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ABSTRACT

We present grids of massive star evolution models at four different metallicities (Z = 0.004, 0.002,0.001, 0.00001). The effects of
rotation on the stellar structure and the transport of angular momentum and chemical elements through the Spruit-Tayler dynamo and
rotationally induced instabilities are considered. After discussing uncertainties involved with the adopted physics, we elaborate the
final fate of massive stars as a function of initial mass and spin rate, at each considered metallicity. In particular, we investigate for
which initial conditions long gamma-ray bursts (GRBs) are expected to be produced in the frame of the collapsar model. Then, using
an empirical spin distribution of young massive metal-poor stars and a specified metallicity-dependent history of star-formation, we
compute the expected GRB rate as function of metallicity and redshift based on our stellar evolution models. The GRB production
in our models is limited to metallicities of Z < 0.004, with the consequence that about 50% of all GRBs are predicted to be found at
redshifts above z = 4, with most supernovae occurring at redshifts below z ~ 2.2. The average GRB/SN ratio predicted by our model
is about 1/200 globally, and 1/1250 at low redshift. Future strategies for testing the considered GRB progenitor scenario are briefly

discussed.
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1. Introduction

Rotation is known to affect the evolution of massive stars signif-
icantly, through the resulting centrifugal force and through ro-
tationally induced chemical mixing (Maeder & Meynet 2000;
Heger et al. 2000). In particular, very efficient chemical mix-
ing may persist in massive stars when the mixing time scale
decreases below the thermonuclear time scale in very rapid ro-
tators. In this situation, a strong chemical gradient can never
be established. As a result, the star remains quasi-chemically
homogeneous and evolves bluewards (Maeder 1987; Langer
1992), contrary to slower rotators which develop the classical
core-envelope structure and evolve redwards. This chemically-
homogeneous evolution scenario (hereafter, CHES) has been
invoked to understand nitrogen-rich (Howarth & Smith 2001;
Bouret et al. 2003; Walborn et al. 2004), and helium-rich
(Mokiem et al. 2006) massive main sequence stars in the
Magellanic Clouds.

Only recently, the CHES is recognized as a promising path
towards collapsars in connection with long gamma-ray bursts
(GRBs). The collapsar scenario requires massive helium stars
with rapidly spinning cores (j 2 ~10'® cm? s~!; Woosley 1993).
Stellar models computed with magnetic torques generally fail
to retain such high core angular momenta (Heger et al. 2005;

* Tables 2-8 are only available in electronic form at
http://www.aanda.org

http://www.aanda.org

Petrovic et al. 2005), while they can consistently explain the
spin rates of young neutron stars (Heger et al. 2005; cf. Ott et al.
2006) and white dwarfs (Suijs et al. 2006), as well as the in-
ternal rotational profile of the Sun (Eggenberger et al. 2005).
However, Yoon & Langer (2005, YLO5) and Woosley & Heger
(2006, WHO06) showed that at low metallicity, quasi-chemically-
homogeneous evolution of rapidly rotating massive stars can
lead to the formation of rapidly rotating massive helium stars
which satisfy all the requirements of the collapsar scenario even
if the effect of magnetic torques is included. This is possible
since mixing the hydrogen-rich envelope into the core rather
than losing it to a wind avoids the angular momentum loss as-
sociated with mass loss (Langer 1998), and avoiding a core-
envelope structure prevents the magnetic core-envelope coupling
and the corresponding core spin-down.

The CHES for GRB progenitors predicts that GRBs should
occur preferentially in metal poor environments (YL05; WHO06),
which seems to be confirmed by recent observations. Most GRB
host galaxies appear to have sub-solar metallicity, even down
to Z ~ Zy/100 (e.g. Fynbo et al. 2003; Conselice et al. 2005;
Gorosabel et al. 2005; Chen et al. 2005; Starling et al. 2005;
Fruchter et al. 2006; Fynbo et al. 2006; Stanek et al. 2006;
Mirabal et al. 2006; Wiersema et al. 2006). The use of GRBs as
probes of star formation at high redshift thus demands a quantita-
tive understanding of their low-metallicity bias, which to provide
in the frame of the CHES is a major goal of this paper.

http://dx.doi.org/10.1051/0004-6361:20065912
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To this purpose, we present grids of stellar evolution models
at Z =0.004, 0.002, 0.001, and 0.00001, for rotating magnetized
stars in the initial mass range 12 < My /Mg < 60, and with ini-
tial equatorial rotation velocities between zero and 80% of the
Keplerian value (0 < vipit/vg < 0.8). Our numerical methods are
described in the next section (Sect. 2), and physics uncertain-
ties are critically discussed in Sect. 3. In Sect. 4, we present the
computed stellar evolution models, and discuss the final fate of
massive stars as function of initial mass, rotational velocity and
metallicity. The GRB rate as a function of metallicity and red-
shift following from our models is addressed in Sect. 5. After
a discussion of our results in Sect. 6 we summarize our conclu-
sions in Sect. 7.

2. Numerical methods and physical assumptions

We use the same hydrodynamic stellar evolution code as in
YLO5, which includes the effect of rotation on the stellar struc-
ture, transport of angular momentum and chemical species via
magnetic torques and rotationally induced hydrodynamic insta-
bilities, with several improvements. Uncertainties introduced by
the processes discussed in this section are elaborated in Sect. 3.

2.1. Mixing

We adopt a larger value for the semi-convective mixing param-
eter (asgm = 1.00) than in YLOS5 (where asgy = 0.04). This
choice facilitates comparison of our results with models of other
groups as it yields stellar core sizes comparable to those of
WHO6, and of the Geneva group who adopts the Schwarzschild
criterion (see discussion in Langer et al. 1985; Langer 1991).
Uncertainties involved with the value of asgy are discussed in
Sect. 3.4.

YLOS followed Heger et al. (2000) for the calibration of the
efficiency of the rotationally induced chemical mixing, which
was fit to observed surface nitrogen and helium abundances of
Galactic O stars. However, as the current version of the code in-
corporates new physics such as the effects of magnetic torques
(Petrovic et al. 2005) and the use of a larger semi-convection
efficiency parameter, we re-calibrated the mixing efficiency ac-
cordingly. Specifically, a larger value for the correction factor
for the effect of mean molecular weight gradients on rotational
mixing (f, = 0.1) is now employed, compared to the previously
used value (f, = 0.05; Heger et al. 2000).

As shown in Fig. 1, at core hydrogen exhaustion in models
with an initial equatorial rotation velocity of vjy;; = 200 kms™!,
the use of f,, = 0.1 gives surface abundances of nitrogen and he-
lium comparable to those in the corresponding models by Heger
et al. with their fiducial value of f, = 0.05 (i.e., Y5 = 0.29 ~ 0.40
and log N/Niiy = 0.5 ~ 0.9 for My = 20 ~ 60 My). In
the same figure, we also compare our result with a magnetic
model of Maeder & Meynet (2005): for f, = 0.1, the surface
helium enrichment at core hydrogen exhaustion in a sequence
with M = 15 Mg and vipir = 300 kms™! is just slightly
less in our model (Y = 0.299) compared to Maeder & Meynet
(Ys = 0.310).

2.2. Mass loss

We follow Kudritzki et al. (1989) for computing the stellar wind
mass loss of hot, hydrogen rich stars, with a metallicity depen-
dence of M o« Z°%°, as suggested by Vink et al. (2001). Here Z is
the surface mass fraction of all metals, where the enrichment of

S.-C. Yoon et al.: Single star progenitors of long gamma-ray bursts. I.

0.55 [T T T T T T T T T T
Viwa=200 km/s, f, = 0.10
.
.
050~ _____ V=200 km/s, f, = 0.05 .
X
.
.
0.45 @ Maeder & Meynet (06) 4
.
V=300 km/s, f, = 0.10 Rl
.
.
0.40 V=300 km/s, T, = 0.05 R

0.35

He mass fraction at the end of MS
¢

0.30
02500 b b b e L
10 20 30 40 50 60
MiniL/MG
N B o N SRR
" L V=200 km/s, 1, = 0.10 . i
f 10— _____ V=200 km/s, f, = 0.05 Le*” ]
o] [ -
9
a = _
[0}
. L i
5 08— —
=
o} - .
> L i
Z, L i
S
Z 06 —
Q0 = -
L
0.4 L b b b bennnnnnna b
10 20 30 40 50 60

Minit/ M

Fig. 1. Upper panel: surface helium mass fraction in stellar models (Z =
0.02) at core hydrogen exhaustion, as function of the initial stellar mass.
Lower panel: logarithm of the surface nitrogen abundance divided by its
initial value, at the end of core hydrogen burning, for the same models
as shown in the upper part.

CNO elements due to rotationally induced mixing is also taken
into account.

Wolf-Rayet (WR) wind mass loss rates are calculated ac-
cording to Hamann et al. (1995), but reduced by a factor of 10,
and including a metallicity dependence of M o« Zion'igf (Vink &
de Koter 2005; see Fig. 1 of YLO5):

Mwg )

log(i1 = —-1295+ 1.51logL/Ls —2.85X; (1)
Mo yr~

+0.86 l0g(Zinit/Zo) , for logL/Ly > 4.5,
= -36.8+6.8logL/Ly —2.85X;
+0.86 log(Zinit/Zs) , for logL/Ls < 4.5.

As recent studies indicate that iron is likely the most important
element for driving WR winds (Vink & de Koter 2005; Grifener
& Hamann 2005), YLO5 and WHO6 scaled the WR wind mass
loss rates with the initial metallicity, as in the above equation.
However, an enhancement of the CNO abundances at the surface
to values higher than the initial metallicity (i.e. due to primary
production) will also lead to enhanced WR winds, in particular
at very low initial metallicity (e.g. Vink & de Koter 2005). As
there exist no self-consistent WR wind models considering this
effect, here we simply assume that the effective WR mass loss
rate M{‘VR increases linearly with the surface CNO abundance
as follows:

Mg = weno - Mwr 2)
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Table 1. Specific angular momentum for the last stable orbit (jLso)
around a black hole with a given mass (Mpy), calculated according
to Bardeen et al. (1972). Here, jscu and jkermax denote the cases for
Schwarzschild black hole (non-rotating) and maximally rotating Kerr
black hole, respectively.

Mgy JscH JKerr,max
[cm®s™'] [cm® s™']
20M, 3.07x10° 1.03x 10
3.0 M, 4.60x10' 1.55x 1016
40M, 6.13x10' 2.06x 10
SOM, 7.66%x10° 257 x 106
100 M, 1.53x10"7 5.14x 10'°
where Mwg is given by Eq. (2), and
Z - Zinil
weno = 1 +max|{19———, 0. 3)
— Linit

Here Z is the total mass fraction of all metals at the stellar sur-
face. With this assumption, WC stars with Xcno = 0.5 and
Xge = 0.5 have an about 10 times higher mass loss rate than
WN stars with Z = Z;,;;. This choice is based on the results
by Vink & de Koter (2005), which show that mass loss rates
of WC stars with X¢c = 0.5 and Xy, = 0.5 are larger by
an order of magnitude than those of WN stars when Xg. — 0.
However, this prescription cannot represent the non-linear be-
havior of WR mass loss rates as a function of surface abundance
of heavy elements that is shown by Vink & de Koter, and must
be regarded ad-hoc. Uncertainties due to this parameter are dis-
cussed in Sect. 3.2.

In the present study, we apply the above WR wind mass loss
rates to stellar models with a surface helium mass fraction of
Y, > 0.7, Kudritzki’s mass loss rate for Y; < 0.55, and we inter-
polate between the two for 0.55 < ¥ < 0.7.

2.3. Core angular momentum threshold for GRBs

Within the collapsar scenario, the production of a GRB may
be expected if those stars which undergo quasi-chemically ho-
mogeneous evolution retain enough angular momentum in the
core. But it is currently uncertain exactly how much specific core
angular momentum is required (MacFadyen & Woosley 1999;
WHO06; Lee & Ramirez-Ruiz 2006). Usually, the specific an-
gular momentum for the last stable orbit around a black hole
of a given mass (:=jLso, Table 1; see Bardeen et al. 1972) is
adopted. The presence of magnetic fields may reduce the critical
value by about 20-30% (Proga et al. 2003; Proga 2006, private
communication).

It is also uncertain whether GRB jets could be produced even
if the innermost core (S2—-3 M) has a smaller angular momen-
tum than ji g0, but when material further above has larger angu-
lar momentum (see WHO06). Here, we assume that GRBs would
be produced if any part of the CO core has a specific angular mo-
mentum larger than ji so (see, however, discussions in Sect. 4).
Too large angular momenta (j > 10'7 cm? s7!) in the innermost
region of ~3 M may also prevent the formation of powerful jets
(MacFadyen & Woosley 1999), but none of our models retains
such large amounts of angular momentum in its core.

3. Uncertainties of the adopted physics

Note that the adopted physical assumptions in the present study
differ from those in YLOS5 and WHO6 in several respects. Firstly,
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we consider the effect of surface enrichment of CNO elements
on WR winds as in Egs. (2) and (3), while YLO5 and WHO06 do
not. Secondly, we adopt faster semi-convection than in YLOS as
explained above, but this new choice is comparable to the semi-
convection efficiency employed by WHO06. Thirdly, we consider
the effect of the centrifugal force on the stellar structure as in
YLOS, but WHO6 did not. However, the prescription of the an-
gular momentum transport used in the present study is the same
as that in YLO5 and WHO6.

As the pre-supernova stellar structure could be significantly
affected by different physical assumptions, a good understanding
of their influence on the stellar models is useful when applying
our models to predict the cosmic GRB rate. In the following, we
discuss the influence of the major assumptions on stellar evolu-
tion models.

3.1. Angular momentum transport

Our code employs the transport of angular momentum
due to Eddington-Sweet circulations, shear instability,
Goldreich-Schubert-Fricke instability, and magnetic torques
according to the Spruit-Tayler dynamo, as explained in Heger
et al. (2000) and Petrovic et al. (2005). The transport process
is approximated as diffusion, as the full consideration of the
interaction between the Eddington-Sweet circulation and the
Spruit-Tayler dynamo (Maeder & Meynet 2005) requires
solving a 4th-order differential equation, which is too expensive
in computing time (Meynet 2006, private communication).
Under most circumstances, the magnetic torques dominate
the internal transport of angular momentum. Although recent
models including the Spruit-Tayler dynamo show that predicted
spin rates of stellar remnants (neutron stars and white dwarfs)
are consistent with observations (Heger et al. 2005; Suijs et al.
2006), the order-of-magnitude estimate of the diffusive viscosity
due to magnetic torques by Spruit (2002) might still be uncertain
(Maeder & Meynet 2005; Spruit 2006).

To explore this uncertainty, we make simple experiments by
introducing a free parameter f, ma such that

Vmag = 5 v,mag * VST, (C))

where vgr is the magnetic viscosity according to Spruit (2002),
and vp,g is the magnetic viscosity used in the code. Three dif-
ferent values of f, e are used with two different initial mod-
els, as summarized in Table 2. Sequences TA1, TA2 and TA3
start with the same 16 M, ZAMS model with an initial
equatorial rotation velocity of 30% of the Keplerian value
(Vinit/vx = 0.3) and Z = 0.02, with f, s, = 1.0, 0.1, and 0.01,
respectively (see Fig. 2). Interestingly, a decrease of the mag-
netic viscosity by one order of magnitude leads to an increase
of the specific angular momentum in the innermost 1.4 M by
only a factor of two (compare TAl and TA2; TA2 and TA3),
and a decrease of f,mag by two orders of magnitude to an in-
crease of (j)1.4 m, by just a factor of four (compare TAl and
TA3), evaluated at core neon burning. This remarkable insensi-
tivity of the core spin to f, ma is due to a self-regulation of the
Spruit-Tayler dynamo: a smaller f, ., leads to a stronger de-
gree of differential rotation, which in turn enhances the effective
magnetic viscosity, and vice versa. Compared to non-magnetic
models (Seq. TA4) — where the transport of angular momentum
is dominated by Eddington-Sweet currents and shear instabilities
(cf. Heger et al. 2000), magnetic models have less core angular
momentum by more than one order of magnitude, for all consid-
ered values of f, s (see also Fig. 2).
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Fig.2. Upper panel: specific angular momentum as a function of the
mass coordinate in stellar models of sequences TA1l (dashed), TA2
(dashed-dotted), TA3 (dashed-two-dotted), and TA4 (dotted), during
core neon burning. The thin solid line corresponds to the specific an-
gular momentum profile on the zero-age main sequence, which is the
same for all cases. Lower panel: same as in the upper panel, but for
sequences A30f0.3h (thick solid), TB1 (dashed), TB2 (dashed-dotted),
and TB3 (three-dotted-dashed).

The influence of f, mae becomes even less important in that
part of the parameter space where the CHES may produce
GRBs, i.e. at low metallicity and rapid rotation. In sequences
TB1, TB2 and TB3 (M, = 30 Mg, vinit/vk = 0.6 and Z =
0.002), a decrease in f,mae by 100 results in a core angular
momentum increase of only 80% (compare TB1 and TB3 in
Table 2, Fig. 2), evaluated during core oxygen burning. In these
sequences, the stars undergo chemically homogeneous evolu-
tion, and the reduced sensitivity of the final core angular momen-
tum to the parameter f, m,, compared to sequences TA1-TA3 is
due to the fact that any magnetic core-envelope coupling is ren-
dered insignificant since the formation of a clear core-envelope
structure is avoided altogether (see discussions in YLOS5).

3.2. Wolf-Rayet winds

We consider the effect of CNO surface enrichment on WR winds
through the factor weno in Eq. (2). A comparison of se-
quence TA1 (Table 2), where this effect is neglected, with se-
quence A30f0.6h (Table 5), shows that the inclusion of weno
leads to little changes in final mass and core angular momentum.
However, its effect becomes larger for higher initial masses as re-
vealed by comparing sequences TC1 and A40f0.6h: the CO core
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in sequence TC1 retains ten times more angular momentum in
the CO core than in sequence A40f0.6h. Given that using the
factor weno according to Eq. (3) is rather ad-hoc, future system-
atic and self-consistent studies of the effect of surface abundance
changes on the WR mass loss are highly desirable.

The adopted dependence of the WR wind mass loss rates
on the WR star luminosity according to Hamann et al. (1995)
may also need further investigation, as Hamann et al. did not
consider the effect of clumping of WR winds. The effect of
anisotropic mass loss from WR stars due to rotation (cf. Maeder
& Meynet 2000) is another important factor to be carefully stud-
ied, as GRB progenitors must be rapidly rotating. Currently it is
difficult to quantify the uncertainty due to these effects, and the
WR winds remain as one of the most uncertain physics ingredi-
ents in our models.

3.3. The effect of the centrifugal force

Our models include the effect of the centrifugal force on the stel-
lar structure following Endal & Sofia (1976; see also Meynet &
Maeder 1997). Although this effect is not considered in WHO6, it
has non-negligible consequences in our GRB progenitor models.
As indicated in Table 2, the 30 M, initial model at v, /vg = 0.6
has a higher equatorial rotational velocity and total angular mo-
mentum when the centrifugal force is neglected (Seq. TB4),
compared to the case where it is considered (Seq. TB1), due to
the change of the stellar structure and the corresponding adjust-
ment of the moment of inertia.

Non-centrifugally-supported models are also more compact
and hotter, leading to more efficient rotationally induced chem-
ical mixing, and to less angular momentum loss for a given
amount of mass loss. As a consequence, the core retains more
angular momentum in sequences TB4 and TB6 than in se-
quence TB1.

More efficient mixing in sequences TB4 and TB6 also results
in a smaller helium envelope during the WR phase than in se-
quence TBI1. If the effect of surface enrichment of CNO elements
on WR winds (i.e., weno in Eq. (2)) is considered as in TBS and
TB7, the faster chemical mixing without the centrifugal effect
leads to the loss of much more mass and angular momentum
during WR phase than in the corresponding sequence A30f0.6h
(see Table 5), where both, the centrifugal term and wcno, are
included.

3.4. Semi-convection

The efficiency of semi-convective mixing in massive stars is cur-
rently not well constrained (e.g. Langer 1991). Model proper-
ties at Z = 0.001 with slow semi-convection (asgy = 0.04) are
presented in Table 3, and corresponding models with fast semi-
convection (asgm = 1.0) are shown in Table 6.

A comparison of the two cases reveals remarkable differ-
ences, in particular for the sequences which undergo chemically
homogeneous evolution. As the use of slower semi-convection
results in smaller CO cores and larger helium envelopes in the
WR phase, the CO core is significantly more slowed down by
the magnetic core-envelope coupling in this case, in particular
for models with lower initial masses (M, < 20 M). Therefore,
the lower initial mass limit for GRB production shifts to higher
initial masses when slower semi-convection is used.

At higher masses, on the other hand, less efficient mixing
of CNO elements to the surface leads to the loss of less mass
and angular momentum, and more angular momentum is



S.-C. Yoon et al.: Single star progenitors of long gamma-ray bursts. I.

7=0.004
0.8 [ A e
06l BH (SNIb/c) |
« L
S
S 0.4
g
2 L
L i
L ! .
!
02— ! —
L [ |
L SN I ! BH (SN 1II) |
| . ! -
0.0 L e L
10 20 30 40 50 60
Minit[MO]
7=0.001
0.8 [ T T
I f h
[BH i [ H °
(SN1b) L i ol
L ! GRB ]
06~=_! 1 —
L WN:wc, wo BH (SN Ic) i
« | k
S
S04
g
2 L
L i
L i
i
— 1
0=r SN 1I : ]
i ! BH (SN 1II) ]
i i i
0.0 L b e L
10 20 30 40 50 60
Minit[MO]

203
7=0.002
0.8 [T T
,BH(SNH:)E '. o
L ! GRB } ]
0.6 | : BH (SNIc) |
| WNwe i
y : ]
S
™S 04 ;
=] =
£
L 1
i
L i
i
02 ¢
L ! |
L SN 11 ! BH (SN 1II) |
1
0.0 Licivinivi vl
10 20 30 40 50 60
Minit[MO]
7=0.00001
0.8 [T T T T T
i ]
E GRB i
0.6 R —
L wC, Wo PL|
« L
S
04
g L
° 1
= 1
F :
02 ! —
| - 1 -
L SN 1I i BH (SN II) |
1
L ! |
0.0 L b Vs b b b
10 20 30 40 50 60

Mt [Mo]

Fig. 3. Final fate of our rotating massive star models at four different metallicities (Z = 0.004, 0.002, 0.001, & 0.00001), in the plane of initial mass
and initial fraction of the Keplerian value of the equatorial rotational velocity. The solid line divides the plane into two parts, where stars evolve
quasi-chemically homogeneous above the line, while they evolve into the classical core-envelope structure below the line. The dotted-dashed lines
bracket the region of quasi-homogeneous evolution where the core mass, core spin and stellar radius are compatible with the collapsar model for
GRB production (absent at Z = 0.004). This GRB production region is divided into two parts, where GRB progenitors are WN or WC/WO types.
To both sides of the GRB production region for Z = 0.002 and 0.001, black holes are expected to form inside WR stars, but the core spin is
insufficient to allow GRB production. For Z = 0.00001, the pair-instability might occur to the right side of the GRB production region (see Heger
et al. 2003), although the rapid rotation may shift the pair instability region to larger masses. The dashed line in the region of non-homogeneous
evolution separates type II supernovae (SN II; left) and black hole (BH; right) formation, where the minimum mass for BH formation is simply
assumed to be 30 M, (see, however, Heger et al. 2003, for a comprehensive discussion on the issue).

retained in the core than in the corresponding cases with fast
semi-convection (compare T30f0.4h, T30f0.5h and T30f0.6h
with B30f0.4h and B30f0.5h), thus moving the upper limit for
GRB production at Z = 0.001 to larger initial masses.

In conclusion, slower semi-convection shifts both the lower
and upper initial mass limits for GRB production, to higher
values: for Z = 0.001, the mass range of GRB production is
12 My < My < 30 Mg with asgy = 1.0, and 20 My < My <
40 Mg with asgy = 0.04. In addition, GRB progenitors have
a more massive helium envelope for slower semi-convection, on
average.

4. Model grids and the final fate of massive stars

With our fiducial assumptions described in Sect. 2, stellar model
sequences are calculated, for various initial masses (12 <
M /My < 60) and rotational velocities (0.0 < vy /g S
0.8), and at 4 different metallicities (Z = 0.004, 0.002, 0.001
& 0.00001). Most sequences are followed until central car-
bon exhaustion or further. Model properties are presented in
Tables 4-7. In those tables, the sequences which undergo the
quasi-chemically homogeneous evolution are indicated with “h”

99

in the sequence number, while “n” is the corresponding label for
normal evolution. Here, a sequence is defined as evolving quasi-
chemically homogeneously when the star becomes a WR star
with Y5 > 0.7 during core hydrogen burning.

Based on the numerical results, we summarize the expected
final fate of our models for each metallicity in the plane spanned
by the initial mass and the initial fraction of the Keplerian value
of the equatorial rotational velocity in Fig. 3.

As discussed by Maeder & Meynet (2000), the time
scale of Eddington-Sweet circulations is proportional to
Kelvin-Helmholtz time scale (#xy) at a given ratio of the
rotational velocity over the Keplerian velocity (i.e. tgs o
txu(vk/vro)?). The Eddington-Sweet circulations are generally
not spherically symmetric, and only their interaction with the
baroclinic instability — which is essentially horizontal, and acts
on the dynamical time scale — allows to pursue the computa-
tion of one-dimensonal rotating models (cf. Heger et al. 2000).
Le., the adoption of the isobaric surfaces as coordinate sys-
tem implies an instant horizontal homogenisation of the chem-
ical composition. A non-linear treatment of the interaction of
the Eddington-Sweet circulations and the baroclinic instabil-
ity with the magnetic fields is desirable, but not available yet
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(Maeder & Meynet 2005). This is to be kept in mind in the fol-
lowing discussion.

The Kelvin-Helmholtz time scale of main sequence stars
decreases with increasing mass (Fig. 4). Although the hydro-
gen burning time (fys) also becomes smaller for higher initial
masses, fxy usually decreases more rapidly than #ys in more
massive stars, as shown in Fig. 4. This tendency is, in part, re-
sponsible for more efficient chemical mixing in higher mass stars
(cf. Maeder & Meynet 2000). In addition, the entropy barrier be-
comes weakened in more massive stars due to the increased role
of radiation pressure. These two effects result in more efficient
mixing in higher mass stars, at a given uviy,;/vk. This explains
why the threshold value of vj,;;/vk for chemically homogeneous
evolution (:=(vinit/VK)erit,cuev) decreases with increasing initial
mass, at a given metallicity.

Stars become significantly more compact as the metallic-
ity becomes lower, while the change in luminosity is small.
The thermal time thus increases with decreasing metallicity as
shown in Fig. 4, and the diffusion coeflicient for the chemical
mixing by Eddington-Sweet circulations (Dpix gs) decreases ac-
cordingly. However, the value of (vinit/ UK )erit.cHev remains to be
nearly the same for all considered metallicities (Fig. 3), instead
of increasing with decreasing metallicity. This can be ascribed to
the following two factors. Firstly, the chemical mixing time itself
(=R?/Dpyx) does not significantly change with decreasing metal-
licity, due to the reduced stellar size. Secondly, the spin-down
effect due to stellar wind mass loss becomes more important in
stars at higher metallicity, which tends to slow down the chem-
ical mixing. The latter becomes particularly important at solar
metallicity (Z = 0.02), and (vinit/Vk)erit.cupv largely increases
compared to the sub-solar metallicities considered in the present
study (cf. YLOS).

The regions of GRB production in Fig. 3 are determined ac-
cording to the amount of angular momentum in the CO core
of the corresponding models (cf. Sect. 2). In stars which un-
dergo chemically homogeneous evolution, the CO core is spun
down mainly by two factors: stellar wind mass loss and mag-
netic core-envelope coupling. At Z = 0.004, angular momen-
tum loss due to WR winds is so significant that the cores of
the corresponding models retain only about 20% of the neces-
sary angular momentum to produce a GRB. For lower metal-
licities (Z = 0.002,0.001, and 0.00001), the lower limit of the
initial mass for GRB production is largely determined by the
coupling between the helium envelope and the CO core by mag-
netic torques during the CO core contraction, as the ratio of the
helium envelope mass to the CO core mass becomes larger for
lower initial masses (see Tables 5—7). The upper limit of the
initial mass for GRB production is mainly determined by the
WR wind induced spin-down, for the cases of Z = 0.001 and
0.002. At Z = 0.00001, on the other hand, the rapidly rotating
stars with M 2 60 M, form CO cores of M 2 40 M, which
may be unstable to the pair instability (cf. Heger et al. 2003).
The precise CO core mass limit for the pair instability must be
a subject of future study, as it may increase with higher core an-
gular momentum (Glatzel et al. 1985).

The prediction for GRB production in Fig. 3 is based on the
assumption that GRBs are expected if any part of the CO core
has a higher specific angular momentum than j; so, as explained
in Sect. 2. If we require instead that the innermost 2—-3 Mg
should have a specific angular momentum higher than jso,
GRBs are expected only at Z < 0.001 according to our mod-
els. However, if the critical angular momentum for GRB pro-
duction is reduced to about 80% of jiso, €.g., by the effect of
magnetic fields, the expected GRB progenitor regions in Fig. 3
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Fig. 4. Top: Kelvin-Helmholtz time (txy) of non-rotating stars at zero-
age main sequence as a function of initial mass, at different metallicities
as indicated by the labels. Middle: evolutionary time for core hydrogen
burning (t\vs) of non-rotating stars as a function of initial mass. Bottom:
the ratio txy /fys multiplied by 1000, as a function of initial mass.

do not change significantly even if we only consider the inner-
most 2—3 M, region.

The Wolf-Rayet types of GRB progenitors in Fig. 3 are de-
termined according to the surface abundance of nitrogen, car-
bon and oxygen: WC (WN) stars are defined as WR stars with
XN < Xc (XN > Xc). We find that for our models, this criterion
for WN and WC is comparable to that adopted by Eldridge &
Vink (2006; WC if X¢ + Xo > 0.03; see Tables 5 and 6). Some
GRB progenitors at Z = 0.001 and 0.00001 are WO stars, which
are defined as Y; < X¢+Xo (see Tables 6 and 7; Eldridge & Vink
2006). Interestingly, some GRB progenitors are predicted to be
WN stars with a rather thick helium envelope (AMy. = 2.0 My,).
Although a very high initial rotation velocity (v /v = 0.4) is
required to produce such WN type GRB progenitors as they are
mostly from relatively low mass stars (Mj,; < 25-30 My; see
Fig. 3), some supernovae accompanied by long GRBs are ex-
pected to be of type Ib.

In Table 8, the evolution of core angular momentum and
magnetic fields is illustrated for GRB progenitor models with
My = 25 M, at different metallicities. The numbers show
a clear trend to stronger fields for lower metallicity, where the
core rotation is faster. The obtained field strengths are up to
two orders of magnitude larger than those obtained in the so-
lar metallicity models of Heger et al. (2005). This might imply
a stronger effect of magnetic fields in gamma-ray bursts at lower
metallicity.

5. The GRB rate throughout the cosmic ages

Within the CHES, the fraction of massive stars which forms
a long GRB depends on the distribution function of initial
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Fig.5. Upper panel: cumulative distribution of the fraction of the
Keplerian value of the observed rotational velocity (i.e., vsini) of un-
evolved young stars in NGC 346 in small Magellanic clouds. The
data are from Mokiem et al. (2006). The dotted-dashed, solid, and
dashed lines are the best fits of synthesized distribution functions using
three different distribution laws: beta, gamma and Maxwellian, respec-
tively. Here we assume that stellar rotation axes are randomly oriented.
Lower panel: the corresponding probability density function, as given
by Ppew(x;0 < x < 1) = Fr(g')lfg)(l — x)1x*! with @ = 1.25 and
B = 4.95 (Beta distribution), Pgamma(x; x > 0) = %x"" exp(—Ax) with
A =995 and v = 2 (Gamma distribution), and Pyjawen(x; x > 0) =
A7 ()7 exp(—x2/x2) with v, = 0.1195 (Maxwellian). Here T'(x)
denotes the gamma function.

stellar rotation velocities, D(vinic/vk). We derive D(vjpi/vk) from
the stellar parameters of young O stars in the SMC cluster
NGC 346 as measured by Mokiem et al. (2006; Fig. 5). NGC 346
is particularly suited due to its young age (2—4 Myr), and low
(SMC) metallicity, which renders potential angular momentum
loss due to O star winds unimportant. As proto-stellar winds
could play an essential role in the formation of massive stars,
D(vinit/vk) might be a function of metallicity and stellar mass.
Howeyver, in lack of better observational constraints, we assume
it to be constant for all considered metallicities and masses.

Figure 6 shows the predicted metallicity-dependent num-
ber ratio of GRBs versus core-collapse event (:=fgrg/sn), Us-
ing different adopted distribution functions for D(viy;/vk). Here
we employ a Salpeter initial mass function (IMF). As also im-
plied by Fig. 3, the GRB/SN ratio increases with decreasing
metallicity. For the polynomial fits in the figure, we assumed
Jfore/sn — 0 at Z = 0.004, as our models at Z = 0.004 have
a too low spin to produce collapsars, while a significant number
of GRBs is still expected at Z = 0.002. At very low metallic-
ity (Z < 107°), the upper mass limit for GRB production is not
determined by the spin-down due to stellar winds, but by the
CO core mass beyond which the star is susceptible to the pair
instability. Therefore, fgrp;sn at Z < 1073 is not expected to

205

0.06

:

0.05

GRB/SN
o
o
w

0.02

0.01

\
\
OAOO\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\“LJ;
-55 -50 -45 -40 -35 -3.0 -25
log Z

Fig. 6. The predicted number ratios of GRB progenitors over all massive
stars (8§ My, < M < 100 M) as a function of metallicity, obtained
by folding the three different adopted distributions of v;,;/vx as given
in Fig. 5 with the results of the stellar evolution grids as displayed in
Fig. 3. The connecting lines are polynomial fits.
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Fig. 7. Ratio of GRB versus core collapse supernova rate as a function
of redshift, according to our GRB progenitor models. Note that the plot-
ted ratio is independant of the adopted star formation history.

significantly differ from fgrp/sn at Z = 107>. We thus assumed
forBysn to be constant at Z < 107,

In Fig. 7, we show fcrp/sn as a function of redshift, which
is estimated using the gamma-fit for D(vjni/vk) and the cosmic
metallicity evolution model used by Langer & Norman (2006).
Our model predicts fGrp/sn = 8 X 1074 locally, and fGre/sn =
5 x 1073 globally, which are consistent with estimates based on
observations (e.g. Podsiadlowski et al. 2004).

We also estimate the perceived GRB and core-collapse su-
pernova rates in Fig. 8, following Langer & Norman (2006).
Remarkably, comparison with the rate of core-collapse super-
novae clearly indicates that the GRB rate according to the
CHES does not follow the average cosmic star formation history
(cf. Langer & Norman 2006). The observed SN and GRB rates
are expected to peak at redshifts of z ~ 1.8 and z ~ 2.8, re-
spectively. Our model also predicts a higher fraction of GRBs at
high redshifts (i.e., more than 20% at z > 6; more than 50% at
z > 4), than previous theoretical estimates (Natarajan et al. 2006;
Bromm & Loeb 2006). This is because we do not consider the
instrumental detection limit here, and because GRB progenitors
are limited to metallicities below Z = 0.004 according to our
model.

In Fig. 9, we present the perceived GRB rate as a func-
tion of both metallicity and redshift. Assuming all GRBs are
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Fig. 8. Upper panel: perceived supernova and GRB rate as function of
redshift on an arbitrary scale, according to our GRB progenitor mod-
els, and for the specified cosmic metallicity evolution. The GRB rate
is multiplied by a factor of 187.48, which is the perceived average ra-
tio of SNe to GRBs in the universe, according to our models. Lower
panel: perceived cumulative number of SNe and GRBs as function of
redshift. The GRB number has been multiplied by a factor of 187.48.
The Y-scale is arbitrary but the same for both curves.

observable, the highest probability to find a GRB is located
around Z ~ 0.002 and z ~ 3. A rather high probability to de-
tect a GRB persists to the corner of Z =~ 1073 and z = 6,
as our GRB progenitor models predict a higher GRB/SN-ratio
for lower metallicity (Fig. 6). Future Swift observations will be
a strong test to the predictions of our models (cf. Jakobsson et al.
2006).

6. Observational implications

The CHES predicts an evolution for metal-poor rapidly rotat-
ing massive stars which drastically differs from the commonly
accepted evolutionary picture: instead of forming an onion-skin
structure and evolving to larger radii, stars avoid a chemical lay-
ering and only become more compact in the CHES evolution.
Two things should be done before accepting the such extreme
difference in evolution may indeed exist in nature: to elaborate
all potential observable consequences, and then to rigorously
test these predictions. In the preceding sections, we have worked
out one of the most striking observational consequences of the
CHES: the production of long GRBs, and their rate and metallic-
ity at various redshifts. However, the CHES has more important
implications.
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our GRB progenitor models and for the specified cosmic metallicity
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6.1. GRB observations

Concerning long GRBs, one of the most important prediction
of the CHES is that of a strong bias of GRBs to low metallic-
ities. While this is an inherent prediction of the collapsar sce-
nario (see MacFadyen & Woosley 1999) due to the inescapable
angular momentum loss by Wolf-Rayet winds which is stronger
at higher metallicity (Vink & de Koter 2005), the CHES mod-
els allow to quantify this. Our present calculations imply that
GRBs in the CHES frame should be restricted to metallicities
below Z =~ 0.004. It is important to point out this limit should
apply to the abundance of iron, since this is the most important
metal for wind driving in hot stars for not too small metallicities
(Z 2 0.0002; Vink & de Koter 2005).

The estimated metallicity of some GRB host galaxies ap-
pears to be higher than this limit. For instance, the host galaxy
of GRB 980425 has a metallicity of ~0.5 Zg, which corresponds
to Z = 0.006—-0.01 depending on the value of Z; (although
the region where GRB 980425 actually occurred within this
galaxy appears to have a lower metallicity; Hammer et al. 2006).
However, as discussed in Sect. 3.2, the Wolf-Rayet mass loss
rates constitute still a major uncertainty of the models. The dis-
cussion of the effect of wind clumping on these mass loss rates
is ongoing, and a further reduction of the mass loss rates is far
from excluded, which would result in an increase of the limiting
metallicity for GRB production within the CHES. Future quan-
titative studies of stellar winds from rotating WR stars will be
particularly important for better constraining the upper metallic-
ity limit for single star GRB progenitors.

The CHES models from the grid provided in this paper also
allow to predict the distribution of initial and final masses of
GRB progenitors. With the distribution of rotational velocity
given by Fig. 5, most GRB progenitors according to our mod-
els are predicted to have initial masses of about 25 ~ 30 M on
average. This is significantly higher than average initial mass of
core collapse supernovae, and may be relevant to the recent find-
ing by Fruchter et al. (2006) that GRBs preferentially occur in
brighter regions of their host galaxies than normal core collapse
supernovae. The amount and distribution of angular momentum
in the core of GRB progenitors, their final masses, their surface
abundances, and their mass loss history — all things provided by
the presented model grid (cf. Tables 5-7) — have important impli-
cations for GRB observations (e.g., van Marle et al. 2005, 2006).
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For instance, GRB progenitors at lower metallicity should have,
on average, higher angular momentum and stronger magnetic
fields in the core, as discussed in Sect. 4, which might lead to
more energetic GRBs at high redshifts. Our models also show
that some GRB progenitors have a thick helium envelope, which
may be associated with type Ib supernovae, rather than type Ic.
We will discuss these important issues in a forthcoming paper in
more detail (Cantiello et al., in preparation).

6.2. Hypernovae

The models presented in Sect. 4 and in Tables 5-7 predict a con-
tinuum of final core angular momenta, reaching from values of
several times those required for collapsar formation down to val-
ues which are more than one order of magnitude below this (and
are consistent with the spins of young neutron stars). Core angu-
lar momenta in the vicinity of, but below, the collapsar threshold
may still cause considerable effects at the time of iron core col-
lapse. It will be interesting to investigate which fraction of the
CHES models are in that range, what their masses and metal-
licities are, which fractions form neutron stars and black holes,
and to compare this with the observed properties of hypernovae
(Nomoto et al. 2005).

6.3. Early universe

Our models with Z = 0.00001 imply that GRBs could also
be produced abundantly from very metal poor populations, in-
cluding the first stars in the universe, if some of them are born
with large enough angular momentum. Although the probabil-
ity to detect GRBs from Population III stars is limited by the
limited number of Pop III stars (Wise & Abel 2005; Bromm &
Loeb 2006), their progenitors may significantly affect the evo-
lution of the early universe. The feature that the CHES models
evolve to higher surface temperature already during core hydro-
gen burning, and have very high effective temperatures (up to
200000 K; cf. YLOS) later on. A detailed study of rapidly rotat-
ing Pop III stars in the context of the reionization of the universe
may thus be a subject of interesting future work.

6.4. Chemical evolution

Quite obviously, the chemical yields of stars evolving within the
CHES are quite different compared to the usual case. For in-
stance, the metal cores of these stars are much larger compared
to those of stars which evolve conventionally. However, addi-
tionally, the strong rotationally induced mixing triggers the for-
mation of isotopes which are considered as secondary through
primary nucleosynthesis. Most markedly, nitrogen can be en-
hanced by huge factors in this way, as demonstrated by the sur-
face abundances of nitrogen displayed in Tables 5-7. Recently,
Chiappini et al. (2006) found strong primary nitrogen produc-
tion in rotating very low metallicity massive star models. The
models presented here may show an even stronger enhancement
of the nitrogen yield. This may be related to observations of ex-
tremely metal-poor halo stars in our Galaxy, as well as nitrogen
abundances in metal-poor galaxies.

6.5. Young star clusters

The obvious place for testing massive star evolution models
is young star clusters. The problem with doing this for the
CHES requires to find young clusters which have a low enough
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metallicity to allow for significant CHES effects. The only obvi-
ous cluster in this respect is NGC 346 in the SMC. Bouret et al.
(2003) and Mokiem et al. (2006) find indications of the CHES to
be realized for some stars in this cluster; however a more thor-
ough investigation of this point appears worthwhile.

It should be noted that the CHES might not be irrelevant
at larger metallicity. Although the increased main sequence
winds disallow for chemically homogeneous evolution through-
out, an incomplete CHES might apply: the most rapid rota-
tors might undergo quasi-chemically homogeneous evolution for
a fraction of their main sequence life, until the wind induced
spin-down allows for the built-up of a chemical barrier inside the
star. From that time on, the star would follow the standard evolu-
tionary picture, i.e. form a core-envelope structure, but the enve-
lope will the be already considerably enriched in CNO-burning
products (cf. Maeder 1987; Langer 1992).

6.6. Metal-poor star forming galaxies

It is also interesting to note that our results presented in Fig. 3
suggest a different formation channel of WR stars at low metal-
licity. Traditionally, stellar wind mass loss has been regarded as
the unique WR formation mechanism from single star progeni-
tors. In particular, recent work by Meynet & Maeder (2005) in-
dicates that in their rotating models without magnetic torques,
the mass loss rate increases dramatically during the giant phase
due to the surface enrichment of CNO materials induced by the
shear instability, as a strong degree of differential rotation be-
tween the helium burning core and the hydrogen envelope per-
sists. As a consequence, their models could predict a number
ratio of WR to O stars consistent with observations, while non-
rotating stellar models predicted too few WR stars, especially at
low metallicity.

In our models with magnetic torques, strong shear mixing
does not occur, as the degree of differential rotation is sig-
nificantly weakened due to the magnetic core-envelope cou-
pling. Therefore, if magnetic torques are important (cf. Sect. 1),
CHES evolution may be the essential way to form WR stars
at low metallicity. Our models at Z = 0.004 indicate that the
WR/O ratio could reach a few percent at this metallicity for
constant star formation, which is compatible with the observed
WR/O ratio in SMC. Although the WR/O ratio may increase
at higher metallicity due to the increased role of stellar winds,
it is not expected to decrease for lower metallicity even down
to Z = 0.00001, as most WR stars are produced through the
CHES channel at Z < 0.004. This could explain observation-
ally implied high WR/O ratios in metal poor WR galaxies (e.g.
Fernandes et al. 2004; Crowther & Hadfield 2006) as well as in
some metal-poor GRB host galaxies (Hammer et al. 2006).

7. Conclusions

Within the quasi-chemically-homogeneous evolution scenario
(CHES) for GRB progenitors (YL05; WHO06), we investigate the
dependence of the GRB rate on metallicity and redshift, for the
first time based on a grid of detailed massive star evolution mod-
els which include differential rotation and magnetic torques. We
summarize our results as follows.

1. If the quasi-chemically homogeneous evolution scenario
(CHES) provides the major channel for GRB production,
most GRBs should occur at low metallicity. Our models pre-
dict a metallicity threshold of Z < 0.004, which is, however,
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subject to uncertain Wolf-Rayet mass loss rates. A reduc-
tion of the Wolf-Rayet mass loss rates, as currently discussed
in the context of wind clumping, would lead to an increase
of the metallicity threshold for GRB production through the
CHES. Recent observations seem to imply that long GRBs
may indeed prefer low metallicity environments, but quanti-
tative comparisons are still difficult. A low-metallicity bias
implies that GRBs are not an unbiased tracer of star forma-
tion (Fig. 8; Langer & Norman 2006).

2. The number ratio of GRBs to core-collapse supernovae as
predicted by the CHES increases with decreasing metallic-
ity (Figs. 3 and 6), as the Wolf-Rayet mass loss from quasi-
chemically-homogeneously evolving stars becomes weaker.
As a consequence, the CHES predicts a rather high GRB rate
even at very low metallicity (Z < 0.001) and at high redshifts
(z > 6; Figs. 8 and 9). For a standard cosmology (Qy = 0.3,
Qpn = 0.7), GRBs at Z ~ 0.002 and z ~ 3 will be most
commonly observed. These predictions need to be tested by
future observations.

3. Our models predict that at least some supernovae associated
with GRBs should be of type Ib, which may be an interesting
future test case for the CHES.

4. The CHES predicts a number ratio of GRBs versus core-
collapse supernovae of about 8 x 10~* in the local universe,
and about 5 x 1073 in an unbiased sample throughout the
universe. These numbers may suffice to account for the ob-
served number of GRBs, and may not require to invoke ex-
otic binary evolutionary channels to produce long GRBs, as
discussed by Langer & Norman (2006).

5. Before being accepted, the CHES needs to pass a number
of observational tests (cf. Sect. 6), each of which deserves its
own careful investigation. Those refer to properties of GRBs,
their associated supernovae or circumstellar media, hyper-
nova properties, chemical signatures in metal poor stars or
galaxies, and the stellar content of young metal poor star
clusters and metal poor star forming galaxies.
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Table 8. Evolution of central temperature (7..) and density (o.), mean toroidal and radial magnetic fields ((B)s & (B),) and mean specific angular
momentum ((j)) of the innermost region (1.4 M, and 3.0 M) in selected sequences (S25f0.6h, A25f0.5h, B25f0.5h & C25f0.5h).

Evolution Stage T. log pc (D14 Mo (Bp)iamo  (Bohra mo (J)3.0 Mo (Bg)soms  {Br)3oms
[10*K] [em’g'] [10"5 cm?s™'] [G] [G] (105 cm? 5] [G] [G]
— S25f0.6h —
He exhaustion 5.4 3.92 2.25 444 x 10°  2.03 x 10? 4.05 6.05x 10° 2.25x%10%
C exhaustion 14.9 6.12 1.76 8.15x 107  1.92x10* 3.27 753 %107  1.56 x 10*
O exhaustion 26.2 7.16 1.77 427 %10 8.78 x 10* 2.95 3.67 x 108 6.80 x 10*
— A25f0.5h —
He exhaustion 53 3.85 7.69 7.10 x 10°  4.49 x 10? 13.6 9.60 x 10° 4.92 x 10?
C exhaustion 14.6 5.95 5.21 1.84 x 10 5.66 x 10* 9.99 2.04%x 10  5.52 %10
O exhaustion 27.0 7.02 5.13 1.17x10° 421 x10° 9.46 1.46x10° 591 x 10°
—B25f0.5h —
He exhaustion 4.2 3.51 11.5 4.17x10°  3.21 x 10? 20.3 578 x 10°  3.59 x 10?
C exhaustion 14.4 5.89 6.94 223 %108  7.41x10* 13.3 247 x 108 7.19 x 10*
O exhaustion 27.4 7.06 6.55 221x10°  1.35x10° 12.1 2.60x 10°  1.75x 10°
— C25f0.5h -
He exhaustion 5.14 3.76 22.2 1.51 x10° 1.26 x10° 39.0 2.08 x 10° 1.40x10°
C exhaustion 14.2 5.77 11.5 295%x 108  1.11x10° 22.0 339%x 108 1.14x 10°

O exhaustion 30.9 7.03 10.0 4.69x10°  5.20x 10° 19.2 6.52x10°  8.49 x 10°




