
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Single‑stage and cascade design of high order
multiplierless linear phase FIR filters using genetic
algorithm

Ye, Wen Bin; Yu, Ya Jun

2013

Ye, W. B., & Yu, Y. J. (2013). Single‑Stage and Cascade Design of High Order Multiplierless
Linear Phase FIR Filters Using Genetic Algorithm. IEEE Transactions on Circuits and
Systems I‑Regular Papers 60(11), 2987 ‑ 2997.

https://hdl.handle.net/10356/103634

https://doi.org/10.1109/TCSI.2013.2256211

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/TCSI.2013.2256211].

Downloaded on 25 Aug 2022 02:44:14 SGT

1

Single-Stage and Cascade Design of High Order
Multiplierless linear phase FIR Filters Using

Genetic Algorithm
Wen Bin Ye, Student Member, IEEE and Ya Jun Yu, Senior Member, IEEE

Abstract— In this work, a novel genetic algorithm (GA) is
proposed for the design of multiplierless linear phase finite
impulse response (FIR) filters. The filters under consideration
are of high order and wide coefficient wordlength. Both the
single-stage and cascade form are considered. In a practical
filter design problem, when the filter specification is stringent,
requiring high filter order and wide coefficient wordlength,
GAs often fail to find feasible solutions, because the discrete
search space thus constructed is huge and the majority of the
solution candidates therein can not meet the specification. In
the proposed GA, the discrete search space is partitioned into
smaller ones. Each small space is constructed surrounding a
base discrete coefficient set which is obtained by a proposed
greedy algorithm. The partition of the search space increases
the chances for the GA to find feasible solutions, but does
not sacrifice the coverage of the search. The proposed GA
applies to the design of single-stage filters. When a cascade
form filter is designed, for each single-stage filter meeting the
filter specification generated during the course of GA, an integer
polynomial factorization is applied. Design examples show that
the proposed GA significantly outperforms existing algorithms
dealing with the similar problems in terms of design time, and
the hardware cost is saved in most cases.

Index Terms— finite impulse response (FIR), genetic algorithm,
cascade form, low hardware cost.

I. INTRODUCTION

Multiplierless linear phase finite impulse response (FIR)
filters have been very popular for the past decades, since the
coefficient multipliers are implemented by adders and hard-
wired shifts, resulting in a low hardware cost. Many algorithms
[1]–[17] have been proposed to minimize the number of adders
used to synthesize the adder-shift network to minimize the
hardware cost. In earlier time, such algorithms [1]–[11] are
applied to a set of discrete coefficient values which already
meet a given filter specification, to find a synthesis of the
coefficient values using as few adders as possible. However,
in filter design problems, the set of coefficient values meeting
the given specification usually is not unique. It is possible to
find some other sets of coefficient values which also meet the
given specification and can be synthesized using less number
of adders. Therefore, in recent years, many designers have
proposed algorithms incorporating the synthesis of coefficient

Manuscript received on Sep. 20, 2012; revised on Dec. 07, 2012
and Feb. 16, 2013. W. B. Ye and Y. J. Yu are with the school of
Electrical and Electronic Engineering, Nanyang Technological University
Email:yewe0003@e.ntu.edu.sg; eleyuyj@pmail.ntu.edu.sg.

Copyright c⃝2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

values into the search of discrete coefficients for a given filter
specification [12]–[17].

While the algorithms in the later group definitely gener-
ate results with lower hardware cost, they have a common
problem, i.e., requiring extremely long computation time.
This problem becomes more serious when the filter order
is high and/or the coefficient wordlength is wide, since
the computation time of most of these algorithms increases
exponentially along with the increasing of filter orders and
coefficient wordlengthes. A recently developed algorithm [18]
confines the search space of each coefficient to the vicinity,
for example the 2 closest discrete values, of the middle values
in the feasible range, and thus is capable of designing long
filters.

In order to extend the search space and meanwhile restrict
the search time to a tolerable level, in this paper, a novel
GA is proposed for the design of long filters and filters
requiring coefficients with wide wordlength. GAs are artificial
intelligence techniques based on the principle of "survival of
the fittest" [19]. As a stochastic algorithm, a GA can be used
to solve complicated problem with a huge search space, and
thus is suitable for the problem under consideration. However,
a drawback of GAs is that they may fail to find a feasible
solution if the majority of the solution candidates in the search
space are infeasible. In the filter design problem, when the
filter specification is stringent and the hardware restriction
is high, existing GAs such as [20]–[22] often cannot find a
feasible solution.

In order to overcome these limitations, in the proposed GA,
the discrete search space is partitioned into smaller ones. Each
small space is constructed surrounding a base discrete solution
which is obtained by a proposed greedy algorithm with
different passband gain. This increases the chances for the GA
to find feasible solutions, but does not sacrifice the coverage
of the search. In addition, the search in the multiple spaces can
run in parallel, and thus the computation time for the design
of filters under consideration reduces significantly. Although
a mixed integer linear programming (MILP) based algorithm
[23] has been developed for the parallel optimization of FIR
filters with signed power-of-two coefficients, the programming
and the partitioning of the problem are complicated, and
therefore, no attempts have been made for the design of filters
sharing adder-shift network among coefficients. Moreover,
in the proposed GA, an encoding technique is tailored for
the partitioned search spaces, and a new fitness function
putting more weights on the minimization of hardware cost

2

are proposed.
The preliminary results of the proposed technique have

been presented in [24]. Compared with [24], there are three
major contributions in this paper. First, a more efficient
subspace partitioning technique is proposed. Second, adaptive
crossover and mutation rates are introduced such that the
search efficiency is improved and the fittest solutions are
preserved with the highest probability during the generational
process. The last and most important is that a novel integer
polynomial factorization technique is proposed such that the
proposed GA can be used to design cascade form FIR filters;
this technique circumvents the difficulty in the determination
of the filter orders and coefficient effective wordlength (EWL)
of the subfilters. In this paper, the EWL of a coefficient refers
to the wordlegnth excluding the sign bit and the leading zero
bits of the coefficient value; and the EWL of a filter refers to
the EWL of the coefficient with the maximum magnitude in
the filter.

Design examples show that the proposed GA uses much
less time in the design of long filters and filters with wide
coefficient wordlength. The hardware costs of the filters
designed by the proposed GA are less than that designed by
the other techniques in most cases, for both the single-stage
and cascade form filters.

It should be noted that the proposed algorithm only aims
to the design of linear phase FIR filters. For linear phase FIR
filters, once the filter order is determined, the phase shift for
each particular frequency is fixed. In other words, linear phase
FIR filter may not be used in applications where the phase
margin is concerned.

The rest of the paper is organized as follows. In Section II,
the proposed GA for the design of the single-stage filters under
consideration is discussed in details. Section III presents three
single-stage design examples. The computational complexity,
the selection of parameters, and the superiority and limitation
of the algorithm are also discussed. Section IV introduces how
to extend the proposed GA to design cascaded FIR filters
by the introduction of an integer polynomial factorization
technique. Two sets of design examples are given in Section
V to show the advantages of the GA in the design of cascade
form filters. Finally, the paper is concluded in Section VI.

II. DESIGN SINGLE-STAGE FIR FILTERS USING GA

In this section, first, the GA is briefly reviewed. A new
partition technique is then introduced to divide the whole
search space into several smaller spaces based on different
passband gains. After that, adaptive crossover and mutation
rates controlled by the fitness values are introduced. Finally,
a new encoding form of chromosomes and a fitness function
of the GA are proposed.

A. Overview of GA

A GA is an algorithm that mimics the process of natural
evolutions. By such evolutions, the solution gradually evolves
to the optimum one. Basically, in GAs, potential solutions of
the unknowns are encoded to chromosomes and 3 genetic
operations including selection, crossover and mutation are

applied to these chromosomes. In detail, after initializing the
first generation population of the chromosome pool, some in-
dividuals (individual chromosomes) in the existing population
are selected according to a selection mechanism to breed a new
generation. Those selected individuals are called "parents" and
they produce "children" by crossover and mutation operators.
The generational process containing selection, crossover and
mutation is repeated until a prespecified termination criterion
is reached.

B. Partitioning the search space

In the multiplierless filter design, if the coefficient space is
nonlinear, such as the power-of-two space and subexpression
space, floating the passband gain away from the unit may result
in designs requiring less hardware. However, this enlarges the
search space significantly.

Let N and B be the number of filter coefficients and the
EWL of the filter, respectively. Apparently, after scaling the
coefficient values to integers, the dynamic range of each coef-
ficient is within [−2B 2B − 1]. Therefore, for

⌊
N+1
2

⌋
distinct

coefficients in a linear phase FIR filter, the number of possible
combinations of discrete solutions is as large as 2⌊

N+1
2 ⌋(B+1).

For a moderate long and bit wide filter, for example N and
B taken as 50 and 12, respectively, the number of possible
discrete solutions in the whole search space will be 2325.
However, the majority of these solutions are infeasible, i.e.,
they do not meet the filter specification, when the specification
is reasonably stringent. Therefore, in most cases, it is very
difficult to find feasible solutions using conventional GAs.
To circumvent this problem, we confine the search spaces to
the neighbors of several discrete coefficient sets. The discrete
coefficient sets are obtained using a successive reoptimization
approach for the selected passband gains. The way to select
the passband gains, Gm, for m =0,1,... , M − 1 is discussed
in the next subsection. For each Gm, the discrete coefficient
set is found in the following two steps.
Step 1: The optimum solution with continuous coefficient
values meeting the filter specifications with a passband gain
Gm is found using a linear programming formulated as [16]:

Minimize : f = δ

Subject to : Gm − δ ≤ H(ω) ≤ Gm + δ, for ω ∈ [0, ωp]

−(δsδ)/δp ≤ H(ω) ≤ (δsδ)/δp, for ω ∈ [ωs, π]

(1)

where ωp, ωs are the passband and stopband edges, δp, δs
are the passband and stopband ripple tolerances of the ideal
passband and stopband gains away from 1 and 0, respectively,
and H(ω) is the zero-phase frequency response of the filter
to be optimized, given by

H(ω) =

⌊N−1
2 ⌋∑

n=0

h(n)Trig(ω, n) (2)

In (2), h(n) is the unknown symmetric impulse response of
the filter to be optimized and Trig(ω, n) is an appropriate
trigonometric function depending on the parity of N and

3

Compute the optimal

continuous coefficient

set h(n) by solving

(1)

Filter

specification

Passband

gain

Gm

Round h(i) to a prespecified

wordlength to obtain hm(i), and

reoptimize the rest unquantized

coefficients by substituting those

fixed coefficient values into

H(ω) and resolving (1)

i=0

1

2

N
i

−
=

i=i+1

N

Record the

discrete

coefficient set

hm(n)

Y

Step 2

Fig. 1. The flow chart of the greedy algorithm in determining the base
coefficient set

symmetry of the filter. By solving the problem formulated in
(1), the obtained h(n) is the impulse response of a filter whose
frequency response has a passband gain Gm. Divided by Gm,
the impulse response can be normalized to unit passband gain.
Let an index i be zero.
Step 2: Round h(i) to a prespecified wordlength. If i =⌊
N−1
2

⌋
, meaning that every coefficient has been rounded to

a discrete value, the program stops. Otherwise, reoptimize the
rest unfixed coefficient by substituting those fixed coefficient
values into H(ω) and re-solve (1); i = i+ 1 and repeat Step
2.

The above method is a greedy successive reoptimization
algorithm. The flow chart of the greedy algorithm to find
the discrete coefficient sets is shown Fig. 1. In each iteration
of Step 2, the algorithm rounds a coefficient into a discrete
value and reoptimizes the rest continuous coefficients to
compensate for the degradation of the frequency response.
Using the above method, M sets of discrete coefficient values
are obtained. Denoting the discrete coefficient set obtained
using gain Gm as hm(n) for n=0,1,...

⌊
N−1
2

⌋
, to simplify the

representation, hm(n) are scaled to integers and denoted as
hqm(n), i.e,

hqm(n) = hm(n)× 2Sm (3)

where Sm is an integer making ||hqm ||∞ containing the pre-
specified EWL; hqm represents the vector [hqm(0), hqm(1),...
hqm(

⌊
N−1
2

⌋
)]T and ||hqm ||∞ stands for the norm-∞ of the

vector hqm , i.e, the maximum magnitude of hqm . hqm for
m =0,1,2,...M − 1 is named as the base discrete coefficient
sets for the construction of subspaces. Last, for each passband
gain Gm and the corresponding coefficient set, an

⌊
N+1
2

⌋
-

dimensional search space is constructed as follows. The lower

bound and upper bound, denoted as hl
qm(n) and hu

qm(n), of n-
th dimension , for n = 0, 1, ...

⌊
N−1
2

⌋
, respectively, are defined

as: {
hu
qm(n) = hqm(n) + 2ceil(Bm(n)/3) − 1

hl
qm(n) = hqm(n)− 2ceil(Bm(n)/3) + 1

(4)

where Bm(n) is the EWL of the n-th coefficient. In such a
way, the coefficient with a larger magnitude has a larger range
for variation in the discrete coefficient space. For example, for
a particular passband gain Gm, the corresponding base discrete
coefficient set is {3, 9, 21} and the corresponding EWL of each
coefficient value is 2, 4 and 5, respectively. The lower bound
and upper bound of each discrete coefficient are computed
according to (4), and therefore, each coefficient value may vary
in the range of [2,3,4], [6,7,8,9,10,11,12] and [18,19,...21...24],
respectively, where the underlined values are hqm(n).

C. Determining the Gains

For a given filter specification, when the passband gain is
Gm or 2Gm, the discrete coefficient sets obtained from the
successive reoptimization algorithm are the same for a given
EWL. Therefore, we only need to consider the passband gain
varying in a range from α to 2α for any positive α. We
choose α to be 0.7 as [17] and thus Gm may vary in [0.7
1.4]. First, we divide the variation range of the passband gain
to M sections in [0.7 1.4] as that in [25]; in our case, M is
set to 20, and thus Gm is confined to a range of Γm, given
by [0.7+0.035m 0.7+0.035(m+1)] for m=0,1,2...M − 1. Each
range Γm is further discretized by a stepsize of 0.001, and
thus Gm may take any value from the 35 possible values in
Γm. Let the 35 possible values be Gm,j for j=0,1,2...34. The
discrete coefficient set for each Gm,j , denoted as hqm,j(n),
obtained by the proposed greedy algorithm discussed in
Section II-B, leads to a filter with normalized magnitude
ripples δm,j computed by

H(ω) =
⌊N−1

2 ⌋∑
n=0

hqm,j (n)Trig(ω, n)

gain =
max(H(ω)) + min(H(ω))

2
, for ω ∈ [0, ωp]

δ̂p =
max(H(ω))−min(H(ω))

2
, for ω ∈ [0, ωp]

δ̂s = max(abs(H(ω))), for ω ∈ [ωs, π]

δm,j = max(
δ̂p

gain ,
δ̂s

gain ∗ δp
δs
)

(5)

Thus, Gm is selected to be Gm,i whose corresponding δm,i is
minimum among δm,j for all j=0,1,2...34. With the selected
Gm for m=0,1,2...M − 1, twenty spaces are constructed
according to the method proposed in Subsection II-B, and the
proposed GA is applied to each search space separately.

D. Adaptive Crossover and Mutation Rates

During the generational process, crossover and mutation
are the two basic operations to generate the offsprings. The
crossover and mutation rates, denoted as Pc and Pm, play a
vital role in the GA algorithm. The higher Pc and Pm are,
the more variations are introduced into the offsprings; this

4

prevents the premature convergence of the GA and increases
the search efficiency. However, large Pc and Pm may lead to
the solution unstable, i.e., fitter chromosomes have the same
probability to be cast away during the generational process
as unfitter chromosomes. Therefore, in the proposed GA,
instead of keeping Pc and Pm unchanged during the whole
process, Pc and Pm are adaptively adjusted according to the
fitness values of the chromosomes, expressed as :

Pc =

{
λ1

Fmax−FL

Fmax−Fmean
+ λ0, for FL ≥ Fmean

λ1 + λ0, otherwise

Pm =

{
λ2

Fmax−F
Fmax−Fmean

+ λ0

100 , for F ≥ Fmean

λ2 +
λ0

100 , otherwise
(6)

where Fmax and Fmean are the maximum and mean values of
the overall fitness values in the current generation, respectively,
FL is the larger fitness value of the two parent chromosomes
that are selected for crossover operation, and F is the fitness
value of the chromosome that is to mutate. λ1 and λ2 are
weighting parameters and λ0 is a constant. According to (6),
the chromosome with smaller fitness value has larger Pm and
Pc; thus, their codons in the chromosomes are recombined
more quickly. On the contrary, for the fittest chromosome in
the current generation, their Pm and Pc are λ0 and λ0/100,
the minimum mutation and crossover rates, so that the good
codons are preserved. The selection of parameters in (6) is
presented in section III-C.

E. Encoding and Initial Population

In the proposed algorithm, chromosomes are encoded to
ternary strings of {1̄, 0, 1}. Since the search space in the
proposed GA has been confined to a small range around the
base discrete coefficient set, each element in the population is
a small deviation from the base discrete values. Therefore,
to encode the discrete coefficient values in the population,
instead of encoding the discrete coefficient values themselves,
the deviations from the base discrete values are encoded to
reduce the length of chromosomes. To illustrate this encoding
method, the same example in Section II-B is used, where the
base discrete coefficient values are {3, 9, 21}, and the lower
bound and upper bound for each value are [2,4], [6,12] and
[18,24], respectively. Thus, the possible largest deviations are
1, 3 and 3, respectively. Therefore, 5 digits are sufficient to
encode all elements in the given search space. For example, an
element of {4, 8, 20} is encoded to be 101̄01. If the coefficient
values are directly encoded to a ternary string, 12 digits are
needed.

With the above encoding technique, a chromosome with an
all-zero string represents the base discrete coefficient set, and
such chromosome is named as an "ancestor chromosome". Our
design experiences show that for filters with length less than
35, the proposed GA is robust to find feasible solutions even
with randomly produced population in most cases; however,
when the filter length is longer, a good initial population is
very important for the GA to find a feasible solution. In the
proposed GA, half of the total population is produced by
perturbing the "ancestor chromosome" and the other half is

randomly produced in the respectively constructed space. The
randomly produced population is to diversify the gene pool
and thus helps to prevent the premature convergence.

F. Fitness Function

To minimize the hardware cost, the objective function fg of
the proposed GA is set to be the number of adders. After each
chromosome is encoded, a multiple constant multiplication
(MCM) algorithm is used to compute the number of adders
used to synthesize the coefficient values. The n-dimensional
reduced adder graph (RAGN) [5] algorithm is used for the
reason that this algorithm usually outperforms other MCM
algorithms in terms of number adders used to synthesize the
discrete coefficient values (The total number of adder of the
filters includes the adders to synthesize the coefficients and
the structural adders used in the delay chain). However, as
mentioned in Section II-B, the major elements in the search
space cannot meet the given filter specification; for such
chromosomes, even their corresponding coefficient sets can
be synthesized using fewer adders, they should be cast away
during the selection process gradually. A common way to cast
away the infeasible elements is to add a penalty to the objective
function when the filter specification is not satisfied, and the
fitness values are thus significantly reduced for these cases.
The proposed fitness function is given as,

F =

 1/fg if δm ≤ δp

1/(Pe ×
δm
δp

) if δm > δp
(7)

Here, fg is the total number of adders used to synthesize
the filter using the coefficient values of the chromosome,
δm is the ripple of the filter represented by the chromosome
calculated as in (5), δp is the given ripple specification and
Pe is a penalty value, given by

Pe =

⌊N−1
2 ⌋∑

n=0

Maxaddercost(hqm(n)) (8)

where Maxaddercost(hqm(n)) is the maximum adder cost
to synthesize the possible values of hqm(n) in its range
[hl

qm(n) hu
qm(n)] given in (4). For example, if a coefficient

value is in the range of [2,3,4], the corresponding adder
costs to synthesize these discrete values are 0,1 and 0,
respectively. So the maximum adder cost for this coefficient is
1. Computing Pe according to (8) guarantees that the fitness
values of the infeasible individuals are smaller than that of the
feasible individuals. Thus, during the generational process, the
infeasible solutions will be gradually cast away. Meanwhile,
for the coefficient sets not meeting the ripple specification,
the coefficient sets with smaller ripples have bigger fitness
values, ensuring that they have bigger chances to survive in
the selection process. This helps the program to find out more
coefficient sets meeting the given filter specification.

With the introduction of the penalty function, we do not
need to apply the MCM algorithm to those coefficient sets
which do not meet the given filter ripple requirement. Since it
is time consuming to apply MCM algorithm to each coefficient

5

Start

selection

Record this Chromosome

and its corresponding

Objective value

crossover

mutation

Routine procedures of GA

The given filter

specification

An N-dimensional search space

is constructed for each
m
G

Determine the passband gains

, for m=0,1,2...19
m
G

Generate the initial Population

and compute the fitness value F

for each chromosome

Output the Chromosome

with the largest fitness value

Reach the

termination

criteria ?

Re-compute the F for each

Chromosome

Compute Pc and Pm according

to the fitness value F

Fig. 2. The flow chart of the proposed GA

set, when the majority of the coefficient sets in the population
are infeasible, the proposed fitness function can significantly
reduce the runtime of the program.

G. Summary of the Proposed GA

The step-by-step design procedure is shown in Fig. 2.
1) Determine the passband gains Gm(m=0,1,2...19) using

the method proposed in Section II-C.
2) For each Gm obtained in step 1, find the base discrete

coefficient set and construct the corresponding search
space. Run the GA using the fitness function given in (7)
and the adaptive crossover and mutation rates given in (6).
When the GA operation is terminated, the chromosome
with the biggest fitness value is recorded. Since Gm has
20 different values, in total there are 20 sub-problems
of the GA. Because the sub-problems of the GA are
independent to each other, they can be run in parallel,
resulting in a significant reduction of total runtime.

3) If the final optimum solution still does not meet the given
filter specification, the filter length N or the EWL has to

TABLE I
THE FILTER SPECIFICATIONS FOR B, L1 AND C

Filters Filter order EWL ωp ωs δp δs
B (low pass) 104 8 0.2π 0.24π 0.01 0.01

L1 (high pass) 120 14 0.8π 0.74π 0.0057 0.0001
C (low pass) 324 10 0.125π 0.14π 0.005 0.005

TABLE II
RESULTS AND COMPARISON OF THE THREE BENCHMARK FILTERS,
WHERE MBA AND SA ARE THE NUMBER OF MULTIPLIER BLOCK

ADDERS AND STRUCTURE ADDERS

Best published references / proposed GA
Filters B [18] L1 [18] C [18]
MBA 11 / 10 47 / 43 22 / 31
SA 100 / 98 120 / 120 306 / 306

Total adders 111 / 108 167 / 163 328 / 337

be increased, and the whole procedure is repeated.

III. NUMERICAL EXAMPLE OF SINGLE-STAGE DESIGN

Three benchmark filters (B, L1 and C) are designed to show
the superiority and limitation of the proposed algorithm in
the design of high order and wide coefficient wordlength FIR
filters. B, L1 and C are examples taken from [18], [26]. The
specifications of the three filters are listed in Table I. The
specifications show that the order of the three filters are all
high and meanwhile filter L1 requires coefficient values with
wide wordlength.

A. Simulations Results

In the proposed GA, the population size is set to 400 and the
running of the GA is terminated when the generation reaches
100. The Roulette Wheel Selection [27] is used to select the
chromosomes for crossover and mutation. The determination
of the other GA parameters will be discussed in subsection
III-C. The program is developed using Matlab. The 20 sub-
problems of each example are casted to 20 computers, and
each computer has two cores with CPU speed of 3.2G Hz.

The simulation results are given in Table II, where the
number of the adders is given in terms of number of multiplier
block adders (MBAs) and structure adders (SAs). It can be
seen for the filters with length less than 150, the proposed
GA generates designs using less number of adders. However,
for the filter with length longer than 300, the proposed GA
cannot beat the design obtained in [18] in terms of number of
adders. The reasons for this is analyzed in subsection III-D.
The coefficient values of the filters B and L1 obtained by the
proposed GA are listed in Tables III and IV, respectively.

B. Computational Complexity

The runtime of the proposed GA for filters L1, B and
C are 26m41s, 16m24s and 3h49m, respectively, when the
partitioned problems are cast to 20 machines. When only one
computer is used but the parallel toolbox in Matlab is ex-
ploited, the runtimes of the examples L1, B and C are 4h31m,
2h41m and 37h9m, respectively. However, the runtimes cannot
accurately reflect the computational complexity of the algo-
rithms due to various factors such as the efficiency of the

6

TABLE III
THE COEFFICIENT VALUES OF FILTER B

Filter B: h(n) = h(104− n) for 0 ≤ n ≤ 52; passband gain: 907.66, EWL: 8
normalized passband ripple: 0.00995; normalized stopband ripple : 0.00995
h(0) = −2 h(8) = −2 h(16) = −1 h(24) = 4 h(32) = 11 h(40) = 20 h(48) = 27
h(1) = −1 h(9) = −2 h(17) = −4 h(25) = −1 h(33) = 7 h(41) = 24 h(49) = 84
h(2) = 0 h(10) = −2 h(18) = −5 h(26) = −6 h(34) = −2 h(42) = 16 h(50) = 142
h(3) = 1 h(11) = 0 h(19) = −4 h(27) = −9 h(35) = −11 h(43) = −2 h(51) = 185
h(4) = 2 h(12) = 2 h(20) = 0 h(28) = −7 h(36) = −16 h(44) = −24 h(52) = 200
h(5) = 2 h(13) = 3 h(21) = 3 h(29) = −2 h(37) = −14 h(45) = −40
h(6) = 1 h(14) = 3 h(22) = 6 h(30) = 5 h(38) = −5 h(46) = −40
h(7) = −1 h(15) = 2 h(23) = 6 h(31) = 10 h(39) = 9 h(47) = −18

TABLE IV
THE COEFFICIENT VALUES OF FILTER L1

Filter L1: h(n) = h(120− n) for 0 ≤ n ≤ 60; passband gain:64608.72, EWL: 14
normalized passband ripple: 0.0055 ; normalized stopband ripple: 0.00009649
h(0) = 5 h(9) = 59 h(18) = −134 h(27) = 274 h(36) = −543 h(45) = 1068 h(54) = −2958
h(1) = −13 h(10) = −30 h(19) = 75 h(28) = −151 h(37) = 291 h(46) = −536 h(55) = 1500
h(2) = 22 h(11) = −16 h(20) = 32 h(29) = −70 h(38) = 150 h(47) = −384 h(56) = 1620
h(3) = −27 h(12) = 60 h(21) = −139 h(30) = 291 h(39) = −583 h(48) = 1294 h(57) = −5833
h(4) = 23 h(13) = −80 h(22) = 193 h(31) = −398 h(40) = 785 h(49) = −1719 h(58) = 10113
h(5) = −7 h(14) = 60 h(23) = −156 h(32) = 317 h(41) = −614 h(50) = 1326 h(59) =−13297
h(6) = −18 h(15) = −2 h(24) = 30 h(33) = −58 h(42) = 95 h(51) = −119 h(60) = 14473
h(7) = 46 h(16) = −73 h(25) = 134 h(34) = −274 h(43) = 563 h(52) = −1490
h(8) = −63 h(17) = 129 h(26) = −260 h(35) = 522 h(44) = −1044 h(53) = 2777

computer languages, the speed of the computer and etc. In the
following, the computational complexity of the algorithms are
analyzed based on the number of linear programming to be
solved.

In the proposed algorithm, the computation contains
two parts: one is to find the base discrete coefficient set
and the other is to search around the subspace constructed
based on the base discrete coefficient set. Both of these
two parts repeatly compute the filter ripple by solving
linear programming problems. Let N , P and G be the
length of the filter, the population size and the number
of generations to be updated in the GA, respectively. The
total number of linear programmings for the first part to find
the base discrete coefficient set, expressed as LPN1 is given by

LPN1 = J

⌈
N − 1

2

⌉
(9)

where J is the number of passband gains in each section. In
our case J = 35.

In the second part, the number of linear programming to
be done, denoted as LPN2 , is determined by

LPN2 = PG (10)

where P = 400 and G = 100 in our case. The computation
time for the selection, crossover and mutations operations
is much shorter than that for the linear programming and is
ignored in our analysis. Let the average runtime of a linear
programming be T . The overall computation time of the
proposed algorithm is

ComputationT ime = M

(
J

⌈
N − 1

2

⌉
+ PG

)
T (11)

where M is the total number of partitioned subspaces.

In comparison, the total iterations needed to be run in
the algorithm [18] is L⌈

N−1
2 ⌉, where L is the size of the

refined value set. L is set to 2 in [18]. Each iteration requires
two linear programmings to compute the lower bound and
upper bound of the corresponding coefficient. The overall
computation time of the algorithm in [18] can be expressed
as

ComputationT ime = 2βL⌈
N−1

2 ⌉T (12)

where β is a factor influenced by many cutoff "mechanisms".
From (11) and (12), it can be seen that the computational

complexity of the proposed algorithm increases linearly with
the increasing of N , whereas that for the algorithm in [18]
increases exponentially with the increasing of N . When N is
large, the proposed algorithm has much lower computational
complexity. The cutoff factor β may alleviate the computa-
tional complexity but it can not change the exponential relation
by nature. For example, assuming that the cutoff factor β is
10−8 (which in practical is much larger), to design filter B
(with order 104), the total computation time of the algorithm
in [18] is (1.8 × 108)T , whereas for the proposed GA it
is (8.364 × 105)T . The later one is much smaller than the
former one. That is the reason why [18] need to be manually
terminated after running 24h for filters B and C. If let the
program finish the whole search, it may takes several days
or even several weeks. Furthermore, the proposed GA can be
easily programmed to be run in parallel, but it is much more
complicated for algorithm in [18]. The reason that the running
time to design filter C by a single computer using the proposed
technique shows longer is because the proposed algorithm is
developed in Matlab, which is an interpreted language and
much slower than the complied language used in [18].

7

0 10 20 30 40 50 60 70 80 90 100
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

Generation

M
ea

n
F

itn
es

s
V

al
ue

TGA P
c
=0.8,P

m
=0.098

TGA P
c
=0.9,P

m
=0.0198

TGA P
c
=1,P

m
=0.027

AGA λ
1
=0.8 λ

2
=0.05

AGA λ
1
=0.9 λ

2
=0.1

AGA λ
1
=1 λ

2
=0.15

Fig. 3. The mean fitness values changes with the number of generation,
AGA is adpative GA, TGA is traditional GA

C. Determining the Parameters λ1,λ2 and λ0

For traditional GA, it is difficult to exactly determine an
optimal Pm and Pc, because there are many random factors
impacting on the search process. One of the goals of adaptive
mutation and crossover is to ease the users’ burden to specify
Pm and Pc, since the performance of adaptive GA is not
significantly influenced by the weighting parameters λ1 and
λ2. The reason to introduce a constant λ0 is because without
it, the crossover and mutation rates for the best solution are 0.
In such a case, the genes of the best solution in a population
do not contribute to the next generation through crossover and
mutation. By setting λ0 to be a very small value (less than
0.01), on one hand the best solution is persevered and on the
other hand the good "genes" have chances to be inherited by
its children.

The general rule to choose λ1 and λ2 is that they are selected
to be values relatively larger than the crossover and mutation
rates in the traditional GA, respectively. This is to ensure that
the probabilities of the individuals, whose fitness values are
less than the average fitness value, to breed new individuals
are reduced. The classical crossover and mutation rates for
traditional GA are in the range from 0.8 to 0.95 and from
0.005 to 0.05 [19], respectively. In the proposed GA, λ1 and
λ2 with values not smaller than 0.8 and 0.05, respectively,
are tested. Fig. 3 shows the resultant mean fitness value vs.
the generation for λ1 and λ2 to be (0.8, 0.05), (0.9, 0.1) and
(1, 0.15) respectively, for the design of filter B with Gm

for m = 10. For comparison, plots for the traditional GA
with Pc and Pm to be (0.8, 0.0098), (0.9, 0.0198) and (1,
0.027), respectively, are also shown in Fig. 3. It shows that
for the three cases in adaptive GA, the convergence speeds
are slightly different, but they all converge to the same mean
fitness value. However, the traditional GA tends to converge
to a local optimal point.

In the design examples presented in this paper, λ1, λ2 and
λ0 are set to 0.9, 0.1 and 0.005, respectively.

D. Superiority and Limitation

The simulation results in Section III-A and the computa-
tional complexity analysis in Section III-B showed that the
proposed algorithm designs filters with reduced hardware cost
and reduced design time in most cases. However, when the

filter order is as large as 300, such as the example filter C, the
proposed GA cannot beat the design obtained in [18].

This is because the computational complexity of the algo-
rithm is kept to be linearly proportional to the filter order as
shown in (11), where the parameters M,J, P and G are all
set to be constant independent of N . When N increases, the
search space for each subproblem thus increases significantly.
For example, when the filter order is 120, the size of the search
space is around 360; when the filter order is increased to 300,
the size of the search space is around 3150. Thus the GA cannot
obtained optimum solution when the population size (P) and
the generation of GA (G) do not increase accordingly. In other
words, we sacrifice the optimality to maintain the problem to
be tractable, and the algorithm provides a promising approach
to design long filters in tractable time.

In the end, a general speculation to the efficiency of the
proposed GA is that the GA is more efficient in the design of
filters with less stringent specifications. This is for the reason
that the efficiency of the proposed GA depends on the size
of search space and the amount of feasible solutions in the
space. The larger search space and less feasible solutions,
the lower efficiency of the algorithm. When the filters are
of more stringent specifications, the search space does not
change according to our algorithm, but the number of feasible
solutions is reduced, such that the efficiency is also reduced.
So this is opposite to MILP which in general is more efficient
when the specifications are more stringent.

IV. DESIGN CASCADED FIR FILTERS USING THE
PROPOSED GA

FIR filters in cascade structure are well-known for their
low computational complexity, compared with the single-stage
design [28]. Many researches [29]–[32] have attempted to
design multiplierless FIR filters in cascade form. However,
existing algorithms either can not design long filter [32] or
fail to beat the state-of-the-art single-stage design techniques
[17], [18].

While GAs have been successfully developed for the design
of single-stage FIR filters [20]–[22], they do not show signif-
icant advantages in the design of subfilters in cascade form
[29]. One of the difficulties in the design of cascade form
FIR filter with discrete coefficients is the determination of
the subfilter orders. GAs cannot provide an efficient technique
to evolve automatically to an order combination of subfilters
that can lead to a low hardware cost. In addition, in earlier
algorithms for the design of cascade form multiplierless FIR
filters [29]–[31], in order to obtain feasible cascade solutions,
the EWL of each subfilter is not properly controlled. In
these algorithms, although the EWL of the coefficients of
each subfilter is shorter or equal to the minimum that can
be achieved by the single-stage design, due to the cascade,
the width of the SAs of the second subfilter significantly
increases. Therefore, the cascade form filters designed using
such approaches often have higher hardware cost than that of
the best single-stage design.

In this section, we propose a GA for the design of cascade
form filters. The GA search is performed on single-stage

8

filters, and an integer coefficient polynomial factorization
technique which results in two discrete coefficient polynomials
is proposed. In such a manner, we circumvent the above two
difficulties in the design of cascade form filters, i.e. the GA
need not to determine the orders of subfilters, and the EWLs
of the subfilters are controlled by the single-stage design, so
that the EWLs of the subfilters are kept low.

A. Integer Coefficient Polynomial Factorization

For a given integer coefficient (N−1)-th order polynomial,

denoted as Hd(z) =
N−1∑
n=0

hd(n)z
−n, where hd(n) are integers

for n =0,1,2...N − 1, there are N − 1 roots (including real
and complex conjugated roots). Denoting the j-th real root as
Rj and the k-th complex root as rke

−iθk , where rk and θk
are the magnitude and phase of the corresponding complex,
respectively, the polynomial Hd(z) can be factorized as:

Hd(z) = β
K∏

k=1

(z−1 + rke
−iθk)

J∏
j=1

(z−1 +Rj) (13)

where K + J = N − 1, and β is a scaling constant.
If every pair of the factors that are complex conjugated

roots are multiplied, Hd(z) can be rewritten as:

Hd(z) = β

K/2∏
k=1

(z−2 + 2rk cos(θk)z
−1 + rk

2)

J∏
j=1

(z−1 +Rj)

(14)
which consists of J first-order factors and K/2 second-order
factors, all containing real coefficients. Depending on if the co-
efficient values of a factor are all integers or not, these factors
are classified into integer factors and non-integer factors. If we
can cast the factors into several groups, and the product of each
group is an integer coefficient polynomial, respectively, the
original polynomial is successfully factorized. In this paper, we
consider only the cascade of two subfilters, i.e. the polynomial
is factorized to two integer coefficient polynomials. Therefore,
the factorization problem is transferred to how these factors
can be allocated to two "baskets", each corresponding to a
sub-polynomial, such that the product of the factors in each
basket, scaled by a proper constant, is an integer coefficient
polynomial. Denoting the two baskets as B1 and B2 and their
scalers as β1 and β2, respectively, β1β2 has to be equal to β.

When the polynomial factors are allocated to a basket, the
resultant basket may be an integer basket, which contains
only integer factors, or a non-integer basket, which contains
only non-integer factors, or a mixed basket, which contains
both integer and non-integer factors. Obviously, the product
of the factors in an integer basket is an integer polynomial.
On the other hand, the product of the factors in a non-integer
basket and that in a mixed basket with some proper scalars,
also have potentials to be an integer coefficient polynomial. If
all the combinations of the allocation of factors into the two
baskets B1 and B2 are tested, the problem is in combination
complexity and therefore is intractable. For this reason, we
restrict the factor allocation such that B1 can be allocated with
integer factors only, and B2 can be allocated with either integer

or non-integer factors, i.e, B1 is an integer basket taking
scaling factor β1 = 1 and B2 may be either a non-integer
basket or a mixed basket taking a scaling factor β2 = β.

Since the number of integer factors in the polynomial
factorization is limited, the problem is significantly simplified.
First, all the integer factors obtained in the factorization of the
original integer coefficient polynomial are listed. Second, all
the combinations of the integer factors which can be allocated
to B1 are listed. For example, if there are 2 integer factors, B1
thus can be allocated with either of them or both of them, and
in total, there are 3 combinations. For each combination in
B1, the corresponding rest factors are allocated to B2. Finally,
the product of the factors in B2 is checked; if the resultant
polynomial contains only integer coefficients, the factorization
of the integer coefficient polynomial to two integer coefficient
polynomials is successful and the result is recorded.

However, in the factorization of (14), all factors are in the
normalized form that the coefficient of the highest order term
is unit. This excludes the factors such as 2z−1 + 5, 5z−1 + 1
or 2z−2 + z−1 + 2, from the integer factors. To secure such
integer factors, every non-integer factor is tested to check if
the factor can be converted to an integer factor by a converting
constant.

Theoretically, the non-integer factors with rational number
coefficients can be converted to integer factors if the coeffi-
cients are multiplied by a suitable integer, for example, a non-
integer factor z−1 + 0.1189 can be converted to an integer
factor if it is multiplied by a converting constant, 10000 in
this example. However, when the converting constant is too
large, although the resultant factor is an integer factor, the
wordlength of the coefficient is too long to be implemented
by using a limited number of adders. Therefore, we bound the
converting constant, denoted as C, to C < max(hd(n))/2.
If a non-integer factor is converted to an integer factor by
converting constant C, the overall scaling factor β is adjusted
to β/C.

With all the above considerations, for a given (N − 1)-th
order polynomial Hd(z) with integer coefficients hd(n)
for n =1,2,... N − 1, the details of its factorization are
summarized as follows:

1) Factorizing Hd(z) into the form in (14) by finding all the
roots of the polynomial. Integer factors and non-integer
factors are classified.

2) Converting the non-integer factors into integer factors, if
possible. If there are Q convertable non-integer factors,
and the corresponding converting factors are Ci, for

i =1,2 ...Q, adjusting β to β/
Q∏
i=1

Ci.

3) If even after conversion, there is no integer factors,
the polynomial of the given coefficient set cannot be
factorized into two integer sub-polynomials; otherwise,
all the combinations of the integer factors are listed.

4) For each combination of the integer factors, checking
whether the product of the rest factors scaled by β2 = β
is a polynomial with integer coefficients. If yes, the
factorization is successful.

9

TABLE V
AN EXAMPLE TO FACTORIZE A DISCRETE COEFFICIENT SET

B1 B2 Success

2z−2 + z−1 + 2 10(z−2 + 0.0699z−1 + 1)(z−2 + 1.4301z−1 + 1)(2z−2 + 3z−1 + 2) Y
2z−2 + 3z−1 + 2 10(z−2 + 0.0699z−1 + 1)(z−2 + 1.4301z−1 + 1)(2z−2 + z−1 + 2) Y

(2z−2 + z−1 + 2)(2z−2 + 3z−1 + 2) 10(z−2 + 0.0699z−1 + 1)(z−2 + 1.4301z−1 + 1)) Y

B. An Example to Illustrate the Factorization Technique

A polynomial p with an integer coefficient set {
40,140,314,473,551,473,314,140,40} is given to illustrate the
factorization technique in details. The roots of the polynomial
p are computed by using Matlab function "roots", and they
are −0.25 + 0.9682i, −0.25 − 0.9682, −0.0350 + 0.9994i,
−0.0350− 0.9994i, −0.7150+ 0.6991i , −0.7150− 0.6991i,
−0.75 + 0.6614i and −0.75 − 0.6614i, respectively, with a
scaling constant β = 40. By pairing the conjugated roots,
we can get all the factors, they are z−2 + 0.5z−1 + 1,
z−2+0.0699z−1+1, z−2+1.4301z−1+1 and z−2+1.5z−1+1.
Originally, there are no integer factors. By conversion, the
non-integer factors z−2 + 0.5z−1 + 1 and z−2 + 1.5z−1 + 1
are converted to integer factors 2z−2 + z−1 + 2 and 2z−2 +
3z−1 + 2 when they are multiplied by an integer 2 for 2
is less than 473/2. Thus the scaling constant β becomes
10. After conversion, there are two integer factors and two
non-integer factors. According to the proposed factorization
technique, B1 contains only integer factors. Therefore, there
are in total 3 possible combinations of integer factors that
can be allocated to B1 as listed in Table V. The rest factors,
together with β, of each combination in B1 are allocated
to B2. The coefficients of the products of the factors in B2
are checked; the resultant coefficients of B2 in this example
are {20,60,107,123,107,60,20}, { 20,40,77,81,77,40,20} and
{10,15,21,15,10} for the first, second and third factorization,
respectively. Therefore, all of these factorizations are success-
ful.

C. Incorporating the Factorization Technique into the Pro-
posed GA

When the factorization technique is incorporated into the
proposed GA, the GA search is conducted on single-stage
filters. The 3 genetic operations including selection, crossover
and mutation are applied as usual, but the fitness is computed
in a different way. During the GA search, once a chromosome
is obtained, an integer coefficient set of a single-stage filter is
obtained. This discrete coefficient set is evaluated to check if
the filter specification is satisfied, and the adder cost, fg , is
computed. The factorization technique proposed in Section IV-
A is performed only when the filter specification is met. If the
polynomial of the single-stage filter is successfully factorized
into two integer polynomials, the adder cost to realize the
two factorized integer coefficient sets, denoted as fgcas , is
computed. If fgcas ≤ fg , the fitness value of the chromosome
is set to 1/fgcas ; otherwise, to 1/fg . Note that 1) for an integer
coefficient set (Chromosome), the factorization may not be
unique, and thus fgcas is set to the smallest adder cost and the
corresponding factorization is recorded; 2) the factorization is

not necessary leading to a smaller objective value (i.e., adder
cost) than the single-stage realization, and the factorization is
not recorded in this case.

A simple example to illustrate the fitness evaluation of the
chromosomes is given as follows. If a chromosome is decoded
to an integer coefficient set {5,29,52,62,52,29,5}, the adder
cost of this integer set (including both MBAs and SAs) is
fg = 10. The proposed factorization technique is performed
and the polynomial can be factorized into two subpolynomials
with coefficient sets {1,4,1} and {5,9,11,9,5}, respectively.
The adder cost to realize these two integer coefficient sets
is fgcas = 9. Since fgcas ≤ fg, the fitness value of this
chromosome is 1/fgcas , i.e., 1/9. The factorization result is
recorded.

V. NUMERICAL EXAMPLES OF CASCADE FORM DESIGN

In this section, two sets of design examples are given to
illustrate the superiority of the proposed algorithm.

In Example A, the long filters B, L1 and C are designed
using the proposed algorithm in cascade form. Since there is
no existing algorithm directly designing long filter in cascade
form which aims to minimize the adder cost, the results are
first compared with the best results of single-stage designs
in [18]. We further re-pack the algorithms in [17], [32] in a
manner such that they can be used to design long filters in the
cascade form, and the results obtained are also compared.

In Example B, two moderately long filters A1 and S2 (with
length around 60) taken from [32] are designed using the
proposed GA in cascade form. The results are compared with
the cascade design in [32]. Note that if enough time is given,
the algorithm in [32] has high probability to find the cascade
design with minimum number of adders. However, even for the
moderately long filters, it may takes several weeks to finish
the search; therefore in [32] the runtime for each design is
limited to 24h.

A. Example A

The design results of B, L1 and C are listed in Table VI. The
single-stage design obtained by [18] and by the proposed GA
are also listed. The reason that we compare the results with
the single-stage design in [18] is that no existing multiplierless
technique can directly design long FIR filters in cascade form
with lower hardware cost than the state-of-the-art single-stage
design technique.

However, with existing cascade filter design techniques
[29]–[32] and discrete coefficient filter design technique for
moderately long filters [17], alternative approaches indirectly
designing the long filters are possible. Here, filter B is designed
using such a possible way to compare with our results.

10

The basic idea of the indirect design is to first separate the
long filter into a cascade of several short filters with continuous
coefficients, and each short filter is then designed by [17] or
[32]. Two subfilters are considered in this example, denoted
as F1 and F2, respectively. However, a difficulty is to set the
specifications for each subfilter, such as filter orders, ripples
and EWLs. In [30], two approaches are proposed.

The first method is named as direct approximation method,
in which F1 is designed to continuous coefficient values
directly using the frequency response specifications of the
overall filter and by fixing F1, F2 is then optimized in discrete
values. However, in the design of filter B, F1 designed in
such a way cannot lead to an overall filter meeting the
ripple requirement even if F2 is optimized with continuous
coefficients.

The other way is to obtain subfilters using the interleaved
zero approach. After obtaining the continuous coefficient val-
ues of F1 by using this method, F1 is fixed and F2 is optimized
using algorithms [17] or [32] to obtain discrete coefficient
values such that the overall filter meets the specification of
filter B. Then, F2 is fixed and F1 is optimized using [17] or
[32] to meet the overall specification. In the design of Filter
B, the subfilter orders for both F1 and F2 are 52, according
to the interleaved zero approach.

Using [17], the resultant hardware cost for F1 and F2 are
60 and 55 adders, with EWLs 8 and 5, respectively. Thus,
the EWL of the overall filter is as larger as 15 due to the
convolution of the two subfilters. Note that filter B designed
using the proposed algorithm requires only 94 adders with
overall EWL 8. In terms of the hardware cost, the filter
obtained using the proposed GA is much lower, because of
the small number of adders and small EWL. Using [32], each
subfilter is further a cascade two short subfilters. However, in
this case, in the step fixing F1 and optimizing F2, even if the
EWL of F2 is increased to 6, no solution can be found. It is
possible to further increase the EWL of F2 until a solution
is found, but this, on one hand, increases the design time
significantly, and, on the other hand, will increase the hardware
cost significantly due to the large overall EWL of the filter.

This design examples show that such indirect optimization
approaches either generate designs with much higher hardware
cost than the proposed GA or cannot produce feasible cascade
designs for a given search space. In addition, the runtimes of
these algorithms are also much longer because each subprob-
lem (to optimize the subfilter) may take several hours for a
filter with orders around 50.

The reason that such indirectly techniques cannot generate
better results is due to the difficulty in how to set the orders of
the subfilters, and how to allocate zeros to each subfilter. Using
the interleaved zero approach, for a given filter orders, the way
to allocate zeros to the two subfilters are fixed. Certainly, there
are other ways to allocate zeros that may result in feasible
and better solutions, but obviously finding a good allocation
is not straightforward, and significant additional research may
be required.

Overall speaking, the proposed technique is the first one
efficiently achieving lower hardware cost for the design of long
filters in cascade form. The coefficient values of the cascade

TABLE X
THE FILTER SPECIFICATIONS FOR A1 AND S2

Filters Filter order ωp ωs δp δs
A1 (low pass) 58 0.125π 0.225π 0.01 0.001
S2 (low pass) 59 0.042π 0.14π 0.012 0.001

TABLE XIV
DESIGN RESULTS OF FILTER B WITH DIFFERENT FILTER ORDERS. Li

MBAi AND SAi ARE THE LENGTH, NUMBER OF MULTIPLIER BLOCK

ADDERS AND NUMBER OF STRUCTURAL ADDERS OF SUBFILTER i,
RESPECTIVELY.

Order EWL L1 L2 MBA1 MBA2 SA1 SA22 Total
105 8 2 105 0 10 1 90 101
106 8 3 105 0 10 2 88 100
107 8 2 107 0 8 1 92 101
108 8 No cascade design is found
109 8 2 109 0 10 1 92 103

designs of B, L1 and C are listed in Table VII, VIII and IX,
respectively.

B. Example B

In this example, the proposed GA is used for the design of
two moderately long filters A1 and S2 in cascade form and
the results are compared with that obtained by MILP based
algorithm [32]. The specifications of A1 and S2 are listed in
Table X. Table XI shows that for the filters with moderately
long length, which can be handled by deterministic algorithm
such as [32], the propose heuristic GA use much shorter design
time than that of the algorithm in [32], while the adder cost
of the final designs is not worse than that in [32]. It has to
be noted that, for filter S2, when the EWL and order are kept
to be 10 and 59 as in [32], the proposed GA can not find
the feasible solution. Therefore, as described in Section II-
G, the filter order is increased by 1 and the optimization is
re-done. The design times of the proposed GA for filter A1
and S2 are 9m48s and 21m18s using multiple computers and
1h36m and 3h11m using one computer. The design time are
significantly less than that of the algorithm in [32], where both
designs use more than 24 hours. The coefficient values of the
cascade design of A1 and S2 are listed in Table XII, and XIII,
respectively.

C. Robustness for the Design of Cascaded FIR Filters

Since the proposed GA for the design of cascaded FIR filter
is based on the factorization of a given integer coefficient
polynomial and the factorization is not guaranteed to be
successful, it is possible that no cascade design is produced
by the proposed GA. To test the robustness of the proposed
GA for the design of cascaded FIR filters, filter B is designed
with filter orders from 105 to 109, and the design results are
listed in Table XIV. Table XIV shows that for each filter order
except 108, cascade designs can be found.

An additional advantage of the proposed GA for the cascade
design is its compatibility with the single-stage design, i.e.,
even if no cascade design is found, in the end of the opti-
mization the proposed GA takes the best single-stage design
as the final design, as discussed in Section IV-C.

11

TABLE VI
DESIGN RESULTS OF FILTERS B, L1 AND C. Li MBAi AND SAi ARE THE LENGTH, NUMBER OF MULTIPLIER BLOCK ADDERS AND NUMBER OF

STRUCTURAL ADDERS OF SUBFILTER i, RESPECTIVELY.

Cascade Design by Proposed GA Single Stage design by Proposed GA Algorithm in [18]
Filters EWL L1 L2 MBA1 MBA2 SA1 SA22 Total Runtime MBA SA Total Runtime MBA SA Total Runtime

B 8 2 104 0 8 1 85 94 22m19s 10 98 109 16m24s 11 100 111 >24h
L1 14 7 115 2 30 6 114 152 34m21s 43 120 163 26m41s 47 120 167 56m
C 10 3 323 0 20 2 278 298 4h3m 31 306 337 3h49m 22 306 328 >24h

TABLE VII
THE COEFFICIENT VALUES OF FILTER B IN CASCADE FORM

Filter B h1(n) = h1(1− n) for n = 0, h2(n) = h2(103− n) for 0 ≤ n ≤ 51
h(n) = h(104− n) for 0 ≤ n ≤ 52, passband gain: 907.66 EWL: 8
normalized passband ripple: 0.00995; normalized stopband ripple: 0.00995
h1(0) = 1 h2(7) = 0 h2(15) = 2 h2(23) = 3 h2(31) = 5 h2(39) = 8 h2(47) = 0
h2(0) = −2 h2(8) = −2 h2(16) = −3 h2(24) = 1 h2(32) = 6 h2(40) = 12 h2(48) = 27
h2(1) = 1 h2(9) = 0 h2(17) = −1 h2(25) = −2 h2(33) = 1 h2(41) = 12 h2(49) = 57
h2(2) = −1 h2(10) = −2 h2(18) = −4 h2(26) = −4 h2(34) = −3 h2(42) = 4 h2(50) = 85
h2(3) = 2 h2(11) = 2 h2(19) = 0 h2(27) = −5 h2(35) = −8 h2(43) = −6 h2(51) = 100
h2(4) = 0 h2(12) = 0 h2(20) = 0 h2(28) = −2 h2(36) = −8 h2(44) = −18
h2(5) = 2 h2(13) = 3 h2(21) = 3 h2(29) = 0 h2(37) = −6 h2(45) = −22
h2(6) = −1 h2(14) = 0 h2(22) = 3 h2(30) = 5 h2(38) = 1 h2(46) = −18

TABLE VIII
THE COEFFICIENT VALUES OF FILTER L1 IN CASCADE FORM

Filter L1 h1(n) = h1(6− n) for 0 ≤ n ≤ 3, h2(n) = h2(114− n) for 0 ≤ n ≤ 57
h(n) = h(120− n) for 0 ≤ n ≤ 60, passband gain: 69265.174 EWL: 14
normalized passband ripple: 0.005572; normalized stopband ripple: 0.00009775
h1(0) = 1 h2(5) = 13 h2(14) = 1 h2(23) = 35 h2(32) = −18 h2(41) = 106 h2(50) = −161
h1(1) = −3 h2(6) = 4 h2(15) = 20 h2(24) = −4 h2(33) = 65 h2(42) = −59 h2(51) = 259
h1(2) = 5 h2(7) = 9 h2(16) = 6 h2(25) = 33 h2(34) = −6 h2(43) = 81 h2(52) = −147
h1(3) = −6 h2(8) = 9 h2(17) = 14 h2(26) = 18 h2(35) = 17 h2(44) = 38 h2(53) = 35
h2(0) = 6 h2(9) = 5 h2(18) = 23 h2(27) = −5 h2(36) = 66 h2(45) = −61 h2(54) = 283
h2(1) = 3 h2(10) = 17 h2(19) = −3 h2(28) = 50 h2(37) = −36 h2(46) = 158 h2(55) = −486
h2(2) = 4 h2(11) = 5 h2(20) = 27 h2(29) = −6 h2(38) = 77 h2(47) = −90 h2(56) = 745
h2(3) = 3 h2(12) = 15 h2(21) = 10 h2(30) = 31 h2(39) = 5 h2(48) = 72 h2(57) = −764
h2(4) = 4 h2(13) = 16 h2(22) = 7 h2(31) = 36 h2(40) = −9 h2(49) = 109

TABLE IX
THE COEFFICIENT VALUES OF FILTER C IN CASCADE FORM

Filter C: h1(n) = h1(2− n) for 0 ≤ n ≤ 2, h2(n) = h2(322− n) for 0 ≤ n ≤ 161
h(n) = h(324− n) for 0 ≤ n ≤ 162, passband gain: 5395.25, EWL: 10
normalized passband ripple: 0.00489; normalized stopband ripple:0.00489
h1(0) = 1 h2(22) = 1 h2(46) = 0 h2(70) = 3 h2(94) = 6 h2(118)= −5 h2(142)= 34
h1(1) = 1 h2(23) = 1 h2(47) = 0 h2(71) = 0 h2(95) = 8 h2(119)= −12 h2(143)= 31
h2(0) = −4 h2(24) = 1 h2(48) = −3 h2(72) = −5 h2(96) = 0 h2(120)= −19 h2(144)= 23
h2(1) = 0 h2(25) = −1 h2(49) = 4 h2(73) = −3 h2(97) = 12 h2(121)= −6 h2(145)= 16
h2(2) = 2 h2(26) = 0 h2(50) = 3 h2(74) = −2 h2(98) = 10 h2(122)= −7 h2(146)= 0
h2(3) = −2 h2(27) = 0 h2(51) = −1 h2(75) = −8 h2(99) = −3 h2(123)= −7 h2(147)= −20
h2(4) = 3 h2(28) = −3 h2(52) = 6 h2(76) = −2 h2(100)= 7 h2(124)= 10 h2(148)= −33
h2(5) = 1 h2(29) = −1 h2(53) = 2 h2(77) = 1 h2(101)= 3 h2(125)= 9 h2(149)= −48
h2(6) = −1 h2(30) = −1 h2(54) = −1 h2(78) = −5 h2(102)= −14 h2(126)= 11 h2(150)= −55
h2(7) = 2 h2(31) = −2 h2(55) = 3 h2(79) = 4 h2(103)= −2 h2(127)= 22 h2(151)= −50
h2(8) = 2 h2(32) = 1 h2(56) = 0 h2(80) = 7 h2(104)= −4 h2(128)= 14 h2(152)= −41
h2(9) = −1 h2(33) = −1 h2(57) = −5 h2(81) = 0 h2(105)= −18 h2(129)= 9 h2(153)= −17
h2(10) = 0 h2(34) = 0 h2(58) = −1 h2(82) = 7 h2(106)= −3 h2(130)= 12 h2(154)= 18
h2(11) = 1 h2(35) = 4 h2(59) = −1 h2(83) = 9 h2(107)= 0 h2(131)= −4 h2(155)= 54
h2(12) = −2 h2(36) = 0 h2(60) = −7 h2(84) = −3 h2(108)= −9 h2(132)= −12 h2(156)= 100
h2(13) = −1 h2(37) = 2 h2(61) = 0 h2(85) = 4 h2(109)= 8 h2(133)= −11 h2(157)= 145
h2(14) = 0 h2(38) = 3 h2(62) = 0 h2(86) = 2 h2(110)= 10 h2(134)= −23 h2(158)= 182
h2(15) = −2 h2(39) = −1 h2(63) = −3 h2(87) = −8 h2(111)= 2 h2(135)= −25 h2(159)= 216
h2(16) = 0 h2(40) = 1 h2(64) = 3 h2(88) = −4 h2(112)= 16 h2(136)= −15 h2(160)= 237
h2(17) = 0 h2(41) = 0 h2(65) = 5 h2(89) = −2 h2(113)= 12 h2(137)= −15 h2(161)= 241
h2(18) = −1 h2(42) = −2 h2(66) = 0 h2(90) = −12 h2(114)= 1 h2(138)= −7
h2(19) = 1 h2(43) = −2 h2(67) = 5 h2(91) = −2 h2(115)= 8 h2(139)= 11
h2(20) = 1 h2(44) = −1 h2(68) = 6 h2(92) = 0 h2(116)= 1 h2(140)= 16
h2(21) = 1 h2(45) = −4 h2(69) = −2 h2(93) = −6 h2(117)= −13 h2(141)= 24

12

TABLE XI
DESIGN RESULTS OF FILTER A1 AND S2. Li MBAi AND SAi ARE THE LENGTH, NUMBER OF MULTIPLIER BLOCK ADDERS AND NUMBER OF

STRUCTURAL ADDERS OF SUBFILTERS i, RESPECTIVELY.

The propose GA Algorithm in [32]
Filters EWL L1 L2 MBA1 MBA2 SA1 SA22 Total Runtime L1 L2 MBA1 MBA2 SA1 SA22 Total Runtime

A1 10 5 55 0 8 4 48 60 9m48s 2 58 0 9 2 52 63 24h
S2 10 3 59 0 13 2 54 69 21m09s 2 59 0 14 1 54 69 24h

TABLE XII
THE COEFFICIENT VALUES OF FILTER A1 IN CASCADE FORM

Filter A1: h1(n) = h1(4− n) for 0 ≤ n ≤ 2, h2(n) = h2(54− n) for 0 ≤ n ≤ 27
h(n) = h(58− n) for 0 ≤ n ≤ 29, passband gain: 4894.15, EWL: 10
normalized passband ripple: 0.009908; normalized stop ripple: 0.0009907
h1(0) = 1 h2(2) = 2 h2(7) = −9 h2(12) = 18 h2(17) = −27 h2(22) = 27 h2(27) = 97
h1(1) = 2 h2(3) = −2 h2(8) = 3 h2(13) = 0 h2(18) = −9 h2(23) = 26
h1(2) = 2 h2(4) = 2 h2(9) = −8 h2(14) = 18 h2(19) = −36 h2(24) = 80
h2(0) = 2 h2(5) = −6 h2(10) = 9 h2(15) = −8 h2(20) = −6 h2(25) = 74
h2(1) = 0 h2(6) = 0 h2(11) = −1 h2(16) = 6 h2(21) = −20 h2(26) = 120

TABLE XIII
THE COEFFICIENT VALUES OF FILTER S2 IN CASCADE FORM

Filter S2: h1(n) = h1(2− n) for 0 ≤ n ≤ 1, h2(n) = h2(58− n) for 0 ≤ n ≤ 29
h(n) = h(60− n) for 0 ≤ n ≤ 30, passband gain: 7263.98, EWL: 10
normalized passband ripple:0.011922;normalized passband ripple:0.0009935
h1(0) = 1 h2(3) = 2 h2(8) = −11 h2(13) = −22 h2(18) = 14 h2(23) = 116 h2(28) = 202
h1(1) = 1 h2(4) = 0 h2(9) = −11 h2(14) = −24 h2(19) = 31 h2(24) = 143 h2(29) = 202
h2(0) = 2 h2(5) = −3 h2(10) = −16 h2(15) = −16 h2(20) = 47 h2(25) = 163
h2(1) = 1 h2(6) = −2 h2(11) = −22 h2(16) = −10 h2(21) = 73 h2(26) = 177
h2(2) = 0 h2(7) = −6 h2(12) = −20 h2(17) = −3 h2(22) = 96 h2(27) = 195

VI. CONCLUSION

In this paper, a novel GA is proposed for the design of
low hardware cost multiplierless FIR filters both in single-
stage and cascade forms. In order to make the GA capable
of the design of high order and wide coefficient wordlength
filters, the discrete search space is partitioned into multiple
spaces according to the passband gains. Moreover, the search
efficiency of the GA is improved by adaptively adjusting the
crossover and mutation rates. In addition, instead of minimiz-
ing the filter ripple as in conventional GAs, the proposed GA
uses the adder cost of the filter as the objective function, and
penalties are applied when the ripple requirement is not met,
such that the hardware cost and filter ripples are balanced
in the fitness values. The cascade design is incorporated into
the GA search for the single-stage designs. Every single-stage
design obtained during the GA operation, if meeting the filter
specification, is applied with an integer coefficient polynomial
factorization. Successful factorizations generate the cascade
designs if the hardware cost are lower. Design examples show
that the proposed GA uses much less computational time and
the hardware cost of the resulting designs, for both single-stage
and cascade designs, is reduced in most cases.

REFERENCES

[1] L. Aksoy, E. Gunes, and P. Flores, “An exact breadth-first search
algorithm for the multiple constant multiplications problem,” Tallinn,
Nov. 2008, pp. 41–46.

[2] M. Faust and C. H. Chang, “Minimal logic depth adder tree optimization
for multiple constant multiplication,” in Proc. IEEE Int. Symp. Circuits
Syst., Paris, May 2010, pp. 457–460.

[3] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677–688, Oct.
1996.

[4] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,” IEE
Proc. G, vol. 138, pp. 401–412, June 1991.

[5] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, pp.
569–577, Sept. 1995.

[6] R. Pasko, P. Schaumont, V. Derudder, et al., “A new algorithm for
elimination of common subexpressions,” IEEE Trans. Computer-Aided
Design, vol. 18, pp. 56–68, Jan. 1999.

[7] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple con-
stant multiplications: efficient and versatile framework and algorithms
for exploring common subexpression elimination,” IEEE Trans. Circuits
and Systems, vol. 15, pp. 151–165, Feb. 1996.

[8] A. G. Dempster, S. S. Demirsoy, and I. Kale, “Designing multiplier
blocks with low logic depth,” in Proc. IEEE International Symposium
on Circuits and Systems, Scottsdale, Arizona, May 2002, pp. 773–776.

[9] O. Gustafsson and L. Wanhammar, “A novel approach to multiple
constant multiplication using minimum spanning trees,” in Proc. IEEE
Midwest Symp. Circuits Syst, Tulsa, OK, Aug. 2002, pp. 652–655.

[10] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Improved multiple
constant multiplication using minimum spanning trees,” in Proc. IEEE
Asilomar Conf. Signals Syst. Comp., Pacific Grove, CA, Nov. 2004, pp.
63–66.

[11] O. Gustafsson, “A difference based adder graph heuristic for multiple
constant multiplication problems,” in Proc. IEEE Int. Symp. Circuits
Syst., New Orleans, LA, May 2006, pp. 1097–1100.

[12] O. Gustafsson and L. Wanhammar, “ILP modeling of the common
subexpression sharing problem,” in Proc. IEEE ICECS’02, Dubrovnic,
Croatia, 2002, pp. 1171–1174.

[13] J. Yli-Kaakinen and T. Saramäki, “A systematic algorithm for the design
of multiplierless FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst,
Sydney, Australia, 2001, pp. 185–188.

[14] Y. J. Yu and Y. C. Lim, “Design of linear phase FIR filters in
subexpression space using mixed integer linear programming,” IEEE
Trans. Circuits Syst. I, vol. 54, pp. 2330–2338, Oct. 2007.

[15] Y. J. Yu, D. Shi, and Y. C. Lim, “Design of extrapolated impulse
response FIR filters with residual compensation in subexpression space,”
IEEE Trans. Circuits Syst. I, vol. 56, pp. 2621–2633, Dec. 2009.

13

[16] Y. J. Yu and Y. C. Lim, “Optimization of linear phase FIR filters in
dynamically expanding subexpression space,” Circuits, Systems, and
Signal Processing, vol. 29, pp. 65–80, June 2009.

[17] D. Shi and Y. J. Yu, “Design of linear phase FIR filters with high
probability of achieving minimum number of adders,” IEEE Trans.
Circuits Syst. I, vol. 58, pp. 126–136, Jan. 2011.

[18] M. Aktan, A. Yurdakul, and G. Dĺźnda, “An algorithm for the design
of low-power hardware-efficient FIR filters„” IEEE Trans. Circuits and
Systems, vol. 55, pp. 1536–1545, July 2008.

[19] J. H. Holland, Adaptation in Natural and Artificial Systems. MIT Press,
1975.

[20] P. Gentili, F. Piazza, and A. Uncini, “Efficient genetic algorithm design
for power-of-two FIR filters,” in Proc. International Conference on
Acoustics, Speech, and Signal Processing, Detroit, Michigan, USA, May
1995, pp. 9–12.

[21] L. Cen and Y. Lian, “A modified micro-genetic algorithm for the
design of multiplierless digital FIR filters,” in Proc. IEEE Region 10
Conference, Chiang Mai, Thailand, Nov. 2004, pp. 52–55.

[22] L. Cen, “A hybrid genetic algorithm for the design of FIR filters with
SPoT coefficients,” Signal Processing, vol. 87, pp. 528–540, 2007.

[23] Y. C. Lim, Y. Sun, and Y. J. Yu, “Design of discrete-coefficient FIR
filters on loosely connected parallel machines,” IEEE Transactions on
Signal Processing, vol. 50, pp. 1409–1416, 2002.

[24] W. B. Ye and Y. J. Yu, “Design of high order and wide coefficient
wordlength multiplierless FIR filters with low hardware cost using
genetic algorithm,” in Proc. IEEE Int. Symp. Circuits Syst, Seoul, Korea,
May 2012, pp. 29–32.

[25] Y. C. Lim, “Design of discrete-coefficient-value linear phase FIR filters
with optimum normalized peak ripple magnitude,” IEEE Trans. Circuits
Syst., vol. 37, pp. 1480–1486, Dec. 1990.

[26] Y. C. Lim and S. R. Parker, “Discrete coefficient FIR digital filter design
based upon an LMS criteria,” IEEE Trans. Circuits Syst., vol. 30, pp.
723–739, Oct. 1983.

[27] D. E. Goldberg, Genetic algorithm in search and optimization. Addison-
Wesley, 1989.

[28] J. W. Adams and J. A. N. Willson, “A new approach to FIR digital filters
with fewer multipliers and reduced sensitivity,” IEEE Trans Circuits
Systems, vol. 30, pp. 277–283, May 1983.

[29] S. U. Ahmad and A. Antoniou, “Cascade-form multiplierless FIR filter
design using orthogonal genetic algorithm,” in Proc. IEEE Int. Symp.
Signal Process.Inf. Technol., Aug 2006, pp. 932–937.

[30] Y. C. Lim and B. Liu, “Design of cascade form FIR filters with discrete
valued coefficients,” IEEE Transactions on Signal Processing, vol. 36,
pp. 1735–1939, Nov. 1988.

[31] Y. C. Lim, R. Yang, and B. Liu, “The design of cascaded FIR filters,”
in Proc. IEEE Int. Symp. Circuits Syst, May 1996, pp. 181–184.

[32] D. Shi and Y. J. Yu, “Design of discrete-valued linear phase FIR filters
in cascade form,” IEEE Trans. Circuits Syst. I, vol. 58, pp. 1627–1636,
2011.

