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ABSTRACT

Mobile phones are equipped with an increasingly large num-
ber of precise and sophisticated sensors. This raises the risk
of direct and indirect privacy breaches. In this paper, we
investigate the feasibility of keystroke inference when user
taps on a soft keyboard are captured by the stereoscopic
microphones on an Android smartphone. We developed al-
gorithms for sensor-signals processing and domain specific
machine learning to infer key taps using a combination of
stereo-microphones and gyroscopes. We implemented and
evaluated the performance of our system on two popular mo-
bile phones and a tablet: Samsung S2, Samsung Tab 8 and
HTC One. Based on our experiments, and to the best of our
knowledge, our system (1) is the first to exceed 90% accuracy
requiring a single attempt, (2) operates on the standard An-
droid QWERTY and number keyboards, and (3) is language
agnostic. We show that stereo-microphones are a much more
effective side channel as compared to the gyroscope, how-
ever, their data can be combined to boost the accuracy of
prediction. While previous studies focused on larger key
sizes and repetitive attempts, we show that by focusing on
the specifics of the keyboard and creating machine learning
models and algorithms based on keyboard areas combined
with adequate filtering, we can achieve an accuracy of 90%
- 94% for much smaller key sizes in a single attempt. We
also demonstrate how such attacks can be instrumentalized
by a malicious application to log the keystrokes of other sen-
sitive applications. Finally, we describe some techniques to
mitigate these attacks.
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1. INTRODUCTION

Mobile devices have proliferated across the globe with an
estimated 1.75 billion smartphone users world-wide by the
end of 2014 [9]. These smartphones are used for various
day-to-day and business activities, many containing sensi-
tive information such as Personally Identifiable Information
(PII), banking and credit card numbers, passwords, health
records, and location information. This means that a ma-
licious application installed on the smartphone can siphon
off sensitive information and leave millions susceptible to
data theft. Operating systems on these smartphones pre-
vent unauthorized access to application / user information
by implementing security mechanisms such as sandboxing
and permissions. However, side-channels such as sensors can
bypass such security restrictions. Most modern smartphones
contain several sensors such as microphones, cameras, gyro-
scopes and accelerometers that provide a better user experi-
ence but these sensors, however useful, leak information that
provides an adversary opportunity to covertly infer and steal
sensitive data.

In this work, we demonstrate that by recording the tap
sounds and vibrations from the stereo-microphones and gy-
roscope of a smartphone while a target application is run-
ning, it is possible to successfully infer user typed keys with
high accuracy. We also show that the audio data can be
combined with the gyroscope to further boost the accuracy.
Android OS is popular among users and smartphone manu-
facturers with more than million activations daily [15]. Ow-
ing to this popularity, we chose to perform our experiments
on two popular Android smartphones and a tablet: Samsung
S2, Samsung Tab 8 and HTC One. While there have been
related work, to the best of our knowledge, we are the first
to break the 90% accuracy barrier on the standard Android
QWERTY and number keyboard. For instance, some previ-
ous work that demonstrated key inference based on Android
sensors, Aviv et al. [1] reached an accuracy of 43% and 73%
on PIN and pattern passwords, respectively, requiring 5 at-
tempts, Owusu et al. [23] were able to infer 6 passwords out
of 99 six-character passwords in an average of 4.5 trials on
the QWERTY keyboard in landscape mode, and Miluzzo et
al. [21] predicted 4x5 icon taps on iPhone and Nexus S with
an accuracy of 80%. To achieve an accuracy of 90%, they
relied on more than 20 repetitions. To achieve a high accu-
racy on the standard keyboard, we developed an algorithm



and framework based on statistical methods and machine
learning that can predict keystrokes without repetition or
multiple attempts. Our framework is language agnostic as
we do not use any lexical properties of languages, however
we do assume that the adversary knows the keyboard lay-
out. We demonstrate the algorithm using data collected at
an office and in a restaurant. A malicious application and
a weak permission model for Android sensors coupled with
data modeling techniques make our attack feasible and con-
sequential. We make the following contributions:

e We show that by recording the tap sounds from the
stereoscopic microphone and the tap vibrations from
the gyroscope on a smartphone, it is possible to in-
fer user’s typed keys with a reasonably high accuracy
of above 90%. We also show that this accuracy can
be boosted by combining the audio data with the gy-
roscope data. We design an automated system that
can process this raw keystroke data, perform noise fil-
tering, build training models and use these models to
make language agnostic keystroke predictions on un-
known test data.

e We develop a specialized meta-algorithm that divides
the keyboard into specific areas and trains models us-
ing audio and gyroscope data for those areas. The al-
gorithm combines character-specific and area-specific
models to make more accurate predictions. We show
that by combining our algorithm with meta-algorithms
such as Bagging and Boosting [8], we were able to
achieve higher per algorithm accuracy than an elemen-
tary use of the machine learning algorithms on un-
known test data.

e We demonstrate the feasibility of a Trojan that reg-
ularly queries the Android system for the foreground
application and covertly records the microphone and
gyroscope when a sensitive application is used.

The rest of the paper is organized as follows. In sec-
tion 2, we describe a scenario of how a stealthy attack can be
launched against a sensitive Android application by a vic-
tim inadvertently downloading a malicious application. In
section 3, we describe the high-level architecture of our sys-
tem and discuss why the gyroscope and microphone sensors
leak information about a user’s typing activity. In section 4,
we describe our automated keystroke inference system, data
collection process and the meta-algorithm. In section 5, we
present the results of our experiments. In section 6, we de-
scribe techniques that can be used to mitigate these attacks.
In section 7, we describe previous related work and in sec-
tion 8, we conclude and discuss future research directions.

2. ATTACK VECTOR

To perform a successful attack, the adversary follows the
set of steps described below. The adversary develops and
distributes a malicious application usually as a Trojan (step
1). They trick the victim into installing the application (step
2) through techniques such as social engineering (e.g., a ma-
licious application disguised as a game or a note taking ap-
plication or through USB connection to bogus devices [2]).
Previous works have found examples of such applications
with backdoors in the Android marketplace [30], [32]. After
compromising the victim’s smartphone, the application per-
forms two roles. First, it presents a custom keyboard to the
user to collect typing behavior for training models. Second,

after training, it listens in the background for keypresses
from sensitive Android applications.

To successfully perform the first role, the malicious appli-
cation starts collecting user’s typing behavior by using a cus-
tom keyboard and recording the stereo microphones and gy-
roscope (step 3). The microphone requires explicit permis-
sions during installation and the adversary needs to declare
it in the manifest file. To avoid raising the victim’s suspi-
cions, the adversary justifies such permissions by providing
functionality such as: note taking, supporting voice com-
mands and voice recognition. The application must serve
an actual purpose (e.g., a Todo app) so that the user ac-
tually uses the application. After monitoring the victim’s
behavior, the Trojan uploads the collected training data to
a remote server to build models specific to the victim (step
4). The adversary can also use generic training data and
prediction models as a trade-off for performance and stealth.

To accomplish the second role, the Trojan runs in the
background and queries the smartphone OS for the current
location and the application. To reduce battery drain, these
queries run at predefined conservative intervals. On infer-
ring that the victim is at a place of interest using the GPS
or cellular and wireless networks (e.g., bank or residence
garage door) or when the victim opens a sensitive applica-
tion (e.g., a bank application), the Trojan starts to actively
collect the microphone and gyroscope data (step 5). The
current application can be found by using the Activity-
Manager class in Android SDK if the application has the
android.permission.GET_TASKS permission set in its man-
ifest file. The data is filtered and keystrokes are extracted
by the application and evaluated using the training models
to infer the user’s typed keystrokes.

3. APPROACH

In this section, we describe the architecture of our key in-
ference system that performs audio and gyroscope keystroke
noise filtering and extraction, data consolidation for machine
learning, model training, evaluation of test instances and
evaluation of accuracy.

3.1 Architecture

The architecture of our keystroke inference system is com-
posed of the components shown in Figure 1. The Application
component is the trojan application that secretly records the
gyroscope and stereo microphones when a user types in our
application (training data) or another security sensitive ap-
plication (test data). The raw gyroscope and audio data is
uploaded to a remote server that runs the remaining com-
ponents of our system to process this data, create training
models and perform evaluations on the test data. This raw
data contains user tap vibrations and sounds mixed with
pauses and noise that occur due to external factors such
as unstable hands (gyroscope noise) or background music
(audio noise), see Figures 6 and 7. The Pre-processing com-
ponent removes noise from the data using adequate filter-
ing, extracts the user taps, and performs fitting to resample
the data. The techniques used for filtering and extracting
gyroscope and audio data are different and require two sep-
arate pre-processing components. Once the data has been
processed, it is converted to a format that is understood
by Weka [16]. During conversion, the gyroscope and au-
dio data may also be combined for inference. This means
that the two need to be synchronized with each other. The
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Figure 1: Architecture of the key inference system.

Synchronization component synchronizes the gyroscope and
audio data and the Consolidation component converts the
extracted and filtered inference ready data to a machine
learning toolkit format. In order to classify unknown test
data, the consolidated training data is used to build models.
The Training component analyzes the data for errors, ran-
domizes them and uses several machine learning algorithms
to build different inference models for the entire character
set as well as specific areas on the keyboard. These mod-
els are then used by the Fvaluation component to perform
predictions on the unknown test data. The component uses
a meta-algorithm that makes a final keystroke prediction.
The meta-algorithm uses a multi-step approach based on the
specific layout of Android QWERTY and number keyboards
to optimize the inference accuracy of test keystrokes. Once
predictions have been made for all unknown test data, the
Accuracy Fvaluation component compares them with the
expected keystroke to evaluate our system’s performance.

3.2 Sensors

3.2.1 Gyroscope & Accelerometer

Gyroscope and Accelerometer sensors on smartphones can
detect vibrations for every keystroke when a user types on a
soft keyboard. Figure 2 shows the location of the gyroscope
(in red), the location of keys ‘I’, ‘Q’ and ‘V’ on a standard
QWERTY keyboard on the HTC One, and the co-ordinate
system of Android sensors. The magnitude and orientation
of these vibrations vary depending on the tap location with
respect to the two axes which can be mapped to a standard
fixed keyboard layout. In Figure 3, we see that key ‘Q’
shows significant vibration in the y axis and key ‘V’ shows
significant vibration in the x axis. As the key ‘I’ is close
to both the axes, it does not show considerable vibration in
both the axes.

Gyroscope sensors are attractive targets for building smart-
phone keyloggers. They are easy to use in Android using the
Android SDK [14] APIs defined in the Sensor class. They
do not require special permissions and they can run in the
background without prompting or notifying the user. A po-
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Figure 2: Location of the Accelerometer, Gyroscope
and Microphones on HTC One; Approximate loca-
tion of keys ‘I’, ‘Q’ and ‘V’ on standard QWERTY
keyboard.

tential issue with using the SDK API is that the sampling
rate is not fixed and may reduce when more processor in-
tensive services are running, thereby reducing the inference
accuracy. A solution for obtaining high and constant sam-
pling rate on a Android smartphone even when other high
priority services are running on the system is to use the An-
droid NDK [13] APIs defined in sensors.h.
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Figure 3: (Top, middle and bottom) Similarity be-
tween two keystrokes for letters ‘Q’, 'V’ and ‘I’; Each
letter pattern is visually different from other letter.

3.2.2  Microphones

Microphone arrays are becoming commonplace in smart-
phones. Some smartphones, such as the iPhone 5s, are
equipped with three microphones. Other smartphones, such
as the HTC One, are equipped with dual membrane micro-
phones that focus on capturing different sound levels (one
for sensitivity and the other for distance) on a single mi-
crophone. In both these arrangements, the audio captured
by the arrays are combined and processed to provide high
quality and distortion free audio recording to users with the
capability to detect feeble sounds. In addition, the HTC
One also supports stereo recording. We observed that a soft



tap on a smartphone, by a user, is audible. This tap can
be covertly recorded and processed to infer a user’s typing
activity with relatively higher accuracy than the gyroscope.
There are two techniques to infer keystrokes, one that uses
the amplitude of audio signals at the two microphones and
the other that uses the time delay between signals reaching
the two microphones. We use a combination of both the
techniques to build our inference models. Figure 2 shows
the location of the microphones (in blue) on the HTC One.
Since the microphones are synchronized, for a tap at location
T, the delay in tap detection between the two microphones
M1 and M2 can be computed using the following formula.

Number of Samples =
(Distance(T,M1) - Distance (T,M2)) * Sampling Rate
Speed of Sound
(1)

The distance between the two microphones on the HTC
One is about 0.134 m. The current maximum supported
sampling rate for Android is 48000 Hz and the speed of
sound in air is about 340 m/s. Using these values with
the formula, a difference of 18 samples is obtained for taps
in close proximity to the microphones. This means that
taps on different keys will produce varying sample differences
based on their distance from the two microphones. The
difference in samples will increase when smartphones start
supporting higher sampling rates such as 192 KHz, currently
supported by Blue-ray. Using a rate of 192 KHz with the
formula, a difference of 75 samples can be obtained for taps
in close proximity to the microphones. This will significantly
improve the accuracy of inference and is indicative of the
impact of the sampling rate on the accuracy.

To illustrate the time delay between the microphones, we
recorded multiple samples for keys ‘Q’ and ‘V’ on a standard
QWERTY keyboard on the HTC One at a sampling rate of
48KHz. Figure 4 shows a single tap for the two keys. We
found that, for multiple taps, the two keys always have the
same delay of 8 and 15, respectively, between M1 and M2.
The figure also shows that the amplitudes at M1 were signif-
icantly lower than M2. This is because our application uses
M2 as the primary microphone, and requests the Operating
System to perform noise cancellation when supported. The
lower amplitudes at M1 are a result of noise cancellation by
the system.

Microphone functionality is easy to implement in Android
using the Android SDK APIs defined in the AudioRecord
class. Even though they initially require special permissions
from the user, once installed, they can run in the background
without prompting the user or showing a notification. This
makes the microphones an attractive target for building An-
droid keyloggers. Stereo recording is a relatively new con-
cept in smartphones and we expect a lot of new smartphones
to adopt this technology. We believe that this capability can
be used maliciously and should be addressed.

4. SYSTEM DESIGN AND ALGORITHMS

In this section, we describe the hardware and software
we developed, the data collected, the gyroscope and micro-
phone noise filtering and extraction process, the training
process and the meta-algorithm that we developed to make
predictions on unknown test data.
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Figure 4: (Left) Sound waves received by the two
microphones of HT'C One for key ‘Q’; (Right) Sound
waves received by the two microphones for key ‘V’.

4.1 Data Collection
4.1.1 Hardware & Software

In this work, we decided to evaluate our algorithms and
system on two popular Android smartphones and a tablet:
Samsung S2 (Android 4.1), Samsung Tab 8 (Android 4.1)
and HTC One (Android 4.4); all three using the stock An-
droid Operating System provided by the vendor. We did
not make any modifications to the operating system and
its underlying mechanisms. We developed an application
to collect accelerometer, gyroscope and microphones data
for training the models and for generating test samples for
evaluation. It runs in two separate modes for training and
test data. The data collected in the training mode is used
for building the inference models and the data collected in
the test mode is used for making predictions using these
models. In case of the test mode, the application invokes a
service that runs in the background. These two modes are
completely independent of each other and do not overlap.
Our application implemented a custom keyboard that has
the same layout and capabilities as the standard Android
QWERTY and Number keyboard. The only difference is
that our keyboard has the capability to detect a key press
and inject a key press event in the gyroscope data. Figure 5
shows the screenshot of the custom keyboard. The user
presses the ‘Start Recording’ button and types data on the
keyboard. Whenever they are done typing their data, they
press the ‘Stop Recording’ button that is visible after record-
ing is started. During this typing session, the accelerometer,
gyroscope and microphones are activated in the background
and their data are recorded and stored on the smartphone’s
internal memory.
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Figure 5: QWERTY and Number Keyboard with
Area divisions.

4.1.2 Gyroscope & Microphones

We collected accelerometer, gyroscope and audio training
and test samples for both the number and QWERTY key-
board in Portrait mode on the Samsung S2, the Samsung
Tab 8 and the HTC One. The data was collected by seven
participants who were asked to take samples in their normal
typing style. We observed their typing behavior and all of



them held the device in one hand and typed using the index
finger or thumb of the other. One participant (User4) held
the device in their right hand and the remaining in their left
hand. The main difference in typing behavior was the inten-
sity with which the finger touched the screen and the angles
at which these devices were held. These participants were
asked to type anything they wanted (random characters and
words) and at least 30 samples per character / number in
the training mode.

The data on the HTC One was collected in two environ-
ments. Five participants typed in an office environment and
two of them also typed in a restaurant. The office envi-
ronment consisted of a cubicle with three computers and a
server running all the time with additional noise from key-
board typing, doors opening and closing, people talking and
faint noises of vehicles from on a nearby street (noise level
around 49-52 dB). The restaurant was much more noisier
with background music, several people talking and noise
from utensils (noise level around 72-76 dB).

The data collected from the gyroscope are the smart-
phone’s time, gyroscope accuracy, x axis orientation, y axis
orientation and the z axis orientation at the maximum sam-
pling rate for the device. We additionally collected the key
press time using a custom keyboard having the same lay-
out and capabilities as the standard Android QWERTY and
Number keyboard. We chose to discard the z axis orienta-
tion as vibrations caused by keystrokes mainly affected the
x and y planes.

The data collected from the microphones are the ampli-
tudes received by the two microphones. We collected raw
audio data instead of pre-processed data. A sampling rate
of 48KHz was chosen because Android currently does not
support higher sampling rates.

During the initial phase of the experiment, we also col-

lected accelerometer data from the smartphone. Subsequently,

we did not consider this sensor because the accuracy was
significantly lower than the gyroscope. The reason was that
the accelerometer combines acceleration and gravity and the
gravity component varied significantly even when the phone
was placed stationery on a table. Even when the gravity
vibrations were removed by filtering techniques, there was
not much improvement in accuracy.

4.1.3  Synchronization

The gyroscope and audio data are synchronized by in-
jecting a microphone start event in the gyroscope data. The
trojan application invokes two threads to start the gyroscope
and microphones, however, the microphones are started only
after the gyroscope has completely initialized. This is done
to ensure that the gyroscope sensor starts at the highest
sampling rate and does not get reduced to a lower rate due
to resource consumption by the microphones. Once the mi-
crophone starts recording, the application generates a mi-
crophone start event that gets injected into the gyroscope
data. The two are then recorded simultaneously.

4.2 Pre-processing

4.2.1 Gyroscope

Contrary to previous works [29], [21], [5] that extracted
features from the gyroscope recordings, we use the raw gyro-
scope x and y axes orientations as the feature set for machine
learning. The Android Sensor API returns the rate of change

of orientation in radians/second. We use this rate to con-
struct the gyroscope recording and then use this as our raw
data. The raw data is filtered, extracted, re-sampled and
converted to a machine learning toolkit compatible format.
Figure 6 shows the stages of pre-processing for a gyroscope
sample, these stages are described below.
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Figure 6: (Top Left) A noisy unprocessed raw gy-
roscope sample for letter ‘V’; (Top Right) Noise
removed from the sample after frequency filtering;
(Bottom Left) The filtered sample after tap extrac-
tion; (Bottom Right) The sample after resampling.

Filtering: The gyroscope noise during a typing session
occurs mainly because of the instability of the hand and
this noise is typically high frequency. When the change in
orientation is much higher than the noise, i.e. high signal-to-
noise ratio, the noise can be removed by simple frequency
filtering techniques. We use a Fast Fourier Transform fil-
ter [11] to detect frequencies corresponding to the sample
values (the tap). We keep these frequencies unchanged and
remove the amplitudes at the other frequencies. We then
apply an Inverse Fast Fourier Transform to obtain the fil-
tered data. The technique works quite well, however, for
noisier data advanced filtering schemes such as Kalman Fil-
tering [28] can be applied. When the signal-to-noise ratio
is low, then these filters may remove significant tap spe-
cific information reducing the accuracy. One option is to
use the unfiltered raw data in such cases but we observed
that the accuracy with filtered data is much better than raw
data. This is because the noise in the data changes the wave-
form and makes them dissimilar even for the same location.
Another option is to observe the gyroscope vibrations and
record only when the noise is under a threshold.

Extraction: Our trojan Android application uses a cus-
tom keyboard with the standard Android keyboard layout
for tap detection. The keyboard injects an event into the
gyroscope data when a key is pressed. Our system uses this
as the start of the sample and uses a constant time difference
to compute the end of the sample.

Resampling: The filtered gyroscope data are of differ-
ent sizes as the Android SDK does not allow setting a fixed
sampling rate for sensors. However, most machine learn-
ing toolkits are very specific about file formats and require
fixed length training and test samples, therefore the data
has to be resampled before consolidation. Another reason
for resampling is to increase the size of the data such that



minute changes in data are identified by machine learning
algorithms. We use a technique known as Cubic Spline In-
terpolation [20] to resample the data without changing the
waveform of vibrations. Our evaluation results confirm that
greater number of samples increase the inference accuracy.

4.2.2  Microphones

Instead of extracting specific properties from the audio
samples and using them as features, we use the raw audio
received at the two microphones. The raw audio data is first
filtered to remove noise, then extracted to obtain the tap,
re-sampled and converted to a machine learning toolkit com-
patible format. Figure 7 shows the stages of pre-processing
for an audio sample, described below.
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Figure 7: (Top Left) A noisy unprocessed raw au-
dio sample for letter ‘V’; (Top Right) Noise removed
from the sample after frequency filtering; (Bottom
Left) The filtered sample after tap extraction; (Bot-
tom Right) The sample after resampling.

Filtering: The noise in audio signals can be present due
to several factors such as background music, conversations,
and moving traffic. Audio noise is typically high frequency
and can be removed using frequency filtering techniques. We
use a bandpass filter to pass all frequencies in the range of
1500 to 3500 Hz and stop the remaining frequencies. Band-
pass filtering is an effective technique when the tap and noise
frequencies don’t overlap. The frequency range was obtained
by analyzing recordings on the HT'C One such that back-
ground noise was removed while retaining the frequencies of
the tap sound. A low signal-to-noise ratio can have a signifi-
cant impact on the inference accuracy and even when filters
exist to remove noise, the noise removal algorithm may also
change the original waveform and decrease inference. One
option is to observe the microphones data and record only
when the noise is under a threshold.

Extraction € Resampling: We use the peak amplitude
at the two microphones to detect the start of the sample.
The channel that has the higher amplitude becomes the base
channel and about two wavelengths are extracted to ensure
that the peak of the other channel is extracted as well. The
audio samples are interpolated so that changes in data are
detected as features by the machine learning algorithms.

4.3 Training Process

The system uses the specifics of Android QWERTY and
number keyboard and a number of steps and algorithms to
develop adequate training models.

Table 1: Accuracies of elementary algorithms for
some sample sets.

Keyboard| Sensor | DT NB NN 10-NN

HTC One

QWERTY | Mics 86% 85% 90% 80%

QWERTY | Comb 85% 81% 89% 84%

Number Mics 70% 81% 72% 66%
Number Comb 68% 73% 8% 71%
Samsung S2

QWERTY | Gyro 60% 61% 58% 52%

Number Gyro 74% 74% 82% 2%

Consolidation: The filtered training data are consoli-
dated into a single database file in the machine learning
toolkit format. The file can contain only the gyroscope data
(for non-stereo microphones), the microphone data or the

microphone + gyroscope data combined (for stereo-microphones).

Unlike [21], we do not use any techniques to combine the
microphone + gyroscope data but simply append their con-
tents. We reason that these sensors have different properties
that may be lost if combined.

Area Division: The keyboards were broken down into
areas such that all keys in a particular area are distinguish-
able from another using at least one feature. The area di-
vision for a standard QWERTY keyboard in portrait mode
is shown in Figure 5. They are chosen such that the x-
orientation remains constant and y-orientation varies for all
keys in the area. For example, for the area ‘QWE’, the neg-
ative y-orientation will be higher for ‘Q’, lesser for ‘W’ and
the least for ‘E’. The area division for a standard number
keyboard in portrait mode is shown in Figure 5 and follows
the same technique except for keys ‘8’ and ‘0’ that will have a
constant y-orientation and varying x-orientation. We tested
other area divisions as well but this division worked better
than the others.

Elementary Algorithms: The Weka toolkit offers a large
variety of machine learning algorithms. The problem of
predicting the keystrokes is a supervised classification prob-
lem, therefore we eliminated algorithms that do not apply in
this context (e.g., K-Means). Before developing our meta-
algorithm, the algorithms we tested were Decision Trees,
Naive Bayes, K-Nearest Neighbor (k-NN), Hidden Markov
Models, Support Vector Machines, Random Forest and Neu-
ral Networks. Of these algorithms, Decision Trees (DT),
Naive Bayes (NB), 1-Nearest Neighbor (NN) and 10-Nearest
Neighbor (10-NN) performed better and yielded higher ac-
curacy rates. Neural Networks also yielded high accuracy
rates but was not chosen due to heavy resource consump-
tion. In the context of our work, instance-based methods
such as k-NN yield high accuracy, since they try to find the
closest match between the new prediction and the training
data. Table 1 shows the performance of these elementary
algorithms for three QWERTY and three number keyboard
sample sets. As we can see, none of these algorithms per-
form well on all areas of keyboard because of overlapping
instances. This observation drove us to develop a meta-
algorithm which considers the areas of keyboard before mak-
ing predictions.

The Training Process: The goal of the training process
is to build inference models based on the entire character
set and areas defined for the keyboard.



In step 1, training models are built for predicting areas
of the keyboard using a voting [18] algorithm. The voting
algorithm uses the prediction of all the algorithms and their
confidence values to determine the area of the test data. The
model for voting uses ensembling techniques such as Bagging
and Boosting to improve the accuracy of algorithms. The
Ensembling technique builds multiple models from subsets
of the training data, analyzes the accuracy of the subsets to
detect incorrectly classified instances, and then uses these
instances again with different weights or averaging to build
better predictive models.

In step 2, training models are built for the entire character
set for all the algorithms. These models also use ensembling.
If the training data specified is microphones + gyroscope,
then training models for microphones are also built. This
is because the gyroscope data for certain areas of the key-
board that are close to the actual hardware may be weaker
that other areas and weak gyroscope data may reduced the
overall accuracy of the model for that area.

In step 3, training models are built for all character sets
within an area for each area. These models also use ensem-
bling. If the training data specified is microphones + gyro-
scope, then training models for microphones are also built.
Our system evaluates these models using multi-fold cross
validation using varying fold values. In multi-fold cross vali-
dation, a subset of the training data is provided to the model
as test data and the accuracy of the model is computed. By
using multiple folds, a model can be tested multiple times
with different training data and their accuracies are aver-
aged. Our system determines which models are better for
an area and uses these for predictions for that area.

In step 4, the two best algorithms for an area (determined
in step 3) are combined into a single voting algorithm. This
voting algorithm is used by the meta-algorithm to make a
final prediction in case all previous prediction mechanisms
do not conclude on a single prediction. In case the two mod-
els predict different keys, their confidence values are used to
determine the final prediction.

4.4 The Area-Based Meta-Algorithm

Initially, we used elementary algorithms and voting schemes
to make predictions on test data. Using these elementary
algorithms, the accuracy achieved was not high (See Ta-
ble 1), and different algorithms predicted different keys for
the same test data. To address the problem, we developed
a meta-algorithm that utilizes our area specific models at
multiple levels to infer the key with a higher accuracy rate
than traditional algorithms. The evaluation we performed
shows that the meta-algorithm yields much better accuracy.

The Inference Process: Figure 8 shows the flow dia-
gram of our meta-algorithm and the levels of evaluations.

In step 1, the test data is evaluated using the area voting
model. The goal of this step is to identify the area where a
keystroke would belong to and load the appropriate models
for that area. Our system evaluates the models built for ev-
ery area and maintains a list of the models that have yielded
high accuracy with the training data for that area. For ex-
ample, an area ‘IOP’ on the QWERTY keyboard may have
weak gyroscope data implying that the consolidated model
will be weak. The system detects this and loads the micro-
phone model for evaluation instead of the microphones +
gyroscope combined model.

TEST DATA
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Figure 8: Flow diagram of the Meta-algorithm.

In step 2, the test data is evaluated using the loaded
character set models. We use these models before the area-
specific models to ensure that a prediction error by the vot-
ing model is detected and corrected. For example, the voting
model may predict the area of a test sample on a QWERTY
keyboard as ‘IOP’ when the key pressed was ‘K’. One rea-
son for this may be weak or noisy gyroscope data in the
voting model that is similar to keys in area ‘IOP’. Our sys-
tem will load the microphone models when the gyroscope
data is weak. These models can then evaluate the test in-
puts correctly based on the audio data. If more than 75% of
the models predict the same key, then this key is chosen as
the final prediction and no additional steps are performed.

In step 3, the test data is evaluated using the area-specific
models. This step is only executed when the character mod-
els were not successful in predicting the keystroke. One rea-
son can be the prediction of neighboring keys that belong to
another area. For example, a character set based model may
predict the key as ‘A’ when the actual key is ‘Q’. These keys
are neighbors on a standard Android QWERTY keyboard
and may contain similar vibrations and audio characteris-
tics. When the test data is evaluated specifically using the
models for area ‘QWE’, then they can only predict a key
from the selected area and may predict the correct key.

In step 4, the test data is evaluated using a voting model
consisting of the two best algorithms for that area. The
model determines the final prediction based on the predic-
tion and confidence values of the two algorithms. This step
will generally be executed when the test data is quite noisy
and difficult to infer. We do not discard the data but at-
tempt to make a final prediction based on the two best al-
gorithms for that area.

S. EVALUATION

We evaluate our keystroke inference system using the fol-
lowing three metrics: The performance of the gyroscope,
microphones and microphone + gyroscope (combined) sen-
sors for different areas of the keyboard, the performance
of our meta-algorithm applied to different machine learning
algorithms in comparison to the traditional use of these al-



gorithms, and the performance of our meta-algorithm on the
sample sets that were collected.

5.1 The Meta-Algorithm Evaluation

Table 2 shows the area-wise accuracy of the gyroscope
(Gyro), microphone (Mics) and combined (Comb) sensors
for a sample set collected using the QWERTY keyboard in
portrait mode on the HTC One. The evaluation is based
upon the accuracy with which characters were predicted cor-
rectly in different areas of the keyboard. We can see that
the gyroscope predictions are inconsistent across areas as
compared to the microphone which is consistent through-
out. The gyroscope results are location dependent because
of its hardware location. The areas IOP, ASD and NM are
close to the gyroscope and do not exhibit significant vibra-
tion on the y axis. The inference depends more on the x axis
vibrations yielding lower accuracy for these areas. The ar-
eas XZ, ASD, and QWE are further from the gyroscope and
exhibit significant vibrations in the y axis. The inference
depends on both axes vibrations yielding higher accuracy
for these areas. Microphone predictions, on the other hand
are location independent as they rely on the speed of sound
traveling over the surface. We also see that the accuracy of
the microphones is higher than the gyroscope for most of
the areas, the only exception being area XZ. Combining the
data from the two sensors yields higher accuracy than the
individual sensors in some cases when the gyroscope data
for an area is not weak. In a situation where the gyroscope
data is weak for an area, our system attempts to detect this
and performs inference using microphone data for that area.

Table 2: Area-wise accuracy of QWERTY keyboard
sample set.

| Area | Gyro Mics Comb |
Q, W, E 84% 90% 92%
R, T.Y, U | 86% 86% 92%
I,O,P 79% 90% 99%
A, S, D 81% 94% 7%
F, G H 70% 89% 92%
J, K, L 1% 84% 89%
X, Z 88% 80% 98%
C,V.B 83% 93% 93%
N, M % 90% 100%

Table 3 shows the performance of our meta-algorithm
when applied on individual algorithms in comparison to the
traditional use of the algorithms (Table 1) for the same sam-
ple sets in Table 1. We see that our meta-algorithm can
improve the accuracy of prediction for every sample set. We
also see that the Decision Tree (DT) algorithm benefits the
most from the meta-algorithm, with high increase in accura-
cies ranging from 8-13%. The Naive Bayes (NB) algorithm
does not benefit much from our meta-algorithm, with lower
increase in accuracies ranging from 0-4%.

Table 4 shows the final accuracy obtained by using our
meta-algorithm with the sample sets that we collected in the
office environment. We can see that it is possible to achieve
high accuracy of predictions using the stereo-microphones on
the device. We achieve an accuracy of 89.5% for the QW-
ERTY keyboard for User3 and an accuracy of 94.5% for the
Number keyboard for User2. We also see that in some cases
such as the QWERTY keyboard sample for User3, combin-

Table 3: Accuracies of meta-algorithm for some sam-

ple sets.
Keyboard| Sensor | DT NB NN 10-NN
HTC One
QWERTY | Mics 94% 86% 93% 85%
QWERTY | Comb 95% 80% 93% 91%
Number Mics 80% 81% 79% 76%
Number Comb 81% % 81% %
Samsung S2
QWERTY | Gyro 68% 61% 60% 55%
Number Gyro 82% 76% 84% 79%

ing the audio data with the gyroscope can boost the infer-
ence accuracy and it is possible to reach a higher accuracy of
94% even for the QWERTY keyboard. In some situations,
using a combination of sensors may result in decrease of ac-
curacy, such as for the number keyboard for User2. This
is possible when the gyroscope data is weak. We built our
system to detect such weak gyroscope samples using cross-
validation of training samples but we did come across sit-
uations when the cross-validation yielded high accuracy for
weak gyroscope data and used them to create models. One
alternative could be to use some training samples solely for
evaluating the models instead of using cross-validation with
training samples that were used to create the models. There
are some sample sets where the gyroscope inference accuracy
is as low as 44-56%. We evaluated them carefully and found
that our filtering techniques were not able to handle large
gyroscope drifts. These drifts can be compensated by using
Kalman filtering on the gyroscope data.

Table 4: Final single stroke meta-algorithm accuracy
for several sample sets.

User | Keyboard| Count | Gyro | Mics | Comb
HTC One
Userl Number 306 68% 93% 93%
User2 | Number 200 44% 94.5% | 93%
User3 | Number 300 2% 91% 91%
User4 Number 300 75% 94% 95.5%
Userb Number 323 45% 83% 83%
User3 | QWERTY | 782 80.5% | 89.5% | 94%
User4 QWERTY | 860 56% 83% 83%
Userb QWERTY | 877 66% 73.5% 4%
Samsung S2
Userl Number 137 75.5% | - -
User2 Number 542 84% - -
User3 | Number 202 83% - -
User4 Number 200 81.5% | - -
Userb Number 512 81% - -
Userl QWERTY | 366 63.5% - -
User2 QWERTY | 620 7% - -
User5 | QWERTY | 312 74% - -

We also evaluated our keystroke inference system in en-
vironments when such an attack would not work so well.
The gyroscope inference accuracy will be affected when the
vibrations recorded during typing are noisy such as when
typing while on a running vehicle, trembling hands during
typing or when the touch is too soft. The microphones in-
ference accuracy will be affected when the background noise
is too high or when the touch is too soft for the microphones



to capture. In our experiments, we asked two participants
to type in a noisy restaurant environment and achieved an
accuracy of 42% and 56% for 212 and 226 test samples using
the microphones, respectively. There were two participants
who touched the screen very softly, and for them, our system
achieved a low accuracy of less than 20% for both the mi-
crophones and the gyroscope. This was mainly because the
keystroke could not be differentiated from the background
noise. We also asked two participants to type on a tablet
and achieved an accuracy of 36% and 45% for 106 and 234
test samples, respectively, using the gyroscope. These par-
ticipants held the tablet in two hands and typed using their
thumbs significantly reducing the vibrations caused due to
typing.

5.2 End-to-end Attack Evaluation

To illustrate an end-to-end attack, we have also imple-
mented a Trojan-like functionality in our Android appli-
cation. The application starts a background service that
queries for the foreground activity every five seconds. In An-
droid, every UI page is known as an activity. An application
may have multiple activities and every activity has a differ-
ent class name. Using these class names, an adversary can
determine the functionality that an application is perform-
ing. For example, for the banking application we used, the
login activity is named as com.***** mobile. ¥***** A ctivity
(parts of the class name hidden here for anonymity of appli-
cation). The Trojan starts recording the microphones and
gyroscope during the banking application login activity or
when credit card input activity is in the foreground.

We collected 100 four digit random numbers and 100 six-
teen digit random numbers simulating PIN numbers and
credit card numbers from the Trojan service. These were
recorded when users opened a particular activity of a bank-
ing application triggering the microphone and gyroscope
recording. Table 5 shows the accuracy obtained by using
our meta-algorithm with these PIN and credit card num-
bers. For four digit PIN numbers, the system correctly pre-
dicted 376 digits out of 400 digits and 8 additional keystrokes
were detected by the system. Out of the 100 PIN numbers,
84 were predicted completely correctly in the first attempt.

as sandboxing and permissions. The security and effec-
tiveness of such techniques have been studied in previous
works [26], [17], [3], [12], [22], [10]. Cai et al. [6] discussed
properties of a privacy protecing sensors. Although these
mechanisms have proved to be effective against a large num-
ber of attacks, they are not effective against side channel
attacks that bypass them.

We broadly classify mitigation techniques against side chan-
nel attacks as blocking or limiting accuracy [24], [7].

Blocking: When a sensitive application starts running, it
will obtain a lock on mutually exclusive sensors and hard-
ware that are only accessible to one process (app). Some
sensors, such as the microphone and camera, fall into this
classification. During this period when the application is
using these sensors, no other process will be able to use
them. Blocking is straightforward to design and implement,
e.g. in the current Android SDK, this can be done by using
the system calls in android.media.AudioRecord and an-
droid.media.MediaRecorder. However, this mechanism is
not practical against non-mutually exclusive sensors, such
as the gyroscope and accelerometer, without significant user
experience degradation.

Limiting accuracy: The inference accuracy for both the
microphones and gyroscope is highly correlated with the
sampling rate. Table 6 shows the impact of the sampling
rate on these sensors. We see that by reducing the sampling
rate of the gyroscope from 100 Hz to 56 Hz in sample sets
collected by the same user, the inference accuracy reduced
from 79% to 58%. By lowering the sampling rate to 20 Hz,
most keystroke vibrations were not detected yielding a low
accuracy of 18%. Similarly, by reducing the sampling rate
of the microphones from 48 KHz to 22.05 KHz, the inference
accuracy reduced from 91% to 31%. As mentioned in Sec-
tion 3, the sampling rate of the sensors can be reduced by
introducing services that use more processing power, how-
ever, an adversary can still obtain high and constant sam-
pling rate by using the Android NDK.

Table 6: Impact of sampling rate on inference accu-
racy for Number keyboard sample set.

For sixteen digit credit card numbers, the system correctly Sampling Rate | Accuracy
predicted 1467 digits out of 1600 digits and 12 additional Gyroscope
keystrokes were detected by the system. Out of the 100 100 Hz 79%
credit card numbers numbers, 52 were predicted completely 56 Hz 58%
correctly in the first attempt. 20 Hz 18%
Microphones

Table 5: Final meta-algorithm accuracy for 100 PIN 48000 Hz 91%
numbers and 100 credit card numbers. 44100 Hz 89%

Total Correct | Correct Digits | Accuracy 22050 Hz 31%

PINs
100 [ 84 [ 376 [ 94% 7. RELATED WORK & DISCUSSION
Credit Cards Cai & Chen [5] were the first to study the feasibility of
100 | 52 | 1467 | 91.5% number keystroke inference attacks using an Android de-

We, thus, show that by building area specific models com-
bined with meta-techniques, it is possible to achieve high
accuracy of predictions such as 90-94% for the QWERTY
and Number keyboard.

6. MITIGATION

The Android platform uses a variety of security and de-
fense mechanisms against application’s misbehavior, such

vice’s orientation sensor. They developed an Android ap-
plication called TouchLogger and collected three data-sets
on a HTC Evo 4G phone using a Number only keypad in
Landscape mode. Their experiments achieved a successful
inference accuracy of about 70% on all three data-sets and
showed that such an attack was indeed feasible.

Owusu et al. [23] studied the feasibility of character and
area inference using an Android device’s accelerometer sen-
sor. They developed an Android application called ACCes-



sory for collecting data-sets on a HT'C ADR 6300 phone from
four participants. The participants were instructed to hold
the phone and enter keys in a certain manner and several
data-sets were collected for screen area and characters us-
ing a QWERTY keypad in Landscape mode. The data-sets
were used to build a predictive model to evaluate the accu-
racy of area inference as well as passwords inference. Their
experiments showed that, out of 99 6-character passwords,
it was possible to successfully infer 6 character passwords in
5 trials.

Xu, Bai & Zhu [29] used two motion sensors, accelerom-
eter and orientation, to study the feasibility of inference of
the lock screen password and the numbers entered during
a phone call, such as credit card and PIN numbers. They
developed an Android trojan application called TapLogger
that stealthily logs these numbers by using the accelerom-
eter sensor to detect the occurrence of taps and the orien-
tation sensor to infer which number was typed by the user.
They collected data-sets of several tap events from three
students using two phones, HTC Aria and Google Nexus
(One), and unlike other experiments, performed the train-
ing and classification on the smartphone itself. Their exper-
iments achieved an accuracy of about 99% for one user on
the Google Nexus (One) and about 70% - 85% accuracy for
the other users.

Cai & Chen [4] study the impact of different settings on
the accuracy of predictions. They vary different factors in
their settings, such as user habits, screen size, device type,
layout orientation, etc. Their results show that side channel
attacks stay possible and practical regardless of the setting.
Although the attacks are feasible, the accuracy of such pre-
dictions vary. They use Google Nexus S, HTC Evo 4G,
Galaxy Tab 10.1, Motorola Xoom in their experiments with
21 users, and demonstrate that 4 digit PIN can be guessed
correctly after 81 attempts, 65% of times.

Aviv et al. [1] examine the possibility of side channel
attack on smartphones by using the accelerometer. They
demonstrate the possibility of inferring PIN and pattern
password on four different smartphones; Nexus One, G2,
Nexus S and Droid Incredible. Their results and evalua-
tions are based on 24 users, divided into two groups of 12.
Each group performs controlled (seating) and uncontrolled
(walking) experiments. In the controlled setting, they reach
an accuracy of 43% and 73% on PIN and pattern passwords
respectively, within 5 attempts from a set of 50 PINs and
50 patterns. In the uncontrolled setting, they can predict
PINs and patterns within 5 attempts 20% and 40% of times
respectively.

Miluzzo et al. [21] present a framework called TapPrints
that uses the accelerometer and gyroscope to identify icon lo-
cations and infer characters typed on a keyboard. They col-
lected a data-set on two Android devices, the Google Nexus
S and Samsung Galaxy Tab 10.1, and a iPhone 4. The ex-
periment with icon locations was performed with the device
in Portrait mode while other experiments with the character
keypad were performed with the device in Landscape mode.
By using ensemble machine learning, the author show that
on an average, locations of icons can be inferred with 79%
and 65% accuracy for the iPhone and Google Nexus S re-
spectively and characters could be inferred with 65% accu-
racy. They also showed that some icons or characters can be
inferred with an accuracy of up to 90% and 80% respectively.

Marquardt et al. [19] demonstrated that an Android ap-
plication that has access to the device’s accelerometer can
be used to recover text typed on a physical keyboard the de-
vice is placed in close proximity with. They showed that if a
device is placed within 2 inches of a physical keyboard and
the keyboard is used for typing, then by measuring the rel-
ative physical position and distance between the vibration,
they could recover words with accuracy as high as 80%.

Templeman et al. [27] propose a proof-of-concept visual
malware called PlaceRaider. It opportunistically uses cam-
era and other sensory data from a smartphone to create a 3D
model of the user’s environment. This 3D model allows the
adversary to navigate and zoom in areas of interest to ex-
amine the individual images corresponding to that region.
Another example of sensory malware is Soundcomber [25]
which uses microphone to steal private information such as
credit card numbers from phone conversations.

Zhou et al.[31] investigate side channel attacks based on
the data from different sensor. They look at ARP informa-
tion, speaker status and per-app data-usage statistics. From
these channels they can infer user’s identity, his geo-location
and his driving route. Their app is also capable of monitor-
ing when a target app is running to stealthily collect data
and report back to a remote adversary.

Our experiment is different from previous related works as
we are the first in our knowledge to use the stereo recording
in smartphones and to combine acoustic and sensor infor-
mation to infer keystrokes. We use the entire raw data and
we use keyboard specific information in our meta-algorithm.
By using the combination of acoustics and sensors and a
multi-tier approach based on the areas of keyboards, we
achieved a higher accuracy on the standard Android key-
board. Our experiment is similar to previous works as we
too have focused on predicting keystrokes on the QWERTY
and number keyboard but unlike previous experiments, we
focused on smaller keys. For example, [5] use a number
only keypad in landscape mode, [4] use different settings but
mainly in landscape mode, [23] [21] use a QWERTY keypad
in landscape mode, [29] [1] use larger keypads such as the
lock screen or the number keypad shown during calls. We
deduce that the accuracy of these experiments may reduce
when tests are performed on the default Android character
keyboard in Portrait mode. We demonstrate that by using
a simple attack technique, it is possible to obtain a high
inference accuracy even for smaller keys. Also, we demon-
strate the feasibility of number and character inference using
the sounds generated by the keystrokes and recorded by a
device’s stereoscopic microphones.

8. CONCLUSION

In this paper, we investigated the feasibility of keystroke
inference on a smartphone by recording the sounds of key
taps by the stereo-microphone and the vibrations by the gy-
roscope. In the future, we plan on implementing mitigation
techniques for these side-channel attacks on Android and
evaluate their effectiveness on several smartphones.
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