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In electroencephalography, the classical event-related potential model often proves to be

a limited method to study complex brain dynamics. For this reason, spectral techniques

adapted from signal processing such as event-related spectral perturbation (ERSP) – and

its variant event-related synchronization and event-related desynchronization – have been

used over the past 20 years. They represent average spectral changes in response to

a stimulus. These spectral methods do not have strong consensus for comparing pre-

and post-stimulus activity. When computing ERSP, pre-stimulus baseline removal is usu-

ally performed after averaging the spectral estimate of multiple trials. Correcting the

baseline of each single-trial prior to averaging spectral estimates is an alternative base-

line correction method. However, we show that this method leads to positively skewed

post-stimulus ERSP values. We eventually present new single-trial-based ERSP baseline

correction methods that perform trial normalization or centering prior to applying classical

baseline correction methods. We show that single-trial correction methods minimize the

contribution of artifactual data trials with high-amplitude spectral estimates and are robust

to outliers when performing statistical inference testing. We then characterize these meth-

ods in terms of their time–frequency responses and behavior compared to classical ERSP

methods.
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INTRODUCTION

Electroencephalography and magnetoencephalography methods

have become standard tools to study brain mechanisms. Different

approaches have been used to unveil brain electrical activity in rela-

tion to sensory, motor, or cognitive events using electrical potential

variations recorded either at the scalp level or from intra-cranial

electrodes. The study of changes of the ongoing electroencephalo-

gram (EEG) in response to stimulation started with event-related

potentials (ERP) techniques, which relies on measuring the ampli-

tude and latency of post-stimulus peaks in stimulus-locked EEG

trial averages. The standard ERP model relies on the hypothe-

sis that ERPs consist of stereotyped patterns of stimulus-locked

electrical activity, superimposed onto an independent stationary

stochastic EEG processes (Basar and Dumermuth, 1982; Luck,

2005; Nunez and Srinivasan, 2006). In the ERP model, every single-

trial contains a noisy version of the grand average ERP, and, when

averaging trials, “stationary” or “non-time-locked” background

EEG elements of the signal cancel out.

The standard ERP model has been intensely debated for the past

10 years. In some rare cases, the standard ERP model may hold in

particular for early pre-perceptual activity such as somatosensory

evoked potentials with latencies as short as 20 ms (N20 wave; Yao

and Dewald, 2005; Kennett et al., 2011). However, in most cases,

including the well-known P300 ERP peak, scalp ERPs arise as a

complex superposition of ongoing EEG activity in single-trials

(Delorme et al., 2007). Most ERP peaks have been shown to result

from a reorganization of the phase of ongoing EEG oscillations

(Tallon-Baudry et al., 1996; Delorme et al., 2002; Makeig et al.,

2002). Thus the phase or latency of the ERP peak in single-trials is

not constant but may depend on the ongoing EEG activity (Makeig

et al., 2004). Since the ERP by itself cannot unravel complex EEG

dynamics, it became necessary to develop new techniques.

In the 1960s, while some researchers were starting to use ERPs,

some other pioneer researchers were using pure-frequency based

techniques to assess spontaneous EEG oscillatory changes under

various conditions. Scientists compared the EEG spectrum of sub-

jects with their eyes opened or their eyes closed, and observed

an increased 10-Hz alpha power in the eyes-closed condition

(Legewie et al., 1969). This approach focused on the frequency

domain exclusively while the ERP approach focused only on the

time domain. In the last 20 years, evolution of computational capa-

bilities brought up the possibility of developing new methods

to visualize, quantify, and characterize stimulus-induced complex

brain dynamic simultaneously in the time and frequency domains.

These new tools allow disentangling ongoing brain activity from

stimulus-evoked activity.

These new post-stimulus spectral estimation methods were

called event-related desynchronization (ERD; Pfurtscheller

and Aranibar, 1977), event-related synchronization (ERSyn;

Pfurtscheller, 1992), and event-related spectral perturbation

(ERSP; Makeig, 1993; Makeig et al., 2004) which regroups both

ERSyn and ERD. The concept of ERD, ERSyn, and ERSP consists
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in averaging the power spectrum of short sliding time windows

in multiple stimulus-locked data trials. ERSP results are usually

visualized in 2-D time–frequency images where the pixels’ color

represent power variations at different time–frequency points.

Using ERSP is however not as simple as using ERP since there

are a large number of variants. For example, it is possible to com-

pute power using either fast Fourier transform (FFT) or Wavelet

transforms (Delorme and Makeig, 2004). Wavelets also have dif-

ferent variants. Although most authors use Morlet wavelets (Schiff

et al., 1994; Tallon-Baudry et al., 1997; Herrmann et al., 1999; Adeli

et al., 2003; Lemm et al., 2004), EEG has been studied with other

type of wavelets such as Daubechies or Meyer wavelets (Bertrand

et al., 1994; Kim et al., 2008; Asaduzzaman et al., 2010). In addi-

tion, it is also possible to compute ERSPs using the multi-taper

method (Mitra and Pesaran, 1999) or band-passed Hilbert trans-

forms (Clochon et al., 1996). Fortunately, all of these spectral

methods tend to return similar results (Le Van Quyen et al., 2001;

Bruns, 2004) so we will focus on using simple sliding-window FFT

decompositions in this report.

In addition to using different spectral methods, ERSP variants

may also use different baseline correction methods. When pro-

cessing intra-cranial electrodes, researchers often avoid computing

baselines and analyze raw time-varying spectral power variations

(Tallon-Baudry et al., 2001). This is possible because intra-cranial

EEG data is less subject to noise than scalp EEG recordings and

event-related spectral variations may be visible without any fur-

ther processing. However, when using scalp channels, it is often

necessary to subtract baseline activity in each frequency band

from the post-stimulus period. Intra-cranial EEG, scalp EEG, or

Magneto-encephalography (MEG) raw spectral images are dom-

inated by low frequencies (Freeman et al., 2000; Slotnick et al.,

2002) which can mask the activity at higher frequencies. More-

over, even within a given frequency band, post-stimulus power

changes relative to the pre-stimulus baseline period are often sub-

tle and may be difficult to observe (Figure 1). Thus it becomes

necessary to compute spectral changes relative to baseline. Since

most of EEG spectral analysis aims to quantify the effect of a stim-

ulus on the ongoing EEG spectrum, the most intuitive approach

to isolate event-related changes is to subtract the trial-averaged

pre-stimulus spectral activity from post-stimulus activity in each

frequency band. Eventually, baseline correction may also be useful

when performing statistical inference where post-stimulus activity

is compared to baseline activity.

There are mainly two methods to perform baseline correc-

tion. These two methods rely on different assumptions about the

EEG signal. The first method assumes an additive model where

stimulus-induced power at specific frequencies adds onto existing

power at these frequencies. The second alternative model consists

in using a divisive baseline, which assumes an EEG gain model

where the occurrence of a stimulus proportionally increases or

decreases the amplitude of existing oscillatory EEG activity. Both

models are widely used and, for the first time, we are compar-

ing them in terms of their time–frequency response and behavior

when performing statistical inference testing.

Finally, a new idea we are introducing here deals with trial-

based baseline correction methods. The classical baseline approach

involves first computing time–frequency decompositions for each

FIGURE 1 | Raw event-related spectrum (absolute log-ERS) on the left

versus baseline corrected ERSP (log-ERSP) on the right for scalp EEG

data trials. Electrode Iz from the “animal” dataset of subject “CLM” (see

Materials and Methods) was used to compute FFT-based ERS and ERSP.

ERS was computed using Eq. 1 and log-ERSP was computed using the

classical baseline correction divisive method described in Eq. 6 (see

Materials and Methods). Although post-stimulus power decrease at about

7 Hz is clearly visible on the ERSP image, it is more difficult to see in the

ERS image where large low-frequency changes stretch the color scale

limits. This shows the usefulness of removing the pre-stimulus baseline for

scalp EEG data.

trial, then computing a trial average, and as a last step removing

the pre-stimulus baseline. However, as we show in this report, this

method proves to be quite sensitive to noisy data trials. By contrast,

it is also possible to perform different types of correction in single-

trials prior to averaging time–frequency estimates. In this report,

we compare new trial-based baseline correction approaches to

classical baseline correction methods. We will demonstrate how

our trial-based correction methods tend to make ERSP less sen-

sitive to the presence of a limited number of trials with excessive

ambient or physiological noise.

MATERIALS AND METHODS

We will first describe the two different models used to com-

pute ERSP for both the classical baseline correction approach

and the single-trial baseline correction approach. We will then

detail the two statistical methods implemented to compute signif-

icance. Finally, we will explain the procedure used to study ERSP

robustness to noisy trials.

ERSP MODELS

Two main methods for ERSP pre-stimulus baseline correction may

be distinguished. We first present these two approaches, which

for simplicity we have termed the ERSP “gain model” and the

ERSP “additive model”. We describe how ERSPs are calculated for

each of these models and then show how they can be adapted for

single-trial baseline correction.

Event-related spectrum

The event-related spectrum (ERS) consists in computing the data

power spectrum for sliding time windows centered at time t in

each trial and then computing the average across trials. The mean

ERS for frequency f and time point t is defined as

ERS( f , t ) =
1

n

n
∑

k=1

∣

∣Fk

(

f , t
)∣

∣

2
(1)
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where n is the total number of trials, and Fk( f,t ) is the spectral

estimate at frequency f and time point t for trial k. In the rest of

this report, we assume that Fk( f,t ) is computed using FFT after

applying a Hanning window to remove window border effects.

However, formula (1) is still valid if Fk( f,t ) represents a wavelet or

a Hilbert transform. Formula (1) would have to be modified for

multi-taper decompositions (Mitra and Pesaran, 1999).

Classical baseline approaches

Classical baseline normalization – additive model. The first

method to remove baseline activity presented here is based on an

additive ERSP model, which assumes that stimulus-induced spec-

tral activity adds linearly to existing pre-stimulus spectral activity.

This approach was first introduced by Tallon-Baudry et al. (1996,

1999) and is now one of the standard approaches for computing

ERSPs.

To compute this ERSP, the ERS trial average is normalized for

each frequency band. In the baseline period – classically defined as

the period preceding the stimulus – the average and standard devi-

ation (SD) of power are first computed at each frequency. Then, the

average baseline power is subtracted from all time windows at each

frequency, and the resulting baseline-centered values are divided

by the SD. For each time–frequency point of the time–frequency

decomposition, the calculation of the ERSP can be formalized as

follows:

ERSPz ( f , t ) =

(

ERS( f , t ) − µB( f )

σB( f )

)

(2)

where µB( f ) is the mean spectral estimate for all baseline points

at frequency f

µB( f ) =
1

nm

n
∑

k=1

∑

t ′∈B

∣

∣Fk

(

f , t ′
)
∣

∣

2
(3)

where B is the ensemble of time points in the baseline period and

m is the cardinal of B or the total number of time points in the

baseline period. σB( f ) is the spectral estimate SD for all baseline

points at frequency f and is defined as:

σB( f ) =

√

√

√

√

1

nm − 1

n
∑

k=1

∑

t ′∈B

(

∣

∣Fk

(

f , t ′
)∣

∣

2
− µB( f )

)2
(4)

The unit for ERSPz values computed in Eq. 2 is z-score or SD of

the baseline. A close variant to this approach is the mean baseline

removal approach, which consists in simply removing the mean

baseline value at each frequency. Because of the way significance

is computed (see Statistical Methods to Assess Significance), we

would not observe any difference between ERSPz and the mean

baseline removal approach in terms of region of significance. It

will therefore not be included in this report.

Dividing by baseline value – gain model. The gain model is

detailed in Delorme and Makeig (2004) and is the default model

in the popular EEGLAB software. In this model, for each frequency

band, ERS power at each time–frequency point is divided by the

average spectral power in the pre-stimulus baseline period at the

same frequency. Two measures may be derived from this model,

an absolute ERSP measure and a log-transformed ERSP measure.

The absolute ERSP measure is computed as follows:

ERSP%( f , t ) =
ERS( f , t )

µB( f )
(5)

where µB( f ) is the mean spectral estimate defined in Eq. 3.

The unit for ERSP% is percentage of baseline activity. The

log-transformed measure is derived by taking the log value of

ERSP%:

ERSPlog( f , t ) = 10log10

(

ERSP%( f , t )
)

(6)

The logarithmic scale of the last measure offers two advantages

compared to the methods described previously. First, it has been

shown by a large body of statistical signal processing literature that,

for skewed signals such as EEG, the distribution of the logarithm

of the signal is more normal than the distribution of the original

signal. Therefore parametric inference testing is often more valid

when applied to log-transformed power values – although in the

case of the EEGLAB software, which we are using in this report,

most statistics rely on surrogate methods which are not sensitive

to the data probability distribution. The second advantage of loga-

rithmic scales is that they allow visualizing a wider range of power

variations, whereas for the absolute scales, power changes at low

frequencies may mask power changes at high frequencies.

By definition, the unit of ERSPlog is Decibel (dB). Both mea-

sures ERSP% and ERSPlog are commonly used in the literature

(Fuentemilla et al., 2006; Delorme et al., 2007; Meltzer et al., 2008).

Single-trial baseline correction

In the previous section we outlined different types of ERSP cal-

culations applied to the ERS trial average. In this section, we are

introducing methods to compute single-trial baseline correction.

For each of the two ERSP models, namely the “additive model”

and the “gain model,” the single-trial version of calculation is

formalized below.

Single-trial baseline normalization – additive model. Instead

of computing baseline normalization after trial averaging, base-

line normalization is computed for each trial using the following

equations:

Pz
k ( f , t ) =

∣

∣Fk

(

f , t
)∣

∣

2
− µ

′
B( f , k)

σ
′
B( f , k)

(7)

ERSPTB−z ( f , t ) =
1

n

n
∑

k=1

Pz
k (f , t ) (8)

where µ
′
B ( f , k) is the mean baseline spectral estimate for trial k

at frequency f and is defined as

µ
′
B(f , k) =

1

m

∑

t ′∈B

∣

∣Fk

(

f , t ′
)
∣

∣

2
(9)

www.frontiersin.org September 2011 | Volume 2 | Article 236 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Grandchamp and Delorme Single-trial baseline for ERSP

σ
′
B ( f , k) is the spectral estimate SD for the baseline period of trial

k at frequency f and is defined as

σ
′
B( f , k) =

√

1

m − 1

∑

t ′∈B

(

∣

∣Fk

(

f , t ′
)
∣

∣

2
− µ

′
B( f , k)

)2
(10)

Dividing single-trials by their baseline value – gain model. In

the case of the gain model, we first divide each time–frequency

point value by the average spectral power in the pre-stimulus base-

line period at the same frequency. It is only after each trial has

been baseline corrected that we compute the trial average. This is

summarized in the following formal equations:

P%
k ( f , t ) =

∣

∣Fk( f , t )
∣

∣

2

µ
′
B( f , k)

(11)

ERSPTB−%( f , t ) =
1

n

n
∑

k=1

P%
k (f , t ) (12)

where µ
′
B ( f , k) is the mean baseline spectral estimate for trial k

at frequency f described in Eq. 9.

The log-transformed ERSP version is computed by taking the

logarithm of ERSPTB − %

ERSPTB−log( f , t ) = 10log10 (ERSPTB−%) (13)

Note that it would also be possible to compute the log of each

trial and then average the results – which would be equivalent

to computing the product of the time–frequency estimates across

trials and then performing a log-transformation as:

log10(a) + log10(b) = log10(a · b)

⇒
1

n

n
∑

k=1

10 log10

(

P%
k ( f , t )

)

=
1

n
10 log10

(

n
∏

k=1

P%
k ( f , t )

)

However, calculating the product of single-trial spectral estimates

might not be biological plausible. Moreover, it also leads to regular-

ization issues. When the mean baseline power at a given frequency

is too close to 0, the term defined in (11) would tend toward

infinite. As a consequence, after log-transformation, the power

of some trials could dominate the ERSP. This last approach has

therefore not been considered in this report.

Classical pre-stimulus baseline after full-epoch length single-

trial correction. There is no need to perform classical baseline

correction after single-trial baseline correction since, after single-

trial pre-stimulus baseline correction, averaging values across trials

preserves the baseline value. For instance, the baseline value for

each trial is already centered at 0 for the ERSPTB − z measure –

after averaging trials the average baseline value remains 0. Simi-

larly the average baseline value is 1 in ERSPTB − %, and remains 1

after averaging trials.

This is important when computing statistics since the NULL

hypothesis is based on trial-average baseline values: the general

NULL hypothesis states that post-stimulus values do not dif-

fer from baseline values. Having a centered baseline is especially

important for the “Bootstrap random polarity inversion” statis-

tical method (see Statistical Methods to Assess Significance) that

randomly inverts baseline corrected single-trial spectral estimate

polarity at each time–frequency point.

In the results section, we show that single-trial baseline correc-

tion methods are biased. As a consequence we developed methods

that normalize single-trials or centers them at 1 prior to apply-

ing standard baseline correction methods. We call these methods

full-epoch length single-trial corrections, which, as we will see

in the Section “Results,” proved to be powerful techniques. Full-

epoch length single-trial correction is equivalent to computing

ERSPTB − z , ERSPTB − %, or ERSPTB − log and consider the full-trial

length for the “baseline” period instead of the pre-stimulus base-

line. Note that the term “baseline” is not appropriate any longer

in this case and is simply used to outline the calculation method.

After computing ERSP trial averages, the average pre-stimulus val-

ues (actual pre-stimulus baseline) may differ from 0 (ERSPTB − z ,

ERSPTB − log) or from 1 (ERSPTB − %). It is therefore important to

recompute the classical trial average pre-stimulus baseline prior

to computing statistics. This is formalized in the following para-

graph: it consists in first performing full-epoch length single-trial

correction, and then performing classical pre-stimulus baseline

corrections on the resulting ERSP trial averages.

ERSPFull TB − z is obtained by replacing raw spectral estimates

|Fk( f,t )|2 in Eqs 1–4 by full-epoch length single-trial baseline

corrected spectral estimates Pz
k ( f,t). Similarly, ERSPFull TB − % is

obtained by replacing raw spectral estimates |Fk( f,t )|2 in Eqs 1, 3,

5, and 6 by full-epoch length single-trial baseline corrected spec-

tral estimates P%
k ( f,t ) and ERSPFull TB − log is obtained by taking

the log of ERSPFull TB − % multiplied by 10.

STATISTICAL METHODS TO ASSESS SIGNIFICANCE

We used two different statistical techniques to assess significance

of ERSP results: one method is based on permutation of baseline

period values at each frequency and another method is based on

bootstrapping single-trial ERSP polarity at each time–frequency

point. Note that after each procedure, the false discovery rate

(FDR) procedure (Benjamini and Hochberg, 1995) was applied

to correct for multiple comparisons and compensate for the fact

that a statistical test was performed at each time–frequency point.

Baseline permutation

In this method, we considered the collection of single-trials and

computed the surrogate distribution at each frequency by per-

muting baseline values across both time and trials. We therefore

obtained one surrogate distribution per frequency and then tested

if original ERSP values point lied in the 2.5 or 97.5% tail of the

surrogate distribution at a given frequency. If it did, the specific

time–frequency point was considered significant at p < 0.05. Note

that in practice the position of the non-shuffled time–frequency

estimate in the surrogate distribution allows computing the exact

p-value, which can then be corrected for multiple comparisons

using the FDR procedure. We used a total of 2000 permutations

at each frequency to assess significance. The same method was

used in Delorme et al. (2007) and is implemented in the EEGLAB

software.
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Single-trial power estimates need to be baseline corrected

prior to applying this statistical procedure. However, for classi-

cal baseline correction methods (ERSPz , ERSP%, and ERSPlog),

this method returns equivalent results if the statistical procedure

is performed before or after baseline correction.

Bootstrap random polarity inversion

In this method, we randomly inverted the polarity of single-trial

time–frequency power estimate after baseline correction. Ran-

domly inverting the polarity means that on average only half

of the values have their polarity inverted – although for each

repetition, a different set of values is inverted. This statistical pro-

cedure is performed independently at each frequency point and

is also applied to time–frequency point lying within the baseline

period.

It is important to perform baseline correction on each trial prior

to applying the statistical procedure since the polarity inversion of

single-trial values depend on this baseline value.

For this statistical procedure, a surrogate distribution is com-

puted at each time–frequency point – in contrast to each frequency

for the statistical procedure described in Section “Baseline Per-

mutation.” If the original ERSP value at a given time–frequency

point lies in the 2.5 or 97.5% tail of the surrogate distribution

for this time–frequency point, the value is considered significant

at p < 0.05. As for the previous statistical procedure, in prac-

tice the position of the original ERSP time–frequency estimate

in the bootstrap distribution allows computing the exact p-value,

which can then be corrected for multiple comparisons using the

FDR procedure. We used a total of 2000 bootstrap random polar-

ity inversion to assess significance at each time–frequency point.

As this statistical procedure had not been implemented in any

software to our knowledge, we developed custom Matlab scripts

for it.

DATASETS USED FOR ANALYSIS AND ASSESSING ROBUSTNESS TO

NOISY TRIALS

First, both classical and trial-based ERSP methods will be applied

to artificial EEG data to demonstrate their fundamental proper-

ties. In a second step aiming to address the robustness of different

ERSP methods, we introduced noisy data trials in a resting-state

EEG dataset in which artificial spectral perturbations were added

to background EEG activity. Finally we applied the methods to

an actual EEG dataset taken from an animal/non-animal catego-

rization task and analyzed the influence of noisy trials on ERSP

results.

Artificial EEG data trials

The first dataset used to study robustness of ERSP to noisy

trials is an artificial dataset. It was created by mixing real

EEG data recorded from a single subject and artificial spectral

perturbations.

Electroencephalogram data was acquired using a Biosemi

ActiveTwo system of 64 scalp electrodes placed according to the

10–20 system. The EEG signal was digitized at 2048 Hz with 24-bit

A/D conversion, then down-sampled to 256 Hz. The data was then

high-pass filtered at 0.5 Hz using a FIR filter and converted to aver-

aged reference. Paroxysmal activity as well as periods containing

electrical artifacts were removed by visual inspection of the raw

continuous data.

Since the subject was not performing any task and no stimuli

were presented, the continuous data should not contain any time-

locked spectral activity. However, in order to simulate an evoked

spectral response, mock events were first inserted in the raw con-

tinuous data every 3 s. Then, data epochs ranging from −1000 to

2000 ms relative to mock events were extracted for electrode Fp1,

resulting in 58 non-overlapping 3000 ms segments. In each epoch,

baseline was considered as the period starting 1000 ms before the

mock event and ending at the mock event onset. Spectral pertur-

bations were then modeled as an increase followed by a decrease in

power in the 20 to 26 Hz frequency band. We artificially increased

power for a finite time period from 300 ms to 799 ms after mock

events, and reduced power from 1399 ms to 1599 ms.

To introduce spectral perturbations, first the time window to

be perturbed was selected. Then a FFT was used on each EEG data

trial for this time window. FFT coefficients corresponding to fre-

quencies from 20 to 26 Hz were modified by adding or subtracting

a fixed scalar (equal to 300). We finally computed an inverse FFT

transform (using Matlab ifft function) to generate a perturbed

time series that we used to replace the EEG data in each data trial

in the selected time window.

Actual EEG data from animal/non-animal categorization task

The second set of EEG data came from an event-related EEG

experimental paradigm (Delorme et al., 2004). In this paradigm,

photographs containing animal or distractors were briefly flashed

to experimental subjects on a computer screen. The task of the sub-

jects was to press a button whenever they saw an animal. Fourteen

subjects were recorded performing this task. The data was recorded

at 1000 Hz using a Neuroscan 32-channel system with electrodes

placed according to the 10–20 system. Here, we used a pruned

version of the data, where the data was down-sampled at 256 Hz

and 3 s data epochs were extracted for each stimulus – from −1 to

+2 s after each stimulus. Epochs were baseline corrected using pre-

stimulus period – from −1 s to the stimulus onset – and bad epochs

were removed by visual inspection. These datasets are publically

available on the Internet in the form of an EEGLAB STUDY at

http://sccn.ucsd.edu/∼arno/fam2data/publicly_available_EEG_

data.html. When performing statistical analysis for Figures 5–9,

we have only considered the 14 datasets containing animal stimuli

– one dataset per subject. Figures 1–4 and 10 were generated with

the dataset containing animal stimuli of subject “CLM.”

Procedure to model noisy trials and assess robustness of ERSP

model

To estimate the robustness of different ERSP models to noise, for

both the artificial and the real EEG data described above, we added

noise to a given percentage of data trials. To model noise in single-

trials, an independent Gaussian noise with SD of five times the SD

of the EEG data – computed over all time points and all data trials

– was added to a random set of trials (in Figure 5, we varied this

coefficient from 1 to 5). The number of perturbed trials ranged

from 0 to the maximum number of available trials in the EEG

dataset: 58 for the artificial EEG data and 126 for “CLM” dataset.
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FIGURE 2 | Single-trial baseline correction. Top row, distribution of

mean single-trial baseline power values at 10 Hz for real EEG data

(electrode Iz of subject “CLM” – see Materials and Methods) and for

1000 simulated trials of normalized Gaussian noise with the same time

limits. Bottom row, ERSPTB − log with single-trial baseline correction tends

to produce large positively biased event-related post-stimulus spectral

perturbations for both the real EEG data and the artificial Gaussian

noise.

FIGURE 3 | Comparison of different baseline approaches. This figure shows spectral power at 5.8 Hz in single-trials using the classical pre-stimulus baseline

ERSPz method (A), the single-trial pre-stimulus baseline ERSPTB − z method (B), and the single-trial full-epoch length correction ERSPFull TB − z method (C). The thick

black line represents the average of all trials.

FIGURE 4 | Confusion matrix, sensitivity, specificity, and d ′ results of the

ERSP classical method and the ERSP using single-trial correction. (A)

True Positives (TP), False Positives (FP) and False Negatives (FN) significant

results for the ERSPlog and ERSPFull TB − log. The single-trial-based method

(ERSPFull TB − log) clearly outperforms the classical method (ERSPlog). (B)

Sensitivity and specificity of the two methods. (C) d ′ results for the two

methods. Significance of ERSP results is computed using baseline

permutation statistical method.
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FIGURE 5 | Confusion matrix of the ERSP classical method and

the ERSP using single-trial correction for different amplitude of

noise. The single-trial-based method (ERSPFull TB − log) clearly

outperforms the classical method (ERSPlog) with a higher rate of True

Positive significant values and a comparable rate of False Negative

significant values.

FIGURE 6 | Results of different ERSP methods applied to channel Iz

of subject “CLM” (see Materials and Methods). Images are masked

for significance at p = 0.05 using the baseline permutation statistical

method (see Materials and Methods) after correction for multiple

comparisons using the FDR procedure. The top row shows results from

classical baseline ERSP methods. The bottom row shows ERSP using

full-epoch length single-trial correction. Circled regions of interest are

discussed in the text.
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FIGURE 7 | Percentage of significant pixels in ERSP time–frequency

decompositions of real EEG data with different percentages of

noisy trials. Noisy trials are added to data trials of electrode Iz from

subject “CLM” (see Materials and Methods). Two different statistical

methods are tested: the baseline permutation method on the left

column, and the bootstrap random polarity inversion method on the

right column (see Materials and Methods). The first row represents

data for time–frequency decompositions computed using z -score

(ERSPz and ERSPFull TB − z ). The second row represents data for

time–frequency decompositions computed using percentage of

baseline (ERSP% and ERSPFull TB − %). Classical ERSP baseline correction

methods are represented in red and single-trial correction methods are

represented in blue. Shaded areas represent SD which is estimated by

adding noise to different random sets (n = 10) of trials. Single-trial

correction methods always outperform classical baseline methods

when the number of noisy trials increases.

In order to evaluate the accuracy of the two different base-

line correction methods, we first used the artificial EEG dataset

containing the controlled spectral perturbation and computed

confusion matrices for each ERSP method and for each percentage

of noisy trials. We considered True Positives (TP, i.e., significant

time–frequency estimates – or pixel in the ERSP image – included

in the spectral perturbation area), False Positives (FP, i.e., signifi-

cant time–frequency estimates outside of the spectral perturbation

area), False Negatives (FN, i.e., non-significant time–frequency

estimates inside the perturbation area) and True Negatives (TN,

i.e., non-significant time–frequency estimates outside of the per-

turbation area). TP, FP, FN, and TN were expressed in percentage

of the maximum number of time–frequency estimates in each

category. Thus TP = 100% indicates that all time–frequency esti-

mates in the perturbation area are significant, FN = 100 − TP

indicates the percentage of time–frequency estimates within the

perturbation which are not significant. Similarly, the maximum

FP is reached when all the time–frequency estimates outside of the

spectral perturbation area are significant. These measures allow

evaluating the quality of each ERSP method through different

metrics basically defined by signal detection theory and used in

evaluation of classifiers or subject performances in categorization

tasks (Green and Swets, 1974; Fawcett, 2006). We computed sen-

sitivity, i.e., the ability to detect TP, which corresponds to TP Rate;

and specificity, i.e., the ability to detect TN, which corresponds to

TN Rate. Both metrics can be formalized as follows:

Sensitivity = True Positive Rate =
TP

(TP + FN)

Specificity = True Negative Rate =
TN

(FP + TN)

In addition, we computed the d ′ sensitivity index for each

percentage of noisy trials introduced in the signal. d ′ is defined

as

d ′ = Z (True Positive Rate) − Z (False Positive Rate)

Z (p),p ∈ [0,1] being the inverse of the cumulative Gaussian

distribution, and

False Positive Rate =
FP

(FP + TN)
= 1 − True Negative Rate

RESULTS

Figure 2 shows that when computing single-trial baseline, post-

baseline spectral estimates tend to be biased toward positive

values. This effect occurs because spectral estimates are skewed

toward positive values. This is true for ERSPTB − log (Figure 2),

ERSPTB − % and ERSPTB − z (not shown). Therefore performing

single-trial baseline correction is sensitive to post-stimulus out-

liers and large positive post-baseline values are dominating the

ERSP. One hypothesis is that pre-stimulus outliers affect the post-

stimulus results as if the pre-stimulus data were stable, then the

results would not be so sensitive to how the baseline subtrac-

tion is handled. However, the fact that this bias is observed with

Gaussian noise disproves this hypothesis. The bias is a result

of non-stationary of both the EEG signal and the computation

method (Figure 3).

Figure 3 shows the apparent superiority of full-epoch length

single-trial correction. For the classical baseline methods, outliers

with large power values are clearly visible (Figure 3A). The mid-

dle panel (Figure 3B) shows the single-trial pre-stimulus baseline

approach where data is well normalized in the baseline period.

However in the post-stimulus period positive outliers are clearly

visible and bias the average spectral estimate toward positive val-

ues. This is the same effect we were observing in the bottom row of

Figure 2. In the last panel (Figure 3C), we use the single-trials full-

epoch length correction method (see Materials and Methods), and

observe that all single-trial corrected spectral estimates are within

the same range of z-score values. In the rest of this manuscript, we
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FIGURE 8 | Average percentage of overlap of significant regions

between all pairs of ERSP method for 14 subjects. The method for

computing percentage of overlap is indicated in the text. (A) Bar chart of

the percentage of overlap between the significant regions of ERSP using

classical baseline correction and ERSP using single-trial correction. Error

bars show the SE of the mean. (B) Overlap of ERSP significant regions for

the baseline permutation statistical method. (C) Overlap of significant

regions for the bootstrap random polarity inversion statistical method.

focus on comparing classical ERSP methods versus ERSP methods

based on single-trial full-epoch length correction methods.

We then compared the performance of classical ERSP meth-

ods versus single-trial full-epoch length correction methods on

artificial data using the baseline permutation statistical meth-

ods (Figure 4). Figure 4A shows results for ERSPlog and

ERSPFull TB − log. We chose these two ERSP methods because they

exhibited the best visual contrast (Figure 6). However, using other

ERSP methods return similar results. We can clearly see that

TP are less sensitive to noisy trials for the single-trial method

(ERSPFull TB − log) and that FN increase at a slower rate when noisy

trials are added. The rate of FP is globally higher for the single-

trial-based correction method than for the classical one, except

when the percentage of noisy trials is lower than 8%. The boot-

strap random polarity inversion method for significant testing

returned qualitatively similar results.

FIGURE 9 | Density of ERSP% and ERSPFullTB − % significant pixels across

subjects and their overlap. ERSPs were computed for electrode Iz of 14

subjects and significant pixels were computed using the baseline

permutation method (see Materials and Methods). ERSP “density”

represents the percentage of significant subject at each time–frequency

point from 0 to 100% (all 14 subjects). ERSP% density of significant pixels is

represented in green, ERSPFull TB − % density in red, and the overlap between

ERSP% and ERSPFull TB − % densities is shown in yellow. Density is coded by

color saturation level, higher densities are shown with higher saturation

level.

Figure 4C shows d ′ values for the ERSPlog and ERSPFull TB − log

methods. d ′ quickly drops to 0 for the classical baseline method

when as little as 2% of noisy trials are introduced, whereas the d ′

for our single-trial correction method remains above 1.5 with up

to 60% of noisy trials.

Table 1 indicates the specificity and sensitivity of the clas-

sical baseline correction and single-trial correction ERSPz and

ERSP%/ERSPlog methods for the two types of statistical infer-

ence methods when 8.6% of trials are noisy. Significance levels

between classical correction and single-trial correction meth-

ods are computed using a bootstrap procedure as described

in Section “Baseline Permutation.” Irrespective of the ERSP

method used, sensitivity is significantly higher by 70–80% for

single-trial correction methods compared to classical correc-

tion methods for both baseline permutation statistical method

and bootstrap random polarity inversion. Specificity is 2–3%

higher for classical correction methods compared to single-

trial correction methods although the difference is not always

significant.

It may be argued that low sensitivity to noisy trials of the classi-

cal ERSP method depends on the level of the noise introduced. We

thus used the same two ERSP methods on noisy trials with differ-

ent amplitudes of noise. As described in the Section“Materials and

Methods,” noisy trials are obtained by introducing Gaussian noise

with a SD equal to the SD of the EEG multiplied by a coefficient.

We used different coefficient values ranging from 1 to 5. For each

coefficient value, 10 iterations were computed and the mean TP,

FP, FN were calculated. Results are presented on Figure 5, which

shows that for all values of coefficient greater than 1, the ERSP

method using single-trial correction clearly outperforms the clas-

sical ERSP method with a higher TP rate of significant values and
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FIGURE 10 | Number of significant pixels and overlap across time and

frequency for the ERSP% and the ERSPFullTB − % methods averaged over 14

subjects. The top row shows the mean percentage of overlap between

significant regions of the ERSP% (classical baseline correction) and the

ERSPFull TB − % (single-trial correction) methods. (A) Average overlap between

the two ERSP methods at each frequency. (B) Average overlap between the

two ERSP methods at each time point. (C,D). Average percentage of

significant pixels at each frequency (C) and at each time point (D). For the four

curves, significant regions where computed using the bootstrap random

polarity inversion method. Shaded areas show the SE of the mean.

Table 1 | Sensitivity and specificity of the classical baseline correction and single-trial correction ERSPz and ERSP%/ERSPlog methods for the

two types of statistical methods when 8.6% of trials are noisy.

Statistical method

Baseline permutation Bootstrap random polarity inversion

Classical

correction

Single-trial

correction

t -Test results Classical

correction

Single-trial

correction

t -Test results

ERSPz Sensitivity 0.087 ± 0.11 0.77 ± 0.039 p < 0.001, t (18) = −18.1 0.037 ± 0.033 0.82 ± 0.036 p < 0.001, t (18) = −47.4

Specificity 0.96 ± 0.02 0.94 ± 0.0087 p = 0.056, t (18) = 2.37 0.91 ± 0.022 0.89 ± 0.0063 p = 0.035, t (18) = 2.41

ERSP%/ERSPlog Sensitivity 0.083 ± 0.11 0.81 ± 0.029 p < 0.001, t (18) = −19.8 0.038 ± 0.036 0.84 ± 0.036 p < 0.001, t (18) = −47.1

Specificity 0.96 ± 0.02 0.93 ± 0.012 p = 0.006, t (18) = 3.70 0.91 ± 0.022 0.88 ± 0.0085 p < 0.001, t (18) = 4.04

For each method, the mean and the SD of the specificity and sensitivity measures are indicated.

a comparable rate of FN responses. This performance improves as

the coefficient increases.

Figure 6 illustrates the different ERSP approaches described in

the Section “Materials and Methods” computed on one subject

(see Materials and Methods): it shows ERSPs for both the clas-

sical baseline solutions (top row) and the single-trial full-epoch

length corrections followed by classical baseline correction (bot-

tom row). All methods show similar ERSP images with interesting

nuances. Region 1 circled in Figure 6 shows a significant feature

at high frequency that appears only when classical baseline correc-

tion methods are used. Since it is not present for the single-trial

baseline correction, this region most likely represents activity from

a few noisy data trials. After visual inspection of the raw data, 6

of the 126 data trials proved to contain high frequency noise.

Upon removal of these data trials, region 1 is not any more sig-

nificant and visible in classical method results. In addition, region
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1 did not prove to be significant in any of the other 13 subjects

of the same study. Region 2 shows a 500% power increase rel-

ative to baseline for the ERSP% method. The region is slightly

smaller for the ERSP methods based on single-trial correction

than for the classical ERSP methods. We tested the hypothesis

that single-trial methods were more sensitive to noise by replac-

ing good trials by noisy ones as described in Section “Procedure

to Model Noisy Trials and Assess Robustness of ERSP Model”

and computed the ERSPlog and ERSPFull TB − log for every num-

ber of noisy trials introduced in the signal. We observed that

Region 2 was still significant and had the same extent for both

classical and single-trial-based ERSP methods when 80% of noisy

trials was introduced. Region 3 indicates a post-stimulus power

decrease centered at about 13 Hz and spanning over the 10 to 15-

Hz frequency band for the ERSPz method. For the ERSP% and

the ERSPlog methods, a similar power decrease spans over the 6

to 15-Hz frequency band and is strongest at 6 Hz. This suggests

that the variance across trials at 13 Hz is small compared to lower

frequencies, which would explain why the power decrease at this

frequency is larger in the ERSPz method than in the ERSP% and

the ERSPlog methods. For all single-trial correction solutions, one

additional significant region appears (region 4). This region cor-

responds to an early post-stimulus power increase in the 5 to 7-Hz

frequency band. Note that the positive peak in the last panel of

Figure 3 at about 200 ms corresponds to region 4 in Figure 6. To

test if significance in this region was driven by noise, we applied

a band-pass filter to single-trials between 5 and 7 Hz and showed

that the filtered signal exceeded the SE of the average signal in the

200 to 400-ms time region. The presence of this additional region,

although anecdotal, argues in favor of using single-trial baseline

methods, which renders visible finer grained spectral changes.

Note that the subject selected for Figure 6 was chosen for didac-

tic purposes. When spectral activity is more homogenous across

trials, the six types of ERSP are more similar.

In Figure 6, the extent of significant regions is different for the

various ERSP approaches. We attempted to determine if regions of

significance differed across ERSP methods. We performed ERSP

decomposition for each of the 14 subjects of an animal/non-

animal categorization study (see Materials and Methods), com-

puted the percentage of significant pixels in the ERSP image, and

applied a paired 2-way ANOVA on the mean percentage of sig-

nificant pixels using two factors ERSP type (% or z-score) and

baseline correction method (classical versus single-trial). Only

the ERSP%, ERSPz , ERSPFull TB − % and ERSPFull TB − z methods

were considered since the ERSPlog and ERSPFull TB − log methods

are mere log-transformation of the ERSP% and ERSPFull TB − %

methods which do not modify the number of significant pixels.

We also tried two methods for assessing significance: baseline per-

mutation and bootstrap random polarity inversion (see Materials

and Methods).

Table 2 summarizes the mean over 14 subjects of the number

of significant pixels for different ERSP methods. For the base-

line permutation statistical method, the percentage of significant

pixels was higher for the ERSP classical baseline methods than

for the ERSP single-trial correction methods [F(1,13) = 12.504,

p = 0.004]. We also observed an effect of the ERSP method

[F(1,13) = 20.681, p < 0.001], where the ERSPFull TB − z method

returned less significant pixels than the ERSPFull TB − % method.

For the bootstrap random polarity inversion statistical method,

we also observed a significant effect of the baseline correction

method [F(1,13) = 5.132, p = 0.04] but in the opposite direction,

the percentage of significant pixels being higher for single-trial

correction methods. Bootstrap random polarity inversion sta-

tistics returned significant effect for ERSP methods in the same

direction as the baseline permutation statistics [F(1,13) = 8.243,

p = 0.01], where the ERSPFull TB − z method returned less signifi-

cant pixels than the ERSPFull TB − % method. In sum, ERSP using

baseline normalization tends to return less significant pixels than

ERSP using percentages of baseline. Classical baseline and single-

trial correction methods also differed significantly although the

method returning more significant pixel was contingent on the

statistical method used to assess significance.

In Figure 7, we test the hypothesis that full-epoch length single-

trial baseline approaches are less sensitive to outlier trials in real

EEG. To test this hypothesis, we first added noisy trials to real EEG

(see Materials and Methods) and estimated the number of sig-

nificant time–frequency points (pixels) for different ERSP time–

frequency decomposition. We also used two independent methods

to estimate significance: either the baseline permutation method

or the bootstrap random polarity inversion method (see Materials

and Methods). Figure 7 shows a comparison of classical baseline

correction and single-trial correction for z-score ERSP methods

(respectively ERSPz and ERSPFull TB − z ) and percentage of base-

line ERSP methods (respectively ERSP% and ERSPFull TB − %). It

shows that if the percentage of noisy trials is greater than 2, the

single-trial method gives more significant pixels than the classical

method, although this difference decreases monotonically as the

number of trials increases. Note that the percentage of significant

pixels is not a true measure of sensitivity as the ones presented in

Figure 4. However, given that we do not have access to the TP pixel

measure, it is not possible to compute the more rigorous measures

we used for artificial data.

Table 2 | Mean percentage of significant time–frequency points (pixels) for different ERSP methods for electrode Iz.

Baseline permutation Bootstrap random polarity inversion

Classical correction Single-trial correction Classical correction Single-trial correction

ERSPz 17.4 ± 7.8 14.4 ± 6.6 19.7 ± 5.7 20.2 ± 5.1

ERSP%/ERSPlog 17.6 ± 7.9 15.4 ± 6.7 19.7 ± 5.7 20.9 ± 5.0

The mean of 14 subjects with SD is indicated for each condition.
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In order to further characterize the similarities of the ERSPs’

regions of significance, we computed the percentage of overlap

between the significant regions of all pairs of ERSP methods for

electrode Iz of 14 subjects (see Materials and Methods). A percent-

age of overlap between two ERSP methods was computed for each

subject by taking the ratio between the intersection of significant

regions and the union of these regions. This percentage of overlap

was then averaged across subjects:

µoverlap(A, B) =
1

n

n
∑

s=1

|A ∩ B|s × 100

|A ∪ B|s

where A is the first ERSP method and B is the second one. |A ∩B|s
is the number of pixels in the intersection of significant regions

computed by ERSP methods A and B for subject s; |A ∪ B|s is the

number of pixels in the union of significant regions computed by

ERSP methods A and B for subject s; n is the number of subjects.

Figure 8 summarizes overlaps of regions of significance bet-

ween the different ERSP methods. The two procedures used to

assess statistical significance produced similar results. The overlap

between the ERSP classical baseline methods and the ERSP full-

epoch length single-trial correction methods was only about 60–

70% (Figure 8A). The overlap between classical baseline methods

was about 90% and the overlap between full-epoch length single-

trial correction methods was also about 90% (Figures 8B,C). Clas-

sical baseline correction methods have more overlap than single-

trial correction methods for both statistical procedures [paired

t -test for baseline permutation t (13) = 12.028, p < 0.001, paired

t -test for bootstrap random polarity inversion, t (13) = 9.174,

p < 0.001]. Note that since the statistics should be equivalent

for both ERSP% and ERSPlog (respectively ERSPFull TB − % and

ERSPFull TB − log), the differences observed between these two

methods are due to random sampling in the bootstrap and permu-

tation methods. Comparing Figure 8B and Figure 8C, we finally

observe that the baseline permutation statistical procedure leads to

higher overlap between ERSP methods than the bootstrap random

polarity inversion procedure [paired t -test for classical baseline

ERSP correction methods t (13) = −10.515, p < 0.001; paired t -

test for single-trial correction ERSP methods, t (13) = −3.068,

p < 0.001].

At each time–frequency point, Figure 9 shows the percentage

of significant subjects for both the ERSP% and the ERSPFull TB − %

methods as well as the overlap between them. This innovative

representation allows displaying the similarities (i.e., overlap, rep-

resented in yellow) and contrast between the two ERSP methods

(in red and green). We observe that even if some regions exhibit

a strong overlap especially at low frequencies (in bright yellow),

some other areas are more specific to one or the other of the two

ERSP methods (in bright red or bright green).

Figure 10 shows the overlap of significant pixels across time

and frequency for the ERSP% (classical baseline correction) and

ERSPFull TB − % (single-trial correction) methods as well as the per-

centage of significant pixels for each frequency and time point.

Results for the ERSPz and the ERSPFull TB − z methods are similar

(not shown). Figure 10A shows that for the data analyzed here, the

overlap tends to be higher at low frequencies than at higher fre-

quencies. Figures 10B,D show the density of significant pixels and

overlap across time between the two ERSP methods and indicate

that for this dataset the overlap is highest in the 200 to 1000-ms

time region.

Figure 11 focuses on the baseline time region for the two statis-

tical methods used to compute significance and for different ERSP

methods. It shows that significance during the baseline is lowest

for the ERSPz and the ERSPFull TB − z methods using the baseline

permutation statistical method. This argues in favor of using these

ERSP methods and the baseline permutation statistical test when

it is important to minimize the number of significant values in the

baseline period.

DISCUSSION

We have presented different ERSP methods, three based on clas-

sical baseline correction methods and three implementing single-

trial correction methods. We showed the superiority of the single-

trial correction methods on both artificial data and real data since

these methods were less sensitive to noise compared to classi-

cal baseline correction methods. We also compared the number

of significant time–frequency estimates and region of signifi-

cance between all of these ERSP methods. For the data analyzed

here, the overlap was strongest at low frequencies in the 200 to

1000 ms post-stimulus period. Moreover, the overlap between

region of significance within classical baseline correction meth-

ods and within single-trial correction methods was always above

90%. This contrasts to 60–70% of overlap between the classi-

cal and the single-trial-based baseline correction methods and

argues for a fundamental difference between these two types of

approaches.

For single-trial correction methods, use of the entire time inter-

val – including pre- and post-stimulus time intervals – may appear

unconventional with respect to event-related approaches. How-

ever, processing that combines pre- and post-stimulus activity is

a common procedure in EEG signal processing, as for example

when performing filtering. Filtering is used in most EEG soft-

ware. For example, performing high-pass FIR filtering at 0.5 Hz

on continuous EEG data at 128 Hz usually requires a filter order

or length of about 768. The convolution window thus comprises

6 s and might contain several stimuli: post-stimulus activity may

affect pre-stimulus activity (and vice-versa), and we have observed

this fact experimentally. Thus, our single-trial correction proce-

dures combining pre- and post-stimulus activity fits well with the

current EEG signal processing framework.

The main difference between the classical ERSP baseline cor-

rection methods and single-trial correction methods is that the

single-trial correction approach is less sensitive to the presence

of noisy trials. When adding noisy trials to the data, the number

of significant pixels decreased exponentially for classical baseline

correction methods. However, it decreased linearly for single-trial

correction methods. This result is especially important because

spectral transformations may amplify small trial noises. Even

though EEG data might not appear noisy, power computed by

taking the square of FFT amplitude tends to skew power distribu-

tion toward high positive values as shown in Figure 2. Therefore,

using ERSP measures robust to outlier trials is important and this

is why we have introduced such measures here. Other ERSP mea-

sures may also be appropriate where, for example, median ERSP

values could be used instead of the mean ERSP value, and this is a

potential direction for future research.
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FIGURE 11 | Mean percentage of significant pixels during the baseline

period for ERSPz, ERSPFullTB − z, ERSP%, and ERSPFullTB − % using the two

statistical methods. ERSPs were all computed on electrode Iz and averaged

over 14 subjects. The bootstrap random polarity inversion statistical method is

shown on the left column and the baseline permutation statistical method is

shown on the right column. Two different ERSP methods are compared:

ERSPz displayed in the upper row, and ERSP% displayed in the lower row.

Classical baseline correction methods are represented in red and single-trial

correction methods are represented in blue. Shaded areas represent SE of

the mean.

We have shown that the difference in terms of region of sig-

nificance between classical baseline correction and single-trial

correction methods is due to the high sensitivity of ERSP classical

baseline correction to single-trial noise. This result strongly argues

in favor of using single-trial correction methods when computing

ERSP. Of all the methods presented in this report, we recommend

using the ERSPFull TB − z in conjunction with the baseline per-

mutation statistical method for inference testing. ERSPFull TB − z

combined with this statistical method is robust to trial noise and

has the lowest number of FP significant time–frequency points in

the baseline period. All the methods presented in this article are

implemented in the“newtimef” function of the EEGLAB software.
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