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EPIGRAPH

The liberally educated person is one who is able to resist the

easy and preferred answers, not because he is obstinate

but because he knows others worthy of consideration.

—Allan Bloom
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ABSTRACT OF THE DISSERTATION

Single Thread Performance in the Multi-core Era

by

Leonard Emerson Porter

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Dean Tullsen, Chair

The era of multi-core processors has begun. These multi-core processors

represent a significant shift in processor design. This shift is a change in the de-

sign focus from reducing individual program (thread) latency to improving overall

workload throughput. For over three decades, programs automatically ran faster

on each new generation of processor because of improvements to processor per-

formance. However, in this last decade, many of the techniques for improving

processor performance reached their end. As a result, individual core performance

has become stagnant, causing diminished performance gains for programs which

are single-threaded.

This dissertation focuses on improving single-thread performance on paral-

lel hardware. To that end, I first introduce modifications to a new form of paral-

lel memory hardware, Transactional Memory, which can improve the viability of

Speculative Multithreading — a technique for using idle cores to improve single-

threaded execution time. These modifications to Transactional Memory improve

Speculative Multithreading effectiveness by a factor of three. I further improve

the performance of Speculative Multithreading by addressing a primary source of

xviii



performance loss — the loss of thread state due to frequent thread migrations be-

tween cores. By predicting the cache working-set at the point of migration, we can

improve overall program performance by nine percent. Recognizing the demand

for transistors to be dedicated to shared or parallel resources (more cores, better

interconnect, larger shared caches), I next propose a method of improving branch

prediction accuracy for smaller branch predictors. I demonstrate that there are re-

gions of program execution where long histories hurt prediction accuracy. I provide

effective heuristics for predicting these regions — in some cases enabling compa-

rable accuracies from predictors of half the size. I then address the problem of

contention among coscheduled threads for shared multi-core resources. To reduce

resource contention, I propose a new technique for thread scheduling on multi-core

processors with shared last level caches which improves the overall throughput,

energy efficiency, and fairness of the coschedule.
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Chapter 1

Introduction

The age of multi-core processors has begun. As such, modern processors

can execute more threads simultaneously than ever before. Modern processors

contain both many individual cores and simultaneous multithreaded cores, i.e.,

each core can execute multiple threads. For example, Intel’s Nehalem processor

has 4-8 cores, each of which is capable of executing two threads and Sun’s Niagara 3

has 16 cores, each of which can execute 8 threads. With this, the nature of modern

processor design now focuses on improving overall system throughput rather than

improving a single thread’s performance — the latter being the primary focus of

processor design until around 2005.

In today’s multi-core processors, many thread contexts lead to increased

overall throughput when there are sufficient threads available for execution. How-

ever, these additional thread contexts do not aid the execution of any single thread.

Single threads remain highly relevant as many applications exist as legacy binaries

(often single-threaded), many applications are difficult and/or expensive to par-

allelize, and some applications simply lack fundamental parallelism. In addition,

even for those applications which are parallelizable, Amdahl’s Law teaches us that

as we improve the non-serial portions of these highly parallelizable applications,

the serial component will begin to dominate performance [HM08].

Opportunities exist to improve single-thread performance using parallel

hardware. Parallel hardware provides a large number of thread contexts and many

of these contexts will be idle due to a lack of available threads. We can leverage

1



2

these idle resources to improve the performance of single-threaded programs.

Improving single-thread performance in the new multi-core landscape de-

mands solutions to a number of central questions:

1. Can we use idle thread contexts to improve the performance (execution time)

of a single thread?

2. Can we reallocate transistors from single-thread optimizations to parallel

components (more cores, larger shared caches, better interconnect) without

sacrificing single-threaded performance?

3. When threads share resources (common in multi-core designs), how can we

schedule threads to avoid resource contention?

This dissertation focuses on answering, in part, these questions. It addresses

methods for improving single thread performance using the abundant parallel hard-

ware in multi-core processors. These methods include addressing the roadblocks

and challenges related to speculatively parallelizing single threads, providing accu-

rate branch predictions with less hardware, and scheduling threads together given

limited shared hardware. Each of these points will be elaborated upon in the

following sections.

1.1 Leveraging Parallel Memory Hardware to

Support Speculative Multithreading

Speculative Multithreading (SpMT) is a promising new technique for im-

proving single-thread performance by leveraging idle parallel hardware [SBV95,

AD98, HHS+00, KT98, MGQS+08, MGT98, PO05, SR01, SM98, SAHL04]. SpMT

aims at splitting a single thread into multiple threads which can be executed in

parallel. By dividing the execution into threads that are executed in parallel,

performance gains become possible.

Unlike traditional parallelism where dependencies between parallel threads

are rare (if ever), speculative parallelism targets the domain where dependencies
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Figure 1.1: Example of speculative loop parallelization using Speculative Multi-
threading. Dependencies across loop-iterations are shown by the arrows.

are frequent. These frequent dependencies are often either manageable or pre-

dictable, and those dependencies which cannot be managed or predicted need to

be uncommon.

Loops are a common target of SpMT and provide a useful example (see

Figure 1.1). In single-threaded execution, each loop iteration is executed in serial

and values are passed from one loop iteration to the next. There are three types of

dependencies between loops: control dependencies (branches), memory dependen-

cies (stores and loads), and register dependencies (register producing and register

consuming instructions). In SpMT, loop iterations may be selected to be executed

in parallel. Unlike serial execution where dependencies are commonly addressed

via serial commit, SpMT requires dependencies be handled between threads. Con-

trol dependences and register dependencies are highly predictable, but memory

dependencies create considerable challenges.
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Memory dependencies are commonly addressed in SpMT proposals by

adding special-purpose memory hardware which is designed to detect dependencies

and support recovery from misspeculation. This hardware is a significant barrier

for widespread SpMT adoption due to its cost.

At the same time, Transactional Memory (TM) [HM93, AAK+05, BGH+08,

CTTC06, HF03, HWC+04, MCC+05, MHW05, RHL05, ST95, YBM+07] has been

recently proposed for multi-core processors to aid in parallel execution. TM pro-

vides two key features:

1. TM provides an easier interface for parallel programming. It replaces locks

with easier to understand transaction semantics (begin transaction and end

transaction).

2. TM provides support for optimistic concurrency. Unlike locks that serialize

execution of critical sections by allowing only one thread to execute at a

time to prevent a potential conflict between threads, TM allows all threads

to execute a critical section and only aborts if a true conflict exists.

Transactional Memory has been proposed using either hardware (HTM),

software (STM), or hybrids of both. In this work we focus on HTM implementa-

tions as STM is likely too slow for latency-sensitive speculative threads.

HTM has already appeared in one real processor [TC08] because of its

benefits for parallel execution. We recognize that we can leverage this invest-

ment in parallel memory hardware to provide SpMT at a fraction of the cost of

adding SpMT support to traditional memory designs. In Chapter 2 we evaluate

the potential for HTM to provide SpMT and demonstrate that its current support

for dependency handling offers limited SpMT performance. We present a num-

ber of key additions to HTM which improve the performance of SpMT. In doing

so, we propose a new HTM design which is capable of high performance in both

transactionally parallel programs [RRW08] and speculatively parallelized single

threads [PCT09]. Using two cores, basic register prediction, and averaged over the

SPEC CPU2000 benchmarks, SpMT using prior eager-detect HTM designs offers

only a 5% improvement in performance, whereas our new HTM design offers a

26% improvement.
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1.2 Improving SpMT Performance by Reducing

Thread Migration Cost

Although our new HTM design from the previous section improved SpMT

performance greatly, it continued to suffer performance losses from the migration

of execution from one core to another. This is a common problem for any tech-

nique which aims to improve performance by migrating threads and is especially

problematic for SpMT because of its frequency of thread migrations.

Modern processors learn about the behavior of threads as they execute and,

as a result, are capable of executing long threads efficiently. However, when threads

are short and/or migrate frequently, this disrupts the ability of the processor to

learn about the threads. There are two key hardware components designed to

learn thread behavior. The first is branch prediction hardware, which learns the

behavior of branches. The second is caches, which learn the behavior of memory.

The first of these challenges, branch prediction, was addressed in our prior

work. The second of these challenges, cache behavior, remains a critical problem.

In Chapter 3 we propose a number of techniques for improving the memory per-

formance of speculative threads. We demonstrate that a recent proposal, working-

set-migration [BPT11], can be used to reduce the average memory delay in SpMT

by 50% for select SPEC CPU2000 benchmarks. This reduction in SpMT memory

delay translates to a 9% improvement in whole program performance.

1.3 Branch Prediction Accuracy with Fewer Re-

sources

The shift in focus to parallel performance over single-thread performance

causes architects to reevaluate transistor usage throughout the processor. In reeval-

uating the transistor usage, the primary question is how much utility does each

transistor provide in terms of overall processor performance. For example, by re-

ducing the number of transistors dedicated to non-critical components that provide

marginal performance gains, you may be able to better use those saved transis-
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tors (and the power associated with them) to build another core, a better core

inter-connect, or larger caches.

Deep pipelines place heavy stress on branch prediction as they force hard-

ware to speculate on branch outcomes many cycles before branches are resolved.

Misspeculation has the severe consequence of flushing an entire pipeline — in effect

losing many cycles worth of work. As a result, branch prediction hardware became

a major hardware component in single-core design as pipeline depth increased.

We now have to revisit this design choice from the past, aiming to scale

back the hardware cost of branch prediction. The critical question then becomes,

can we still provide high branch prediction accuracy, and hence high single-thread

performance, using fewer resources. To this end, we examine the value of his-

tory for branch prediction accuracy in Chapter 4. Many modern branch predic-

tors use global history to index prediction tables [YP93, CEP96, Kes99, LCM97,

McF93, SFKS02, SM99, JL02, EM98, Sez05]. Although history is valuable for

many branches (hence the development of history-based predictors), we demon-

strate that there are periods during program execution where history breaks down.

We propose a simple technique based on heuristics that improves the performance

of existing branch predictors and, in some cases, enables the same branch predic-

tion accuracy with half the hardware. This frees transistors (and their associated

power) for potential reallocation elsewhere in the processor.

1.4 Thread Scheduling on Multi-core Processors

In the previous section, we discussed the challenge of achieving high single

thread performance as resources are diverted from components which only benefit

a single thread to components which benefit processor-wide performance. Many

of these components which benefit processor-wide performance are shared. In this

section, we discuss the complementary problem of how to use scheduling to ensure

these shared resources are used effectively.

Modern multi-core processors have resources that are dedicated to one core

(private) or are shared among multiple cores (shared). Figure 1.2 is an example of
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Figure 1.2: Cache layout on a modern (Nehalem) processor.

the cache layout on a recent multi-core processor. In this example, the L1 (I and

D) and L2 levels of cache are private to each core, whereas all cores share the L3

and off chip bandwidth.

Shared resources can be a significant source of contention between threads

scheduled on different cores of the same processor. This contention can impact

overall processor throughput, individual thread performance, overall fairness (do

all contending threads suffer equally?), and overall energy efficiency. As such, de-

ciding which threads should be scheduled together (coscheduled) becomes a critical

decision for anyone concerned with the single-threaded performance within that

coschedule.

In Chapter 5, we recognize that coscheduling threads with similar memory

characteristics is almost always the wrong choice as they require the same shared

resources and will therefore experience significant contention. We demonstrate

that scheduling heterogeneous threads can alleviate this contention and provide

superior performance. We then propose a metric which can be used to predict

which heterogeneous coschedules offer high throughput (99% of best possible),

fairness (48% better than average), and energy efficiency (99% of best possible).

These results are consistent on both Nehalem [KDMK08] and Westmere [KBM+10]
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processors under multiple scheduling assumptions. An additional advantage of our

metric is that it can be determined through a single profiling pass and yet provides

useful predictions for scheduling on multi-core processors with diverse processor

characteristics.

1.5 Contributions

This dissertation provides the following contributions:

Chapter 2

• We evaluate the potential for Hardware Transactional Memory to support

Speculative Multithreading (SpMT) and demonstrate that Hardware Trans-

actional Memory, as currently proposed, offers poor SpMT performance (5%

whole program improvement using two cores).

• We propose and examine a number of modifications to Hardware Transac-

tional Memory to determine which are critical for SpMT and which are not.

Those we identify to be critical are both inexpensive and offer significantly

improved SpMT performance (26% whole program improvement using two

cores).

• The value to SpMT of these modifications is shown to be consistent across

different numbers of cores, different core architectures, and different register

predictor assumptions.

Chapter 3

• SpMT introduces additional memory slowdowns due to frequent thread mi-

grations and line invalidations. To address this problem, we evaluate a recent

proposal for generic thread migration, Working Set Migration, in the context

of SpMT. We examine a number of heuristics for Working Set Migration and,

although many of these heuristics are shown to be ineffective for SpMT, we

identify one that significantly improves SpMT memory performance. Adding

this feature to our memory design from the previous chapter reduces average
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memory access time by 50% and improves whole program performance by

9%.

Chapter 4

• The majority of branch predictors today use global history to inform their

predictions. Although many branches are correlated with previous branches,

we identify regions of execution where branch correlation is limited, causing

history to become essentially noise. For many branch predictors, this noise

interferes with both prediction and training, resulting in worse prediction

accuracy.

• We propose simple and nearly free techniques for identifying these regions

which, when combined with smaller branch predictors, can improve their

accuracy. In some cases, a branch predictor modified to use our techniques

can offer prediction accuracy comparable with traditional branch predictors

of twice the size.

Chapter 5

• We demonstrate that the coscheduling of threads which are homogeneous is

almost always the wrong choice on multi-core processors with shared cache

resources. Coscheduling homogeneous threads can cause resource contention

which results in poor overall processor throughput, poor energy efficiency,

and poor fairness. Heterogeneous coscheduling can reduce such contention

and improve all three of these performance metrics.

• For use in heterogeneous coscheduling decisions, we propose the Cache Hit

Rate Vector (CHRV) to classify the memory behavior of a program. The

CHRV has the advantage that it can be determined with a single profile

pass and yet is still useful for scheduling decisions on multiple processor

architectures.

• We propose and examine a number of metrics for use in coscheduling de-

cisions. A novel metric which leverages the CHRV, WSO-Combo, provides
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the best coscheduling decisions of the metrics examined. By using this met-

ric to inform our scheduler, coschedules are selected which offer 99% of the

best possible throughput, 99% of the best possible energy efficiency, and 48%

better than average thread fairness.

In whole, these chapters address a number of the key challenges to single-threaded

performance in the multi-core era.



Chapter 2

Mapping Out a Path from

Hardware Transactional Memory

to Speculative Multithreading

In the previous chapter, we offered Speculative Multithreading as a poten-

tial solution to the question: “Can we use idle thread contexts to improve the

performance of a single thread?” In this chapter, we focus on the memory system

required for Speculative Multithreading. Specifically, we examine the potential

for leveraging Hardware Transactional Memory to provide the memory hardware

required by Speculative Multithreading.

Speculative Multithreading (SpMT) is a promising technique for improving

single thread performance by leveraging idle parallel resources. However, the cost

of handling memory dependences is a significant barrier for wide-spread adoption.

In this Chapter, we investigate the potential for using Transactional Memory (TM)

for SpMT.

TM has been proposed as a powerful programming primitive for shared

memory multiprocessors to replace traditional lock-based synchronization [HM93,

AAK+05, BGH+08, CTTC06, HWC+04, MCC+05, MHW05, RHL05, YBM+07,

HF03, HLMS03, ST95]. Prior research has examined software transactional mem-

ory [ST95, HF03, HLMS03] and hardware transactional memory [HM93, AAK+05,

BGH+08, CTTC06, HWC+04, MCC+05, MHW05, RHL05, YBM+07]. TM has

11
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gained significant interest in both academia and industry because of the poten-

tial to make programming the coming multi-core and many-core processors eas-

ier [HCW+04] and more effective [HM93]. These factors led SUN to propose inclu-

sion of hardware support for transactional memory in their Rock processor [TC08].

We expect other implementations to follow.

Speculative Multithreading (SpMT) [SBV95, HHS+00, MGQS+08, PO05,

SM98, KT98, SR01, MGT98, AD98, SAHL04] is another architectural alternative

that becomes increasingly attractive as we enter the multi-core era more fully. It

provides the hope of exploiting available parallel cores to increase the performance

of a single thread of execution. Serial code will increasingly be a limiting factor

both in terms of power and performance [HM08].

Given the imminent arrival of hardware support for TM, we would like to

leverage that hardware to add support for true speculative multithreading, at a

lower incremental cost than supporting speculative multithreading from scratch.

The focus of this work is to map out a path from HTM to SpMT. What are the

elements that we would need to add to a memory design that supported HTM in

order to allow SpMT? How should they work in an HTM context? Which of those

elements are crucial and which are not?

It has been stated and demonstrated that transactional memory provides

support for speculative multithreading, or thread level speculation via its support

for opportunistic concurrency [CTTC06, CCM+06, HWC+04, MCC+05, PCC07].

That is, if two iterations of a loop both access shared data within a transaction,

but the accesses conflict in only a small number of cases, the iterations will execute

in parallel when there is no conflict, and cause transactions to abort and execute

in series when the conflict exists. Thus, the traditional domain of TM is code

that is truly parallel (dynamically). It does not support the parallel execution of

code where frequent and numerous dependences exist. It also requires significant

compiler or programmer support to identify and properly exploit opportunities for

thread-level speculation.

To perform this study, we create an architecture for speculative multithread-

ing that executes unmodified single-threaded binaries, relies on prediction for reg-
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ister dependence handling, and relies on the memory subsystem to handle memory

dependences. We use this SpMT framework in concert with a number of HTM

designs. In addition to the designs previously proposed, we examine a number of

intermediate steps along the path from HTM to full SpMT support and show the

performance potential at each step. We ultimately define a unique architecture

which efficiently supports both TM and dependency-rich SpMT.

Assuming this speculative multithreading approach, we evaluate HTMs

which feature eager conflict detection (also assuming enough architectural sup-

port to be able to execute in this environment) using SPEC CPU2000 binaries

and found that a limited speedup of 10% can be obtained on two cores. The pri-

mary weaknesses of traditional HTMs in a SpMT environment are their inability

to differentiate more speculative threads from less speculative threads, false shar-

ing, cold cache effects whenever a new thread is initiated on a core, the delayed

notification of potential dependencies, and the inability to forward available val-

ues when loaded by a more speculative thread. By introducing improvements to

HTM with eager conflict detection, we are able to achieve more than a 3x increase

in the effectiveness of SpMT (resulting in a speedup of 36% on two cores).

The improvements considered along the path from TM to SpMT include

word-granularity tracking of memory coherence, support for ordered transactions,

forwarding of values to higher ordered transactions, and a write-update cache

coherence protocol.

This chapter is organized as follows. Section 2.1 discusses related work.

The assumed SpMT architecture is outlined in Section 2.2. The methodology is

provided in Section 2.3. In Section 2.4, the baseline transactional memory is dis-

cussed. Improvements to hardware TM are detailed in Section 2.5 with associated

performance results. Section 2.6 addresses the generality of these results.

2.1 Related Work

Our work relates to previous proposals for Speculative Multithreading and

Transactional Memory. The work in each area is described in the following sections,
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Figure 2.1: Example of speculative loop parallelization using Speculative Multi-
threading. Dependences across loop-iterations are shown by the arrows.

following a brief background on Speculative Multithreading.

2.1.1 Speculative Multithreading Background

Speculative Multithreading was first proposed by Sohi et al. [SBV95] as an

architecture tailored for splitting sequential execution into speculatively parallel

threads. Revisiting our example from the introduction, Figure 2.1 is an example

of the speculative parallelization of a loop. In this example, the first iteration of

the loop (i = 0) is executed non-speculatively on Core 0. A speculative thread is

created to execute the second iteration of the loop (i = 1) on Core 1. From this

example, we can see that there are a number of requirements for a Speculative

Multithreading architecture. These requirements include:
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• The identification of an instruction which will trigger the spawn and exe-

cution of the speculative thread. This instruction is commonly called the

Spawn Point (SP) [MG02]. Which segments of execution are selected for

speculative threads depends on the SpMT hardware. In this example, a loop

iteration has been selected and the SP would be the first instruction in the

loop. Another common target for speculative threads is a function call. For

function calls, the non-speculative thread executes the function and the spec-

ulative thread begins execution after the function returns. Any two points

can result in a speculative thread in the Mitosis architecture [MGQS+08].

• The identification of the point in execution to merge/validate the speculative

thread. This is commonly referred to as the Control Quasi-Independent

Point (CQIP) and is the first instruction of the speculative thread. For loop

iterations, as in this example, the CQIP is the same as the SP and is the

first instruction in the loop.

• Register Live-Ins need to be known to identify which register values must

be passed from parent thread to child thread or predicted at spawn. The

register live-in in our example is register R2 which is consumed by the “Add”

instruction in the speculative thread and produced by the “Add” instruction

in the non-speculative thread. There are a number of ways to manage register

dependences which are discussed in the following section.

• Memory dependences need to be detected and managed. In our example,

there is a dependence on address “A” because the parent thread produces

the value (Write A) which is subsequently consumed (Load A) by the child

thread. Various memory hardware designs (discussed in the following section)

manage conflict detection and management differently. The primary issue is

that if the speculative thread reads “A” and uses it before the correct value

is produced by the non-speculative thread, corrective action is required. This

action may require the squashing of the entire speculative thread, or just the

flushing of a few instructions [SAHL04].
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Each SpMT proposal in the literature manages each of these requirements

differently. Given this basic background, we can discuss these proposals in more

detail.

2.1.2 Speculative Multithreading

As mentioned in the previous section, Speculative Multithreading [SBV95,

HHS+00, MGQS+08, PO05, SM98, KT98, SR01, MGT98, AD98, SAHL04] pro-

vides the ability to parallelize otherwise serial code. Previous studies in the specu-

lative multithreading literature produce speculative threads either using a compiler

or hand tuning [SBV95, HHS+00, MGQS+08, PO05, SM98], statically using binary

instrumentation [KT98], or else the speculative threads are identified entirely in

hardware [AD98, MGT98, SAHL04]. When most SpMT proposals encounter an

inter-thread dependence conflict, the speculative thread is squashed; however, Dy-

namic Multithreading only squashes, then re-executes, those instructions affected

by the dependence [AD98, SAHL04].

Register dependences can be identified statically which enables a number of

potential solutions. Since register dependencies can be determined by the compiler,

the values can be explicitly forwarded between threads so long as the speculative

thread is stalled before the consumption of the value [SBV95]. The stalling of the

thread to wait for a register value can be a performance bottleneck which motivated

the use of register prediction [MG00]. Another solution to the register dependency

problem comes from a recent SpMT proposal, the Mitosis architecture [MGQS+08].

Mitosis uses compiler support to produce a short thread, the precomputation slice,

which executes before the start of the speculative thread. The precomputation slice

computes register live-ins to avoid explicit forwarding or prediction at the cost of

executing additional instructions.

Memory dependences pose a significant challenge for SpMT as they gen-

erally cannot be identified until runtime and thus require additional support. A

number of memory designs for SpMT have been proposed, starting with the Ad-

dress Resolution Buffer (ARB) [FS96, SBV95]. The ARB benefits from simple

memory address disambiguation, but a single centralized data cache for multiple
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cores may represent a bottleneck. To address this issue, multiple memories which

buffer speculative state in local data caches were proposed to provide improved

performance [CMT00, HHS+00, VGSS01]. The Stanford Hydra CMP [HHS+00]

is a hybrid which allows private L1 caches to contain speculative contents but main-

tains all speculative data in dedicated buffers adjacent to the L2. These buffers

are maintained consistent with the L1 contents via a write-through L1 store policy.

The Speculative Versioning Cache (SVC) [VGSS01] uses cache coherency modifi-

cations combined with per-line or per-word pointers to ensure speculative data is

buffered, conflicts are detected, and ordering information remains.

Our work shares many of the same goals as memories designed uniquely for

SpMT. However, none of these models support TM code, and, of course, do not

leverage a potential transactional hardware base.

2.1.3 Transactional Memory

Optimistic Concurrency — the execution of multiple threads in parallel

with the aim that conflicts are infrequent — is an aim of both SpMT and Trans-

actional Memory. Hardware Transactional Memory (HTM) was proposed by Her-

lihy and Moss as a simpler means of synchronization capable of performing opti-

mistic concurrency [HM93]. This hardware model has been adopted by more re-

cent TM proposals including LTM [AAK+05], UTM [AAK+05], PTM [CNV+06],

LogTM [MBM+06], and VTM [RHL05]. While these proposals vary significantly

in their interaction with software transactional memory, ability to handle context-

switches and transactional overflow, and support for nested transactions, their

conflict detection semantics are similar and can all be represented for this work

by a single hardware model (the ULI model, described in Section 2.4.1). These

designs use eager conflict detection; they detect conflicts at the time they occur.

Other designs, discussed soon, use lazy conflict detection; they buffer conflict in-

formation and, as a result, detect conflicts after they occur. LogTM-SE [YBM+07]

proposes eager conflict detection based on hashed signatures at block granularity.

This reduces the storage requirements on caches to track read-set and write-set

information. However, a conflict in LogTM-SE is the same as in our ULI model.
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TokenTM [BGH+08] avoids modifying coherence protocols by using tokens to track

conflicts. Again, the notion of a conflict in TokenTM is the same as our ULI model.

Hybrid Transactional Memory [DFL+06], the likely model of hardware support for

SUN’s proposed Rock Processor [TC08], also has conflict detection semantics sim-

ilar to our ULI model.

FlexTM [SDS08] separates conflict detection and conflict management. In

some benchmarks, our LAZY design achieves stronger performance than our eager

design. For these cases, switching between eager and lazy conflict management

could be useful. However, the software overheads for FlexTM may hinder perfor-

mance.

Dependence Aware TM (DATM) [RRW08] offers some of the features rec-

ommended in this work. However, there are key differences. DATM adheres to

transactional semantics which offer weaker guarantees than those required by our

SpMT architecture. Most notably, stale data read by a transaction can persist in

a cache and be read by a non-transaction. In addition, DATM requires bus re-

quests for most transactional requests even in the case of a cache hit whereas our

recommended design (OFWI, discussed in Section 2.5.4) does so only in the event

of conflicts on that line. Lastly, our recommended design (OFWI) allows previ-

ous transactions to overwrite words written by later transactions whereas DATM

does not. The impact of this last limitation is discussed in Section 2.5. Most im-

portantly, however, DATM and our conclusions are complementary. The features

added by DATM are shown to aid transactional parallelism and the features added

by our designs are shown to aid speculative parallelism. The overlap of many of

these features emphasizes their importance.

Transactional Coherence and Consistency (TCC) has been proposed as an

alternative to traditional per-memory operation coherence [HWC+04, MCC+05].

In TCC, all memory operations are grouped into transactions. The transactional

data is buffered at each core during a transaction. When the transaction commits,

all transactional data is broadcast on a shared bus ensuring an atomic commit.

Other cores observing this broadcast update their cache values similar to a write-

update coherence protocol. Conflict detection in TCC is performed when the
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Table 2.1: Correspondence of previously proposed HTM designs to the designs
proposed later in this chapter.

HTM Conflict Our Corresponding
Proposal Detection HTM Design
LTM, UTM, PTM, LogTM,
LogTM-SE, TokenTM, Eager ULI
VTM, and Hybrid TM
TCC and Bulk Lazy LAZY

broadcast occurs (commonly referred to as ”lazy” conflict detection). The conflict

detection is performed at word granularity by broadcasting word addresses and the

new data for that word address. Similar to TCC, Bulk [CTTC06] also performs lazy

conflict detection at word granularity with write update but does so using hashed

signatures rather than cache line bits to reduce the amount of data broadcast at

commit time. These proposals are represented by our LAZY model (Section 2.5.8).

Our HTM designs represent a number of existing proposals. Again, many

of these proposals differ in details largely orthogonal to their potential to support

SpMT. A summary of the existing designs, their manner of conflict-detection, and

our corresponding design appears in Table 2.1.

The ability of Transactional Memory to support Speculative Multithread-

ing is mentioned in TCC [HWC+04, MCC+05] and Bulk [CTTC06]. Transac-

tion sizes in the context of speculative parallelism are addressed in [CCM+06].

Recent work extends programming language loop constructs to provide support

for speculative multithreading [PCC07]. Bulk also uses HTM for compiler-based

SpMT [CTTC06]. However, none of these mechanisms provide full support for the

parallel execution of dependent threads.

2.2 SpMT Execution Model

This section describes our SpMT execution model and the minimum archi-

tectural support needed by any of the memory designs to be able to execute in

our SpMT architecture. The focus of the rest of this chapter is the design of the

memory architecture itself; however, this section primarily details other aspects of
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the architecture necessary to fully support speculative multithreading, and what

assumptions were made about that architectural support.

2.2.1 Speculative Thread Selection

Prior proposals have assumed varying degrees of compiler support [SBV95,

AD98, HHS+00, KT98, MGQS+08, MGT98, PO05, SR01, SAHL04, SM98]. We

fully believe that compiler support will maximize the potential performance of

speculative multithreading. However, for this study we assume no compiler or

software support to identify speculative threads. Assuming no support provides

a general SpMT model that allows us to examine our different memory designs

in a fashion unbiased by the compiler, as we are not able to structure the code

(even unintentionally) to favor one model. Additionally, this approach significantly

expands the domain of SpMT — enabling parallel execution of legacy uniprocessor

code, allowing the use of a single binary for a family of architectures that support

different levels of SpMT, etc.

Our strict insistence on no compiler support causes our results to be poten-

tially pessimistic compared to a system that allows compiler involvement. Even

simple compiler support on single-thread binaries that moves or removes problem

memory operations could greatly increase available SpMT parallelism. The bot-

tom line, though, is that achieving the highest possible SpMT speedups is not

the goal of this research. Rather, we are trying to understand the support in the

transactional memory subsystem necessary to achieve the full potential of SpMT.

The absolute magnitude of the speedups achieved is less significant.

Following the terminology of [MG02], a speculative thread is characterized

by two PC addresses: the point in execution where a new thread will be created,

called the Spawning Point (SP), and the point in the program where the new

thread will begin executing, called the control quasi-independent point (CQIP).

The new thread ends when it reaches another thread’s CQIP and validates that

dependences between the two threads were handled correctly. Compared to trans-

actional execution, the entire thread essentially becomes a single transaction, and

either completes execution atomically or is squashed/aborted in its entirety.
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Speculative threads have been initiated at loop iterations, loop continua-

tions, and function calls in the past [MG02]. The Mitosis architecture [MGQS+08]

can construct a SP-CQIP pair from any two arbitrary points in the program.

However, without compiler support, our options are more limited. We target loop

iterations and function call continuations, as they can be easily identified at run

time and have been shown to be good candidates [MG02]. Out-of-order spawns

are possible when a less speculative thread encounters a spawnpoint.

When an executing thread fetches an instruction whose address is a spawn

point, we determine if an idle core is available. If one is available, we transmit

any program state needed by the new thread (e.g., register live-ins) and start the

speculative thread on that core after a communication and fetch delay.

When the parent thread encounters the CQIP of its child it stops fetching

and waits for the CQIP to be committed. When the CQIP is committed, the child

thread is validated. Validation includes the checking of any register live-ins and

ensuring that the speculative thread was not squashed due to a memory dependence

conflict. Speculative threads validated by non-speculative threads become non-

speculative. Speculative threads wait to commit until they become non-speculative

A confidence counter is maintained to indicate the frequency at which a

spawn point results in a committed or squashed speculative thread. Spawn points

which frequently squash are ignored after reaching a number of consecutive failures

but are still given a small chance of re-execution. We found that allowing nine

consecutive failures and giving a five percent chance for retry of failed spawnpoints

was successful at reducing interference from frequently squashing threads.

To maintain a desirable speculative thread length, threads greater than ten

instructions and less than ten thousand instructions are targeted. This can be

accomplished by recording the length of previously executed threads.

Threads may be squashed due to dependence issues (discussed below), a

system call by the non-speculative thread, or when the non-speculative thread has

transactional state overflow. A squash of any thread causes all more speculative

threads to be squashed. Speculative threads may be paused (caused to stop ex-

ecution until made non-speculative) if they encounter a system call or cause a
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transaction overflow.

A store miss request can be issued at execute, preemptively loading the

cache line, or at commit. By requesting the line during execute, the request la-

tency is partially hidden rather than delaying the store entirely to commit. All

memory designs assume this realistic optimization. This introduces the possibility

of squashes due to wrong-path write miss requests for all of our memory designs

except those which handle conflict detection at thread commit[CTTC06, HWC+04,

MCC+05].

Our simulator assumes a centralized structure for speculative thread coor-

dination which we refer to as the Global Speculative Thread Supervisor (GSTS).

Important thread information (thread ordering, CQIP of children, etc.) is dis-

tributed to each core to avoid unnecessary communication with the GSTS. In a

general TM system, parallel transactions can typically commit in any order that

does not produce conflicts. Because we must maintain sequential semantics, we

must commit threads in execution order. Support for this already exists in some

TM proposals [CTTC06, HWC+04, MCC+05]. An overall notion of thread order-

ing allows for committing of threads in order, a necessary feature for SpMT. This

is different than having the memory coherence know and account for that order

which is addressed in a later section. For example, if coherence were to be made

aware of thread ordering, more speculative threads may be able to safely write to

addresses read by less speculative threads. This is a useful distinction in thread or-

dering, both because the overall thread ordering is necessary and coherence-aware

thread ordering is an optimization, and also because the former is easily supported

in the GSTS, and the latter requires coherence modification.

2.2.2 Handling Register Dependences

Because we execute an unmodified single-threaded binary, the code, al-

though executed in parallel, assumes a single unified register file. As a result, there

will be register dependences that cross thread boundaries. Prior work has managed

these dependences in various ways including explicit forwarding [SBV95, Vij98,

ZCSM02], hardware prediction [MG02], and software precomputation [MGQS+08].
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Table 2.2: Architectural Specification

Cores 2 I cache miss penalty 20 cyc
Fetch width/core 4 D cache 32k, 4 way
INT instruction queue 64 entries D cache miss penalty 20 cyc
FP instruction queue 64 entries shared L2 cache 2 MB, 8 way
Reorder Buffer entries 128 L2 miss penalty 75 cyc
FP registers per core 132 L3 4 MB, 8 way
Fork penalty 10 cyc L3 miss penalty 315 cyc
Cache line size 64 bytes Victim cache entries 8
I cache 32k, 4 way

In this research we initially want to decouple the register dependence problem

(which is orthogonal to the memory design) and thus adopt a very simple model

for our initial results — register dependences are handled by prediction and all pre-

dictions are correct. We consider the case of a realistic, but not particularly aggres-

sive, predictor in Section 2.6 and show that all the key conclusions of the chapter

still hold. We should note that the assumption of perfect or near-perfect prediction

is not an absurd one — the Mitosis register prediction model [MGQS+08], because

it leverages code from the spawning thread, can be made to be arbitrarily accurate.

However, this causes a larger delay in thread spawn.

2.3 Methodology

To evaluate the performance of our various models of speculative multi-

threading, we added support for SpMT, including the full suite of memory designs,

to the SMTSIM simulator [Tul96]. The SMTSIM simulator has extensive support

for both multithreaded and multi-core execution, and for this study it is configured

for multi-core. Speculative threads are executed on available cores on a CMP with

a varying number of in-order execution cores. Table 2.2 gives the configuration

details of the default architecture we simulate.

The simulator models spawning at instruction fetch, exposes wrong-path

memory operations to coherence, and squashes threads in reaction to various mem-

ory coherence operations. It also models the effect of spawn points fetched on the
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wrong path (a result of the design decision to spawn threads when the spawn point

is fetched rather than at commit) by ensuring that the target core is occupied and

unavailable for execution until the branch mispredict is discovered.

We use the SPEC CPU2000 benchmarks, specifically the Alpha binaries for

SimpleScalar [ALE02]. Using reference inputs, we simulate the execution of one

hundred million instructions starting at the standard SimPoint [SPHC02].

2.4 Leveraging TM for SpMT

The two main requirements of any SpMT memory design are:

1. Speculative State Buffering–speculative state must be invisible to less specu-

lative threads as well as protected from reaching lower levels of the memory

hierarchy.

2. Conflict Detection–the hardware must be able to detect if a speculative

thread has used an incorrect memory value or a hazard is present.

Hardware transactional memory supports each of these requirements. Spec-

ulative state is tagged as transactional in a transactional buffer or the cache, de-

pending on the implementation. It is possible, in some implementations, for the

same value to exist in multiple transactional caches, with different values. Memory

data conflict detection is also supported and relies on modifications to the cache

coherence protocol.

For SpMT, these features of TM can be leveraged to detect memory depen-

dencies (and hazards) between threads. By starting a transaction when spawning

a speculative thread, the TM hardware will protect all memory operations. Should

a memory dependence be caught, the TM hardware can squash the offending spec-

ulative thread and discard its speculative state. Which memory dependences cause

a speculative thread to be squashed depends on the TM implementation.
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2.4.1 Baseline Transactional Memory Design

Our baseline HTM design is based on the original proposal by Herlihy

and Moss [HM93] which has been adopted by more recent TM proposals includ-

ing LTM [AAK+05], UTM [AAK+05], PTM [CNV+06], LogTM [MBM+06], and

VTM [RHL05]. This design has the same conflict detection semantics as those in

LogTM-SE [YBM+07], TokenTM [BGH+08], and HybridTM [DFL+06]. However,

like most recent studies, we buffer speculative state in cache, whereas the original

work used a special Transactional Buffer. In our implementation, a transactional

bit is added to each cache line to differentiate those cache lines affected by the

current transaction. A transactional read bit is added to identify lines read by

the current transaction. A memory conflict occurs whenever the write set of one

thread and the read or write set of another thread overlap. When a conflict oc-

curs, the TM arbiter (which handles the restarting of threads) consults the thread

ordering and squashes the more speculative thread. This TM design uses a write-

invalidation protocol and any transactional, dirty cache lines are invalidated when

squashed. We refer to this design as the Unordered Line Invalidate (ULI) design,

to distinguish it from other designs we will introduce.

The baseline TM design buffers speculative state in the L1 data cache, with

an eight-entry dedicated victim cache for transactional state overflow. In the rare

event that the victim cache becomes full with transactional data for a speculative

thread, we cause the thread to wait rather than invoking software. Likewise, if

the non-speculative thread overflows its victim cache, we squash all speculative

threads. Although squashing is not required, this is not a common case in our

studies, so the baseline HTM (without ordering) approach of squashing is used in

that event.

Conflict detection is handled eagerly per memory operation by modifying

the coherence protocol. Non-transactional coherence follows a traditional MESI

protocol [PP84]. TCC [HWC+04] and Bulk [CTTC06] perform lazy conflict detec-

tion on a per thread basis, incorporating burst transfers of write set information.

Lazy conflict detection will be addressed in Section 2.5.8.

In this chapter, we assume a system that has the ability to execute either
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SpMT code or standard parallel TM code. Thus, any optimization on the path

from TM to SpMT that adds significant overhead but only provides benefit for

SpMT execution would be questionable. Similarly, an optimization that improves

SpMT performance at the expense of normal parallel performance would also be

undesirable.

It is likely that a standard TM architecture would have support for trans-

actions larger than supported by the base hardware TM mechanisms [AAK+05,

BGH+08, CNV+06, MBM+06, RHL05]. This is critical because standard TM code

will fail to make forward progress if a transaction is too large. However, in our

SpMT architecture, we can simply abort a transaction/thread that overflows the

buffer space (the victim cache in this case). This is the solution we simulate,

because fall-back support for larger transactions would likely be too slow for a

SpMT solution. Thus, which of the proposed large transaction solutions might be

supported by the actual system is unimportant for this work.

2.4.2 Baseline TM SpMT Performance

Although the conventional TM architecture described in this section ensures

correctness by catching inter-thread dependences, it does not provide encouraging

performance results. Using two cores and averaged over the SPEC CPU2000 bench-

marks, we achieve a 1.10 speedup over baseline execution. (Results per benchmark

are provided in Figure 2.2.)

2.5 Accelerating SpMT

The previous section revealed that the SpMT performance of an existing

HTM design with eager conflict detection is limited. The focus of the remain-

der of this chapter is identifying the shortcomings of that design and evaluating

a set of hardware additions that eventually enable full support for speculative

multithreaded execution. The key issues we address are support for ordered trans-

actions, forwarding between transactions, addressing false sharing, and cold-cache

effects.
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This approach allows us to map out a path from HTM to SpMT that will

allow us to fully exploit the hardware support for HTM we expect to see on future

processors, while allowing the more aggressive speculative parallelization enabled

by speculative multithreading.

2.5.1 Ordered Transactions

Of the various HTM designs, TCC [HWC+04] and Bulk [CTTC06] support

ordering between transactions [HWC+04]. In these designs, conflict detection is

handled at transaction commit and commits can be forced to occur in an explicit

order. The performance of these designs is in Section 2.5.8. However, allowing for

ordering between transactions in an eager conflict detection HTM, where detection

occurs per memory operation, requires a very different implementation than TCC

or Bulk.

We extend the baseline (ULI) to create an Ordered Line Invalidate (OLI)

design. In this design, the coherence protocol is aware of the thread ordering

and uses that knowledge to avoid unnecessary squashes. Then, for OLI, a memory

conflict consists of any write-set overlap between threads as well as overlap between

the read set of a more speculative thread and the write set of a less speculative

thread. Overlap between the read set of a less speculative thread and a write set of a

more speculative thread does not cause a squash. But this requires special handling

of that line in the less speculative thread, because once the thread commits, the line

is no longer valid within the execution context of a future thread that might occupy

this core. The solution we employ is the same as that proposed by SVC [VGSS01].

We mark the less speculative line as stale. By stale we mean that the data is valid

during this transaction but must be discarded when the transaction is completed.

A stale line can be thought of as a delayed invalidate. Thus, a stale bit is added to

all cache lines. A stale cache line is written back (if necessary) and invalidated when

a thread commits. As with the ULI design, if a conflict occurs the more speculative

thread is squashed and its transactional, dirty cache lines are invalidated.
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Figure 2.2: Speedup per benchmark for ULI (unordered line invalidate), OLI (or-
dered line invalidate), and OFLI (ordered forwarding line invalidate) designs, rel-
ative to sequential execution.

2.5.2 Data Forwarding for Ordered Transactions

We can further exploit the thread ordering information now that we have

introduced it into our coherence mechanisms. A logical extension to the OLI design

recognizes that if a more speculative thread requests a cache line held dirty by a

less speculative thread, this should not result in a squash. Instead, the cache line

can simply be forwarded between cores. Since the more speculative thread can only

be committed if all less speculative threads are committed, this operation does not

impact correctness. To address this scenario, we propose the Ordered Forwarding

Line Invalidate (OFLI) design. By allowing for forwarding, we no longer need to

squash when a more speculative thread reads a line held dirty by a less speculative

thread. In addition to the information tracked in the OLI design, this new design

requires a forwarded bit. The forwarded bit recognizes that a cache line is clean

but has been forwarded from another core. Lines marked as forwarded need to be

invalidated if this thread is squashed.

A summary of coherence actions that result in a squash can be found in

Table 2.3 for the coherence designs discussed so far — ULI, OLI, and OFLI.
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Table 2.3: Squashes caused by coherence actions for three memory designs. The
more speculative thread is squashed in each case. The table indicates what happens
when a single cache line is accessed by one core while the line is held by another
core. LS = Less speculative. MS = More Speculative. R = Read. W = Write.

Action Holder ULI OLI OFLI

R R
W W X X X

LSW MSR X X X
MSR LSW X X
MSW LSR X
LSR MSW X

2.5.3 Effectiveness of Line Granularity TM for SpMT

The speedup over the baseline (single thread execution) per benchmark for

our first three memory designs is shown in Figure 2.2. In the majority of our

benchmarks, the OFLI design outperforms the other designs.

Our intuition that adding ordering and forwarding between threads will

result in more speculative threads committed is validated in that we see an average

of 144k, 154k, and 156k threads committed in ULI, OLI, and OFLI respectively.

Unfortunately, these improvements did not result in a significant performance gain

(about 3% over ULI). In addition, our results are being offset by an overall loss in

memory performance caused by cold cache effects. Using these memory designs for

SpMT, the average memory access time has increased by 20% over single-threaded

execution. As we successfully commit threads, the stream of committed execution

flows from core to core, and we become vulnerable to cold caches. Section 2.5.8

and Chapter 3 examine this phenomenon.

Also of note is that a number of the benchmarks suffer a slowdown. The

majority of this slowdown can be attributed to SpMT overheads and memory slow-

downs. For these benchmarks, a less aggressive spawn policy would be beneficial.

Averaged across all benchmarks, these results show that neither ordered

transactions nor data forwarding have significantly improved the viability of spec-

ulative multithreading.
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Figure 2.3: Speedup per benchmark for OFLI (ordered forwarding line invalidate),
OWI (ordered word invalidate), and OFWI (ordered forwarding word invalidate)
designs, relative to sequential execution.

2.5.4 Eliminating False Sharing

Prior SpMT work has shown that word-granularity speculative state infor-

mation is necessary for strong performance [CMT00, VGSS01]. Our previously

described HTM designs maintain state information at a cache-line granularity.

This keeps coherence cost low, but results in a number of unnecessary squashes.

In fact, for our OLI design, 72% of all squashes were due to false sharing. This

number would be even higher, except that after threads repeatedly fail to commit

due to false dependences, they stop being spawned.

There are two reasons tracking coherence at line granularity can cause ex-

cessive squashes. The first is that a read by a more speculative thread followed

by a write of a different word in the same cache line by a less speculative thread

need not result in a squash. However, false sharing would force a squash in our

line-granularity designs. The second reason is the inability to reconstruct lines

correctly in the presence of write sharing. When two threads write to the same

cache line, a squash is required in earlier designs simply because it is impossible,

without word-granularity tracking, to determine which word(s) from each dirty line

should be preserved in the correct version. Each of these problems can be partially
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addressed by keeping a read and write bit per word per cache line. Writes of less

than a word continue to be problematic, but they are infrequent in most programs

— we deal with byte-granularity writes in Section 2.5.6.

Previous SpMT solutions, if they address this issue, require significant ad-

ditional coherence traffic to resolve word-granularity versioning issues. Instead,

we introduce a new solution by adding a safe bit to each line to eliminate unnec-

essary false squashes. When a more speculative thread has read a word, and a

less speculative thread later writes a different word in the same line, our previous

designs signal a squash. Instead we mark the line as unsafe in the more specula-

tive thread’s cache. That thread can still read data it previously read or wrote,

but accesses to any other word in an unsafe line require a coherence operation to

get the latest version of the line. This is somewhat conservative, because we keep

only a single safe bit, rather than one per word. Words written in unsafe lines

are written back and invalidated when the thread is committed. On a squash an

unsafe line is invalidated.

Without a safe (unsafe) bit to mark that only a portion of a line is valid, the

coherence mechanism would either have to force the thread to squash (when we

mark it unsafe) or immediately generate coherence traffic to collect all previously

untouched words (which could be dispersed in various caches). The latter solution

would likely cause prohibitive bus congestion. We evaluated the former solution

and found that 55% of committed threads would have been squashed if it were not

for the safe bit.

We add two new memory designs, then, which both support coherence

tracking at the word level. They are the Ordered Word Invalidate (OWI) design

and the Ordered Forwarding Word Invalidate (OFWI) design. They are analogous

to the OLI and OFLI designs, respectively, but with word-level invalidation and a

safe bit. In the OFWI design, we still require only a single forwarded bit per line.

2.5.5 Word Granularity Results

The results for the word-granularity coherence tracking designs are shown

in Figure 2.3. These results demonstrate that the ability to track coherence status
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at a word granularity has a significant impact on SpMT performance. For the

OFWI design, for example, we now experience gains of 47% for floating point,

35% overall, and a maximum speedup of 96%. Also of interest is that word-

level tracking suddenly makes data forwarding much more important. We see this

because the difference between OFWI and OWI is much larger than the difference

between OFLI and OLI seen previously. In fact, for SPECint, word-level tracking

alone provides no performance gain, but in combination with forwarding the gains

are significant.

The hardware overhead of word granularity is not insignificant, but it is

clearly an important enabler of SpMT. But the advantage will not be limited to

SpMT. Other parallel code using standard transactional memory will also bene-

fit, in some cases likely significantly, from the elimination of transactional aborts

due to false sharing [RRW08]. Not only does eliminating false sharing in a TM

system improve performance, but also insulates the programmer from yet another

complexity of traditional parallel programming (false sharing).

2.5.6 Byte Granularity Results

All proposed word-granularity designs address byte granularity writes by

maintaining a single bit per cache line to signify that a sub-word granularity write

occurred to the line. When these writes make it impossible to reconstruct the word,

the more speculative thread is squashed. The impact of byte hazard squashes is

minor. We see 1% and 5% of thread squashes on average to be caused by byte

hazards for OWI and OFWI, respectively. But the performance loss is virtually

none. This would indicate that those threads that are lost due to byte hazards

were typically either going to be squashed anyway, or were not going to be high

quality speculative threads.

2.5.7 Word Granularity for Unordered Transactions

One goal of this research is to identify a unified architecture for optimistic

concurrency which effectively supports both TM and SpMT. Standard TM code
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will not always make use of all of the features we have proposed. The differences

will be seen only when the code makes use of unordered transactions (which may

be common in TM code).

In order to execute unordered transactions (transactions with equal order-

ing) written for traditional TM systems, minor modifications to the protocol above

are required. For transactions of equal order, any cache line transactionally mod-

ified by another thread is made unsafe. Reads to previously untouched words in

unsafe lines are filled by less speculative threads or by the L2 rather than by for-

warding between equally ordered threads. Any overlap of the word read-set and

the word write-set between equally ordered transactions results in an abort.

2.5.8 Write Update

Despite the performance improvements resulting from adding word granu-

larity information to cache lines, memory performance remains a limiting factor.

As the memory designs improve their support for completion of speculative threads,

coherence misses and memory delay increases. The coherence misses increase from

39% of data cache misses for OFLI to 47% for OFWI. The slowdown in average

memory delay over baseline execution also increases from 1.18 for OFLI to 1.40

for OFWI. There is a cold cache effect, and these numbers show that a significant

factor is coherence misses.

With a write-invalidate cache coherence protocol, writes cause line invalida-

tions which cause coherence misses. For example, on a four-core SpMT processor,

a frequently-read variable will be in every cache. Each write to that variable will

potentially result in three eventual coherence misses.

Our next design seeks to address the latter of these concerns by implement-

ing a write-update protocol. Few cache-coherent multiprocessors have incorpo-

rated the write-update protocol [McC85], despite significant early research. This

is because few data items are write-shared by many threads of a typical parallel

application at once. However, with SpMT, especially in the absence of compiler

support, this characteristic is not necessarily preserved. Thus, we investigate the

utility of the write-update protocol in this architecture.
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Before outlining the addition of the write-update protocol to our OFWI

design, we will discuss our LAZY design which represents TCC [HWC+04] and

Bulk [CTTC06]. The discussion regarding this design has been delayed because

TCC and Bulk both have word-granularity conflict detection and a modified write-

update protocol and are hence better compared against an eager-detection HTM

with similar features.

LAZY

Two HTM proposals support lazy conflict detection — no information about

modified lines are visible outside the core until a transaction commits. Both of

these HTM proposals support word granularity. These proposals are represented

by the design LAZY in our results. The first, TCC [HWC+04, MCC+05], supports

word-granularity coherence and the write-update protocol. TCC proposes replac-

ing per-memory operation coherence with the bursting of write sets at commit. All

execution remains completely isolated during a transaction. At commit, we impose

an eight cycle arbitration delay and then broadcast all words in the transaction

set (at two words per cycle). The second, Bulk [CTTC06] also supports word-

granularity and performs write-update on lines with false-sharing word conflicts.

It should be noted that lazy conflict detection can be highly advantageous in an

environment where memory conflicts are infrequent. We do not expect that to be

the case with SpMT, but we still model this approach to better understand the

tradeoffs in a combined SpMT/HTM environment.

For the primary LAZY results, we will specifically model TCC; however, we

also examined an idealized Bulk design and found that the difference between the

two in this context is small. For SpMT on two cores, the only significant differences

are that TCC keeps additional state per cache line whereas Bulk maintains signa-

tures — Bulk may transmit less information when performing conflict detection,

and Bulk is susceptible to false conflicts. For more than two cores, in addition

to these differences, Bulk supports ”Partial Overlap” in which data written by a

speculative thread prior to spawning a new thread is made available to that new

thread. It is important to note that the Partial Overlap optimization is not the
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same as forwarding. Forwarding allows for values to be transmitted between si-

multaneously active threads whereas Partial Overlap can only transfer values to

new threads at spawn.

In the event of a transactional state overflow (the victim cache fills) by the

non-speculative thread, we commit the transaction rather than squash.

In the context of our work, LAZY has a number of advantages as well as

disadvantages. By committing the entire write set of a thread when the transac-

tion commits, many coherence operations can be merged and wrong-path memory

operations remain invisible to other threads. Additionally, since all information is

maintained at a word level, words rather than cache lines are transmitted at trans-

action commit. However, since writes are only visible at cache commit, LAZY

designs are unable to forward data from one cache to another. Finally, for TCC,

the burst of a large number of writes consumes the buses and all data caches for a

number of cycles.

In TCC, words written in a transaction are buffered. To solve sub-word

granularity hazards, a single bit per word address in the store address FIFO is

maintained to denote if a write at sub-word granularity occurred. Squashes are

required if sub-word writes to the same word in different threads occur.

All data presented here assumes that transactions are committed either

when the non-speculative thread overflows the victim cache (a rare event in our

results) or when it commits (reaches and commits the CQIP). We explored the

possibility of more frequently committing the non-speculative thread to expose

the write set to the other threads earlier; however, this provided no real gain due

to additional commit overhead and the still present, although reduced, delay in

notifying threads of conflict violations and inability to forward data when accessed

by another core.

Ordered Forwarding Word Update (OFWU)

In the previous section, we saw that the updating of cache lines is fairly

straight forward for LAZY designs. By ordering thread commit, LAZY designs

only broadcast committed data at commit and those lines held by other cores
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receive the new values. In contrast, adding the write-update feature to eager-

conflict detection HTM designs is less straight forward because speculative data is

broadcast when modified (and still speculative), not when committed.

For example, adding write update to the protocol introduces a new hazard

when we have more than two cores. Consider the case of three speculative threads,

thread 0 being least speculative and thread 2 most. All share a cache line. Thread

0 writes a word of that line. Because of the write-update protocol, both threads 1

and 2 get the update but must mark the line as forwarded. Now thread 1 writes

a different word in the line, and thread 2 again gets the update and is consistent.

But if thread 0 now writes the same word as thread 1 wrote, thread 2 does not

know what to do, because it does not store enough information (and it would be

prohibitively expensive at a word granularity) to track from where it received each

value. To address this situation at minimal cost, we add a forward distance field

to each line. The observation is that as long as updates to the line happen in

monotonically increasing order (from less speculative to more speculative) then

there is no ambiguity. The forward distance allows us to ensure that the distance

(in threads) from the last writer to this thread is decreasing. Once the order

departs from that, the line is marked as unsafe by clearing the safe bit. When

the line is unsafe, the local thread may read words that it has previously read or

written, but reads of other words result in a coherence action to restore the full

line to a correct state.

Forward distance allows for the preservation of updated cache lines and

helps by reducing subsequent coherence misses due to invalidations of safe lines.

With four cores, our OFWU design reduces memory slowdown by 20% compared

with OFWI. Nearly half of this improvement is lost without forward distance bits.

Since the goal of the update protocol is to improve memory performance, the

forward distance is an inexpensive and effective tool for an implementation with

more than two cores. Our performance with four cores is further examined in

Section 2.6.
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Figure 2.4: Speedup per benchmark for ULI (unordered line invalidate), LAZY
(lazy conflict detection), OFWI (ordered forwarding word invalidate, and OFWU
(ordered forwarding word update) designs, relative to sequential execution.

Update Design Results

The results for the ULI, OFWI, LAZY, and OFWU designs are shown in

Figure 2.4. LAZY HTMs perform better than the line-granularity eager conflict de-

tection HTMs. However, LAZY HTMs do not perform as well as word-granularity

designs with forwarding for this SpMT architecture. This is not surprising, as

this is not the execution model for which the lazy conflict detection systems were

designed.

Our LAZY design is based on TCC. One key advantage of Bulk over TCC

is the amount of data transmitted at commit. To determine if this transfer time

was a significant limiter for LAZY, we ran TCC with near-instantaneous transfer

times. The results were only slightly better with an average speedup of 1.26 rather

than 1.23. This shows that the delay of transferring words (rather than signatures)

is not the primary limitation of LAZY for SpMT.

The biggest disadvantage of the LAZY design in this context is the delayed

notification of conflicts. A thread that reads data that has been written by a

less speculative thread will not only be unable to acquire that data, but will not

even find out it needs to squash until the earlier thread becomes non-speculative
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and commits. In many cases, that could be a long delay, especially if the writing

transaction must wait to become non-speculative. In theory, the ability to forward

could be added to a lazy conflict detection HTM, but it would represent a dramatic

change to both the coherence protocol and the philosophy of lazy conflict detection.

Dependence Aware TM (DATM) [RRW08] also offers word granularity with

write-update. As mentioned before, the transactional guarantees by DATM are too

weak for our SpMT framework. However, the inability for previous transactions

to write to words written by later transactions has a significant effect. Just adding

that restriction to our OFWU model caused a slowdown of 9%, resulting in per-

formance similar to OWI and LAZY designs.

Shifting from invalidate to update (OFWU) provided slightly improved per-

formance, but the gains were small. In addition to the overall increase in IPC, co-

herence misses are reduced from 47% to 37% and the memory slowdown decreased

from 1.40 to 1.22 from OFWI to OFWU. We see that average memory access

time was improved, partially as a result of decreased coherence misses. But the

surprising result is the high rate of coherence misses that remain.

In a conventional write-update machine, all coherence misses would be elim-

inated. But there are many more types of coherence misses in this system (we use

the simplest definition of a coherence miss — a tag hit to an invalid line). There

are the delayed invalidates that are not seen until a thread commits, as well as all

the invalidates that happen when a thread is squashed. These results show that

nearly 80% of the coherence misses were caused by actions that the write-update

protocol did not address. Further optimizations to address cold cache problems

are the focus of Chapter 3. In Chapter 3, we evaluate the potential of preemp-

tively migrating data from core to core at the point of thread spawn via a recently

proposed technique, Working Set Migration [BPT11].

2.5.9 Summary of HTM Designs

A summary of the bookkeeping bits required per cache line for all designs

is shown in Figure 2.5. We see that the overhead of word-level coherence is clearly

the largest storage cost.
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As stated previously, the magnitude of the gains achieved is not the point

of this study, and that magnitude would vary with specific assumptions in our

architecture. Of greater interest is what optimizations are important to reaching

the potential of speculative multithreading without adding significant complexity

to hardware TM.

We find word granularity coherence tracking and forwarding are both criti-

cal for SpMT performance. Word granularity adds some complexity and a modest

amount of hardware overhead, but it should accelerate both SpMT and TM exe-

cution.

Despite the high rate of coherence misses, the write update protocol pro-

vides modest gains. Given the complexity of supporting that protocol (including

difficult corner cases that do not exist in conventional systems), and the fact that

based on past research we do not expect write update to be particularly useful for

non-SpMT parallel code, this optimization does not appear to be warranted.



40

Finally, lazy conflict detection proposals provide better performance than

existing eager conflict detection proposals but have lower performance than our

more advanced designs because of the delay in exposing the result of earlier writes

to later computation.

2.6 Generality of Results

All of our results so far have examined a specific SpMT architecture. This

section varies the details of that architecture to verify that our preceding con-

clusions still hold. Three dimensions of our architecture likely to change are the

number of cores utilized, the register dependence handling mechanisms, and the

complexity of the cores. Previous results were restricted to a small 2-core imple-

mentation and this section examines a larger (4-core) configuration. We have been

simulating a very accurate (actually, perfect) register value predictor to handle

the prediction of spawned thread live-ins — again, near-perfect prediction is not

necessarily unattainable [MGQS+08] (with a performance cost). However, we also

examine a much more conservative register value predictor. Lastly, we examine

results for more complex (out-of-order) cores.

Our TM designs were all run with two and four cores. The results for

execution on four cores averaged across all benchmarks is shown on the left side

of Figure 2.6. We see that we get higher overall speedup with four cores (as much

as 45%), but the overall gains have not scaled particularly well primarily because

of the increase in cold cache effects, which are the result of two phenomena. The

first is the expected increase in cold cache misses as we migrate between cores

more frequently. The second phenomenon is that as we move to four cores, we

successfully spawn more threads (fewer threads fail to spawn due to unavailable

cores). The number of useful threads increases, but the number of squashed threads

increases as well. Squashed threads typically result in invalidated lines. These

effects are surprisingly large, resulting in an increase in average memory slowdown

in the OFWU design from 1.22 with 2 cores to 1.44 with 4 cores. These effects

should decrease with higher quality spawned threads (via compiler support, for
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Figure 2.6: Speedup for four cores with perfect register prediction and for two and
four cores with an increment register predictor.

example) and better solutions for the cold cache problem. The former is the focus

of future research; the latter the focus of Chapter 3.

The more important result, however, is that despite significant changes

in the execution details when running with four cores (more parallelism, more

threads spawned, more coherence misses, etc.), all of the conclusions of our pre-

vious results remain. The word-granularity plus forwarding results provide over

40% performance gains, compared to the baseline TM design which still only gets

about 10%. LAZY achieves a speedup of 26% which is less than the OFWI or

OFWU designs. We continue to see that forwarding and word-granularity track-

ing must appear in concert to be effective. We also see the new result that while

our aggressive designs provide some scaling with increasing number of cores, the

default TM designs do not.

To evaluate the other end of the register prediction spectrum (from our

perfect predictor), we have also modeled a basic 4K entry increment predictor

[MG02]. Live-ins are tracked for spawnpoints using 2-bit saturating counters per

register. Live-in registers are predicted at spawn by adding the increment indexed

in the predictor to the current value held by the spawning thread. These predicted

values are compared against the actual live-ins at thread commit and if the predic-
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tions are incorrect, the validating thread is squashed. This predictor uses simple

mechanisms for prediction, indexing, and update while also minimizing storage

cost by only storing enough bits to capture most increment sizes. The only change

to our previous methodology is that threads which perform illegal operations due

to mispredictions are squashed.

The average results across all benchmarks are shown in Figure 2.6 for both

2 and 4 cores. With two cores, the baseline HTM design, ULI, continues to provide

limited performance with a speedup of 1.05. LAZY performs better than ULI with

a 1.10 speedup. Our OFWI and OFWU designs demonstrate significant improve-

ments, 1.21 and 1.25 speedups respectively. The accuracy of the small increment

predictor was quite high, between 63% and 76% depending on the memory design.

The average number of live-in registers was between 2.5 and 3.0 depending on

design. Undoubtedly, one factor in the high register prediction accuracy was that

the confidence counters eliminated (for spawning) those threads with poor register

prediction.

We also evaluate the trends for out-of-order cores with 2 and 4 cores using

either a perfect or conservative register predictor, and determine that the same

trends and results hold with the more powerful cores. For example with the perfect

predictor and four cores, we found speedups of 1.09 for ULI, 1.12 for OFLI, 1.17

for LAZY, 1.33 for OFWI and 1.35 for OFWU.

We see in all three cases (more cores, realistic prediction, and more complex

cores) that all the important trends continue. We see similar gains over the baseline

HTM design for the same best designs, LAZY falling between the baseline design

and the better designs, word granularity being critical, and word-level granularity

and forwarding providing highly synergistic gains.

2.7 Chapter Summary

Speculative multithreading has the potential to significantly increase our

ability to leverage highly parallel multi-core, multithreaded processors for code that

lacks the characteristics of traditional parallelism. Transactional Memory provides
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support for optimistic concurrency as well as an easier parallel programming in-

terface and has such gained hardware support in processors proposed by industry.

Prior work has recognized the ability for TM to support a domain of speculative

multithreading limited to threads which are independent (dynamically).

This chapter evaluates the path from TM to full SpMT. It evaluates a

number of intermediate design points between TM and SpMT. It identifies a uni-

fied architecture capable of exploiting transactional parallelism, compiler-identified

speculative parallelism, and hardware detected speculative parallelism. Three fea-

tures are identified at being critical to SpMT performance — ordering of transac-

tions, the ability to forward between transactions, and coherence tracking at word

granularity. These trends persist across processors with in-order or out-of-order

execution, two or four cores, and perfect or conservative register prediction.

Acknowledgments

The work in this chapter was supported in part by the Reserve Officers

Association Henry J. Reilly Memorial Scholarship, NSF Grant CCF-0702349, and

Semiconductor Research Corporation Grant 2005-HJ-1313.

This chapter contains material from “Mapping Out a Path from Hardware

Transactional Memory to Speculative Multithreading”, by Leo Porter, Bumyong

Choi, and Dean M. Tullsen, which appears in Proceedings of the Eighteenth Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT).

The dissertation author was the primary investigator and author of this paper. The

material in this chapter is copyright c�2009 IEEE. Personal use of this material is

permitted. However, permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistri-

bution to servers or lists, or to reuse any copyrighted component of this work in

other works must be obtained from the IEEE.



Chapter 3

Improving Speculative

Multithreading Memory Behavior

As shown in Chapter 2, Speculative Multithreading (SpMT) is a promising

technique for improving single-thread performance by leveraging idle parallel re-

sources [SBV95, HHS+00, MGQS+08, SM98]. However, poor cache performance

was shown to be an obstacle for realizing the full potential of SpMT. In this chap-

ter, we focus on addressing this problem.

Working Set Migration (WSM) is a recently proposed technique for mit-

igating performance losses at the time of thread migration [BPT11]. WSM has

been shown to be effective for an artificial workload which forces migrations at

arbitrary points of execution. This work seeks to answer the following questions:

• Can WSM aid cache performance for a system with non-arbitrary and fre-

quent thread migrations–namely a Speculative Multithreaded workload?

• Are the heuristics recommended for the artificial workload also the best

choice for an SpMT workload?

We demonstrate that WSM can be effective for SpMT using the correct

WSM heuristics. For the SPECint benchmarks, applying WSM to SpMT reduces

average memory access time by nearly 50%; resulting in an average improvement

to whole program performance of 9%.

44
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The rest of the chapter is organized as follows. Experimental methodology

is described in Section 3.1. Section 3.2 motivates this study. Section 3.3 discusses

prior related work. Section 3.4 provides background on WSM techniques. In

Section 3.5, we evaluate WSM techniques for improving SpMT performance. We

conclude with Section 3.6.

3.1 Methodology

We use the Speculative Multithreading framework described in Chapter 2.3

and [PCT09]. We modify it to evaluate the working set migration techniques de-

scribed in the following sections. To review, in this framework, loops and function

calls are identified for speculative parallelization entirely in hardware. Register

dependencies between threads are predicted by a live-in predictor and the values

are predicted using an increment predictor [MG02]. Memory dependencies are ad-

dressed via a modified form of Hardware Transactional Memory, specifically the

OFWI design recommended by [PCT09]. This memory design is aware of thread

ordering, forwards values between threads, and detects conflicts at word granu-

larity. Since the protocol creates invalidations, write-sharing can cause additional

cache misses. We perform working-set-prediction prefetches non-transactionally,

so they do not impact the read/write sets of transactions.

We evaluate the full SPEC CPU2000 benchmark suite with reference in-

puts. Each benchmark is executed using 100M-instruction simulations based on

SimPoint [SPHC02]. We model dual-core execution using architectural parameters

similar to [PCT09]; these parameters include a shared L2 cache, which decreases

the penalty for transferring data between cores.

3.2 Motivation

The benefits of caches for single-threaded performance are well

established [HP02]. Caches enable high performance by providing storage close

to computation resources on chip. Accesses to local (on-chip) caches can be orders
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of magnitude faster than accesses to off-chip resources, thus significant performance

gains can be achieved by having local caches satisfying most requests. Caches at-

tempt to satisfy these requests by learning about thread memory behavior. To

this end, caches retain blocks of recently accessed data and those threads which

have the tendency to reuse those blocks benefit. Because caches learn over time,

threads need to run on a given core for some time before the benefits of caching

can be realized [BPT11].

SpMT disrupts the performance of caches by migrating computation be-

tween cores through the spawning and committing of speculative threads on idle

cores. A number of factors contribute to poor cache behavior for SpMT:

• Speculative threads are spawned on idle cores, the caches of which may be

cold, i.e. the cache is either empty or its contents are irrelevant to current

computation. The caches on these cores require time to learn, and perfor-

mance suffers during this warm-up time.

• When speculative threads successfully commit, they become non-speculative

and the main thread of computation migrates cores. This moves computation

from a core with a typically warmer cache to a core with a colder cache.

• When speculative threads fail to commit, any data written by that thread

is invalidated (evicted from the cache). Failed speculative threads hence

contribute to the loss of cache state among cores.

• As speculative threads execute, data is shared between cores. If cache co-

herence is managed via an invalidation protocol, threads invalidate the cache

contents of threads running on other cores, worsening their cache perfor-

mance.

Potentially offsetting the many factors which contribute to poor SpMT

cache performance, SpMT has one behavior which can improve cache perfor-

mance. Speculative threads are a form of runahead execution in that they per-

form future computation which can prefetch future memory accesses into shared

caches [MSWP03].
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Figure 3.1: Average Memory Access Time Slowdown for SpMT relative to single-
threaded execution for the SPECint benchmarks.

To evaluate the impact of cache behavior on SpMT performance, we com-

pare Average Memory Access Time (AMAT), the average time for each memory

request, between single-threaded and SpMT execution. For SpMT, AMAT is just

the average memory access time for memory references in non-speculative and

committed threads. Memory accesses for squashed threads are not included in

this calculation.

Figure 3.1 provides the AMAT slowdown from SpMT for the SPECint

benchmarks. For these benchmarks, some suffer significant AMAT slowdowns

(crafty2k, eon2k, perlbmk2k, and vortex). Interestingly, two benchmarks have their

memory performance slightly improved by SpMT, bzip2k and mcf2k. These bench-

marks are likely benefiting from the prefetching effect of the speculative threads.

Averaged across SPECint, AMAT increases by 47% due to the negative memory

impact of SpMT.

The AMAT slowdown for the SPECfp benchmarks appears in Figure 3.2.

Although the negative impact of SpMT memory behavior is less pronounced on

SPECfp than for SPECint, many SPECfp benchmarks still suffer increases in

AMAT. Other FP benchmarks experience improvements to AMAT from prefetch-

ing speculative threads, most notably equake which achieves an 18% reduction in

AMAT. Averaged across SPECfp, the negative memory impact from SpMT slightly

outweighs the advantage, resulting in an increase in AMAT by 6%.
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Figure 3.2: Average Memory Access Time Slowdown for SpMT relative to single-
threaded execution for the SPECfp benchmarks.

Averaged across all of the SPEC CPU2000 benchmarks, SpMT causes a

25% increase to AMAT. This slowdown to AMAT will be shown to hamper whole

program SpMT speedups. Thus, by improving SpMT memory performance, we

can improve the effectiveness of SpMT and its ability to improve single-threaded

performance.

3.3 Related Work

Prior work has examined the problems of poor performance due to (1)

general migration costs and (2) SpMT’s impact on cache behavior.

3.3.1 Reducing Migration Costs

Previous work [BT08, TKTC04] describes support mechanisms for migrat-

ing register state in order to decrease the latency of thread activation and deactiva-

tion; however, performance subsequent to migration still suffers due to cold-cache

effects. Our work is complimentary; we specifically address the post-migration

cache misses which limit the gains of those techniques. Choi, et al., explore the

complementary problem of branch prediction for short-lived threads, specifically

branch prediction for SpMT [CPT08].

Data Marshaling [SMJ+10] mitigates inter-core data misses in Staged Ex-
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ecution models. In contrast to the techniques evaluated here (Working Set Mi-

gration), DM targets scheduled stage transitions using compile-time flagging of

producer instructions, hardware to track writes by flagged instructions, and a new

instruction which triggers data transfers.

Working Set Migration (WSM) techniques have been proposed in the con-

text of frequent thread migrations by Brown et al. [BPT11]. In their work, they

demonstrate WSM techniques to improve the performance of short threads which

result from frequent thread migrations in artificial workloads. This work evaluates

their technique on a more realistic workload — SpMT. The following section dis-

cusses this work in more detail and Section 3.5 evaluates using this technique for

SpMT.

3.3.2 Cache Performance for SpMT

In Speculative Multithreading (SpMT), loss of cache state impedes per-

formance as execution migrates across cores [FS06, VGSS01]. This is a well-

documented and long-standing problem. Execution that would ordinarily reside

on a single core is now spread across several, creating misses and invalidate traffic

where the original code experienced hits in a single cache. Additionally, coherence-

based speculative multithreading requires certain data to be invalidated in caches

for both squashed and committed threads, exacerbating the problem.

Speculative Versioning Cache [VGSS01] and the work of Fung and Stef-

fan [FS06] use bus snarfing to pull requested lines into adjacent cores. We evaluated

the effectiveness of snarfing in our framework and found limited gains (5% AMAT

reduction, 2% speedup across SPEC CPU2000). Fung and Steffan additionally

evaluate the potential of keeping a small buffer of recently stored addresses [FS06]

which were requested for read sharing by other threads. At thread commit, those

values in the buffer are written back and pushed to the next thread context. Un-

like the WSM techniques evaluated here, this technique does not aid the execution

of the speculative thread at the critical point when the speculative thread begins

execution.
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3.4 Background - Hardware Support for WSM

In [BPT11], Brown et al. demonstrate that miss-stream characterization

is insufficient to cover many migration-related misses. As such, they developed the

following design for WSM to characterize the entire access stream. The hardware

consists of a working set predictor which works in three stages. First, it observes

the access stream of a thread and captures patterns and behaviors. Second, it

summarizes this behavior and transfers the summary data to the new core. Third,

it applies the summary via a prefetch engine on the target core to rapidly fill the

caches in advance of the migrated thread.

WSM has been evaluated with a set of possible capture engines. We evaluate

these same capture engines to determine if the design recommended by [BPT11] for

artificial workloads is also the correct choice for SpMT workloads. The remainder

of this section describes the WSM hardware and various capture engines described

in [BPT11] and tailored to our SpMT framework for evaluation.

3.4.1 WSM Hardware

The WSM hardware consists of three main components shown in Figure 3.3:

• Memory Logger — During execution, the Memory Logger monitors and

records sections of the access stream. Depending on which policy is applied,

different sections of the access stream are recorded. These policies are de-

scribed in full detail in the following section. Since the memory logger need

not be correct, it can be removed from the critical path and should not

impact performance.

• Summary Generator — At the point of thread spawn, the Summary Gen-

erator reads the logs from the memory logger, compacts the address infor-

mation into cache-line size summaries, and transmits those summaries to the

core which is the target of the spawn. This transmission occurs in parallel

with the transfer/prediction of register state.
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Figure 3.3: Hardware for Working Set Migration. Although each core has all three
components, the only components shown are those which which contribute to the
host core spawning a speculative thread on a target core.

• Summary-driven Prefecher — As the speculative thread begins activa-

tion on the target core, the summary records (which are transmitted from

the parent cores Summary Generator) are read and prefetches are generated

by the Summary-driven Prefetcher. These prefetches begin in parallel with

register state transfer and continue while the speculative thread begins ex-

ecution. All prefetches search the entire memory hierarchy and contend for

the same resources as demand requests.

All three of these components have been added to each core in our SpMT

architecture.

3.4.2 Memory Logger Policies

Much of the effectiveness of the WSM techniques is dependant on which

of the Memory Logger policies discussed in [BPT11] are used. For each of these
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policies, small tables are used to log the appropriate information as small tables

were shown to be effective in [BPT11]. The following are the policies for evaluation:

Next-block-{Inst,Data}: These monitor the I- and D-stream, respectively,

for sequential block accesses. On a hit, entries are incremented by one cache block.

We maintain a separate table for each of the I- and D-streams.

StridePC: This is designed to track individual instructions walking through

memory with a consistent stride. This table only tracks D-stream accesses, using

the PC values and access addresses.

Pointer, Pointer-chase: These capture active pointers and pointer traver-

sals by detecting when the value from load subsequently matches the address

of a later memory request, similar to pointer-cache [CSCT02] and dependence-

based [RMS98] prefetching. Pointer tracks previously loaded values used as ad-

dresses without following them. Pointer-chase follows the pointer by replacing

each entry with the target value when a load match is observed.

Same-object: This attempts to capture accesses to the same structure or

object, by monitoring memory ranges accessed from from a common base address.

Using the “base+offset” addressing mode, it tracks the minimum and maximum

offsets observed for any given base address. (Accesses to the global or stack pointer

are ignored.)

SPWindow, PCWindow: These do not require tables as only the current

value of the stack pointer and PC are required. We use the stack pointer and PC,

respectively, to prefetch a region of data blocks near the top of the stack or the

region near the program counter of the first instruction after migration.

{Inst,Data}-MRU: These record the Most Recently Used (MRU) blocks

accessed from the I- or D-stream. These addresses are managed at a four-cache-

block granularity enabling them to cheaply cover a larger number of blocks.

BTB, BlockBTB: These capture taken branches and their targets by record-

ing the most recent in-bound branch for each target. The latter is a block-aligned

variant of the former. Both branch and target PCs are block-aligned, allowing

a larger section of the instruction working set to be characterized with a smaller

table size.
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Figure 3.4: Impact of WSM policies on SpMT Speedup for SPECint.

RetStack: This maintains a shadow copy of the return stack in order to

prefetch instruction blocks in the region of the top of a few control frames.

The potential for each of these policies to capture the working set of spec-

ulative threads is examined in the following section.

3.5 WSM for Speculative Multithreading

To evaluate the effectiveness of the WSM techniques for SpMT, we first

evaluate each of the memory logging policies to determine which policies are most

successful. We then return to the issue of the impact of SpMT on AMAT in

the context of WSM techniques. Lastly, we evaluate the whole program speedup

possible from using WSM techniques with SpMT.

3.5.1 WSM Policies

In [BPT11], the authors recommend the InstMRU+PCWindow+DataMRU

policy. They also note that the largest impact on thread performance post migra-

tion is the lack of working set in the instruction cache.

We reevaluate the WSM policies in the context of SpMT in Figure 3.4.

Figure 3.4 contains the average SPECint SpMT speedup for each of the different

WSM policies. For SpMT workloads, the instruction cache migration techniques
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Figure 3.5: SPECint per benchmark AMAT slowdown from SpMT and from SpMT
with DataMRU.

are not effective alone, and in the cases of InstMRU+PCWindow+InstMRU and

PCWindow, can be disruptive. This is likely due to the instruction cache warming

quickly from frequent thread migrations. One data cache policy which was par-

ticular effective for the artificial workload in [BPT11] was StridePC. For SpMT,

StridePC is less effective. This is likely caused by StridePC needing time to learn

the strides between memory addresses which is difficult with thread migrations

so frequent. However, the other data cache policy recommended in [BPT11] is

DataMRU. DataMRU is the most effective policy for SpMT. The combination of

InstMRU+PCWindow+DataMRU is slightly less effective. In subsequent sections,

we’ll continue to evaluate WSM potential in the context of these effective policies

(InstMRU+PCWindow+DataMRU and DataMRU).

3.5.2 WSM Impact on AMAT

As shown in the motivation (Section 3.2), SpMT speedup is hampered sig-

nificantly by the increase in average memory access time (AMAT) that occurs when

we spread the computation among multiple cores. However, the data working-set

prediction provided by (DataMRU) significantly mitigates the AMAT inflation in

SPECint, as shown in Figure 3.5. AMAT is also improved across SPECfp as shown

in Figure 3.6. In some cases, it reduces AMAT to near, or even below, the single-

thread AMAT (single-thread AMAT is 1.0). In nearly all other cases, prefetching
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Figure 3.6: SPECfp per benchmark AMAT slowdown from SpMT and from SpMT
with DataMRU.

significantly reduces AMAT.

One anomalous result is mcf. The performance of mcf is completely domi-

nated by a small number of hard-to-predict “delinquent” loads [CWT+01]. SpMT

benefits mcf less from the successful completion of spawned threads, as from the

prefetching provided by those threads, which bring in hard-to-predict data. Hence,

for mcf, speculative threads already succeed at performing critical prefetches; those

critical prefetches are delayed by the extra traffic generated by DataMRU prefetch-

ing.

3.5.3 WSM Impact on SpMT Speedup

Figure 3.7 explores the effectiveness of WSM techniques for improving whole

program performance for the SPECint benchmarks. Focusing on the average, we

see that baseline SpMT execution achieves an average speedup of 1.10, and D-

stream WSM nearly doubles the overall effectiveness of speculative threading for

the integer benchmarks, increasing the gain from 10% to 18%.

Figure 3.8 explores the effectiveness of WSM on the floating point subset

(SPECfp). In general, the regularity of the code in SPECfp enables higher base-

line SpMT performance (36% improvement over single threaded performance).

For SPECfp, D-stream WSM is again effective at boosting the average SpMT

performance by 8% (to 44%). As such, when averaged across the entire SPEC
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Figure 3.7: SPECint SpMT speedup per benchmark for different WSM techniques.
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Figure 3.8: SPECfp SpMT speedup per benchmark for different WSM techniques.

CPU2000 benchmark suite, WSM increases overall gains from 24% to 32%. When

comparing the combination of prefetching both instruction and data streams (In-

stMRU+PCWindow+DataMRU) against that of data alone (DataMRU), we see

that I-stream prefetching is harmful for SPECint and ineffective for SPECfp. I-

stream prefetching is slightly less effective on average primarily because the I-caches

tend to be already warm. Although instruction prefetches are likely to be hits, they

can impede the thread because they occupy cache request ports.

In addition to the SPECint average speedups previously shown in Fig-

ure 3.7, Figure 3.9 provides results for an oracle D-prefetcher, which, at each

spawn point, prefetches the memory blocks used by the next 100 instructions (the
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Figure 3.9: SPECint SpMT mean speedup across migration techniques and mem-
ory configurations. “I+D Combo” uses InstMRU, PCWindow, and DataMRU.

average speculative thread length is 59). Focusing on the left-most columns, this

oracle achieves a 1.23 average speedup for the SPECint benchmarks. Since this

oracle prefetcher should almost entirely solve the cache locality problem for SpMT,

we find that our realistic working-set prefetcher achieves most of the gains (1.18

speedup) available.

3.5.4 Generality of WSM Results

As in the general case from [BPT11], post-migrate performance is domi-

nated by cache-to-cache transfers. Prior work [SZG+09] shows that memory sim-

ulation models such as ours can underestimate latency by up to 25%. Since main

memory access patterns are largely unaffected by WSM, the details of that simula-

tion should not impact our relative speedups. To demonstrate that our results are

consistent even if our model underestimates memory latency, we add additional

latencies to memory and reevaluate the results. In Figure 3.9, the performance
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of SpMT with different memory latencies is shown. The left group has our origi-

nal memory latency, and the center and right groups show the performance with

DRAM access latencies increased by 11% and 90%, respectively. These results

demonstrate that the overall trends in this section are insensitive to large increases

in memory latency.

To model a more aggressive SpMT system, we also evaluate the SpMT

framework using a perfect register value predictor to determine if our results remain

consistent without thread squashes caused by register mispredictions. Again, we

see significant gains from the DataMRU working set predictor, which improves

SPECint SpMT speedup from 1.24 to 1.34 and all SPEC CPU2000 SpMT speedup

from 1.38 to 1.49.

3.6 Chapter Summary

SpMT performance is hampered by poor cache performance in the presence

of thread migrations, thread spawns, and coherence invalidations. WSM offers a

potential solution in that it has been designed to be a low cost method of migrat-

ing working set at the point of thread migration. However, WSM has only been

demonstrated to be effective for workloads with artificial migrations.

In this chapter, we apply WSM to SpMT and demonstrate that the WSM

policy of DataMRU is most effective for SpMT workloads. Unlike the artificial

workload used to originally demonstrate the value of WSM, instruction caches

warm quickly in SpMT workloads and become less critical. Similar to the artificial

workload, DataMRU is shown to be an effective means of working-set migration for

SpMT. DataMRU provides an 8% improvement to whole program SpMT speedups

for the SPEC CPU2000 benchmarks and nearly doubles the effectiveness of SpMT

for the SPECint benchmarks (improving the speedup from 10% to 18%).



59

Acknowledgments

This research was supported in part by NSF grant CCF-1018356 and Semi-

conductor Research Corporation Grant 2005-HJ-1313.

This chapter contains material from “Fast Thread Migration via Cache

Working Set Migration”, by Jeffrey A. Brown, Leo Porter, and Dean M. Tullsen,

which appears in Proceedings of the Seventeenth International Symposium on High

Performance Computer Architecture. The dissertation author was the secondary

investigator and author of this paper. The material in this chapter is copyright

c�2011 by the Association for Computing Machinery, Inc. (ACM). Permission to

make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that the copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page in print or the first screen in digital media. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.



Chapter 4

Creating Artificial Global History

to Improve Branch Prediction

Accuracy

In the previous chapters, we examined techniques for leveraging idle paral-

lel resources to improve single-threaded performance. In this chapter, we visit the

complementary problem of freeing resources from components previously dedicated

solely to single thread performance. These freed resources can be used elsewhere

(more cores, better interconnect) to improve processor-wide performance. This

reallocation of resources is done with the critical caveat that we do so only with a

minor impact on single-thread performance. In this chapter, we focus on branch

prediction hardware because branch prediction accuracy is tied solely to perfor-

mance, not correctness.

The importance of accurate branch prediction has been well documented

in the literature. As such, modern processors rely on highly accurate branch pre-

diction for good performance. In this work, we propose a simple technique based

on heuristics that improves branch prediction for a number of branch predictors.

Smaller, less complex branch predictors benefit the most from our technique.

In the uniprocessor era, it made sense to pursue increasingly larger, more

complex predictors to squeeze out even small margins of performance. In the

multi-core era, every transistor we do not use on one core can be put to other

60
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use–allowing more cores, faster cores, more cache, better interconnects, etc. This

is even more true of the power envelope, as future processors will be designed un-

der very tight power constraints. Therefore, the highest performance processor is

composed not from the highest performance building blocks, but rather from the

most area-efficient and power-efficient building blocks. Thus, even the branch pre-

dictor must carefully justify the use of its transistor budget, and smaller predictors

may provide higher processor-wide performance by better utilizing those resources

elsewhere. This research demonstrates techniques that improve the branch pre-

diction accuracy of most modern predictors. By requiring no additional storage

and minimal logic, it improves overall processor performance with no power or real

estate cost. Moreover, as it is most effective on small predictors, allowing those

to become more competitive with larger, more complex predictors, it potentially

enables a reduction in predictor size with no cost in per-core performance.

To produce highly accurate predictions, modern branch predictors use

global history to index prediction tables [YP93, CEP96, Kes99, LCM97, McF93,

SFKS02, SM99], as input to a neural network [JL02], or as tags in table

lookup [EM98, Sez05]. Global history is successfully used to produce accurate

branch predictions because branches often correlate with previously executed

branches (other nearby branches and themselves). Longer branch histories en-

able predictors to view a larger window of previously executed branches and learn

based on correlations with those branches.

Evers, et al. [EPP98] demonstrate that the amount of correlation with prior

branches varies per branch. For branches highly correlated with recent history,

global history can provide key prediction information. However, we show that for

a branch that is not highly correlated, that history is mostly noise and does more

harm than good. It increases the time to train the predictor and it significantly

expands the level of aliasing in the prediction tables, reducing the accuracy of

prediction on this and other branches.

The technique we propose directly modifies global history based on simple

code heuristics. These heuristics identify sections of code where branch correlation

is likely to be low, and modifies the GHR to reduce or eliminate unnecessary noise.
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Specifically, these heuristics target backward branches, function calls, and returns.

We evaluate these techniques using select SPEC CPU2000 benchmarks and

the Championship Branch Prediction (CBP) traces from The Journal of Instruc-

tion Level Parallelism. These techniques provide gains for a number of branch

predictors. For a set of 32Kb predictors, these techniques improve each of the

A21264 [Kes99], gshare [McF93], and alloyed perceptron predictors [JL02]. For

the perceptron predictor, our technique reduces mispredicts per thousand instruc-

tions (MISP/KI) by 12% overall. A 416Kb implementation of 2Bc-gskew [SM99]

also benefits from our techniques, achieving a 9% reduction in MISP/KI for the

CBP traces. Smaller predictors benefit more from these techniques–an 8Kb im-

plementation of gshare achieves a 18% overall reduction in MISP/KI for our select

SPEC CPU2000 benchmarks.

This work provides the following contributions:

1. We provide a technique of GHR modification that has exceptionally low

hardware cost and demonstrate that branch prediction can benefit from its

use.

2. The benefit of this technique is shown for a number of branch predictors

of low to medium complexity and for a number of branch predictor sizes.

These gains are shown both on a selection of SPECint benchmarks and the

Championship Branch Prediction Competition traces.

This chapter is organized as follows: Section 4.1 provides the motivation

and basic architectural approach. Section 4.2 discusses related work. Section 4.3

discusses our hardware techniques based on code heuristics, and also discusses some

potential hardware/software techniques. Section 4.4 provides the methodology.

Section 4.5 provides results and Section 4.6 concludes.

4.1 Motivation

The global history register (GHR) allows a predictor to exploit correlations

with recently executed branches. A longer GHR enables correlation with more
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Figure 4.1: Percentage of dynamic branches positively or negatively impacted by
history.

distant branches, but also increases the number of uncorrelated branches that are

included in the history. Those uncorrelated branches can create significant noise.

Consider a 15-bit GHR. A branch that is highly correlated with 3 prior branches

will make good use of a correlating predictor; but even in this positive scenario,

the history contains 12 bits of useless noise. This means that (worst case), we

could have to use 212 times more entries to predict this branch than we need,

greatly increasing the training period and the aliasing with other branches. For a

branch uncorrelated with prior branches, the entire 15 bits are noise, only serving

to confuse the predictor and pollute the tables.

In our simulations of select SPEC benchmarks, we found that the average

branch, using a 16-bit GHR, observes over 100 different branch histories; with 20

bits, it more than doubles and we see over 200 histories per branch. Some of those

histories will be useful and indicate useful correlations, but most will not [EPP98].

Thus, it is reasonable to surmise that on average we are using dozens of times more

table entries than desired.

Figure 4.1 shows the percentage of branches that achieve either loss or

benefit from correlation history. It compares the accuracy of a correlating predictor

(a unique 2-bit predictor for every possible history) with the actual bias of the

branch. For example, if the correlating predictor achieved 78% accuracy, but the

branch was 90% biased (toward taken or not-taken), we would say this branch

was negatively impacted by history. The remaining branches not indicated on this

graph had less than a 1% difference between the two.

In this graph, we see (1) that in all cases there are a number of branches that
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degrade because of branch history, and (2) that for larger histories, the number

of degraded branches can be quite large. The effect we are observing is that

with large histories, the noise begins to dominate. This leads to the somewhat

counter-intuitive result that the longer the history, the fewer branches actually

make effective use of that history.

Clearly, some branches do gain from large history, as prior work has shown.

What we want, then, is an architecture that allows some branches to benefit from

large histories, but eliminates or reduces the history noise in those regions where

the noise is not useful. While prior research examined a number of techniques

that target the optimal history for individual branches, this paper focuses on a

surprisingly effective (yet simple) heuristic that only requires that we identify a

place in the execution stream where we transition from one region (with potentially

high correlation) to another, but where there is not correlation between the regions.

It turns out that this captures the most significant correlation gaps.

Not surprisingly, the control flow instructions themselves are the most useful

clues to these transition regions. The transitions we found to be most interesting

are the transitions between procedures (indicated by call and return instructions),

and loop exits (often indicated by not taken backwards branches). Upon identifying

one of these transitions, we do better if we ignore all prior history (thus collapsing

all possible paths into one). By setting the GHR to a single known value, we begin

training the predictor for the subsequent branches quickly, and greatly reduce

pollution and aliasing.

4.1.1 Source Code Example

Gcc, a SPEC CPU2000 integer benchmark, benefits from our techniques.

An example from that benchmark which serves to illustrate the advantage of our

techniques appears in Figure 4.2. Branch A is the first branch instruction in a

function call which performs a null pointer check. The branch executes 2455 times

during the execution of the 100M instruction simpoint and is never taken. The

branch encounters 208 unique 16-bit histories. As a result, it is only predicted

correctly 91% of the time using non-aliasing 2-bit predictors per history. If you
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Figure 4.2: Example function in sched.c from gcc.

were to set the GHR to a fixed value when the function call is made, the branch

would be predicted correctly 99% of the time, again assuming no aliasing. In this

particular case the Filter predictor [CEP96] would also solve this problem, but in

the more general case (e.g., if Branch A were not completely biased, but did follow

a pattern), it would not.

4.2 Background and Related Work

The Global History Register, first proposed by Yeh and Patt [YP93], is a

special case of their two-level adaptive branch predictor, with per-branch pattern

history being collapsed into one global history. The benefits of the GHR were

further demonstrated by McFarling [McF93] with his gselect and gshare predictors.

Branch prediction research has continued to use global history for branch prediction

accuracy.

Figure 4.3 provides a diagram of the basic layout of a gshare predictor. The

current branch address (program counter) is xor’d with the contents of the GHR to

produce an index into the Pattern History Table (PHT). Each entry in that table

contains a 2-bit prediction for that branch where the 2-bit values of 002 and 012

represent predict Not Taken and the values 102 and 112 represent predict Taken.

When a new branch instruction is encountered, the branch address and GHR are

xor’d to produce an index. The entry at that index is obtained and a prediction



66

!"#!"#!"#!"#

!"

#$%

$%&'()*&++%,--$%&'()*&++%,--$%&'()*&++%,--$%&'()*&++%,--

Figure 4.3: Diagram of the gshare branch predictor.

based on that entry is produced. When the branch outcome is later resolved, the

entry at that same index is incremented for Taken and decremented for Not Taken.

As a result, a prediction is based on the previous behavior of this combination of

branch and history. Unfortunately, because the PHT is finite, only a subset of the

branch address is used. This can result in aliasing (multiple addresses and histories

accessing the same table entry). Many predictors described in the remainder of

this section attempt to reduce or eliminate this aliasing.

The success of the gshare predictor and demonstrated value of global history

has led to the exploitation of increasingly long global histories. Longer histories

aid in establishing correlation with more distant branches as well as (in some cases)

reducing aliasing in indexed predictors. The Alpha 21264 predictor [Kes99] uses

12 bits of global history to index its global history and choice tables. The 2Bc-

gskew predictor [SM99] uses 21 bits of global history to index its three prediction

tables. The perceptron predictor [JL02] uses 34 bits of global history to train a

simple neural network. More recent branch predictors use even longer histories

to improve performance. The O-GEHL predictor [Sez05] exploits history lengths

ranging from 100-200 bits. The PPM predictor [CCM96] detects closest matching

patterns in very long history lengths. The L-Tage [Sez07] predictor uses history

lengths varying from 0 to 640 bits. However, the complexity of some of these
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predictors have deterred their adoption in modern processors [Loh05]. L-Tage is

of particular interest to our work in that its ability to dynamically use different

history lengths likely benefits from the phenomenon we identify.

Another trend leverages the property of branch bias. The bimodal [Smi98],

bi-mode [LCM97], YAGS [EM98], and Filter [CEP96] predictors dynamically ex-

ploit the bias of a large percentage of branches. The bi-mode predictor separates

branches, predicting those with a taken bias using a different table than those

with a not-taken bias. The YAGS predictor maintains a similar table of biases

indexed by the program counter (PC) and two gshare tagged caches which store

the branches whose behavior is contrary to the bias. The Filter predictor [CEP96]

uses the BTB to identify highly biased branches. Those branches are then ex-

cluded from the dynamic gshare prediction thus reducing the amount of aliasing.

One benefit of our technique is that, like these predictors, it allows the prediction

of some biased branches with minimal resource utilization; however, this is only

part of the benefit, as evidenced by the fact that we improve even the performance

of the Filter predictor, which has already eliminated the biased branches from the

tables. A potential advantage of our technique when compared against these pre-

dictors which learn branch bias dynamically, is that our technique requires no such

learning time.

The seminal work of Pan et al. [PSR92] investigates the benefits of global

branch correlation. Evers et al. [EPP98] continue the investigation into branch

correlation and recognize that while many branches are highly correlated with a

small number of prior branches, some are not. This phenomenon - exploited by

others in the work discussed in this section - is critical to this work. Additionally,

the work of Thomas et al. [TFWS03] similarly identifies branches which are corre-

lated and those which are not. Their technique removes non-correlated branches

on a branch-by-branch basis. Recent work by Sazeides et al. [SMCK08] demon-

strates that selecting the subset of history that is most highly correlated with a

given branch can improve predictor accuracy.

Gao and Sair [GS05] target function entry and return as a point where cor-

relation may diminish. A similar approach is taken in “Path-Based Next Trace
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Prediction” by Jacobson et al. [JRS97] of discarding some of the irrelevant history

from within a subroutine and after a subroutine return by using a Return History

Stack. Our work similarly addresses entry and return but does so with a different

mechanism. Their work attempts to save the GHR at entry and restore at return

whereas our work does not require saving any copies of the GHR. The Frankenpre-

dictor [Loh04] also targets call and return by shifting in masks depending on the

instruction opcode. Their work likely benefits from the phenomenon we identify

in this work.

The notion of removing useless bits from history is not entirely novel. The

perceptron predictor, by the nature of its neural network, attempts to do exactly

that. “Dynamic history-length fitting” [JSN98] directly tries to cut history to

the desired length based on trial and error rather than using heuristics as we

recommend. The Elastic History Buffer [TTG97] and Variable Length Path Branch

Prediction [SEP98] both propose allowing branches to specify how much history

will be used. Our proposal differs from this technique in that it works entirely using

simple heuristics and because the modifications made to the GHR in our technique

are not unique to a single branch but rather affect all subsequent branches.

Choi et al. [CPT08] propose modifying the GHR during thread migration

between cores on a CMP featuring speculative multithreading (to provide a useful

GHR to begin thread execution). For some benchmarks, they find that inserting

the PC of the thread spawning instruction during thread creation can provide

slightly better accuracy than providing an oracle-based correct GHR. This effect

is likely related to the regions of limited branch correlation targeted by our work.

Our work differs in that it improves branch prediction even for single-threaded

execution.

4.3 Resetting the GHR

In this section, we discuss the particular hardware techniques we examine

in this chapter. In addition, we will discuss some potential software/hardware

techniques based on ISA modification and profile analysis. However, the latter
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is primarily only interesting in that it motivates the much simpler hardware-only

techniques.

The goal of this section and the next is to identify points in the program

control flow with little correlation to prior branches. These Regions of Limited

Branch Correlation (RLBCs) may benefit from artificial modifications to the GHR.

4.3.1 Hardware RLBC Identification

Existing control flow constructs provide hints for finding these RLBCs.

Loops and function calls often represent breaks in control flow. The not-taken

path following a backward branch often indicates a loop exit, and we typically

expect branches following the loop to be less correlated with branches inside the

loop. Similarly, branches in a function call may not be correlated with the branches

preceding the call. Finally, branches following a return from a procedure may lack

correlation with the branches in the procedure. When these regions are detected–

by the execution of the applicable instruction–we can perform modifications to the

GHR to improve accuracy.

As mentioned before, when entering an RLBC, the GHR contains noise.

To eliminate this noise, we could zero the GHR but this may cause potential

problems for index-based predictors. However, if we were to zero the GHR, index-

based predictors like gshare would bias training toward one particular region of the

predictor. Therefore, in resetting the GHR we use the same technique as [CPT08].

They generate a GHR from the program counter, in their case to manufacture a

GHR when forking a speculative multithreading thread, for which the correct GHR

is unknowable. Using the PC provides a unique history for each point at which we

reset the GHR (eliminating aliasing between the different resetting points), and

ensures that when we return to this code, we will reset to the same value.

For not-taken backward branches, the value inserted into the GHR is the

PC of the backward branch. For function calls, the PC of the calling instruc-

tion is inserted into the GHR. Finally, for function returns, the PC of the return

instruction is inserted into the GHR.

For the hardware-only techniques, we assume a very simple decision–we
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either always reset the GHR, or not. In which cases we want to reset the GHR

(e.g., on backwards branches and calls, but not returns) depends on the specific

branch prediction hardware (specifically, which branch predictor and what size) we

are modifying. For example, the higher the incidence of branch aliasing, the more

aggressive we will want to be. For a wide variety of predictors, we will identify the

best combination of these three resetting points.

Modifications to the GHR will typically take place in the fetch pipeline

stage, just like any other modification. For example, if a backwards branch is

predicted not taken, we will modify the GHR as described, but checkpoint the old

GHR as on any other speculative branch. If the branch is mispredicted, we restore

the GHR. If the branch was originally predicted taken, we update the GHR as

normal, and only apply our technique if the branch is resolved mispredicted. In

either case, the GHR is modified in the same places as other branches.

Results for these approaches are discussed in Section 4.5.

4.3.2 Static Analysis of RLBC Points

We also examine profile-based identification of the best points to modify

the GHR (and even allow more flexible modification, such as only clearing regions

of the GHR). However, the static techniques are somewhat problematic for several

reasons, and ultimately provide little gain over our hardware-only techniques.

These issues include:

1. it requires ISA modification to indicate the modification point and possibly

how the GHR should be modified

2. it requires expensive profiling

3. it requires binary compatibility for different architectures

4. it requires software know the exact details of the branch predictor, and some

manufacturers have been extremely protective of those details

However, these results are still interesting as a comparison with the hardware-only

techniques. But we omit many details of the profile-driven analysis, since the
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Figure 4.4: MISP/KI improvement from targeting all backward branches or those
selected by profiling.

results are primarily useful as a point of comparison.

We created a branch trace of each benchmark, and for that trace recorded

the expected result (branch predicted correctly or incorrectly) assuming a history

length of any given value below a certain maximum. Prediction accuracy assumed

a correlating predictor for each branch with no aliasing. Accounting accurately

for aliasing at this stage in the profiler would have made the subsequent steps

prohibitively expensive.

We could identify a “good” place to dynamically reset the GHR, by iden-

tifying a place in the trace where the next branch predicted well with zero bits of

history, the subsequent branch with 1 bit of history, the next with 2 bits, etc. By

calculating all such places (a single possible location would be following a possi-

ble static branch, in either the taken or not-taken case–we could make different

decisions for each), we select the best. Because the different resetting points will

interact, we need to start the analysis anew after one is chosen to select the next.

We continue the process until we reach a minimum threshold of marginal im-

provement. Interestingly, the optimal minimum threshold was actually a negative

improvement. This is because the effect of aliasing makes the gains higher than

the trace predicts–so we need to make it more aggressive than it would otherwise

be.

Of the four types of conditional branches (forward taken and not-taken,

backwards taken and not-taken), we quickly learned that the first three are almost

always better left alone, and the last are usually best modified. Therefore, our

analysis technique worked best if we just forced it to ignore all but backwards-NT,

and just decide which of those to modify the GHR.
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Figure 4.4 provides the best parameterized static result, compared to our

simplest technique which blindly modifies the GHR at all backwards NT branches.

These results are based on a gshare predictor using a maximum number of history

bits executing select SPECint benchmarks. While we see that for small predictor

sizes, the static analysis does indeed do a better job of selecting branches than the

hardware-only technique, it does not seem to be enough of a gain to account for

the concerns over this technique. But this does indicate there is room for future

investigation in this direction.

4.4 Methodology

This section describes our simulation framework and benchmark selection.

We modified a version of SMTSIM [Tul96] to implement our array of branch pre-

dictors. SMTSIM executes unmodified Alpha ISA code and supports out-of-order

SMT or CMP processors. In this study, SMTSIM was executing a single threaded

binary on a single core.

We also modified the framework provided by the Championship Branch

Prediction Competition to execute the array of branch predictors via trace-based

simulation.

The SPEC results, then, come from detailed simulation of the predictors

running on a modern core, and includes, for example, the effects of delayed updates

to the predictor. The details of the simulated core are not particularly important,

however, as we only produce branch mispredict rates in this work. This is because

the CBP results only allow trace-based simulation of mispredict rates and no direct

performance results.

4.4.1 Branch Predictors

Gshare [McF93] is a standard implementation with varying size prediction

tables. Filter [CEP96] is implemented using a three bit saturating counter and

one bias bit per BTB entry. After eight sequential executions with the same

outcome, the counter becomes saturated. Predictions for branches with a BTB
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Table 4.1: Characteristics of 2Bc-gskew predictor

BIM G0 G1 META
prediction table 16K 64K 64K 64K
history length 4 13 21 15

saturated counter are given as the bias. If the bias prediction is correct, no update

is performed. All other branches are predicted using a gshare predictor. The BTB

assumed has 512 entries with 4 way associativity. The additional BTB hardware

required by filter is not counted in the hardware budget for the filter predictor.

Our default size for gshare and filter is 32Kb.

The Alloyed (Global/Local) Perceptron is a 32Kb implementation [JL02].

The Alloyed Perceptron has a 91 entry table and uses 34 bits of global and 10 bits

of local history.

Our 2Bc-gskew predictor [SM99] is a 416Kb implementation with four pre-

diction tables. Three of these tables are indexed with the GHR. The fourth is a

meta predictor which chooses between the results produced by the 2-gskew pre-

dictor (two of the GHR indexed tables) and the bimodal predictor. We provided

each entry with its own hysteresis bit–we did not simulate the space optimization

of shared hysteresis bits. More details of the 2Bc-gskew predictor are given in Ta-

ble 4.1. We did not attempt to create a reduced version of this predictor (similar

in size to our other predictors). That predictor was carefully tuned in [SM99] for

this size; additionally, this allows us to demonstrate that our technique is effective

even on a very large branch predictor.

Our implementation of the Alpha 21264 predictor [Kes99] is 29Kb with a

4k entry choice prediction table, 4k entry global prediction table, a 1k entry local

history table with 10 bits of history per entry, and a 1k entry local prediction table.

BTB misses are faithfully modeled and we assume branch instructions which

miss in the BTB are repredicted when identified by decoding. Similar to [PE00]

we use the number of conditional branch mispredictions per thousand instructions

executed (MISP/KI) as our primary metric.
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4.4.2 History Tuning

For each of our predictors, we evaluated all possible history lengths to ensure

the strongest baselines performance. To determine the optimal history length we

averaged the average MISP/KI for SPECint, SPECfp, and CBP. Most predictors

benefited from the maximum available history lengths. However, some predictors,

especially our smallest sizes of gshare and filter, benefited from low amounts of

history. In fact, the 4Kb implementation of gshare uses only 2 bits of history.

4.4.3 Benchmark Selection

We choose eight benchmarks from the SPEC2000 suite. We intentionally

select eight programs that are sensitive to the (overall) branch prediction accu-

racy in our simulation framework. We do this by filtering out those programs

whose performance improved by less than 3% when a perfect branch predictor was

introduced. We simulate 100 million instructions starting at a single execution

Simpoint [SPHC02].

We also use the traces provided for the Championship Branch Prediction

Competition.

4.5 Results

In the previous sections we have described a hardware technique which uses

heuristics to perform for GHR modification (GHRM). For not-taken backward

branches, the value inserted into the GHR is the PC of the backward branch. For

function calls, the PC of the calling instruction is inserted into the GHR. Finally,

for function returns, the PC of the return instruction is inserted into the GHR.

The GHRM techniques will likely have different impacts for different branch

predictor sizes. For realistic predictor sizes, we compare the accuracy of GHRM

when applied to simple predictors against the accuracy of more advanced and

larger predictors. Lastly, we evaluate the effectiveness of GHRM when applied to

these more advanced predictors.
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Figure 4.5: MISP/KI for different size gshare predictors for select SPEC2K bench-
marks and CBP traces.
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4.5.1 Predictor Size

In general, the benefits of these techniques are most substantial when work-

ing with smaller predictors. This is because aliasing is most extensive in smaller

predictors, and reducing aliasing is the most important result of our modifica-

tions. However, we also show that these approaches are still applicable to larger

predictors. In particular, the 2Bc-gskew predictor is discussed in section 4.5.3.

We start by examining the gshare and Filter predictors initially. We do this

because these are simple, highly effective predictors, and they are easily param-

eterized by size. The results for varying gshare and Filter sizes are contained in

Figure 4.5 and Figure 4.6 respectively. The MISP/KI for each baseline predictor

is provided for both the select SPEC2K benchmarks and the CBP traces.

The percentage reductions in MISP/KI are provided in Table 4.2. The

results are highest for the small predictors, and actually go negative when the

tables get large. There are still gains for individual branches, but this is where

our simpler hardware-only technique breaks down because it cannot distinguish
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Table 4.2: MISP/KI reductions per size for gshare+GHRM when compared against
standard gshare and filter+GHRM compared against standard filter for both the
select SPEC2K benchmarks and CBP traces.

Size (Kb)
Predictor 4 8 16 32 64 128

SPEC gshare+GHRM 6.5% 18.2% 12.7% 5.0% 4.8 % 1.5%
CBP gshare+GHRM -0.5% 9.9% 8.1% 5.3% -4.2% -5.7%

SPEC filter+GHRM 9.8% 6.0% 1.1% -4.3% 0.6% -1.9%
CBP filter+GHRM 4.1% 4.9% 4.7% 3.1% -7.4% -8.8%

Table 4.3: Gshare and filter heuristic configurations: either function calls (FC),
return (RTR) instructions, and/or not-taken backward branches (NT-BB) can trig-
ger GHR modifications.

Gshare Filter
Size NT- NT
(Kb) FC RTR BB FC RTR -BB

4 T T T T F T
8 T F T T F F
16 T F T T F F
32 T F F T F F
64 F F T F F T
128 F F T F F T
256 F F T F F T

between instances–in this region, approaches like our static technique may become

more attractive.

Our technique (GHRM) uses the best configuration of heuristics (which

specific points to modify the GHR) for each predictor type and size. The actual

configurations used are contained in Table 4.3. We see in this table that as predic-

tors get larger, and the effect of aliasing is reduced, we tend to get less aggressive;

for example, resetting the GHR on returns tends to only be beneficial with the

smallest predictors.

It should be noted that the negative results are primarily the effects of the

variety of compilation systems. For example, if we could optimize for SPEC alone,

we get positive results for this entire range. The same is true for the CBP results.

These differences in program behavior are likely related to the CBP benchmarks
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Figure 4.7: Baseline and improved 32Kb gshare for each benchmark. (Lower bars
indicate better accuracy.)

being generated differently than our SPEC binaries. As such, trying to find a single

best configuration for both resulted in significantly lowered results in many cases.

This implies that if the compilation systems are universally aware of what the

hardware is doing, and at least do not generate code that is at cross purposes, the

potential gain from these techniques can be much higher than shown here. It may

also indicate that a simple dynamic technique that chose (at a coarse granularity)

which of our eight configuration combinations was most effective could also provide

good results.

From Figure 4.5, we can see that for some of the smaller sizes of gshare,

gshare+GHRM enables branch prediction accuracies similar to predictors of twice

the size. Filter (Figure 4.6), because of its ability to filter out highly biased

branches, benefits less from these techniques but still shows noticeable improve-

ments at smaller sizes. These results validate the assertion that in some cases, our

simple and nearly cost-free branch prediction modification can provide the same

performance with a significant decrease in predictor size.

Figure 4.7 provides the MISP/KI for each of the selected benchmarks. For

the select SPEC CPU2000 benchmarks, almost all benchmarks benefit from ap-

plying GHRM. For the CBP traces, applying GHRM has a positive benefit on the

majority of traces, most notably the server traces.

4.5.2 Heuristic Configuration

In the previous section, different heuristics were said to be effective for the

same predictors given different benchmark sets. The most notable difference is
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sizes of gshare.

that the CBP traces benefit more from function call modification than the select

SPEC2K benchmarks. This likely comes primarily from the difference in code

generation.

Although one configuration may offer the best performance for each predic-

tor of a given size, often other heuristics offer competitive performance. Figure 4.8

provides the MISP/KI improvement for both working sets given each configuration

using different sizes of gshare. Different sizes of gshare are provided up to 64Kb

where the utility of the configurations drops (as shown in Figure 4.5). This figure

shows us that while some configurations may provide the best performance, many

still provide reasonable benefits.

4.5.3 Other Predictors

The primary goal of these techniques is to aid simpler branch predictors.

However, these techniques can benefit other predictors as well. Even in the ab-

sence of significant aliasing, this mechanism allows faster training (when the branch

working set changes) and retraining (when branch bias or patterns change). Fig-

ure 4.9 provides the percentage reduction in MISP/KI for a larger set of predictors,

some but not all of similar size. The GHRM configuration selected for each of these

predictors is provided in Table 4.4.

All predictors benefit from these techniques. The Alloyed Perceptron has

the largest MISP/KI reduction, 14.4% for the select SPEC2K benchmarks and

10.0% for the CBP traces. The Alloyed Perceptron predictor results are partic-
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Table 4.4: The best heuristic configuration for each predictor.

Configuration
Predictor FC RTR NT-BB
2Bc-gskew T F F
A21264 T F T
Filter T F F
Gshare T F F

Alloyed Perceptron T F T

ularly interesting. Perceptron predictors are specifically targeted at reducing the

impact of non-correlated branches, and are largely successful at doing so. But it

removes the effect of the noise only probabilistically, and therefore some of the

noise always remains. We find that even in the context of that predictor, we are

able to further remove the impact of useless noise.

The other interesting results are for the 2Bc-gskew predictor. This result

is in contrast to some of our earlier results that might indicate that this technique

is only useful for small predictors. This predictor, with multiple large tables,

and significant features to tolerate aliasing, still takes significant advantage of our

ability to identify non-correlated regions of code.
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4.5.4 Non-Select Benchmarks

The prior results are shown for the select SPEC CPU2000 benchmarks.

When averaging the benefit of our technique across all, not just select, SPEC

CPU2000 benchmarks we found that 8Kb, 16Kb, 32Kb implementations of gshare

achieved 9%, 6%, and 1% MISP/KI improvements. Our techniques were not ben-

eficial for larger sizes of gshare. All the other predictors except 2Bc-gskew and

16Kb or greater implementations of filter also saw a reduction in MISP/KI.

SPECfp is not included in the select benchmarks and has some interesting

characteristics. The IPC performance of these benchmarks was not found to be

highly tied to the branch prediction accuracy. In addition, nearly all our branch

predictors were able to predict SPECfp with high accuracy. In fact, the average

MISP/KI for SPECfp is less than 1 for our 32Kb gshare implementation.

One particularly interesting result relates to a methodology common in

recent branch prediction research. Following this precedent, as described in Sec-

tion 4.4, we tuned all of our baseline predictors to find the optimal amount of

GHR history to use. This methodology, though, has a tendency to over-tune the

predictor for a small set of benchmarks (where a real predictor would be tuned

for a much larger set). In fact, this methodology significantly reduced the mag-

nitude of our overall gains, which were always higher when our predictor and the

baseline used the same amount of history. In the case of the smallest predictor

(4 Kb gshare), this over-tuning becomes very apparent – although we used all of

SPEC to find the optimal length, the greater importance of branch prediction in

the integer benchmarks created an optimal history length (2 bits!) which was an

extremely poor choice for the FP benchmarks. So when applying our techniques,

we see tremendous improvements in those benchmarks–a 47% reduction in average

MISP/KI for SPECfp. But we did not choose to highlight these results in this

chapter, because we feel they are more an artifact of the standard methodology.

But this does highlight an important advantage of our branch predictor:

it enables the use of longer histories by eliminating the artifacts that create the

pressure to use shorter history than that dictated by the size of the branch history

tables. For these small predictors, the best tuned predictor using our optimizations



81

consistently used more history length than a tuned predictor without our optimiza-

tions. If we had not followed this methodology, and instead assumed all predictors

use the expected amount of history, our reported results would be higher. For

example, again for the smallest gshare, our techniques provide a 21% reduction in

mispredicts for SPEC-select and 10% reduction for CBP (as opposed to the 6.5%

and -0.5%, respectively, reported in Table 4.2).

4.5.5 Result Summary

These results demonstrate that simple heuristics can be used for improved

branch prediction accuracy at little cost by reducing the amount of noise in the

global path history. For most predictors, modifying the GHR when a backward

branch is not taken or when encountering a function call provides a reasonable

reduction in MISP/KI.

In general, our results show that the technique of modifying the GHR is

most useful for smaller predictors. However, the techniques are not limited to

simple predictors and are shown to eliminate a significant percentage of MISP/KI

in more complicated predictors.

4.6 Chapter Summary

This chapter demonstrates that artificially modifying the GHR before re-

gions of limited branch correlation (RLBC) can improve branch predictor perfor-

mance during single threaded execution.

By performing GHR modifications based on program heuristics, improved

branch predictor accuracy can be achieved. These heuristics target loop exits,

function calls, and function returns. For 32Kb predictors, our techniques offer up to

a 12% overall decrease in MISP/KI. For small gshare predictors, these techniques

can provide as much as a 14% reduction in MISP/KI. All predictors examined

benefit from these techniques and only a minor hardware modification is required

for implementation.

These techniques enable processors to achieve higher branch prediction ac-
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curacy, increased performance, and reduced power consumption with simple branch

predictors. Simple branch predictors have the advantages of easier design and ver-

ification as well as lower hardware cost and lower power consumption. In addition,

simpler branch predictors modified by our technique can provide solid single-thread

performance while freeing resources for potential better use throughout the pro-

cessor (more cores, better interconnect, larger shared caches, etc.).
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Chapter 5

Exploiting Hetereogeneity for

Improved Throughput, Energy,

and Fairness

Multi-core processors introduce the opportunity of having resources shared

among multiple cores. Shared resources enable individual threads to consume

more than their share when the resource is under-utilized. However, when shared

resources are over-utilized they introduce a new challenge: resource contention.

In this chapter we evaluate thread scheduling decisions to reduce such resource

contention, specifically in the context of multi-core processors in high performance

computing (HPC) systems.

In HPC systems, multi-core processors are ubiquitous. The utility of sin-

gle chip multi-processors (CMPs) is in their potential for high thread throughput

through the simultaneous execution of multiple threads per die. In executing multi-

ple threads per die, hardware structures which were previously dedicated to a single

thread are now shared among multiple threads. It is critical to understand and

manage the interactions of these threads and their contention for shared resources

as such contention impacts performance (execution time relative to single-threaded

execution), fairness (do all threads suffer performance degradations equally), and

energy efficiency (do the interactions of these threads result in poor energy con-

sumption).

83
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Symbiotic coscheduling was first proposed for Simultaneous Multithreaded

Processors [TEE+96, ST00]. Snavely and Tullsen [ST00] show that threads can

cooperatively share microarchitectural features for improved performance. CMPs

offer a similar problem, but the level of sharing is restricted, in many cases, to

shared caches and off-chip bandwidth.

Scheduling for CMP processors has received heightened attention with pro-

posals varying from user-informed scheduling [WS06a, WS06b] to techniques for

guaranteed quality of service [GSYY09, KCS04, LLD+08]. Our work is targeted

for HPC, where a large number of threads commonly need scheduling and users are

typically willing to submit characteristics of jobs for improved scheduling [BAG00].

In such a domain, the scheduler should have the freedom to group threads together

on a single multi-core processor. How those threads interact has a large impact

on performance, fairness, and energy. All three factors are critically important.

With burgeoning power bills for large systems, energy efficiency has become a

first-class concern [BBC+08]. In addition, we recognize that for HPC environ-

ments where users are charged for system usage, fairness is a primary considera-

tion [Jac, LGC97].

The aim of this chapter is to provide intuition for improved static scheduling

decisions on existing multi-core HPC systems. To support this aim, we identify

specific critical features that can be extracted through basic profiling and evaluate

which are most critical to coscheduling decisions. We then examine a number of

static scheduling policies and evaluate their effectiveness in multiple domains. On

a system of Nehalem [KDMK08] processors we evaluate coscheduling decisions and

their impact on performance and fairness. Under different scheduling conditions

and on a system of dual-socketed Westmere [KBM+10] processors, we also evaluate

performance, fairness, and power.
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The contributions of this chapter include:

• We introduce the cache hit rate vector (CHRV) as a highly effective means

of workload characterization to improve thread scheduling. The CHRV is in-

dependent of specific processor features: only a single profile pass is required

for processors with different memory hierarchies.

• We evaluate a number of policies related to workload characterization and

demonstrate that a simple policy, based on process CHRVs, can provide

improved scheduling decisions.

• In contrast to prior work, we identify Working Set Overflow (WSO) as a

highly effective metric for job scheduling. This metric is shown to be more

effective than traditionally used measures for predicting contention (L2 miss

rates, working set size, etc.).

• We demonstrate that these policies are consistently effective across each of

our scheduling environments on two different processors.

We show our policies predict coschedules with consistently high scaled

throughput (99% of the best case), low energy delay product (99% of best case

and 7% better than average), and significantly improved fairness (148% better

than worst case, 48% better than average).

5.1 Related Work

Job scheduling has been a research topic for decades. Our work focuses on

static job scheduling (assign threads to processors and do not move them) using

process characteristics to exploit coschedule symbiosis.

Process characteristics have been used in prior work to aid scheduling de-

cisions. Denning first proposed using process working sets to improve the perfor-

mance of virtual memory [Den68]. Ghosal et al. perform static processor allocation

on multiprocessor systems based on thread parallelism profiles [GST91].

Snavely and Tullsen first proposed the notion of symbiotic scheduling for

SMT processors [ST00]. Weinberg and Snavely evaluate the potential of symbiotic

workload space sharing on an HPC platform [WS06a] and the users’ ability to
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accurately determine resource bottlenecks on that platform [WS06b]. Paired gang

scheduling pairs I/O bound jobs with compute intensive jobs for better overall

throughput in HPC [WF03]. Our work is complementary, in that previous works

identify the utility of symbiotic coschedules, however their work stops at pairing

two jobs together and does not address fairness or energy.

Shared levels of cache have long been recognized as a point of contention.

Yan and Zhang aim to predict worst case run-times by using profiled control flow

information to predict i-cache contention between two threads [YZ08]. Anderson

et al. evaluated grouping processes by L2 miss rates to avoid coscheduling those

with high miss rates, for real-time tasks on multicores [ACD06]. Fedorova et al.

recognize the potential of using heuristics for better scheduling on SMT processors.

They use predicted L2 miss rates based on reuse distance [BH04] to inform their

scheduler on in-order, simulated, SMT processors [FSSN05].

Cache partitioning for Quality of Service and fairness has been evaluated

for SMT processors [CKS+04] as well as CMPs [GSYY09, KCS04, LLD+08]. Hard-

ware support for QoS or Fairness has limitations — namely higher expense, less

flexibility, and longer time to market, and proposed software solutions often re-

quire dedicated time slicing to ensure disadvantaged threads make fair progress on

existing systems [FSS07].

5.2 Methodology

This section describes our experimental framework and benchmark selec-

tion for the work in this chapter. Our experiments were performed on the Gordon

cluster [HJG+10, NS10]. We used both standard nodes with dual socketed Xeon

E5530 (Nehalem) processors and I/O nodes with Xeon X5650 (Westmere) proces-

sors. Characteristics of each processor are contained in Table 5.1.

SPEC2006 benchmarks were selected for their wide range of HPC appli-

cations. Eight of these benchmarks (perlbench, gcc, dealII, povray, omnetpp, cac-

tusADM,tonto, and sphinx3) were excluded due to limitations of the instrumen-

tation framework, leaving twenty-one benchmarks for our analysis. The rest in-
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Table 5.1: Architectural Features

Features Nehalem Westmere

Cores 4 6
Clock Rate (GHz) 2.4 2.67

L1 cache 32 KB private 32 KB private
L2 cache 256 KB private 256 KB private
L3 cache 8 MB shared 12 MB shared

clude benchmarks drawn from the scientific domains of Fluid Dynamics, Quantum

Chemistry, Molecular Dynamics, Quantum Computing, Finite Element Analysis,

Linear Optimization, Structural Mechanics, and Weather. Table 5.2 contains

basic details from [SPE].

To obtain cache statistics per benchmark, we used the PEBIL [LTCS10]

static instrumentation tool to instrument the binaries and pass the data addresses

to the PEBIL cache simulator. Profiling was performed on reference inputs as we

expect users to have a solid knowledge of inputs which are representative of their

working set.

To evaluate effective coschedules, we looked at a number of key metrics. To

evaluate throughput, we used scaled throughput (or weighted speedup, weighted

by single threaded performance) from [ST00] shown in Equation 5.1.

STco =
n

�

i=0

Si

Mi

(5.1)

In this equation, Si is the runtime of benchmark i when run alone and Mi is the

runtime of benchmark i when coscheduled. n is the number of processes cosched-

uled. Efficient coschedules maximize this metric.

To evaluate energy consumption when running a fixed number of jobs (Fixed

Jobs), we use Energy Delay Product (EDP) from Equation 5.2.

EDP = Pave ∗ T 2 (5.2)

Pave is the average power consumed over execution time T . The more energy

efficient a coschedule, the lower EDP.

Fairness was evaluated following the convention of Kim et al. [KCS04] as
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Table 5.2: Related field for selected SPEC2006 benchmarks

Benchmark Field

astar Artificial Intelligence
bwaves Computational Fluid Dynamics
bzip2 Compression
calculix Structural Mechanics
gamess Quantum Chemical Computations
GemsFDTD Computational Electromagnetics
gobmk Artificial Intelligence
gromacs Chemistry-Molecular Dynamics
h264ref Video Compression
hmmer Computational Biology
lbm Computational Fluid Dynamics
leslie3d Computational Fluid Dynamics
libquantum Physics
mcf Combinatorial optimization
milc Physics/Quantum Chromodynamics
namd Structural Biology
sjeng Artificial Intelligence
soplex Linear Program Solver
wrf Weather Forecasting
xalancbmk XML Transformation
zeusmp Physics/Magneto-hydrodynamics

shown in Equation 5.3

Fairness =
n

�

i=0

n
�

j=0

�

�

�

�

�

Si

Mi

−
Sj

Mj

�

�

�

�

�

(5.3)

For a given number of coscheduled threads (n), this represents the difference in

their weighted speedup. For a completely fair coschedule (all threads are slowed

down by exactly the same factor), this sum would be zero.

We evaluate coschedules on the Nehalem nodes for scaled throughput and

fairness by randomly selecting eight SPEC2006 benchmarks and partitioning them

into two sets of four coschedules. Each four-thread coschedule results in those

four threads running together on the quad core processor. The other partition

of jobs run together at a different time or on a different processor. When indi-

vidual benchmarks complete, they are re-started. This allows us to examine the
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Figure 5.1: Cache Layout on a Nehalem Processor. Westmere Processors have
similar layout with two additional cores.

interaction of the threads without noise from tail effects (when not all jobs have fin-

ished) or from particular phase behaviors between threads [SPHC02], and models

throughput-oriented workloads well. To additionally reduce the noise, benchmarks

and their data are copied to the local solid state drive and are statically compiled

to avoid communication with shared libraries.

The evaluation of coschedules on the Westmere follows a similar method-

ology. We run two studies, one in which we fix the amount of time, as in the

Nehalem study (Fixed Time), and the other in which we execute each job three

times and ran until completion (Fixed Jobs). Unlike the Nehalem study, we ran-

domly selected twelve benchmarks and then selected coschedules of six jobs on one

socket and six jobs on the other socket. In addition to observing the performance

of these coschedules, we also use a “Watts Up” [Wat] device to measure power and

energy consumption. Our limited number of power measurement devices limited

the number of coschedules we could evaluate.

In addition to the architectural features (clock rates, L3 cache size, etc.)

that differ between the Nehalem and Westmere seen in Table 5.1, these studies also

diverge in one key detail. In our study on the Nehalem processors, each coschedule

of four threads runs alone (i.e. had dedicated off-socket bandwidth) thus four

threads shared off socket bandwidth, memory, and solid state drive (SSD), time-

sharing the processor. In the Westmere processor, both coschedules of six threads

run together (six on one socket, six on the other) thus causing all twelve threads
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to share the same off-socket bandwidth and resources.

5.3 Motivation

When jobs are co-located on a CMP, most of the interaction between threads

occurs due to sharing of memory resources. As shown in Figure 5.1, the interac-

tion between the coscheduled threads include contention for last level cache (L3),

the shared bus between private L2 caches and the L3, and the off-chip memory

bandwidth.

The cross-thread interference experienced by one thread is the product of

two factors:

1. The portion of shared resources occupied by co-scheduled threads.

2. The sensitivity of this application to other threads’ utilization of those re-

sources.

A thread can be sensitive to resource occupancy even if it is not actively

using the resource. For example, although a thread may be content with the data

held in its own private caches, the inclusion property of the caches implies that

when lines are evicted from the L3 by a competing application, those lines are

evicted from the private caches as well. Thus, even smaller applications may be

sensitive to the behavior of other threads. To predict these behaviors, we need to

know more about the behavior of each benchmark.

Figure 5.2 demonstrates benchmark characteristics in the cache depth for-

mat [WS08], simulating a series of possible cache sizes. These highly varying

behaviors impact the combined behavior of coscheduled threads. For example,

namd achieves a high hit rate with a relatively small cache (128KB) and larger

cache sizes provide little improvement. In contrast, a benchmark like libquantum

plateaus early, experiences significant gains when provided with about 16MB of

cache, and again plateaus. Lastly, benchmarks like mcf and lbm benefit from nearly

any increase in cache size.

The values in Figure 5.2 for a single benchmark represents the Cache Hit

Rate Vector (CHRV). To obtain the CHRV, L1 caches of 2nKB sizes (for 0 ≤ n ≤
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Figure 5.2: Cache hit rates for varying sizes of caches.
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Figure 5.3: Working set sizes (90%, 95%, and 99%) per benchmark

20) are simulated. In terms of simulation delay, the additional cost of simulating

multiple caches (rather than one cache) is relatively small compared with the

overhead for instrumented code. This vector plays a key role in our prediction

policies in Section 5.5.

To address these different behaviors, we also evaluate the classification of

working set size for the application suite. We define working set size as the size of

cache which achieves a threshold percentage of the hit rate (HR) of a near infinite

cache. Figure 5.3 contains the working set size determined using 90%, 95%, and

99% as the threshold, relative to our near infinite cache (1GB). These metrics show

a similar variance between benchmarks. For example, gamess requires a small cache

to achieve a 90% HR and only requires slightly larger caches to achieve 95% and

99% HRs. Conversely, some benchmarks, like bzip2 and calculix, require fairly

small caches for 90% and 95% hit rates, but require much larger caches for a 99%



92

HR. Lastly, some benchmarks like lbm and mcf require large caches for even a 90%

HR.

5.4 Exploiting Heterogeneity

SPMD (Single Program, Multiple Data) is a relatively dominant paradigm

in HPC parallel computing. In this model, generated threads are highly homoge-

neous. However, prior work in Paired Gang Scheduling has already demonstrated

the value of heterogeneity [WF03]. In Paired Gang Scheduling, I/O intensive

threads are paired with compute intensive threads for better overall throughput.

This can be accomplished, even if a single application does not support diverse

threads, because a supercomputer installation is typically serving multiple diverse

users and computations at once. Traditionally, those applications have been iso-

lated into different partitions of the machine; however, scheduling diverse applica-

tions in close proximity affords greater execution efficiency [WCC+07].

When highly homogeneous threads are co-scheduled onto a chip multipro-

cessor, resource utilization will almost always be unbalanced. Each thread will

generally have a bottleneck resource. If the threads are completely homogeneous,

all co-scheduled threads will stress the same bottleneck resource.

To demonstrate the value of heterogeneity in jobs, we created 50 runs con-

sisting of four copies each of two random benchmarks. We then ran them on a

Nehalem processor in coschedules (a coschedule is a partition of the eight jobs

into co-executing sets of four). As a result, each coschedule is either purely ho-

mogeneous (four copies of the same benchmark), partially-heterogeneous (3 copies

of one benchmark run with one of the other), or heterogeneous (2 copies of each

benchmark run together). Scaled throughput varies significantly in some mixes.

For those job mixes where scaled throughput was greater than ten percent dif-

ferent between the best and worst coschedule, mixed coshedules are always the

correct choice. For fairness, of all 50 coschedules, the homogeneous workload was

only the correct choice once and it only offered a 3% improvement over hetero-

geneous. Table 5.3 provides average scaled throughput and fairness over the 50
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Table 5.3: Scaled Throughput and Fairness for job mixes which are homogeneous,
semi-heterogeneous, and heterogeneous. Values are averaged over all 50 random
job mixes. Higher values are better for Scaled Throughput. Lower values are
better for Fairness.

Homogeneous Semi-Heterogeneous Heterogeneous
Scaled Throughput 0.767 0.801 0.810
Fairness 10.29 7.03 3.48

job combinations. The improvements in both throughput (6%) and fairness (60%)

demonstrate the value of heterogeneity.

From Paired Gang Scheduling and our basic study, the solution to the

problem of scheduling threads on a dual core processor is relatively clear: co-

schedule heterogeneous threads. However, when scheduling for modern four-core

and six-core processors, heterogeneity is still essential; however, how to coschedule

those heterogeneous threads while preserving fairness is much less clear.

One advantage of scheduling jobs into isolated, internally-homogeneous par-

titions is that it is generally considered fair (slowdowns may be variable, but you

have only your own threads to blame). With heterogeneous co-scheduling (where

your jobs are potentially competing with those of another user), users will desire

much tighter guarantees of fairness. In this scenario, we observe unfairness when

one thread takes more than its fair share of the resources, which happens to be very

likely if the threads are diverse. We also find that unfair schedules tend to have

the added disadvantage of being energy inefficient — among other things, they can

create long tail effects (jobs that cannot make good forward progress until other

jobs complete) which prevent the processor from fully exercising efficient power

states. Each of these issues are addressed in the following sections.

5.5 Policies for Coschedule Prediction

Although the cache/memory performance of each application is clearly criti-

cal to understanding and improving scheduling, it is not clear exactly what measur-

able characteristics of memory behavior are best correlated with our two factors

of (1) resource occupancy, and especially (2) sensitivity to resource occupancy.
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Table 5.4: Metric Correlations with Scaled Throughput and Fairness

Metric ST Fairness

WS95 -0.494 0.456
WS99 -0.619 0.452
L2MR -0.675 0.387
L3MR -0.479 0.301

L2MRSec -0.302 0.094
L3MRSec -0.325 0.115
L2WSO -0.749 0.530
L3WSO -0.803 0.608

WS95-L2WSO -0.548 0.454
WS99-L2WSO -0.800 0.495
WSO-Combo -0.809 0.593

Therefore, we profile each benchmark and collect a large set of potentially use-

ful characteristics, including the cache hit rate vector (CHRV) described in Sec-

tion 5.3. To determine which of these metrics may be useful in determining effective

coschedules, we produced a training set of 450 runs of four thread coschedules on

a Nehalem processor. Using this training set, we examined the Pearson correla-

tion [Ric94] between various metrics and both the coschedule’s scaled throughput

and the coschedule’s fairness.

A number of raw metrics did not correlate well with either scaled throughput

or fairness. For example, the sum of L2 misses per benchmark in the coschedule did

not correlate well with either scaled throughput (r = −0.28) or fairness (r = 0.08).

However, each of the metrics described in this section correlates relatively well with

both scaled throughput and fairness (as shown in Table 5.4).

WS{95,99}: Using our working set data from Figure 5.3, this metric is the

sum of working set sizes (95% or 99%) for each job. This policy requires either the

CHRV or solely the sizes required for 95% or 99% hit rates.

{L2,L3}MR: This metric is the sum of miss rates for either the L2 or the

L3. This requires either the actual or simulated L2 and L3 miss rates for the target

machine.

{L2,L3}MRSec: This metric is the sum of L2 or L3 misses per second for

the coscheduled threads. This requires the single threaded run time per benchmark
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as well as the actual or simulated L2 and L3 miss rates for the target machine.

{L2,L3}WSO: This metric (working set overflow) uses the value in the

CHRV for the size of the L2 or L3. This value is the miss rate which would be

experienced by an L1 cache the size of the L2 or L3. Per benchmark, it represent

the percentage of the working set that overflows that size cache. This differs

from the actual L2 or L3 miss rates, which require simulation of the lower level

caches — e.g., an actual L3 cache has highly inexact LRU information, as locality

information is hidden by the other caches. This metric is the sum of such miss

rates for the coscheduled benchmarks and only requires the CHRV.

WS{95,99}-L2WSO: This metric, and the next, try to combine the two

factors that govern thread interaction — what resources are used by other threads

and how sensitive the remaining threads are to that resource usage. This metric,

expressed in Equation 5.4, uses WS95 or WS99 (the working set sum) to represent

the utilization of shared resource and L2WSO (how often a thread goes out beyond

the private caches) to represent the sensitivity of those threads to that utilization.

From our training set runs, we found L2WSO to be a good measure of sensitivity.

If we define sensitivity to be the standard deviation in performance seen by a

benchmark in all coschedules, we found a high correlation (r = 0.73) between

the sensitivity and the L2WSO. This metric only requires the CHRV, not a full

simulation of the actual memory hierarchy.

WS99-L2WSO =
n

�

i=0

n
�

j=0

WS99i ∗ L2WSOj (5.4)

WSO-Combo: Based on the intuition from the prior policy, this metric

(Equation 5.5) uses the L2WSO as a proxy for thread sensitivity and L3WSO as a

proxy for the thread’s occupancy of shared resources. WSO-Combo only requires

the CHRV.

WSO-Combo =
n

�

i=0

n
�

j=0

L3WSOi ∗ L2WSOj (5.5)

The Pearson correlations for scaled throughput and fairness for each of these

metrics are provided in Table 5.4. The best policy, WSO-Combo, which uses the

CHRV, correlates better with scaled throughput and fairness than those policies
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which do not use the CHRV. This higher correlation is statistically significant for

scaled throughput (d = 0.1333, p < 0.001) and for fairness (d = 0.137, p < 0.001).

Because we seek higher values of scaled throughput and lower values for

fairness, we hope to see a metric correlated in opposite directions (one negative,

one positive) with the two. It is not a given that policies that improve throughput

will necessarily also improve fairness, but it turns out to be true for each of these.

5.5.1 Scheduling Policies

The metrics described in the previous section are translated directly into

static scheduling policies. In each case, we use the metric to balance that factor

across the coschedules. For example, with Nehalem processors and eight threads

to run, we partition the jobs into two coschedules of four threads, finding the

combination that best balances the particular metric between the two coschedules.

Therefore, the L2WSO scheduling policy seeks to balance the sum of the L2WSO

values between the two coschedules.

The effectiveness of these policies for predicting coschedules for scaled

throughput, energy, and fairness, is shown in Section 5.6.

5.5.2 Profiling Requirements

A number of these metrics are system dependent. For example, to determine

L2MRSec, a profiling pass must be run in which the L1 and L2 are simulated and

the single threaded run time on the system is determined. Similarly, L3MR requires

simulation of the L1, L2, and L3 configuration for that particular system.

A key advantage to the WSO metrics and the Cache Hit Rate Vector

(CHRV) is that they do not require we simulate the actual memory hierarchy

on which the job is run. This is especially important when assigning jobs to het-

erogeneous clusters. By providing the CHRV with a job, the job can be scheduled

on diverse systems without a need for re-profiling.

To demonstrate the ubiquity of CHRV, we evaluate our performance first

on Nehalem processors where the jobs were originally profiled, then on Westmere
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processors. For our non WSO metrics, we re-profile for the new system. For the

WSO metrics reliant on the CHRV, the Westmere is challenging as the L3 size on

Westmere (12MB) is not provided by the CHRV. The CHRV is still used as defined

(using an average of 8MB and 16MB valued for the 12MB data) to reinforce that

no additional profiling is required, even when the exact cache size is not part of

the vector.

5.6 Evaluation

Our evaluation consists of three main components. First, we apply our

proposed scheduling polices to coscheduling decisions on a system of Nehalem pro-

cessors, assuming a throughput workload (fixed time study). The second applies

these same policies to a different system (Westmere) with similar coscheduling as-

sumptions (fixed time), to determine if these policies continue to apply in this new

domain. Lastly, we evaluate the policies after further adjusting the coscheduling

assumptions (now running a fixed number of jobs) on the Westmere system.

For all three components we evaluate scaled throughput (weighted speedup)

and fairness. Due to a limited number of power measurement devices, energy is

only examined in the two coscheduling scenarios on the Westmere.

5.6.1 Nehalem

Given the methodology described in Section 5.2, eight benchmarks are ran-

domly chosen (allowing for duplicates) and all possible combinations of coschedules

(four threads in each of two coschedules) are then run on the system (in a com-

plete sense–every possible coschedule was evaluated). This resulted in thirty-five

pairings of four jobs per schedule. By running all possible combinations, it was

possible to know the best and the worst possible coschedule for each of the eval-

uation criteria (scaled throughput and fairness). The policies are then applied to

determine which coschedule would be chosen if that policy were used.

In many of the results of this section, we use our knowledge of the worst

and best coschedules to compare our results. “Best” are the results for an oracle



98

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

A
v
e
ra

g
e

W
S

9
5

W
S

9
9

L
2
M

R

L
3
M

R

L
2
M

R
S

e
c

L
3
M

R
S

e
c

L
2
W

S
O

L
3
W

S
O

W
S

9
5
-

L
2
W

S
O

W
S

9
9
-

L
2
W

S
O

W
S

O
-

C
o
m

b
o

B
e
s
t

N
o

rm
a
li

z
e
d

 S
c
a
le

d
 T

h
ro

u
g

h
p

u
t

Normalized to Worst Normalized to Average

Figure 5.4: Nehalem: Scaled Throughput by Policy. Normalized to average and
worst coschedule scaled throughput.

scheduler. “Normalized to Worst” are the results of each policy when compared

against the pathological worst case. Thus, a value of 1.2 implies a 20% improve-

ment over the Worst schedule. Similarly, “Normalized to Average” are the results

of each policy compared against a random scheduler.

Thirty such selections of job mixes comprised of eight random benchmarks

are evaluated. The results shown in this section average the results across these

thirty.

Figure 5.4 demonstrates scaled throughput improvements for our policies

compared against both the worst coschedule and the average coschedule. For ran-

dom selections of jobs, the the worst and the best coschedules differ by about

8%, and average and best differ by only about 2% in terms of scaled through-

put. Consistently avoiding the pathological bad case is important (which all of our

policies except WS95 do), but the selected coschedules often offer similar scaled

throughput compared with average. Given that observation, it is still possible to

evaluate the effectiveness of our policies in this context. Nearly all the policies pro-

vide improvements over the average coschedule (except L2MRSec and L3MRSec).

The best performer is our new policy, WSO-Combo, which provides 99% of the

performance available from the best coschedule.

Although the average performance range is small, we will see that this hides

a high variance in per-thread performance, resulting in a much wider range of fair-

ness results. Fairness differs dramatically between the worst and best coschedule.

In Figure 5.5 we see that the worst and best fairness differs by a factor of three.

Even the difference between average and best is significant — 68%. A number
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Figure 5.5: Nehalem: Fairness by Policy. Normalized to worst coschedule fairness.
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Figure 5.6: Nehalem: Fairness by Policy. Normalized to average coschedule
fairness.

of our policies provide improvements over average as shown in better detail in

Figure 5.6. Our proposed policies of L2WSO and WSO-Combo provide solid im-

provements (39% and 48% respectively) to fairness.

It should be noted that the low variance in performance we observe stems

from reporting on average performance. Large systems, such as data centers,

typically report performance results in terms such as the 95th percentile response

time. A fair scheduling policy will show significant performance gains by those

measures.

5.6.2 Nehalem Case Study

The fairness metric we use may be less familiar than our other perfor-

mance metrics. This section, therefore, outlines a single concrete example of how
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Figure 5.7: Nehalem Example: Slowdown per benchmark (compared to single-
threaded execution) given different coschedules.

scheduling decisions impact relative performance of individual threads, and how

that translates into different values of the fairness metric. This example has been

chosen because it has a larger than typical difference between worst and best case

for scaled throughput.

The jobs in this job mix include gamess, gromacs, two copies of lbm, mcf,

two copies of namd, and zeusmp. From Figure 5.3, we can see that gamess and

namd have small working sets, zeusmp has a medium sized working set, and lbm and

mcf have large working sets. For these benchmarks, working set size corresponds

well with the sensitivity of the benchmarks.

Figure 5.7 contains the results from running these eight threads in three

different coschedules. The coschedule with the worst scaled throughput (0.75)

and fairness (18.3), has mcf, zeusmp, and both copies of lbm in the first cosched-

ule and the other four threads–gamess, gromacs, and both copies of namd–in the

second coschedule. The four applications with the largest working sets are cosched-

uled together which leads to heavy contention for shared resources. As a result,

mcf, zeusmp, and both copies of lbm suffer serious slowdowns while the other four

threads run nearly unaffected relative to single threaded execution. This schedule

is both unfair and suboptimal for global performance.

In Figure 5.7, the L3MR policy is chosen for comparison as it offers, on

average, the best scaled throughput of the non-WSO policies. L3MR coschedules

gamess, namd, and both copies of lbm in one coschedule and gromacs, mcf, namd,

and zeusmp in the other coschedule. This coschedule better balances the appli-
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cations with large working sets but still coschedules both copies of lbm together.

As a result, each copy of lbm continues to experience a serious slowdown, but the

scaled throughput (0.85) and fairness (9.9) are better.

The best policy, WSO-Combo, selects the best possible coschedule for scaled

throughput (0.88) and fairness (5.8). WSO-Combo selects one copy of lbm, mcf,

and both copies of namd for one coschedule and selects gamess, gromacs, zeusmp,

and the other copy of lbm. By spreading lbm across the two coschedules and spread-

ing the other sensitive applications (mcf and zeusmp) across the two coschedules,

the workloads are better balanced. mcf and one copy of lbm still suffer higher

slowdowns than the other coscheduled threads, but the overall slowdowns are sig-

nificantly better balanced.

In the context of scheduling for a large server cluster, fairness is critical. If

a user had submitted either the lbm or mcf jobs, they would be severely displeased

with either the Worst or L3MR coschedule decision as their jobs would make

poor progress compared to the other jobs in the system. By using our WSO-

Combo policy, higher fairness is provided, ensuring all users experience similar

performance.

5.6.3 Westmere

For the Westmere processor, twelve jobs were randomly selected per job mix.

The large number of potential coschedules prohibit running all possible coschedules.

Instead, twenty random coschedules (partitioning of the 12 jobs into sets of six)

were selected. Of those twenty coschedules, the scheduling policies were evaluated

for performance and fairness. As mentioned in Section 5.2, these coschedules were

run in concert on dual socketed nodes (all twelve threads were always run together)

with the only difference between the runs being the assignment of coschedules

between the two processors. This potentially limits the impact of the coschedule

decisions as the primary (and potentially only) difference between the coshedules

are L3 sharing. (In the Nehalem studies, the time sharing of one processor by each

coschedule enabled balancing of off-chip resource utilization, a benefit potentially

unavailable to the Westmere studies.)
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Figure 5.8: Westmere: Normalized Scaled Throughput (ST) by Policy given Fixed
Time (FT) or Fixed Jobs (FJ). Normalized to average coschedule ST.

The experiments were either run for a fixed period of time “Fixed Time

(FT)” or for a fixed number of job completions – three job completions per job –

“Fixed Job (FJ).” Fourteen job mixes participated in our results for FT and eight

job mixes participated in our results for FJ.

The 12MB size required for the L3 was not profiled (not a power of 2) and

was not represented in our cache hit rate vector. We use the average of 8MB and

16MB in our policies which depend on the cache hit rate vector and the L3 size,

highlighting the fact that a generic CHRV suffices.

Figure 5.8 shows that, similar to the Nehalem, scaled throughput on the

Westmere did not vary significantly between our twenty randomly selected cosched-

ules. Despite low variance in average performance, our metrics which rely on WSO,

especially WSO-Combo, continues to provide solid performance, nearly (99%) of

the best possible performance (for the 20 random coschedules). These trends con-

tinue for both the FT and FJ experiments.

Figure 5.9 demonstrates that the low variance in average performance again

masks a significant fairness concern. Although only twenty of 462 possible combi-

nations were run, there is still a large difference between best and worst fairness.

Additionally, our policy, WSO-Combo, continues to provide the best fairness.

Lastly, we measure energy consumption for six of the FT and FJ job mixes.

The FT experiment made it difficult to compare energy consumption as different

amounts of total work were done in each experiment. To adjust for the differences

in work done, we use scaled throughput STco as a proxy for response time changes.
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Figure 5.9: Westmere: Normalized Fairness by Policy given Fixed Time (FT) or
Fixed Jobs (FJ). Normalized to average coschedule fairness.

Thus we use Energy Delay Product (EDP) from Equation 5.6 for the Fixed Time

runs.

EDP = Pave ∗ (
T

STco

)2 (5.6)

EDP did not differ remarkably in our fixed time runs (worst is within 7% of

best and best is within 2% of average). Averaged across our measured coschedules,

WSO-Combo and L3WSO selected the most efficient coschedules but were not

significantly better than other coschedules or the average (less than 1% difference).

The fixed-job (FJ) experiments provided larger differences in terms of en-

ergy consumption. The best coschedules consumed 12% less energy than the worst

and 4% less than average. Similarly, WSO-Combo predicted the lowest energy

consumption of any of the policies, saving 11% compared to worst and 3% less

than average. In terms of EDP, WSO-Combo offered a 23% reduction in EDP

over the worst and a 7% reduction from average.

Since WSO-Combo selects fair coschedules, it in turn limits the most de-

layed benchmark and, hence, selects energy efficient coschedules. Thus we see that

even if we do not strictly care about fairness, unbalanced workload progress can

negatively impact tail effects (as jobs finish in a staggered fashion), resulting in

increased total runtime and increased energy costs.

Our best scheduling policy, then, provides significant gains in job fairness

while in no way sacrificing performance or energy efficiency. This policy relies on
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the CHRV provided from a single profile run on one of the two processors. The

effectiveness of our policy and the CHRV is shown across two different processor

configurations and two different scheduling assumptions.

5.7 Chapter Summary

In multi-core processors, the value of shared resources is their ability to

adapt to the needs of each core while offering potentially improved performance

for more than one core. However, shared resources introduce the challenge of

mitigating contention between threads. To reduce this resource contention, we

can exploit thread heterogeneity to better balance demand. Depending on how

these heterogeneous threads are scheduled, fairness can vary significantly. For job

schedulers deciding on jobs between multiple users, fairness is a significant concern,

particularly if we can provide fairness while still maintaining high throughput and

energy efficiency.

This paper defines and describes the cache hit rate vector (CHRV) which is

available via profiling. The CHRV effectively classifies the memory behavior of an

application and, combined with metrics proposed, can provide improved scheduling

decisions. In addition, a single profile run can produce a CHRV which is relevant

for scheduling decisions on processors with different cache sizes. Our recommended

policy of WSO-Combo provides scaled throughput which is 99% of the best and

fairness which is 48% better than average on a Nehalem processor. On Westmere

processors, the same policy provides scaled throughput which is 99% of best, energy

which is 99% of best, EDP which is 7% better than average, and fairness which is

between 17% and 19% better than average given different workload assumptions.
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Chapter 6

Thesis Summary

For more than four decades, we have enjoyed exponential improvements

in single-thread performance. Predicted and driven by Moore’s Law, the number

of transistors per processor has doubled approximately every 18 months. Until

the middle of the last decade, those additional transistors translated directly to

improved single thread performance. It was during this past decade that the

trends that drove advancements in single thread performance (pipelining, dynamic

scheduling, etc.) reached their limits. Although single-thread performance has

become nearly stagnant, overall thread throughput is improving; driven by the

advent of simultaneous multithreaded and multi-core processors. Hence, the overall

focus of processor design has shifted from single-thread latency to overall thread

throughput.

Beyond transforming the landscape of processor design for architects, this

shift has a significant impact on computing as a whole. In the past, programmers

could rely on processors to improve the performance of their programs transparently

with each new processor generation. Today, if programmers wish to improve their

program’s performance on the next generation of processor, they must design the

program to exploit these increasingly parallel resources. For programmers (and

companies) accustomed to the paradigm of the past, new processors capable of

offering improved single-thread performance are highly desirable.

In addition to the desire to continue the paradigm of transparent single-

thread performance improvements, single-thread latency remains highly germane

106
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in general. Although program latency can be improved by rewriting the soft-

ware to exploit these parallel resources, it may be prohibitively expensive to do

so. Additionally, some programs lack inherent parallelism and legacy binaries are

predominately single-threaded.

Clearly, solutions which provide improvements to single-thread performance

are still highly desirable. In this dissertation, we have examined a number of such

techniques which address single-thread performance on mult-core processors.

Speculative Multithreading (SpMT) improves single thread performance by

leveraging the multiple thread contexts available in multi-core processors. Unfor-

tunately, the cost of memory hardware capable of speculative execution has been

a major barrier for its adoption. In Chapter 2 we examined leveraging an in-

vestment in a recently proposed parallel memory design, Hardware Transactional

Memory (HTM), to provide SpMT at a fraction of the cost. We demonstrated that

HTM can only provide limited performance as proposed. To address this problem,

we provide a number of inexpensive modifications to HTM including support for

thread ordering, forwarding of values between threads, and word-granularity con-

flict detection. Using the SPEC CPU2000 benchmarks on a dual-core processor

with basic register prediction hardware, SpMT only provides a 5% performance

gain with conventional hardware. This improvement is boosted to 26% using our

techniques. The value of these optimizations persist (at different magnitudes) for

a number of different architectural designs (more cores, better register predictors,

etc.).

Despite these significant gains, SpMT is still limited by performance losses

due to frequent thread migrations and coherence invalidations. To address these

limitations, in Chapter 3 we evaluate a recently proposed technique, Working Set

Migration (WSM), in the context of SpMT. WSM was previously demonstrated

to be effective at mitigating performance loss at the point of thread migration for

artificial workloads. For the more realistic workload of SpMT, one of the heuristics

proposed by that previous work can significantly improve SpMT performance.

Using this heuristic, we reduce the average memory access time of select SPEC

CPU2000 benchmarks by 50% and improve whole program performance by 9%.
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Deviating from SpMT, we also recognized that the utility of various proces-

sor components changes in the multi-core landscape. For example, resources pre-

viously allocated to boosting the performance of a single core could be reallocated

to provide better overall system performance via more cores, better interconnects,

larger shared caches, etc. In Chapter 4 we focus on providing high branch pre-

diction accuracy with fewer resources allocated to the branch predictor (freeing

those resources for use elsewhere). To improve the branch prediction of smaller

predictors which use branch history to provide predictions, we identify regions

where branch history can be disruptive. For these regions, we propose a low-cost

heuristic which can reduce this interference and, in turn, provide improved branch

prediction accuracy. For some sizes of predictors, branch predictors using our tech-

nique are as accurate as predictors of twice the size. Although our technique was

targeted at smaller branch predictors in the multi-core landscape, the technique is

also effective for some larger predictors.

In multi-core processors, shared caches are valuable because they boost

performance when either a single thread is using the shared cache alone or when

many threads share the larger combined resource. Unfortunately, as multiple

threads use a single resource, contention occurs. We addressed this contention

in Chapter 5. We recognize that, in high performance computing, homogeneous

threads are commonly coscheduled. We validate the intuitive assumption that

homogeneous threads stress the same resources, increasing contention and wors-

ening performance. By running coscheduled SPEC CPU2006 benchmarks on Ne-

halem and Westmere processors, we demonstrate that heterogeneous workloads can

provide improved scaled throughput and fairness. However, scheduling heteroge-

neous threads introduces new complications. We propose a number of heuristics

for static thread scheduling using profiled information. A novel heuristic, WSO-

Combo, proves to be highly effective at predicting coschedules which offer high

throughput (99% of best possible), high energy efficiency (99% of best possible),

and significantly improved fairness (48% better than average).

Single thread performance remains a paramount concern for hardware de-

signers. Although it is unlikely single-thread performance will enjoy another period
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of exponential growth in the near future, improvements of any reasonable magni-

tude are valuable. In this dissertation, we provide a number of techniques which

address and improve single-thread performance in multi-core processors. These

techniques effectively leverage multi-core hardware to improve single thread per-

formance, improve branch prediction accuracy when given fewer resources, and

reduce contention between coscheduled threads.
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[SFKS02] André; Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis
Sazeides. Design tradeoffs for the alpha ev8 conditional branch pre-
dictor. In 29th Annual International Symposium on Computer Archi-
tecture, June 2002.

[SM98] J. Steffan and T Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In 4th Interna-
tional Symposium on High-Performance Computer Architecture, Jan.
1998.

[SM99] A. Seznec and P. Michaud. De-aliashed hybrid branch predictors. In
Technical Report RR-3618, Inria, Feb. 1999.

[SMCK08] Yiannakis Sazeides, Andreas Moustakas, Kypros Constantinides, and
Marios Kleanthous. The significance of affectors and affectees cor-
relations for branch prediction. In 3rd International Conference on
High Performance and Embedded Architectures and Compilers, 2008.

[Smi98] James E. Smith. A study of branch prediction strategies. In 25th An-
nual International Symposium on Computer Architecture, June 1998.

[SMJ+10] M. Aater Suleman, Onur Mutlu, José A. Joao, Khubaib, and Yale N.
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