newest JLab data. Continued
for timelike q2, the fit is

F1 =
1

2
g

[
(1− βω − βφ)− βω

m2
ω

q2 −m2
ω

− βφ

m2
φ

q2 −m2
φ

+ (1− βρ)− βρ

m2
ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ

]
,

F2 =
1

2
g

[
(0.120 + αφ)

m2
ω

q2 −m2
ω

− αφ

m2
φ

q2 −m2
φ

− 3.706
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ

]
, (12)

where

α(q2) =

(
q2 − 4m2

π

q2

)1/2

×




2

π
ln




√
q2 − 4m2

π +
√

q2

2mπ


− i



 . (13)
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Figure 1: Predicted polarization Py in the timelike region for selected form factor
fits described in the text. The plot is for θ = 45◦. The four curves are for an
F2/F1 ∝ 1/Q fit, using Eq. (9); the (log2 Q2)/Q2 fit of Belitsky et al., Eq. (10); an
improved (log2 Q2)/Q2 fit, Eq. (11); and a fit from Iachello et al., Eq. (12).

The function g = g(q2) cancels in expressions for polarizations. The parameters are
βρ = 0.672, βω = 1.102, βφ = 0.112, αφ = −0.052, mρ = 0.765 GeV, mω = 0.784
GeV, mφ = 1.019 GeV, and Γρ = 0.112 GeV.

Iachello [23] has also discussed extending the fits to the timelike region, and finds
a complex phase from two sources. One source is a modification of the overall factor
g(q2). The overall factor has no effect on GE/GM and no effect on quantities like
polarizations that only depend on ratios. The other source of phase is the treatment
of the rho widths. The phi and omega were approximated as zero width, but IJL [20]
found that rho-width contributions were important for fitting data and incorporated
a two-pion cut into an effective width term in the rho propagator. The extension to
the timelike region seen above is a straightforward and expected analytic continuation
of this term.

The expression for polarization Py, Eq. (4), leads to results shown in Fig. 1. The
polarizations are shown for four fits listed above, and the polarizations are not small.
They are very distinct from a purely polynomial fit to the spacelike data, which gives
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zero Py.
The predictions for Px and Pz are shown in Figs. 2 and 3. Both figures are for

scattering angle 45◦ and Pe = 1. The phase difference (δE− δM) between GE and GM

is directly given by the Py/Px ratio,

Py

Px

=
cos θ

Pe

Im G∗
MGE

Re G∗
MGE

=
cos θ

Pe

tan(δE − δM) . (14)
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Figure 2: The predicted polarization Px in the timelike region for θ = 45◦ and Pe = 1.
The four curves correspond to those in Fig. 1.

The magnetic form factor in the IJL model is very small in the 10 to 20 GeV2

region (taking the dipole form for comparison) and has a zero in the complex plane
near q2 = 15 GeV2. This accounts for much of the different behavior of the IJL
model seen in the polarization plots. That the IJL ratio for GE/GM is strikingly
large even by the standard set by the other three models also strongly affects the
angular behavior of the differential cross section. This is witnessed by Fig. 4, which
shows the angular behavior of dσ/dΩ for q2 = 10 GeV2. The lower three models are
also showing significant contributions from GE; at 90◦, the difference between the
curves shown and the value 0.5 is entirely due to |GE|2.
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Figure 3: The predicted polarization Pz in the timelike region for θ = 45◦ and Pe = 1.
The four curves correspond to those in Fig. 1.

4 Conclusions

We have discussed how to measure baryon form factors in the timelike region us-
ing polarization observables. Observing the baryon polarization in e−e+ → BB̄ for
spin-1/2 baryons B may be the method of choice for determining the magnitude and
the phase of the form factor ratio GE/GM . In the spacelike region, one recalls that
at high Q2, the electric form factor makes a small contribution to the cross section,
and the Rosenbluth method of separating it from the magnetic form factor, by its
different angular dependence, is very sensitive to experimental uncertainties and ra-
diative corrections [3]. The more direct method is to use polarization transfer [1, 4].
Similarly, in the timelike case, the angular distribution can be used to isolate |GE|,
but the numerical size of the GE contribution is small in many models, whereas two
of the three polarization observables are directly proportional to GE. Additionally,
the phase can only be measured using polarization.

The normal polarization Py is a single-spin asymmetry and requires a phase dif-
ference between GE and GM . It is an example of how time-reversal-odd observables
can be nonzero if final state interactions give interfering amplitudes different phases.
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Figure 4: The predicted differential cross section σ(θ) ≡ dσ/dΩ. The four curves
correspond to those in Fig. 1.

Its analog in the spacelike case is zero.

A strong current motivation for further baryon form factor study is the intriguing
spacelike JLab data for F2/F1 or GE/GM on the proton [1]. We have selected a
number of fits to this spacelike data, continued them to the timelike region, and
predicted what size polarizations one may expect to see there. For the models we have
examined the predicted polarizations are large and distinctive and should encourage
experimental study.
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