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Abstract

Synthesis and characterization of long wavelength visible-light absorption Cu-doped TiO2 nanomaterials with well-

controlled properties such as size, composition, morphology, and crystal phase have been demonstrated in a

single-step flame aerosol reactor. This has been feasible by a detailed understanding of the formation and growth

of nanoparticles in the high-temperature flame region. The important process parameters controlled were: molar

feed ratios of precursors, temperature, and residence time in the high-temperature flame region. The ability to vary

the crystal phase of the doped nanomaterials while keeping the primary particle size constant has been

demonstrated. Results indicate that increasing the copper dopant concentration promotes an anatase to rutile

phase transformation, decreased crystalline nature and primary particle size, and better suspension stability.

Annealing the Cu-doped TiO2 nanoparticles increased the crystalline nature and changed the morphology from

spherical to hexagonal structure. Measurements indicate a band gap narrowing by 0.8 eV (2.51 eV) was achieved at

15-wt.% copper dopant concentration compared to pristine TiO2 (3.31 eV) synthesized under the same flame

conditions. The change in the crystal phase, size, and band gap is attributed to replacement of titanium atoms by

copper atoms in the TiO2 crystal.

Introduction
Nanosized TiO2 has been widely used because of its sta-
bility in aqueous environments and low production cost.
However, its light absorption range is limited to the
ultraviolet (UV) spectrum of light due to its wide band
gap (approximately 3.2 eV). To shift the absorption
range to the visible spectrum, various approaches have
been pursued in the past involving size optimization [1],
compositional variation to make sub-oxides [2], surface
modification [3], and doping [4-6] to modify the TiO2

structure. Among these methods, tailoring the band
structures by incorporating a dopant into the host nano-
material is a promising approach [6-8]. Several studies
have reported enhancement of absorbtion in the visible
range and photocatalytic activity on doping TiO2 by
transition metal ions like Cu, Co, V, Fe, Nb, and non-
metal like N, S, F [4,5,9-11]. However, a major challenge
is to process low-cost, and stable doped nanomaterials
with well-controlled properties that can effectively
absorb visible light.

Recently, copper has been increasingly investigated as a
dopant for titania [12]. Copper oxide is a narrow band
gap (cupric oxide, 1.4 eV; cuprous oxide, 2.2 eV) material
which has a high-absorption coefficient, but suffers from
UV-induced photocorrosion [12]. However, copper oxide
coupled with TiO2 has been demonstrated to be stable
with improved photocatalytic degradation properties
[9,13,14], effective CO2 photoreduction [15,16], improved
gas sensing, and enhanced H2 production [17,18]. It has
been shown that Cu-doped TiO2 induces more toxicity
compared to TiO2 [19]. Though a large number of stu-
dies on Cu-doped TiO2 nanomaterials have been
reported, there is little information available on the effect
of dopant concentration on TiO2 properties. Dopants
can replace Ti in the substitutional sites or be incorpo-
rated in the interstitial sites. In some cases, they may seg-
regate on the surface [20]. The creation of new energy
states due to the incorporation of the dopant in the host
TiO2 alters the particle properties, electronic structure,
and light absorption properties. These affect their func-
tionality, and hence can be used in different applications
[3,8,20,21]. In summary, there is a need to synthesize Cu-
doped nanomaterials with controlled properties (inde-
pendently) which will help understand in detail the role
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of the dopant in altering TiO2 properties. It is essential to
have samples wherein one characteristic is varied, keep-
ing the others the same. For example, samples of varying
crystal phases while maintaining the size the same will
allow to establish the dependence of biological activity
with the crystal phase.
Studies have reported the preparation of various

doped TiO2 nanomaterials by multi-step liquid-phase
synthesis [5], gas-phase spray pyrolysis, and flame synth-
esis methods [22-24]. Flame aerosol synthesis is a sin-
gle-step process and allows independent control of the
material properties such as particle size, crystallinity,
homogeneity, and degree of aggregation [25,26]. At ele-
vated temperatures encountered in the flame synthesis
process, most dopants can diffuse rapidly [27] and be
uniformly distributed due to excellent precursor vapor
mixing at the molecular level [22,20]. Furthermore,
flame aerosol processing is a scalable technique that is
commercially used to manufacture large quantities of
nanomaterials [28].
The synthesis of Cu-doped TiO2 in a single-step flame

aerosol process is reported in this paper. A detailed
characterization of the as-produced samples to under-
stand the influence of process parameters on material
properties is done. The role of key process parameters
such as molar feed ratio of precursors and dopant con-
centration on TiO2 nanomaterial properties such as size,
composition, crystallinity, stability in suspension, and
morphology are thoroughly investigated. A method to
control the crystal phase of the Cu-doped TiO2 nano-
material has been discussed. The effect of annealing
temperature on crystal phase and microstructure of the
Cu-doped TiO2 material is reported. A formation
mechanism of Cu-doped TiO2 nanomaterial in the
flame aerosol reactor is elucidated.

Experimental
Nanomaterial synthesis

Figure 1 shows the schematic diagram of the flame aero-
sol reactor system used for the synthesis of the Cu-
doped TiO2 nanomaterials. The main components of
the flame aerosol reactor system are: a diffusion burner,
a precursor feeding system, and a quenching and collec-
tion system. The design details of the diffusion burner
used for this study is given in Jiang et al. [26]. Nitrogen
was passed through titanium tetra-ispopropoxide (TTIP,
99.7%, Aldrich, Steinheim, Germany) in a bubbler, and
the saturated vapor was introduced into the central port
of the burner. The bubbler containing the liquid TTIP
precursor was placed in an oil bath and was maintained
at a temperature of 98°C. The precursor delivery tube
was maintained at a temperature of 210°C by a heating
tape. This avoided the condensation of the precursor
TTIP vapor in the delivery tube. Copper nitrate

trihydrate (99.5%, VWR International, Radnor, PA,
USA) was used as the dopant precursor. The dopant
precursor solution was prepared by dissolving a known
amount of copper nitrate in distilled water. A stainless
steel collison nebulizer was used to generate fine spray
droplets (less than 2 μm), which were then carried by
nitrogen gas into the high-temperature zone of the
flame. The doping percentage was varied by introducing
different molar ratios of both the precursors. The overall
doping concentration was varied from 0 to 15 wt.%.
Methane and oxygen were introduced into the second
and third ports of the burner respectively to create a dif-
fusion flame zone. The volumetric flow rates of N2

through the TTIP bubbler and the O2 were precisely
controlled by mass flow controllers at 2 and 7.5 lpm,
respectively. The methane flow rate was maintained at
1.8 lpm, and varied for few of the tests. A 20-lpm flow
of compressed air was supplied in a radial direction to
the quenching ring for cooling. The entrained air diluted
the aerosol stream and suppressed particle growth. The
synthesized materials were collected using a glass micro-
fiber filter paper (Whatman) for further characterization.

Material characterization

The size, morphology, and microstructure of the nanopar-
ticles were determined by a transmission electron micro-
scope (TEM; Model: JEOL 2100F FE-(S) TEM, JEOL Ltd.,
Tokyo, Japan) with an accelerating voltage of 200 kV and
by a field emission scanning electron microscope (SEM)
(Model: JEOL 7001LVF FE-SEM, JEOL Ltd.). The elemen-
tal analysis of the doped nanomaterial was done using
energy dispersive spectroscopy (EDS) analysis integrated
with a SEM. Phase structures of the material were deter-
mined using an X-ray diffractometer (XRD) with Cu Ka
radiation (l = 1.5418 A) (Rigaku D-MAX/A9). Zeta poten-
tial, an indicator of the stability of nanoparticles in suspen-
sions, was measured by using a ZetaSizer Nano ZS
(Malvern Instruments Ltd., Worcestershire, UK) dynamic
light scattering instrument. Nanoparticles were dispersed
in de-ionized water at a concentration of 30 μg/ml and
sonicated for 25 min using a bath sonicator (40 W, 50
kHz, 5 Fisher Scientific, Fairlawn, New Jersey, USA) before
zeta potential measurements. UV-visible absorption spec-
troscopy (Perkin Elmer Lambda 2S, Perkin Elmer, Wal-
tham, MA, USA) was used to analyze the absorbance
spectrum of the nanomaterials over wavelengths ranging
from 200 to 800 nm at room temperature. From the
absorption spectrum, the band gap was estimated. The
absorption edge was estimated to be the point where the
absorption was 30% of the maximum, corresponding to
where 50% of the photons were absorbed. This approach
was used because of the difficulty in finding the linear
region of the absorption spectrum according to conven-
tional methods of band gap estimation [21].
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Experimental test plan

The list of experiments performed is outlined in Table 1.
The flow rates were controlled to maintain the same resi-
dence time in the high-temperature flame (test 1). TiO2

was synthesized under the same experimental conditions

using only TTIP as the precursor (test 1A). Addition of
dopant influences nanomaterial properties such as size,
crystal structure, stability in suspension, and optical
properties. The copper dopant concentration was varied
from 0 to 15 wt.% to process Cu-doped TiO2

Figure 1 Schematic diagram of the FLAR experimental setup used to synthesize Cu-doped TiO2 nanoparticles.

Table 1 Summary of the experimental test plan

Test
no.

Dopant
concentration (wt
%)

CH4 (lpm) Objective

1 A 0 1.8 Study the influence of dopant concentration on TiO2 material properties such as size, crystal
phase, suspension stability, and light absorption.

B 0.5

C 1

D 3

E 5

F 15

2 A 3 0.8 Study the effect of methane flow rate on size and crystal phase of the material.

B 1.2

C 1.5

D 1.8

3 A 1 Annealing temperature,
400°C, 600°C

Examine the effect of annealing on phase and microstructure characteristics of Cu-doped
TiO2 nanoparticles

B 15 Duration of annealing
under air, 4 h

All the particles were synthesized by diffusion flame aerosol reactor. Annealing was done in a furnace under air atmosphere.
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nanomaterials (test 1(B-F)) to investigate the impact on
properties. The copper dopant concentration was esti-
mated based on the precursors feed rate to the flame.
The temperature-time history in the flame impacts the
particle formation and growth rates. This was varied by
altering the methane flow rate from 0.8 to 1.8 lpm at a
constant dopant level of 3 wt.% (test 2). Annealing of the
1 and 15-wt.% Cu-doped TiO2 was conducted for 4 h at
400 and 600°C in an atmosphere of air to examine prop-
erty alterations (test 3).

Results and discussion
Doping TiO2 with other atoms changes properties such
as particle size, crystal structure, stability in suspension,
and light absorption. The mechanism of Cu-doped TiO2

nanoparticle formation in the flame aerosol reactor is
discussed first. The effect of copper dopant on TiO2

particle properties are discussed followed by crystal
structure control of the doped TiO2 nanomaterials.
Finally, microstructure changes of Cu-doped TiO2 are
discussed under different annealing conditions.

Particle formation mechanism

The proposed Cu-doped TiO2 particle formation
mechanism is illustrated in Figure 2. This is similar to
the pathways proposed by Basak [24] for multi-compo-
nent nanomaterial systems. To understand the formation
mechanism of the Cu-doped TiO2 nanoparticles in the
flame aerosol reactor, pristine TiO2 was synthesized first
using TTIP only as the precursor. TTIP decomposes to
form TiO2 monomers, which then undergo subsequent
growth by collision followed by sintering to form nano-
particles (test 1A). For synthesizing Cu-doped TiO2 parti-
cles, both the TTIP and copper nitrate precursor are fed
to the high-temperature flame. The nanoparticle proper-
ties such as size and composition depend on the relative
decomposition kinetics and molar feed ratios of the pre-
cursors (see Figure 2). The decomposition rate of TTIP is
given by, ka = 3.96 × 105 exp((-7.05 × 104)/RTs-1 [29].
Since the kinetic data for copper nitrate precursor is not
available, the decomposition rate reported for copper
acetyl acetonate was assumed (kb = 3.02 × 107 exp((-1.15
× 105)/RT)s-1) [30]. The two precursors form TiO2

(formed from TTIP molecular decomposition) and CuO
(formed by decomposition of copper nitrate followed by
evaporation) monomers at similar time instants as their
decomposition rates are similar (k1, Cu /k1, Ti to approxi-
mately 5, at 2,200°C). Depending on the molar feed ratio
of the precursors, a variety of morphologies can be
formed, ranging from particles consisting of only copper
oxide, particles of only TiO2, and the particles of mixed
TiO2 and CuO. At low copper concentrations (1-5 wt.%),
CuO monomers are readily incorporated into the higher
concentration TiO2 clusters by a scavenging process.

This is similar to the phenomenon demonstrated by
Wang et al. [22]. Subsequent collisional growth and sin-
tering result in a homogenous mix of Cu-doped TiO2

particles. However, at higher Cu feed concentration
(approximately 15wt%), apart from the collision and sin-
tering of the CuO monomers and TiO2 clusters, some of
the CuO oxide monomers also condense onto the formed
Cu-doped TiO2 particles. The HR-TEM image of the
synthesized 15-wt.% Cu-TiO2 nanoparticles indicates
regions of amorphous CuO on the particle surface. The
explanation of CuO monomer condensation on the parti-
cle surface is thus corroborated (test 1F). The nanoma-
terials synthesized at various dopant concentration were
verified by single particle EDS analysis to be comprised
of both copper and titania. No particles were found con-
sisting of only Ti or only copper species.

Effect of copper dopant concentration on TiO2 properties

Particle size analysis

Figure 3 shows the TEM, HR-TEM images, and primary
particle size distribution of 1 wt.% Cu-TiO2 (test 1B) and
15 wt.% Cu-TiO2 (test 1F) samples. The particle size dis-
tribution was obtained by measuring the diameter of 200
particles from representative TEM images. As shown in
the size distribution of these samples (see Figure 3), the
particles were spherical and size decreased with increas-
ing doping concentration. The geometric mean primary
particle size obtained at 1 wt.% doping was approximately
47 nm compared to approximately 33 nm obtained at 15
wt.% doping. The peak broadening observed in XRD pat-
tern (see Figure 4) also qualitatively explained the change
in particle size and lattice expansion with doping. The
crystallite size was estimated from the XRD pattern
obtained using Scherrer formula. The crystallite size
obtained at 1 wt.% doping was 33 nm compared to 25
and 23 nm at 5 and 15-wt.% doping concentration. It is
important to note that crystallite size estimation from
XRD is different from the particle size observed from the
microscopic analysis. XRD measures the size of the small
domains within the grains and one particle may consist
of several crystallites based on the preparation methods
[31]. The decreased particle size with increasing doping
concentration is due to the inhibition of the grain
growth. As evident from the HR-TEM images of the 15
wt.% Cu-TiO2 (see Figure 3), an enhanced amorphous
layer is observed on the surface. The excess CuO mono-
mers condense on to the existing Cu-doped TiO2 parti-
cles. Thus, particle crystallinity decreases and also
prevents grain growth. Wang et al. [22] observed an
amorphous crystal structure and decreased grain size
with an increasing Fe2+/Ti4+ ratios consistent with our
Cu-doped TiO2 materials. Reduction in size was also
observed when Li et al. [3] synthesized Zn-doped SnO2

nanomaterials. Norris et al. [27] proposed a process
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called self-purification by which dopants diffuse from
inside to the surface sites of TiO2 nanocrystals. This
change in particle size with doping concentration is fun-
damentally a very important phenomenon for electronic
structure modification. These results indicate that the
particle size of the Cu-doped TiO2 can be controlled by
manipulating the dopant concentration in addition to the
methods demonstrated by other researchers by control-
ling the precursor feed concentration and residence time
of the particle in the high-temperature flame [26,32].
Crystal phase

The functionality of TiO2 nanomaterials for various
applications depends on its crystal phase. The anatase
phase of TiO2 is preferred for photocataytic applications,
whereas rutile phase is preferred for applications in pig-
ments [1]. It is, therefore, necessary to understand the
modifications in the crystal structure by incorporation of
the dopants in TiO2. The XRD diffraction pattern of the
Cu-doped TiO2 nanomaterials synthesized at various
concentrations is shown in Figure 4. The pristine and
Cu-doped TiO2 nanoparticles were prepared at the same

flame conditions for comparison. The pristine TiO2 was
primarily anatase under the chosen processing condi-
tions. However, with increasing dopant concentration,
the transformation from anatase to rutile phase occurred,
as shown in Figure 4a from the (110) rutile peak, consis-
tent with other studies [18,33]. The anatase and rutile
fraction were calculated according to the formula pro-
posed by Spurr and Myers [34]. The pristine TiO2 had
1.2% rutile content, but with increasing doping concen-
tration to 15 wt.%, the rutile phase increased to 21.8%.
Even at high dopant concentration (15 wt.%), no pure
dopant-related crystal phase was observed within the
XRD detection limit. The same anatase to rutile phase
transformation was observed for synthesis of Cu-doped
TiO2 by other methods [9,35].
The similarity in ionic radius of Cu2+ (0.73 Å) to that of

Ti4+ (0.64 Å) enable copper to substitutionally replaces
Ti in the titanium lattice in the flame environment,
where particles are formed from the atomistic state. In
the high-temperature flame synthesis of Cu-doped TiO2
nanomaterial, the copper dopant creates a higher number

Figure 2 Cu-doped TiO2 nanoparticles formation mechanisms in a FLAR. Top represents TiO2 formation mechanism, middle is for low

copper dopant concentration and bottom is for high dopant concentration.
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of defects inside the anatase phase, resulting in a faster
formation and growth of a higher number of rutile nuclei
[36]. At elevated temperatures, the substitution of Ti4+

by Cu2+ increases the oxygen vacancy concentration and
decreases the free electron concentration. The excess of
oxygen vacancies created in the TiO2 crystal lattice is the
responsible for anatase to rutile phase transition [36,37].
Nair et al. [36] found that a dopant with an oxidation
state above 4+ will reduce the oxygen vacancy concentra-
tion in the titania lattice as an interstitial impurity.
Dopants with an oxidation state of 3+ or lower when
placed in the titania lattice points create a charge-com-
pensating anion vacancy [36] and cause a transformation
to the rutile phase as also found in this study. At higher
dopant concentration (15 wt.%) amorphous phase was
also observed on the surface as well as in the bulk. The
TEM and HR-TEM images 1 and 15-wt.% Cu-doped
TiO2 nanoparticles (see Figure 3) shows that particles at
lower doping concentrations are fully crystallized, and
the crystal lattice spacing corresponds to the anatase
phase of TiO2 (0.331 ± 0.03 nm), whereas the particle
synthesized at 15-wt.% copper concentration shows both
crystalline and amorphous phases of the material. The
HR-TEM images confirm that Cu2+ doping retards the
grain growth of TiO2 nanoparticles. Similar results of

decreasing crystalline nature of material were observed
when Fe2+- and Zn2+-doped TiO2 were synthesized
[3,22]. In a similar doping study, Wang et al. [22] found
that at higher Fe2+/Ti4+ ratios of 0.12, more rutile and
amorphous crystal structure was observed, consistent
with our Cu-doped TiO2 materials.
Figure 4b and 4c represent the XRD spectra for (101)

and (201) anatase peaks scanned at a very small steps of
0.004 degree for pristine and doped TiO2 nanomaterials.
It is important to note that with increasing dopant con-
centration, broadening of the major anatase peaks (101)
and (201) was observed, which indicates a decrease in
crystallite size. The shift in peak position to the right [8]
with increasing dopant concentration indicates that Cu2
+ ions replaced some Ti4+ ions along with the lattice
expansion. The results clearly indicate that addition of
dopant alters the crystal phase of the host nanomaterial
and the degree of phase transition depends on dopant
types and their concentrations.
Zeta potential and suspension stability

The dispersion characteristics of nanoparticles in aqu-
eous suspensions influence the fate and transport, cata-
lytic reactivity in the environmental system as well as
critical in understanding for toxicological applications
[38,39]. The stability of the synthesized Cu-doped TiO2

(B)
(A)

Figure 3 TEM images and particle size distributions of as synthesized Cu-doped TiO2 nanoparticles. (a) 1 wt.% Cu-TiO2 and (b) 15 wt.%

Cu-TiO2. Inset is the HR-TEM image of the crystal fringes (test 1). Size distribution of particles is determined from measurement of 200 particles

from representative TEM images (test 1B, F).
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nanoparticles was analyzed through the measurement of
zeta potential in aqueous system using de-ionized water
suspension (Figure 5) and compared with pure TiO2

(test 1A) and commercial CuO. When metal oxide
nanoparticles are dispersed in water, the hydration of
the nanoparticle surface followed by protonation and
deprotonation of the surface groups from the oxide sur-
face results in a surface charge. The effective surface
charge on the particle depends on the isoelectric point

(IEP) in the suspension [39,40]. The zeta potential
observed for pure TiO2 particle was +3.4 mV in the sus-
pension, as the measured pH of the suspension was
5.06, which is less than the IEP of the TiO2(pH approxi-
mately 6.0) and consistent with other studies [40]. How-
ever, for Cu-doped TiO2 nanoparticles, the zeta
potential value decreased to -3.4 mV and -25.6 mV at 1-
wt.% (test 1B) and 15-wt.% (test 1F) copper dopant con-
centration. The zeta potential measured for the
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Figure 4 The XRD diffraction pattern of the Cu-doped TiO2 nanomaterials. (a) XRD spectra of as-prepared Cu-TiO2 nanoparticles with

different dopant concentrations (A anatase, R rutile). (b) Comparison of the XRD anatase peaks of Cu-TiO2 nanoparticles: anatase (101) peaks and
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commercial CuO was -27.3 mV which is close to the
zeta potential value observed for 15-wt.% Cu-TiO2 sam-
ples (test 1F). The high surface charge on the 15 wt.%
Cu-TiO2 indicates better stability of these particles over
pristine TiO2 nanoparticles in aqueous suspension. The
higher zeta potential value and suspension stability of
the doped nanoparticles compared to TiO2 is attributed
to charge imbalance created due to substitution of Ti4+

atoms by Cu2+ in the TiO2 structure resulting in a more
negatively charged surface. Furthermore, zeta potential
values for 15-wt.% Cu-TiO2 samples being similar to
pure CuO supports the presence of a copper oxide layer
on the outer surface of the particles.
Light absorption properties

The absorption spectra of the resulting Cu-doped TiO2

nanomaterials was determined by a diffusive reflectance
spectroscopy measurement. The absorption spectrum of
Cu-doped TiO2 nanomaterials prepared at various
dopant concentrations are shown in Figure 6. With
increasing dopant concentration, an increased absor-
bance in the visible spectrum is observed. The estimated
Eg for pristine TiO2 was 3.31 eV which is consistent
with the reported value for anatase TiO2 [21]. With
increasing dopant concentration, the band gap energy
decreased and was estimated to be 2.51 eV at the high-
est dopant concentration of 15 wt.%. This change of
approximately 0.8 eV was due to the incorporation of
Cu2+ ions into TiO2 crystal structure, and CuO forming

a layer on the particle surface. From an experimental
and theoretical study of band structure estimation of
metal oxides, The results are consistent with findings of
Thimsen et al. [21] that the band gap energy decreases
with increasing Fe concentration in anatase-based TiO2

materials.
Change in the optical absorption is due to the defect

centers created by the substitution of Ti4+ by Cu2+ atoms
in the TiO2 crystal lattice. Earlier studies indicated that
doping with aliovalent ions changes the local lattice sym-
metry and defect characteristics, which could change the
absorption properties and the material properties. In Cu-
dopedTiO2, when copper ions are either located inside the
bulk TiO2 or on the surface sites, a rearrangement of the
neighbor atoms take place to compensate the charge defi-
ciency, resulting in lattice deformation. The lattice defor-
mation affects the electronic structure causing the band
gap shift [3]. Furthermore, small amounts of Cu2+ dopant
in the lattice sites of TiO2 introduce oxygen vacancies due
to the charge compensation effect [36,41]. Increasing the
copper doping concentration increases the oxygen vacan-
cies and probably form a newly doubly occupied oxygen
vacancy as discussed in Li et al. [3]. Therefore absorption
of the doped nanomaterial and band gap shift may be con-
trolled by surface effects, doping-induced vacancies, and
lattice strain. It can be said that the copper modified TiO2

structure extends its absorption to the visible spectrum of
sunlight (400-700 nm) effectively. Hence, these copper-

Figure 5 Zeta potential measurements of Cu-doped TiO2 nanoparticles in aqueous suspension.
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doped materials can be utilized for various visible-light
photocatalytic applications, which have been demonstrated
in several other studies [9,18].
Crystal phase control of Cu-doped TiO2 nanoparticle

The functionality of the nanomaterials depends on their
properties such as particle size, crystal phase, morphology,
and agglomeration [38,40]. A recent study by Braydich-
Stolle et al. [42] showed that cytotoxicity in the cells is

both size and crystal structure dependent. They demon-
strated that mechanism of cell death varied with different
crystal structure; the anatase phase of TiO2 being more
toxic than the rutile phase. To understand the role of crys-
tal phase of the doped nanomaterials on its functionality, it
is important to independently control the crystal phase
without varying the other material properties such as size.
Previous studies have demonstrated that crystal phase of
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Figure 6 Absorption spectrum of Cu-doped TiO2 nanomaterials prepared at various dopant concentrations. (a) Normalized UV-visible
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the TiO2 nanoparticle can be controlled by varying the
temperature in the flame (changing the methane flow
rates) and quenching rate downstream of the flame
[25,26]. A similar methodology was adopted to control the
crystal phase of the Cu-doped TiO2 materials. The dopant
concentration was kept constant at 3 wt.% and methane
flow was varied from 0.8 to 1.8 lpm (test 2, Figure 7a). The

anatase phase varied from 39% to 95%, when the methane
flow was increased from 0.8 to 1.2 lpm, whereas the pri-
mary particle sizes for all the cases were similar. The
representative TEM micrographs and corresponding size
distribution of the particles synthesized at 0.8 and 1.8 lpm
are shown in Figure 7b, c. The geometric mean size of
31.5 and 32.3 nm were nearly the same for the two flow
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Figure 7 Dopant concentration, representative TEM micrographs and corresponding size distribution of the particles. (a) XRD spectra at

different methane flow rates (A anatase, R rutile) and particle size distributions at (b) 0.8 lpm, (c) 1.2 lpm methane flow rates for 3-wt.% Cu-TiO2

nanoparticles (test 2).
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rate conditions. The size remained similar due to the bal-
ance between temperature profile and residence time in
the flame at different methane flow rates. For a fixed flame
operating parameters, increasing the methane flow rate
increases the flame temperature but at the same time
reduces the residence time in the flame. For lower
methane flow rate the temperature decreases and resi-
dence time increases. Thus the crystal phase of the Cu-
doped TiO2 nanoparticles was independently varied while
keeping the primary particle size the same. These well-
controlled Cu-doped TiO2 samples will be of significant
importance in biological studies to elucidate the role of
crystal phases without interferences from the other parti-
cle properties such as size.
Effect of annealing on Cu-doped TiO2 nanoparticle

properties

The morphological and structural transformation of the
doped nanoparticles plays important role in photocataly-
tic activity by modifying the surface chemistry, crystal
and electronic structure [43]. Since both amorphous and
crystalline phases were observed in HR-TEM images at
higher dopant concentration, the as-prepared Cu-doped
TiO2 samples were annealed at different temperatures to
investigate the effect on crystal structure and morphol-
ogy. The 1 and 15-wt.% Cu-doped TiO2 samples were
annealed at temperatures of 400°C and 600°C for 6 h. No
phase transformation was observed at 400°C. At 600°C,
the transformation from anatase to rutile phase was
observed as shown in Figure 8, which is consistent with
other studies [18,44]. The anatase weight fraction
decreased from 75% to 21% for the 15-wt.% Cu-doped
TiO2 sample. However, the morphology of the particles
changed from spherical to hexagonal structure for nano-
particles prepared at both the dopant concentrations.
The crystallite size increased with annealing. For 15-wt.%
Cu-doped TiO2 sample, the phase related to CuO was
observed based on the peaks recorded at Bragg angle of
35.5 and 39 from the XRD pattern (Figure 8). The amor-
phous CuO present in the outer layers were annealed to
form the crystalline phase in the presence of air.
The HR-TEM images of samples annealed at 600°C are

shown in Figure 9. The figure indicates that the annealed
1-wt.% Cu-doped TiO2 particle was completely crystal-
lized with no discontinuity in the crystal fringes as
observed from HR-TEM images, similar to the as-pre-
pared 1-wt.% Cu-doped TiO2 particles. However, for the
15-wt.% dopant sample, some amorphous regions were
still detected as shown in Figure 9 (highlighted with the
white squares). More detailed investigations are needed
to understand the effect of dopant concentration and
reaction environments on morphology change during
post-synthesis treatment of the initially synthesized sphe-
rical particles. The UV-vis measurements of absorption
spectra of 1- and 15-wt.% Cu-doped TiO2 annealed

samples are shown in Figure 10 and compared with the
commercially available CuO nanoparticles. Annealing of
the 15 wt.% Cu-TiO2 increased the absorption compared
to the as prepared samples in the visible spectrum mainly
because of enhanced crystalline CuO formation. It is
clear from the results that post-synthesis annealing can
alter the doped TiO2 nanomaterial properties such as
size, crystal structures as well as absorption properties,
thus influencing eventual functionality and performance.

Conclusions
Cu-doped TiO2 nanoparticles were synthesized in a dif-
fusion flame aerosol reactor and the properties were
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Figure 8 XRD pattern of the annealed Cu-TiO2 nanoparticles.
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Figure 9 TEM images of annealed Cu-doped TiO2 samples. (a) 1 wt.% Cu-TiO2 and (b) 15 wt.% Cu-TiO2. Annealing temperature, 600°C;

duration of annealing, 4 h (test 3).
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readily varied by controlling the processing conditions.
The increase in dopant concentration caused the trans-
formation from anatase to rutile phase of TiO2 due to
replacement of Ti4+ by Cu2+ in the crystal structure of
TiO2. A decrease in primary particle size was also
observed. The doped nanomaterials exhibited better
aqueous suspension stability compared to pristine TiO2

due to charge imbalance created. The annealing of the
doped samples resulted in the phase segregation and
crystallization of CuO for the higher dopant concentra-
tion samples. Spectroscopy measurements confirm a
shift in the absorption to visible frequencies, due to
crystal structure modification.
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