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Single Step Galerkin Approximations
for Parabolic Problems

By Garth A. Baker, James H. Bramble and Vidar Thomée

Abstract.   In this paper we construct and analyze classes of single step methods of

arbitrary order for homogeneous linear initial boundary value problems for parabolic

equations with time-independent coefficients.   The spatial discretization is done by

means of general Galerkin-type methods.

1.   Introduction.  In this paper we shall consider the approximate solution of the
initial boundary value problem

Dtu = -Lu=   52   dx~(ajk faT) ~ aou    in ß x (°> t*] ■

(1.1)
uix, 0 = 0        on 9Í2 x (0, t*],

u(x, 0) = v(x)    for x E Í2.

Here ii is a bounded domain in RN with sufficiently smooth boundary 3Í2, a-k and a0
are sufficiently smooth functions which are independent of r, the matrix (a-fe) is sym-
metic and uniformly positive definite and a0 is nonnegative on Ù.  All functions con-
sidered are real valued.

In Bramble, Schatz, Thomée and Wahlbin [3] the discretization of this problem
in the space variables was considered by means of Galerkin's method, using a family
{Sh} of finite element spaces with certain approximation properties, thus replacing (1.1)
by an approximating system of ordinary differential equations in time.   Special empha-
sis was placed on deriving optimal order error estimates for time bounded away from
zero, under weak regularity assumptions on the initial data.   This pursued a point of
view taken previously in Blair [1], Helfrich [8] and Thomée [12] (cf. [3] for further
references on semidiscrete Galerkin methods).

In the present paper the purpose is to study discretization also of the time vari-
able.   In particular, we shall formulate single step (in time) completely discrete schemes
based on the above discretization in space and prove estimates analogous to those of
[3] for such schemes.

In order to describe our investigations, let {X}" and {W}" be the eigenvalues
(in nondecreasing order) and (Z,2 orthonormal) eigenfunctions of the operator L (with
boundary values zero).   For s real we let Hs = Hsi£l) denote the space of functions
w E L2 for which (with ( • , ■ ) the inner product in Z2(Í2))
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SINGLE STEP GALERKIN APPROXIMATIONS 819

Mt= (z^(w,^.)2y/2<oo

Recall that for s > 0, in order that w E Hs, it is required not only that w E HS(Q) =
W^iQ) but also that certain boundary conditions be satisfied (cf. [4]).   For s = 0 we
shall normally omit the subscript and denote the norm in L2 = L2(Sl) by || ■ ||.

Now let T be the solution operator of the elliptic problem

Lw = f   in SI,      w = 0    on 9Í2,

so that

Tf=Y,\f1(f, vfoi
This operator is a bounded operator from Hs into Hs+2.  In terms of T we can write
the parabolic problem (1.1) as

DtTu +u = 0    for 0 < t < t*,      u(0) = v,

and its exact solution as

(1 -2) u(t) = X e~ %, rçfy = exp(-tL)v.
/

For the purpose of discretizing this problem in space, let {Sh} (h small and
positive) be a family of finite dimensional subspaces of L2.  As in [3] we shall assume
that we are given a corresponding family of operators Th: L2 —> Sh with the proper-
ties:

(i)  Th is selfadjoint, positive semidefinite on L2 and positive definite on Sh ;
(iia)  There is a positive integer r > 2 and a constant C such that

11(7; - Dull < Ot" + 2 Hull,    for 0 < q < r - 2,

or, in some cases, alternatively,
(iib)  There is a positive integer r > 2 and a constant C such that

11(7; - 7>ILp < ChP + « + 2\\v\\q    for 0 < p, q < r - 2.

We then consider the semidiscrete problem:   Find uh(t) E Sh such that

DtThuh(t) + un(t) = 0    for 0 < t < t*,

uh(0)=PovESh,

where P0 denotes the projection onto Sh in L2(£L).  Introducing the inverse Lh = T^1
of Th on Sn, this can also be written

Dtuh(t) + Lhun(t) = 0    for 0 < t < t*,      uh(0) = P0v.

In analogy to (1.2), its solution admits the representation

(1.3) uh(0 = L e~tA'(v, *y.)*y = exp(-tLh)P0v,
i

where {A-} and {<!>,■} are the eigenvalues and eigenfunctions of Ln.   Notice that the
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820 GARTH A. BAKER, JAMES H. BRAMBLE AND VIDAR THOMEE

A- are the inverses of the positive eigenvalues of Th.
An important feature of this formulation is that it encompasses several different

procedures for dealing with the homogeneous boundary condition (cf. [3]).
In [3], assuming (i) and (iia) above, it was first proved, by the energy method,

that

(1.4) \\uh(t) - u(t)\\ < Chs\\v\\s,      0<s<r,

uniformly on (0, t*].  It was then shown by means of spectral representations that

(1-5) \\un(t)-u(t)\\<ChTr'2\\v\\,

so that the error is in fact of optimal order in h for t bounded away from zero, even
with v only in L2.   After that, estimates also in maximum norm were derived provided
such estimates were known for the stationary problem.  These results thus extended to
the present level of generality results known before in special cases (cf. the references
in [3]).   Further, particular estimates were obtained for the case in which uh satisfies
the interior equation

(Dtuh,x)+A(uh,X) = 0,  VXG5°(S20),

where S°h(Sl0) denotes the elements of Sh with supports in Í20 and

(1.6) A(v, w) = fJZ ajk §-$*- + a0vw^ dx,

and where the elements of Sn are assumed to satisfy a condition of translation invari-
ance on Í20.   Specifically, it was shown that arbitrary spatial derivatives of u can be
approximated to optimal order in the interior of Í20 by difference quotients of uh and
finally that by applying the averaging process of Bramble and Schatz [2], superconver-
gent 0(h2r~2) approximations can be defined provided the assumption (iib) holds.

We now turn to the purpose of the present paper, the construction and analysis
of single step arbitrary order completely discrete schemes for the parabolic problem

(1.1).
The discrete approximations U", n = 0, 1,... , to the exact solution u(t) of the

parabolic problem at t = nk, with k the step size in time, will be defined in terms of
a rational approximation rij) to the exponential e~T by the recursion formula

Un + 1 =r(kLh)Un,      n = 0, 1, . . . ,nk<t*,
(1.7)

U° = Z>

The rational functions employed will be assumed to satisfy, for some v > 1,

(1.8) rij) = e~T + 0(tv+1)   asr^O,

which will signify that the accuracy in the time discretization is of order v.  In addition
they will be classified according to their behavior on the positive real line.   In particu-
lar, r(k\) will have no pole for X an eigenvalue of Lh, so that (1.7) defines U" uniquely
as an element of 5,,.
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Since Th rather than Ln is considered given, it is sometimes convenient to express
r(kLn) as a rational function of Th, or equivalently, to consider the rational function
r(k/p) of p.  Assuming that this function has the form

r(k/ß) = a0Y[(p.-ßj)k{(p-yj),

the recursion formula (1.7) for U" may be written

Wh-yj)U"+l =a0[kTh-ßi)Un.
i i

Hence, in order to determine Un + 1 from U", with Tn given, it is sufficient to solve a
sequence of equations of the form

(1.9) (cxTh + ß)W = (yTn + 8)V,

for IV, with V given.   Here, although U" and Un + 1 are both real, a, ß, y, 5 and hence
also V and W may be complex valued, with Thf defined for complex /by linearity.   In
applications, Th is often defined by means of a positive definite bilinear form (cf. [3,
Section 8]),

Bh(Thf,x) = (f,X),   VXGS,.

In this case, (1.9) takes the form

oc(W, x) + ßBh(W, X) = y(V, X) + f>Bh(V, x),  Vx e S„.

We will return below to convenient choices of such rational functions.
Under our different assumptions on the time discretization schemes, to which we

shall return presently, we shall derive error estimates corresponding to the ones quoted
above for the semi discrete situation.  The analysis relies on the fact that similarly to
uh(t), U" can be represented in terms of the discrete eigenfunctions and eigenvalues as

O-10) U" = r(kLh)"P0v = Z KfcA,.)>, $,)<!>,..
/

Notice in particular that the scheme (1.7) will be stable in L2 if max-KfcA)| < 1; we
then immediately find by Parseval's relation that

(1.11) lililí < ll/V>H < IMI.
This condition will be satisfied for all schemes employed below.

We shall now describe our estimates.  In Section 2, we derive such estimates in
L2.   First we prove the analogue of (1.5) which reads

(1.12) Hi/" - u(nk)\\ < C(hTr/2 + kvrv)\\v\\,     0<t = nk<t*.

The proof of this estimate is based on the eigenfunction expansions (1.2) and (1.3).
After that we derive an analogue of (1.4) for smooth data,

(1.13) ||t/" - u(nk)\\ < C(hr\\v\\r + k"\\v\\2v).
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822 GARTH A. BAKER, JAMES H. BRAMBLE AND VIDAR THOMEE

In contrast to the semidiscrete case this latter estimate is now a consequence of the
estimate for nonsmooth data and the following representation of smooth initial data,
namely

V=Z  T'h(T-Th)L'+1v + TvhLvv.
/=0

Section 2 also contains estimates for less smooth data which are uniform for small t
but not of the highest order 0(hr + kv), as well as estimates for approximations to
time derivatives.

In Section 3 we derive the analogue in the completely discrete case to the maxi-
mum norm estimates of [3].  Section 4 is devoted to interior estimates on regular ele-
ments for difference quotients.   It is shown here how arbitrary derivatives of u can be
approximated to optimal order 0(hr + kv) by difference quotients of Un, and also that
(for Tn satisfying (üb)) the effect of the Bramble-Schatz averaging operator is not
spoiled by time discretization so that 0(h2r~2 + kv) approximations can also be
found.

After giving examples, in Section 5, of specific rational functions satisfying our
assumptions, we conclude the paper by deriving in Section 6, L2 error estimates for
schemes using successively a finite number of different choices of rational functions,
time steps and approximating function spaces, and also for schemes using initial data
other than P0v.

We now turn to the classification of the discretization in time.  First, the rational
approximations to e~T are said to be of types I, II, III or IV, respectively, if

I:   \r(r)\ < 1 for 0 < r < a, for some a > 0;
II:   \r(T)\ < 1 for t > 0;

III:   supT>8 \riT)\ < 1 for all 8 > 0;
IV:   Kt)| < 1 for r > 0 and limr_>„.i<T) = 0.

Notice that these conditions are successively more restrictive.
The discretization scheme (1.7) is now classified by these conditions on rij),

assuming always the conditions (i), (iia) placed previously on Th (when (iib) is needed
this will be explicitly stated).  In certain cases, we shall need to impose, in addition,
restrictions on the relation between the parameters h and k occurring in (1.7).  More
precisely, we shall say that the scheme is of type I', II' or III' if, with Amax the maxi-
mal eigenvalue of Lh,

I':  ríj) is of type I and kAmax < a0 for some a0, 0 < a0 < a:;
II':  fir) is of type II and &Amax < a, for some a,, 0 < ax < °°;

III': r(r) is of type III and k?Amax < as for some as, 0 < as < °°,
and s> I.

A scheme of type III or IV will simply be one for which iij) is of type III or IV,
respectively, with no restriction on the relation between k and Amax.

Notice that for schemes of types I' and H', setting r0 = cx0 and a,, respectively,
we have 0 < k\ < t0 for X in ah, the spectrum of Lh, and hence KfcX)| < 1 for
X G q. so that, in fact,
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SINGLE STEP GALERKIN APPROXIMATIONS 823

\rik\)\ < e~ckX    for X G an, with c > 0.

This fact will be used repeatedly in the proofs.
In order that the condition fcAmax < t0 be satisfied it is sufficient that

(1-14) Ama* < IV"2,

and that the mesh ratio condition k/h2 < t0/k0 hold.   For schemes of type I' this is
analogous to the mesh ratio restrictions necessary for explicit difference schemes
whereas for schemes of type II' this mesh ratio is only required to be bounded above.
For the standard Galerkin method, for example, (1.14) would follow from an inverse
assumption

11x11, <C7T1|lxll0. vxes„.

The condition for schemes of type III' would be satisfied if Amax < n0h    ° holds
and k/h l is bounded, with a0 and a, arbitrary positive (s = a0/ox).

Of the results quoted above for nonsmooth data, the L2 estimate (1.12) is proved
for schemes of types f, II' and III, the maximum-norm estimates for schemes of types
I', II', III' and IV, and the interior estimates for difference quotients for types i', II'
and IV.  The estimate (1.13) for smooth data holds for schemes of types I' and II.

Particular fully discrete Galerkin methods for parabolic problems have been
treated in the literature by various authors.   For instance, using energy methods and
assuming a smooth solution, Douglas and Dupont [6], Dupont [7] and Wheeler [14]
considered the Crank-Nicolson scheme, Zlámal [15] the so-called Calahan scheme (see
below) and Crouzeix [5] schemes based on implicit Runge-Kutta methods for ordinary
differential equations.   Further, a theory for schemes employing general rational func-
tions, allowing also subspaces with elements not necessarily satisfying the boundary
conditions, was developed in Bramble and Thomée [4].   Except for the case of ratio-
nal functions with numerators and denominators at most linear, these schemes are dif-
ferent from the ones studied here.   The case of nonsmooth data was considered in
Blair [1] for the simplest backward difference method in time and in Thomée [12],
where classifications of the above types and techniques similar to the ones of the pres-
ent paper were employed in one space dimension.  The third author wishes to point
out that the proof of the main result concerning completely discrete schemes with
nonsmooth data in [12] (Theorem 4.2) is incorrect, in that the analysis relies on an
eigenfunction expansion of the form (1.10) and hence pertains to the appropriate
special case of the presently studied scheme (1.7), rather than to the scheme proposed
in [4].

Let us emphasize again that our formulation and analysis here only requires the
availability of an approximate solution operator Th for the elliptic problem, with the
above properties, and that no further smoothness and other requirements are necessary
for the subspaces Sn.  This is in constrast to the investigations in Bramble and Thomée
[4] where higher accuracy in the time discretization necessitated higher smoothness
of the approximating functions.

Specific examples of rational functions of types I, II and IV are provided by the
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824 GARTH A. BAKER, JAMES H. BRAMBLE AND VIDAR THOMEE

above diagonal, diagonal and below diagonal entries of the Padé table for e~T.  Other
examples of completely discrete schemes and their computational implementation are
described in Section 5 below.   In particular we consider some classes of schemes of
types III and IV where the rational functions are defined by taking appropriate trunca-
tions of a series expansion of the form

e-r = 1_£i,^rJ_y+1     withe>0,

where the coefficients P- are real polynomials associated with the Laguerre polynomials
of the first order.   For given v, the rational function thus derived will have denominator
(1 + ¿>t)"_1.  This, as follows from the discussion following the introduction of the
scheme (1.7), means that computationally, v - 1 systems, all with the same matrix will
have to be solved at each time step.   Such a property should be desirable from a prac-
tical point of view.   These rational functions were studied and used for stiff systems
of ordinary differential equations by N^rsett [ 11 ] ; the particular case v — 3 was ap-
plied by Zlámal [15] to parabolic problems and referred to as the Calahan scheme (cf.
also Makinson [9]).

Throughout this paper, C and c will denote positive constants, not necessarily the
same at different occurrences.

2.  Error Estimates in L2.  Our first result in this section is an Z2 estimate for
the difference between the semidiscrete and completely discrete solutions, with initial
data only assumed to belong to L2(il).  Together with the estimates from [3] for the
error in the semidiscrete solution, this results in a complete error estimate for U".  This
estimate has optimal order of accuracy for t bounded away from zero, but contains a
negative power of t on the right.

We now state this first result.
Theorem 2.1.   Let the discretization scheme be of type V, II' or III.   Then for

0 < t = nk < t*,

\\Un-uhink)\\<CkT''\\v\\.

Before giving the proof of this result we shall introduce some notation.   For an
arbitrary function g(f) defined for t E ah, the spectrum of Ln = TJ¡ 1, we set for
v G Z.2(Í2),

(2.1) g(Lh)v=    £   g(Af)(v, dppqx = g(Lh)P0v.
AjGoh

In particular, with

(2.2) Fn(T) = r(T)"-e-n\

we can write

(2.3) Un - uh(nk) = Fn(kLh)v.

By (2.1), Lh is defined on all of L2 and not just as the inverse of Tn on Sh.  By
Parseval's relation we have for the operator norm oXg(Lh) on L2,
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(2.4) \\g(Ln)\\ =   sup  \g(T)\.
T&Oi

In view of (2.3), Theorem 2.1 is a consequence of the following lemma:
Lemma 2.1.   Let the discretization scheme be of type I', II' or III.  Then for

0<t = nk<t*,

\\Fn(kLh)\\<Ckvt-v.

Proof.   We have by (2.4),

\\Fn(kLh)\\ =   sup \Fn(k\)\ =   sup   |F„(r)|,
\ea r/k(Eoh

and hence it suffices to show that

|F„(t)| < C(k/t)v = Cn~ v    for r/k G an.

Let t0 be a positive number such that

(2.5) Kr)|<l    forO<x<r0.

Then for 0 < r < t0 by (1.8),

\r(T)-e~T\<CTv+1,

and

(2.6)

Hence

(2.7)

Ki-)Ke"CT    withO<c<l.

\Fn(r)\ =
17-1

\n-\-l„-lT(r(T)-e-T)Z Kr)"-l-le-
1=0

<CnTv+1e-c(n-1)T <CTve~c"T <Cn-v.

Since in cases I' and II', &X < t0 for all X G ah if r0 is appropriately chosen,
this completes the proof for such schemes.   For type III schemes we also have to con-
sider t large, r > 1, say.  We then have

Further,

(2.8)

so that similarly

e-"T<e~" <Cn~v.

sup Kt)| = e~c    with c > 0,
T>1

Kr)"l<e"c" <Cn-"    Xoit>1.

This completes the proof.
Combining Theorem 2.1 with the case / = 0 of Theorem 3.2 in [3], which states

that

(2.9) \\un(t) - u(t)\\ < Chvt-VI2M\    for 0 < t < t*,
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826 GARTH A. BAKER, JAMES H. BRAMBLE AND VIDAR THOMEE

we conclude immediately:
Theorem 2.2.  Let the discretization scheme be of type I', II' or III.  Then for

0 < t = nk < t*,
lit/" - u(nk)\\ < C{hTrl2 + kvrv}\\v\\.

We shall now turn to estimates which hold uniformly down to t = 0.  In this
case, in order to obtain optimal order results, smoothness has to be required of the
initial data.   In Theorem 2.1 of [3], before proving the estimate (2.9), the energy
method was used to derive such an error estimate for the semidiscrete solution; in
particular

(2.10) \\uh(t) - u(t)\\ < Chs\\u\\s    Xox0<s<r,0<t<t*.

In order to obtain now a similar result for the completely discrete situation we shall
combine Theorem 2.1 with the following representation of the initial data, namely

(2.11) u=Z  Tn(T-Th)V+1v + TvhLvv.
j=0

The following lemma will be needed.
Lemma 2.2.   Let the discretization scheme be of type I' or II.   Then for 0 < / < i

\\T'hFn(kLn)\\ < Ck>.

Proof.   By (2.4),

\\T'hFn(kLh)\\ =   sup |X-'F„(A:X)| =   sup   |*>t-'F„(t)|,
xeoh T/k<=oh

and hence it suffices to show that

\r~'Fn(r)\ < C   XoxT/kEoh.

As in the proof of Lemma 2.1, let t0 be a positive number such that |r(r)| < 1 for
0 < t < r0.   Then for such r, by (1.8)

\riT)-e-T\<CTj+1,      0<j<u,

and (2.6) holds.
Hence

lT-'FB(r)| = <C«re-c("-1)T <C.T-'\Kr)-e-T)Z  rir)n-l-'e-'T
1=0

For t> tq the desired inequality follows trivially.
The result in the smooth data case is then the following:
Theorem 2.3.  Let the discretization scheme be of type I' or II.  Then for 0 < t

= nk< t*,

Hi/" - u(nk)\\ < C(hr\\v\\r + kv\\v\\2v).

Proof.   We first note that if we set
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"fc =    Z    («, <PJ>Pf
kX^ 1

(recalling that </;. and X- are the eigenfunctions and eigenvalues of the differential opera-
tor L) then by the definition of the norms in Hs,

(2.12) \\v-vk\\<kv\\v\\2v,

(2.13) KII2„<IMI2l„
(2.14) \\vk\\r+2j<k->)\v\\r,      / = 0,1,...  .

Applying the identity (2.11) to vk and setting for brevity Fn = Fn(kLh) as defined by
(2.1) and (2.2), we may write

Fnvk = Z FnVh(T- ThW+1vk + FnTlVvk.
j=0

Here, by Lemma 2.2 and (2.13),

\\FnrhLvvk\\ = \\rhFnL\\\

< Ckv\\Lvvk\\ = Ckv\\vk\\2v < Ckv\\v\\2v.

Further, using also (iia) and (2.14), we obtain for 0 < / < v - 1,

\\FnT'h(T- Th)V+1vk\\ < Ck'\\(T- Th)L'+1vk\\

<Ck¡hr\\LÍ+xvk\\r_2 = CVhr\\vk\\r+2j

< C7.r|MI, < Chr\\v\\r.

Together, these estimates imply

\\Fnvk\\ < Cihr\\v\\r + kv\\v\\2v).

Since obviously, by stability (cf. (1.11)) and (2.12),

\\Fniv - vk)\\ < 2\\v - vk\\ < CW|MI2„,

we conclude that

\\U" - uhink)\\ = ||F„u|| < C(hrM\r + k"\\v\\2v).

By (2.10) (with s — r) this completes the proof.
It is also possible to prove estimates which are uniform in t for less regular initial

data.   We have for instance:
Theorem 2.4.  Let the discretization scheme be of type I' or II and let s > 0.

Then for 0 < t = nk < t*,

lit/" - uink)\\ < C^mind-,*) + /cmin(i,,í/2)}||u||í

Proof.   We first notice that in Theorem 2.3 and its proof we may replace r by any
sx with 2 < sx < r.  Using also the fact that the function vk satisfies, for 0 < s2 < 2v,

\\v - vk\\ < kS2l2\\v\\Si,     \\vk\\2v < *-<-»a/2)|ML,
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828 GARTH A. BAKER, JAMES H. BRAMBLE AND VIDAR THOMEE

we obtain

\\U"-u(nk)\\<C{hSx\\v\\s   +k'2,2Ma }•1 a2

In particular, this proves the desired result for s ~> 2.  Interpolation between the result
for x = 2 and the stability estimate

lit/" - M(,i*)|| < 2|M|,

now completes the proof.
We shall conclude this section by considering a finite difference approximation for

a time derivative Z)J« of the solution of the parabolic problem, of the form

qkUn = k~'q(E)Un,

where

h
Q(E) = Z Q,E',      E'U" = un+'.

i-io
Notice that this approximation will be defined only for n + j0> 0.  Recall that the
operator qk is an approximation of order v to Dlt if

h
(2.15) <7(e"T) = Z Qf~lT = (_T)' + °^+V">   as T -* °-

i-io
Notice that then, by (1.7),

(2.16) q«T)) = (-T)> + 0(t¡+v)    asr^O.

We then have the following optimal order error estimate for t bounded away from
zero and initial data in L2.

Theorem 2.5.   Assume that qk is an approximation of order v to Dlt and that
the scheme is of type I', II' or III.   Then for 0 < t = nk < t*, with n + /0 > 0,

\\qkUn - D\u(nk)\\ < C(hrrr/2-' + fc"ry-')||t>||.

Proof.   By Theorem 3.2 of [3] we have

\\D't(uh(t) - u(t))\\ < ChTr/2-l\\v\\,

and so it remains to prove

\\qkUn-Dltuh(nk)\\<Ckvt-v-l\\v\\.

By the spectral representation we have

qkUn - D'tuh(nk) = Zi^V^A;))^)" " (-A,-)^"fA/)(ü, *,.)*,,

so that setting

s„(t) = q(Kr)XTf -i-T)le-"\

our result would follow from
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sup \k-'sn(kX)\ <CkTv-1
xeoh

or

(2.17) K(T)\<Cn-v->    XoxT/kEoh.

Now let t0 be as in the proof of Lemma 2.1 (cf. (2.5)) and write

*n(T) = (Q(r(r)) - (-ttXtT + (-r)'(Kr)" - e~"T).

Using (2.16) and (2.6) we obtain for r < r0,

(2.18) \(q(r(T)) - (-T)l)rfj)n\ < CTl+ve-cnT < Cn-'-",

and by (2.7),

(2.19) ItVo-)" - e-"T)\ < CTv+le-cnT < Cn~l~v;

so that

\sn(T)\<Cn-'-v    for t<t0.

This completes the proof of (2.17) for schemes of types I' and II'.  In the case of type
III we also consider t > 1, say.   For such r,

tV"t <Ti+ve-"T <Cn-'-v,

and

\q(r(T))r(T)n\ < Ce~cn < Cn~'-U.

This completes the proof of (2.17) for t > 1 and hence of the theorem.

3.  Error Estimates in the Maximum Norm.   In this section we shall derive maxi-
mum norm estimates, analogous to those of Section 4 of [3] for the semidiscrete prob-
lem, for our completely discrete approximations.   In [3] it was shown that if certain
maximum norm error estimates were available for the associated elliptic problem, then
corresponding maximum norm error estimates could be derived for t bounded away
from zero for the parabolic problem.

The assumption about the elliptic problem, which will also be made here, was that
there is a function y(h) such that

0)' |7>i < C|7vvi,,    ii^wii < qirwii,,

(ii)' \(Th - T)w\ < y(h)\Tw\r,

where | • I and | • \r denote the norms in C(tt) and C(fi), respectively.  The conclusion
for our semidiscrete problem was [3, Theorem 4.2] that

(3.1) \uh(t)-u(t)\<C{y(h) + hr}\\v\\    for 0 < f* < t < t*.

In special cases discussed in Section 8 of [3], y(h) = Chr for r > 2 and y(h) =
Ch2 logh-1 forr = 2.
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To obtain our error estimate for the completely discrete problem we shall again
use the spectral representation

(3-2) U" - uh(nk) = Fn(kLh)v = Z^A^u, *,)*,-.
/

The technique will now be to derive first a maximum norm estimate for tp-, and then
an estimate for Fn(kAJ.

We first have:
Lemma 3.1.    Under the above assumptions (i)', (ii)' on Th there exists a J de-

pending only on N such that

Vb,\ < CAJ.
Proof   By Lemma 4.1 of [3] we have for 2 < p < °°, 0 < l/q - 1/p < 1/A,

\\Thw\\L   <C\M\Lq.

In particular, then

\\*jhp = ty\Th*j\\Lp<CAj\\<i>j\\Lq.

Hence, by repeated application, using a suitable decreasing sequence {p¡}J0 with p0 = °°,
Pj = 2, l/p,-+1 - l/Pj < I IN we obtain

|*;.| < CA/ll^H = CA/,
which proves the lemma.

The next lemma, which we shall also use in the next section, contains the needed
estimate for Fn(kA).

Lemma 3.2.    Let the scheme be of type I', II', III' or XV.   Then for 0 < t =
nk < r* and j > 0,

\\L'hFn(kLh)\\ =  sup WFn(k\)\<Ckvrv-»>

where p = 1 for types I', II' and XV and p = s for type III' (with parameter s).
Proof.   Let r0 be as in (2.5) and consider first r = fcX < t0.  We want to show

that then

(3.3) |X'Fn(/cX)| = |*-VF„(r)| < CkT'-".

But, applying (2.7) with / = 0, we obtain at once

|7-'Fn(r)| < CTi+ve-cnT < Cn~i-V = Ck'+Vr'-",

which proves (3.3).   This completes the proof for schemes of types f and II'.
For schemes of types Hi' and IV we also have, as usual, to consider t = k\> I,

for X G oh.  In both cases we have, by obvious estimates,

\ie-"T = k->T>e-nT < Ck-'n-'e-°nT < Cr'n~v = Ckvr'~v.

Now, in case III' we have by definition and (2.8), for \Eoh,
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|X'/<r)"| < Ck-sie-cn < Ck-S'n-V-Si = Ckvrv~s>.

Since s > 1, the above estimates complete the proof for case III'.
Finally, for type IV, the degree of the numerator of Hf) is less than that of the

denominator and it follows that there is a c > 0 such that

Kr)l<7T—   Xoxt>1.I  + CT

Hence for these r,

\k-ÍT>r{T)n\ < k-'(T¡(l + ct))'(1 + ct)-("-;)
(3-4) ...

< Ck-'(l + c)-" < Ck-'n-"-' = CkT"-'.
This completes the proof in case IV and hence the lemma is proved.

In order to state and prove our main result of this section we shall make the
additional assumption that the eigenvalues A- of Lh tend to infinity fast enough that
for some J0, uniformly for small h,

(m) Za77°<c<~.
/

For instance, if we consider the standard Galerkin method, with the elements of Sh
vanishing on 9Í2 (cf. Section 8.1 of [3]), it is well known that A- > X,, and (iii) then
follows from known estimates for the spectrum of the elliptic operator L.

Theorem 3.1.   Assume that (i)', (ii)' and (iii) hold and let the discretization
scheme be of type I', II', III' or IV   Then for 0 < t* < t = nk < t*,

It/" - u(nk)\ < C(y(h) + hr + kv)\\v\V

Proof.   By (3.1) it suffices to show that for t = nk bounded away from zero and
infinity,

(3.5) \Un-uh(nk)\<CkvM\.
But by (3.2) and Lemma 3.1,

(3.6) |t/" - uh(nk)\ < (Y |F„(M,.)| |d>.|) ||u|| < C^Af|F„(/cA,.)|j ||u||.

In view of (iii) it therefore suffices to notice that by Lemma 3.2,

IF^fcApi < Ckvr v-p(j+jo)a-V+Jo).

This completes the proof of the lemma.
Notice that we actually have the somewhat stronger statement than (3.5), namely

\Un-uh(nk)\<Ckv\\v\\LiW.

For, instead of (3.6) we can similarly derive

\Un-uh(nk)\ < (ZK^^y^L^tt)

< c(z^fJ\Fn(kAi)\y\v\\LiW < cerv-p{Jo+2J)\\v\\Liiay
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4.   Interior Estimates for Difference Quotients.   In this section we shall derive Z2
error estimates for difference quotients of U" - uh(nk) on some interior subdomain
Sî0 of £2, under certain additional assumptions on Sh and Th.  We shall then apply
these estimates to extend to the completely discrete case the study of Sections 6 and
7 of [3] concerning approximation in the maximum norm of derivatives of the solution
of the continuous problem, including approximations of superconvergent order 0(h2r~2).

Here, in addition to the norms in HS(Q.) we shall use for s > 0 the norm || • llSjn0
on HS(Q.0) = W2(Q,0) (denoted || • \\n   when s = 0) and the norm of negative order

INLS,„0 =    sup       (jjeL
0     *ec0~(no)1'^o

Further, | • |n   and I • \s n   will be used to denote the norms in C(f20) and Cs(£20),
respectively.

The first of our additional assumptions is that Th satisfies the "interior" equation

(4-1) A(Thf, x) = (f X),  VxeS°(£20),

where S^(£20) is the set of functions in Sh with supports in Í20 and A( • , • ) is the
bilinear form (1.6).  This implies that the solution uh of the semidiscrete problem sat-
isfies the interior parabolic Galerkin equation

(Dph, X) + A(un, x) = 0,  Vx G Sj¡(£20), t > 0.

We shall further require that on Í20 the functions in Sh be piecewise polynomials
on a uniform partition.  The precise conditions needed, which will be referred to as ir-
regularity of {Sh} on Í20, are stated in Section 6 of [3], and rather than restating
them here, we shall quote only the consequences needed for our present purposes.

In particular, setting

K = K\ ■■■KNn    with a/i,/w(*) = h'1(w(x + hej) - w(x)),

where e- is the unit vector in the direction of x -, it follows under these assumptions
from Lemma 6.4 and Theorem 3.2 of [3] that for Í2, CC Í20 and for 0 < r* < t < f*,

(4.2) \\b*D>t(uH(t)- u(t))\\a, <Chr\\v\\.

Using also a discrete Sobolev inequality this could be seen to imply (cf. [3, Lemma
6.5]) that for Slx CC S20 and 0 < r* < t < t*,

(4.3) \dahD>(uh(t)-u(t))\ni<Chr\\v\\.

Similarly, using Lemma 7.3 and Theorems 3.1 and 3.2 of [3] we find for Í2, CC £20,
0 < i* < t < r«,

!,2r-2|(4.4) HWK(r) - u(t))\\-(r-2).al < C"       M I--2-

Such estimates were the basis for deriving the maximum norm and superconvergent
order error estimates in [3] referred to above. These estimates will be stated more
precisely below.
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In the technical work we shall need the following special case of Theorem 5.2,
(5.6) in Nitsche and Schatz [10].

Lemma 4.1.   Let {Sh} be r-regular on Í20 C Í2 and let £22 CC £2, CC £20.
Assume that vh G Sh satisfies

A(vh,x)=fh(X), VXC5°(Í20),

where fh is a linear functional on Z7¿(£2,).   Then

Wi.oa<C{ll/*ILi.n.+ IMo.>.
where

l/»l
"/'ll-'-n'=^P(ni,"^-

The subsequent proofs of the present analogues of (4.2) and (4.3) depend on the
following lemma.

Lemma 4.2.   Assume that {Sh} is r-regular in Í20 C Í2 and that Th satisfies the
interior equation (4.1).   Then for \a\ < 2m, Í2, CC Í20,

(4.5) nagxlin t<QK^ VXG5,.
Proof.   As a first step we shall show that if £22 CC £2, CC S20 and n > 0, then

for |a| < n + 1,

(4.6) KThfUi,n2 <C    Z   Pg/lln, + \\Thf\\n     .

Set vh = 7;/and let £l'0 CC Í20.  We have for x G S^(Q,'0) and small h,

A(*>h> X) = Jn(l>/* ¿"OX) ¿¡ X + cdfox) «**

(4-7) = J„(Z ^ («,* ¿7 vh) ¿- X + «<«*) -x)dx+ fh(x)

= (-l)MA(vn,bahx)+fh(x\

where for </> G C"^), with SÏj CC Slx (cf. [10, (6.7)]),

(4-8) fôO)l<c Z   liagujli,«, -IMIlo'.-
IPKIal

(For the case of constant coefficients, Jh = 0.)  Since 9£x £ S£(Í20) for x C S£(£20)
and small h, we have

(4.9) ¿(u,,9£x) = (/. Kxl

and since |a| < n + 1, for <fi G Cô(i2',),
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(4-10) l(/,3W<C Z   Pg/lln.lMli,«',-
\ß\<n

Together, (4.7), (4.8), (4.9) and (4.10) show by Lemma 4.1,

KMi.n, <ci Z  Il3g/lln , +   Z    Pklli,n,   •
2 (\ß\<n l        \ß\<\a\ )

Hence by repeated application, for any Í22 CC S2j CC Í20,

\Kvhh,n2<c\ Z  K/lln. +HHi,ni   •
(l(3|<n )

Using Lemma 4.1 once more to estimate the last term we conclude for Í22 CC S2j,

K»Jli,n2<cj Z   Pg/Hn+IKIIn.   ,
(\ß\<n X M

which is (4.6).
As a consequence of (4.6), we have also, now for |a| < n + 2, again with S22 CC

Í2j CC n0,

(4.11) KVIIn<c|  Z liag/ll«, +IIVII«,   •
2 (liJKn )

We are now in a position to prove (4.5) by induction over m.  The statement
being obvious for m = 0 we consider the step from m to m + 1.   For |a| < 2m + 2 we
then obtain by (4.11) for x C 5^,

Pfrlln   =KrrAxllo<C    Z    ll3ÄMIIn2 + llxlln2}.
1 ' (\ß\<2m )

and hence by the induction assumption and the boundedness of Th,

Kx\\nx <C{||L^¿hxll + llxll) <aC + 'xll,

which completes the proof.
We can now state and prove the present analogues of (4.2) and (4.3).
Theorem 4.1.  Assume that {Sh} is r-regular in Í20 C Í2 and that (4.1) holds.

Let qk = k~lq(E) approximate D\ with accuracy v in the sense of (2.15).  77ien for
for completely discrete schemes of types I', II' and IV, we have for any a, Í2, CC Í20
and 0 <t = nk< t*,

(4.12) \K(lkU" -F>ltuh(nk))\\ni < CkTv-'-M'2\\v\l

and with N0 = [N/2] + 1,

(4.13) \dh*(qkU"-D'tu(nk))\ni < Ckvrv-l-<-M+No)/2\\v\\,

Proof.   We first show (4.12) for a of even order, |a| = 2m.  We obtain by Lemma
4.2 and (2.4),
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\\dl(qkUn-D'tuh(nk))\\ai<Q\Lm(qkU"-Dltuh(nk))\\

=  sup \X"(k-'q(r(k-\))r(kXf -(-'k)1e~nkX)\ \\v\\
\eah

= Ck-l-m    sup    |Tmsn(r)| NI,
T/k(Eoh

where as in the proof of Theorem 2.5,

s„(r) = q(r(r))r(T)n - (-ffe-nT.

It therefore suffices to show that

(4.14) \Tmsn(T)\<Cn-v-'-m    for T/k E oh.

Now let t0 be as in (2.5).  Then by (2.18) and (2.19),

|t"\(t)| < CTm+l+ve-cnT < Cn-1-"""    for r < r0.

This completes the proof of (4.14) for schemes of types I' and II'.   For schemes of
type IV we also need to consider r > 1, say.   For such t,

^+171^177- ^ 7i+v+me-nT < Cn-'-"-™,

and, appealing now to (3.4),

\Tl+mq(r(T))r(T)n\ < C\Tl+mr(T)"~'0\ < Of"-'-'»,

which implies (4.14).  This concludes the proof of (4.12) for |a| even.  Notice that it is
at the last step that we have to use type IV rather than type III, as was the case in
Theorem 2.5.

In order to show (4.12) for |a| odd, we choose j such that a. > 0 and apply sum-
mation by parts to obtain the inequality

Kxlin, < liC^xll^llOxiiiv     "i cc n2 cc "o-

With X — QhU" - Dltuh(nk) the result for |a| even hence implies the result for |a| odd.
This concludes the proof of (4.12).

The maximum norm estimate (4.13) now follows at once by the Sobolev inequality

Ixln   <C  Z     Pgxlln,    ioxXESh,n2Ccnx,
\ß\<NQ

since qkU" - Dltuh(nk) E Sh.  This completes the proof of the theorem.
We now turn to the maximum norm approximation of derivatives of the solution

u(t).  We recall that the finite difference operator

Qhw(x)= Y.Qß^{w(x-T}h)
p\T)

approximates the derivative Daw of order |a| = m with accuracy r if for Í22 CC Q,x,

\Qhw-Daw\n2<Chr\w\r+m,ai.
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Combining this for w = Dltu(t) with (4.3) we concluded in [3] (cf. Theorem 6.2) that
under the above assumptions on Sh and Th, for S2, CC £20 and 0 < t* < t < t*,

(4.15) \QhD\uh(t) - D«D>tu(t)\ni < Chr\\v\\.

The following is the corresponding result for our completely discrete approxima-
tion.

Theorem 4.2.   Under the assumptions of Theorem 4.1, with Qh approximating
Da with accuracy r we have for any Í2, CC £20, 0 < f* < t = nk < t*,

\QhqkUn-D^D'tu(nk)\ni < C(hr + kv)\\v\\.

Proof.   We have by Theorem 4.1, with Í2, CC Í22 CC ü,0,

\Qh4kun - QhD'Mnk)\n, < C   Z    \*l(lkUn - D^h(nk))\a   < Ckv\\v\\.
1 \ß\<\a\ l

In view of (4.15) this proves the theorem.
We now turn to the superconvergence estimates.   For the semidiscrete case this

was done in Section 7 of [3] for the approximation of the continuous solution itself.
Here we shall generalize this to cover also derivatives.   For this purpose, we will use
the following lemma which is a special case of Theorem 3 in Thomée [13].   Here we
denote by i// the /V-dimensional analogue of the 5-spline of order r — 2, that is, the
convolution x * ' ' ' * X with r - 2 factors, where x is the characteristic function of
the cube [-14, 14]*.

Lemma 4.3.   Let abe a given multi-index.   Then there exists a function Kn =
Kha) of the form

Kh(x) = h~N Y.kßHh-'x-ß),
ß

with kß = 0 when |p\| > r - 1 such that if £l2 CC Slx CC £20 and w E C2,'-2 + lo!l(i20),
wh g orn0),

\Kh*dh'wh-D*w\n2

<c\h2'-2\w\2r_2+M^ +     E     liarVft-w)iL(r_2),ni
( li?|«i--2 + Ar0

+ h'-2   Z   la^K-wOi«,}.
\ß\<r-2 X)

Applying this to wh = D\uh and w = Dltu we obtain by the negative norm esti-
mate (4.4) and the maximum norm estimate (4.3) that for Í2, CC £20, 0 < r* < t < t*,

(4.16) \Kn * dahD'tuh-D°xD'tu\ni < Ch2-2\\u\\r_2.

For a = / = 0 this was Theorem 7.2 of [3].
We can now show that this high order estimate in space is not spoiled by discret-

izing in time.
Theorem 4.3.   Under the assumptions of Theorem 4.1, with Kh = Kha' as in
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Lemma 4.3, we have for any Í2, CC S20, 0 < i* < t = nk < t*,

\Kh * dahqkUn -DaxD'tu(nk)\sli < C{/z2r-2||u||r_2 + kv\\v\\}.

Proof.   We have by Theorem 4.1, with Í2, CC Í2', CC Í20,

\Kh * *%(qkV» -D'tuh(nk))\rli < C|3£(ik£/" - fl|uÄ(«fc))ln-  < CT|M|.

In view of (4.16) this proves the theorem.

5.   Examples.   In this section we present examples of schemes defined by the
four classes of rational functions I, II, III and IV and discuss their computational im-
plementation, in particular in the case when Th is defined by means of a bilinear form
(cf. [3, Section 8]),

(5-1) Bn(Tnf, x) = (f, x), Vxes„.
As was pointed out in the introduction, since Th rather than Ln = T^1 is given in
applications, it is now natural to study r(kLn) as a rational function of Th, or equiva-
lently, to consider the rational function r(k/p) of p.

Padé Schemes.   Examples of rational functions of- types I, II and IV are provided
by the above diagonal, diagonal and below diagonal entries of the Padé table for e~T,
respectively.  In fact, the general entry in this Padé table is given by

rp,q(T) = "p.qW/dp.qW'

where

»P.*«* = Z(p + q)ljl(q-jV.i   1)T'P.a

and

(53) d»-<iT)S=Z(p + qW(p-».T-

By the definition of the Padé approximant,

(5.4) rpq(T) = e-T + 0(tp + «+1)   as t — 0,

so that (1.7) holds with v = p + q.   It is well known and obvious from (5.2) and (5.3)
that r      is of type II and IV for p = q and p> q, respectively, and clearly, by (5.4),
r      is of type I for p < q.

In particular, we have /■„ ,(t) = 1 - r, which is a rational function of type I with
a = 1.  This defines

Tjn+i =un-kLhUn,

and with (5.1),

(Un+1,x) = (Un, X) - kBh(U", x),   Vx e Sh.

If Bh is bounded in H1^) and the inverse assumption
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llx,Wi(«)<CÄ_1|lxlu VxG5*'
holds, then we have

(LhX, X) = Bh(X, X) < C,Hxll¿1(n) < C2^-2HxH2,

so that for the maximum eigenvalue of Lh,

Amax<C2ä-2.

Hence, a type I' scheme is defined here for

k/h2<a0/C2    witha0<l.

The subdiagonal and diagonal Padé approximants with linear denominators are

f\        l a (^     1 - Hr'•1,oW = rT7  and  ri.l(T) = TT¥7'

which are of types IV and II, respectively.   They correspond respectively to the purely

implicit scheme

(t/"+ », x) + kBh(Un+ l,x) = (Un, x), Vx e sh,

and the trapezoidal (Crank-Nicolson) scheme

(t/"+ », x) + MBh(Un+1, x) = (t/", X) - ^„(t/", X), Vx C S„.

We consider also the subdiagonal and diagonal Padé approximants with quadratic
denominators,

I l4
'2.0« = ! + T + j4Ti -      r2il(T) = ,

1 + 3T + 6T

and

In all of these cases the poles are complex.  Hence in the use of these functions to
obtain the time stepping procedure it is convenient to use complex matrices even
though the approximations U" will be real.  We shall see now that it is sufficient to
solve one complex system at each time.

Consider first r2 ,.   Setting

*=i(-4 *-'-<4
we have
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ß2 ~ 3kß /     7       \
r2,Ák/p) =-Ô-r~ =l~k Re(    m* u)>

p2+\kp+\e       y^+ßxk/
j 6

and hence, with An = Th + kßxI, (1.7) reduces to

Tjn + l =i7»-/cRe(7l^-iî/»)j

where A^1 exists since Re (3, > 0.   Note that in order to compute W = kyxAh~1Un
we solve the complex elliptic problem

(IV, x) + kßxBh(W, x) = kyxBh(U", X), Vx € Sh,

which amounts to solving a nondegenerate complex linear system of equations.
The analogous statements for r2 0 and r2 2 follow from

and

where

p¿ + kp + -k

^-^k + ñk2 I     72     \

ß0 = kl + i),   ß2 = kl + h/313),   y2 = 1 - h/5.2V      '»   K2     4V

We shall now turn to the schemes of type III and IV mentioned in the introduc-
tion, for which the rational functions employed have denominators a power of (1 + er)
with b positive.   For their analysis we shall use some simple properties of Laguerre
polynomials.

Recall that the Laguerre polynomials {¿^} of order a, a > -1,
n (_ i \jj

Lan(x) = in + a)\ t .,,  \  !/*       „  ,
/ty!(« - ;)!(/ + a)!

are the polynomials which are orthogonal with respect to the weight function xae~x
on (0, °°).   For their generating function we have

(5.5) (l-tyl~ae-xmi~f) = Z Lan(x)tn    for |i| < 1,jc>0.
n = 0

We recall also the three term recursion formula

(5.6) nL%(x) = (-x + 2n + a- l)Lan_x(x) -(n + a- l)Lan_2(x),

and finally the relation

(5.7) ^¿» = x-1{<(x)-(« + cv)Z.^_1(x)},      n>l.

Some Type III Schemes.   Setting t = xt/il - t) in (5.5) with a = 1 we obtain
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e~T=il-t)2   ¿Z>)i",
17 = 0

and hence, using also the recursion relation (5.6),

~*Z» yXEnW/     T     )"+1

¿o»+1 „=o" + 1  V* + ^
Consequently, with b = l/x any positive number, we have

(5.8) e~T = l~ntoPnH^Î+1    fOrT>0'

where Pn is the polynomial of degree n defined by

Pnib) = in+l)-1b"LniUb).

Note that since L1 has its zeros positive and distinct the same holds for Pn.
Now let b   = ljßn denote the largest zero of Pn (so that ßn is the smallest zero

of Z,1).  We define for v > 2 the rational function

v-2 / \/+l

ar)=l-Z^_1)(rTf-T)     •
y=0 X V-1'/

In view of (5.8) and the choice of bv_x it is obvious that

rvÍT) = e~T + Oítv+1)    as r^O.

In order to see that these rational functions are of type III for v > 3 we shall establish
that for those v,

(5 ça sup \rjj)\ < 1    for any 5 > 0.V    '    ' T>6

Since rv(j) is decreasing it suffices to show

\ixnrv(T)>-l.
f—5*oo

But, with ßj = I ¡b-, we have

lim rviT)=l-Vy]pfbv_x)b-^^
T-*00 /=0

v-2LHß      ,)
= x_e       y t¿3Lzli = f

j=0      i T

and we shall prove that for v > 2, fv+ x > fv.  Since /2 = l-01=l-2 = -l, this
will complete the proof.   Set

i.

/=o
so that

"-i L iß)

/=o/'+1   '
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Since ßj_x > ßj it suffices to show that f(ß) is decreasing in (0, ßv_x)-  But, using (5.7)
with a = 1 we obtain

f(ß) = -1 - Z (¿/ 0) - Li-10» = -4-1 0).

which is negative in (0, 0¡,_ j).  This completes the proof of (5.9).
We shall now consider the computational implementation of the scheme corre-

sponding to these rational functions.  We have

*'°'-I',"»-'ltt»,„r
so that with Ah = Tn + kbv_xI, (1.7) reduces to

v-2

Setting

we find

U" + l = U" - £ ^+1P/(^_1>4^(/+1)t/".
/=o

U"0 = U",      Uf+x=kAh-1U'¡,

un+l = un-Z Pj(Pv-i)v?+i-
/=o

Hence t/" + 1 can be obtained from U" by solving y - 1 linear systems, all with the
same matrix Ah.  When Th is defined by (5.1) this system takes the form

(C/Vi. x) + kbv_tBh(u»+1,x) = kBh(U>¡, x), vx e V
For i' = 2we obtain

r2(j) ~l     I + Vit" TTHt '

which defines the trapezoidal type II scheme discussed above.   For v = 3, we have

which corresponds to the Calahan scheme analyzed by Zlámal [15].   In the appendix
we have listed the coefficients for the schemes with v < 10.

Some Type IV Schemes.   In a way analogous to the derivation of the type III
schemes above we can generate a class of type IV schemes.  By taking a = 0 in (5.5)
and making the same subsequent change of variables as above, we have that for b > 0,

e-^TT^iQ^T+hr)'  for^0'
- hirOwhere Qfp) = b'L^l/b).  Defining now for v > 1,

^■nvl^infe
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where bv is the largest zero of Qv, we clearly have

rv(T) = e~T + 0(tv+1)    asT-*0.

In order to show that rv(T) induces a type IV scheme it remains only to establish
that

0 < rv(f) < 1    for t > 0,

since clearly \imT_>xrv(T) = 0.  Setting, as above, /?,• = l/b- we have

1        "-Í /    Tb     \i

and hence, with TbJ(l + Tbv) = X it is enough to prove that for each X in (0, 1),

0<fi\) = H-\)Z Lfißv)V<l.
/=o

Since /TO) = 1 and /TJ) = 0 it suffices to show that /is decreasing in (0, 1).  But, using
(5.7) in the last step we obtain

/'(A) = Z? jLffß^X'-1 - £ (j + l)L?(ßv)X
/=i /=o

= Z KLf(ßv) - Ll, (ß„))\i- ' - vL%_ x (ßv)V '

-Z^f^W'-'-^-i^)^-1.
/=1

Since Lf is nonincreasing in (0, fy) and Z°_,(j3v) is positive, the result follows.
We have here

so that now with Ah = Th + kbj, (1.6) reduces to

f7"+1 = Z Qß»)u?>
¡=o

where the Z/"'s are defined by

U"0=A^ThUn,      t/^i =^,71t/;,      / = 0,...,i/-2.

When r^ is defined by (5.1), this is

(U"0, x) + kbvBn(Un0, x) = (t/", x),   Vx G Sh,

(ui+,, x) + *6 A(ty;+,, x) = feffft(£/;, X),   / = o, ...,„- 2.

The values of ¿>„ and Qj(bv) for 0 </ < v - 1 and t- < 10 are given in the appendix.
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6. Variations. In this section we shall briefly focus our attention first on schemes
in which both the time and space discretizations are allowed to change a finite number
of times and then where initial data other than P0v are chosen.

We consider thus a finite set of rational functions {rMf, a corresponding set
of time steps {kAf and a finite set of finite dimensional subspaces {S¡ h.}f of Z,2(Í2)
with corresponding operators T- h. and Z • h. = Tfhx..   Denoting the L2 projection onto
S- h. by Pj 0 we then define a discretization scheme by successively applying the /th
scheme n ■ times with time step k,, for / = 1, . . . , M.   More precisely, setting t/? G
Sj h., n = 0, . . . , n-, the approximation at t = Vl~l\nlkl + nk- = t-  x + nk, (with
r0 = 0), we define

t/; = rfi}Lh HJPU 0 U"irx ]    for n = 0, ... , nf,

UÏ=Pi,oV-
We then have the following L2 error estimates:

Theorem 6.1.  Assume that each of the schemes is of type l' or II.   Then
for0<t = ^,Z1n,kl + nki<t*,n = l,...,nf,j=l,..., M,

M
(6.1) Hi// - "(Oil < C Z [hr/\\v\\   + kp\\v\\2  }.

/= i ' i
Further, if tx = nxkx > f* and 0 < r* < t = X',z\n¡kl + nk¡ < t* then

(6.2) UV" - "(OH < <Xt*) t (hr/ + #)IM|.
/=!

Z>oo/   We denote by Í/" the fully discrete Galerkin approximation at time t =
t■_, + nk- with initial values «(?•_, ) for k = 0, that is

U?=rfijL,.thyPjt0u(ti_l)>      n = 0,...,nr

We then have, by Theorem 2.2, for n — 1, . . . , n,,

lit/; - "(/,_! + nkf)\\ < C&yWuit^JW,. + k1'\\u(t^x)\\2Vji-

In particular, setting /' = 1 this shows (6.1) for t < tx.   For t > tx, on the other hand,
using the stability of the scheme (cf. (1.11)),

\\ir}-u)\\<\\if¡tl1 -u^jw,
so that

Hi/? -«('/_, +"fc/)ll
tfS 3Ï

< llt/^i1 -«(r^i)» + C{hrJ\\u(tj_x)\\r, + k^Mtf-i)^}-

Now, since the solution operator of the continuous problem is bounded in Hs, we
obtain

iií/;-"(í/_i +"*/)ii

< llt/"^1 - "(?/_,)!! + C{/îfMr. + kji\\v\\2v}.
The first result (6.1) now follows at once by recursion.
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In order to prove (6.2) we use the fact that for any s > 0, and t > ?*,

||u(í)lls<crs/2IMI<aí*)IMI'

so that (6.3) implies for / — 2, ... , M,

ut/; -«(f,-i +«¥l
< llt/^i1 - "('/-i)ll + <Xu)(hrJ + k1')\\v\\-

Since now by Theorem 2.1,

\\lf¡i-u(tl)\\<C(tJ(hrl1 +kll)\\v\\,

the result (6.2) also follows by recursion.   This completes the proof.
Let us notice that if only the time discretization varies and not the spaces [S¡h)

then with Th and Lh = T^1 corresponding to Sh, we have

lf¡ = n rikfaprikfrTPoV,i=i
where now the operators in the product commute.  Consequently, the order in which
the time discretizations have been applied is insignificant.   It follows, for instance, that
the finitely many different time discretizations can be applied cyclically, to give the
analogues of the results of (6.1) and (6.2), the latter for any time bounded away from
zero and infinity.

We now return to the completely discrete problem (1.7), but with initial data vh
other than PQv, so that

Un = r(kLn)"vh.

Following the lines of the proof of Theorem 3.3 in [3] we then have the following L2
error estimate:

Theorem 6.2.  Assume that the scheme is of type T, II' or III.   Then for each
j > 0 and for 0 < t = nk < t*,

lit/" - u(nk)\\ < C(hrrr'2 + kvrv)\\vn\\ + Ct-i'Hv - vn\\_r

Proof.   Let u be the solution of the continuous problem with initial data vh.
Then by Theorem 2.2,

lit/" - u(nk)\\ < C{hrt-fl2 + kvrv}\\vn\\.

On the other hand, since u - u is the solution of the continuous problem with initial
data v - vn we have

IWO-23[OII< cr//a II»-»»IL/-
Together these estimates prove the theorem.

In particular, if vh is chosen boundedly in ¿2 and approximating i; to order
0(hr) in some negative norm, the error is 0(hr + kv) for t positive.   Recall from [3]
that this is satisfied, for example, for vn the elliptic projection Pxv — ThLv oXv EH2
if (iib) (or (iia) if r = 2) holds.
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Appendix
(a)  Tables of constants associated with the rational functions tv(t) - 1

¿Z1ZoPfbv_x)(Tl(l + bv_xT)Í+1,v < 10, rounded to eight figures.

P0 = l.
bx = .5
b2 = .78867513

Fj(b2)

1    .28867513

Z>3 = 1.0685790

Pj(b3)

.56857902

.23994877

b4 = 1.3453664

Pj(K)

.84536642

.63131105

.35112809

b5 = 1.6206645

1
2
3
4

h-
j

Pj(bs)

1.1206645
1.1725556
1.0855973
.75003511

1.8951306

P,(h)
1.3951306
1.8630560
2.3250180
2.5702151
2.1228872

b1 = 2.1690834

i\   Pj^i)
1.6690834
2.7025062
4.1908611
6.0773015
7.8122875
7.5096538

bs = 2.4426969

^s)

1.9426969
3.6907381
6.8045360
12.020296
19.865792
29.119416
31.936476

ba = 2.7160742

Pj(b9)

2.2160742
4.8276516
10.287422
21.280435
42.191381
78.287509
128.88852
158.83591

(b)  Tables of constants associated with the rational functions tv(t) =
[1/(1 + V)]2/=~o Ô/^X'VO + K^i' v < 10' rounded to eight figures.
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Ôo = l-

b2 = 1.7071068

Qj(b2)

.70710678

b3 =2.4051496

g/(ft3)

1.4051496
1.4744453

b4 = 3.1003167

Qj(bA)

2.1003167
3.9113304
5.4480493

b5 = 3.7941979

1
2
3
4

Qfi5)
2.7941979
7.3075442
16.957853
29.458888

b6 =4.4873917

/ 1 QjiK)
3.4873917
11.661901
36.515558
101.50142
211.31583

bn = 5.1801749

/ | g,(¿>7)

1
2
3
4
5
6

¿8 =

j

4.1801749
16.973862
66.106869
241.14213
781.11612
1895.6814

5.8726930
Qj(bs)

4.8726930
23.243137
107.71731
478.88829
1994.4686
7377.7839
20451.648

6.5650300

'10

/

1
2
3
4
5
6
7
8
9

Qj(b9)

5.5650300
30.469559
163.33232
850.73985
4251.4423
19905.841
82793.242
258096.14

7.2572379

Qj(br o)

6.2572379
38.653026
234.93728
1398.1894
8086.1025
44871.439
233319.27
1077827.0
3732247.5
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