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Beijing Institute of Technology, Zhuhai, China, 2Hong Kong Baptist University United International
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High quality underwater images and videos are important for exploitation tasks

in the underwater environment, but the complexity of the underwater imaging

environment makes the quality of the acquired underwater images generally

low. To correct the chromatic aberration and enhance the sharpness of

underwater images in order to improve the quality of underwater images, we

based on the differential compensation proposed a Differential Attenuation

Compensation (DAC) method. The underwater image is contrast stretched to

improve the contrast of the image, as well as the underwater image is denoised,

for the red channel with serious loss of detail information we choose the blue

and green channels with more detail information to compensate for this, and

finally the image is restored through the grayscale world to obtain more

realistic colors. Our method is qualitatively and quantitatively compared with

multiple state-of-the-art methods in the public underwater image dataset,

underwater image enhancement benchmark (UIEB) and enhancing underwater

visual perception (EUVP), demonstrating that the underwater images

processed by our method better resolve the problems of chromatic

aberration and blur, with more realistic color, detail and better underwater

image quality evaluation indicators

KEYWORDS

underwater image, image enhancement, contrast stretching, differential attenuation
compensation, machine vision
1 Introduction

The ocean is rich in material resources, but due to the complex underwater

environment, the tasks related to ocean development are challenging. As a key

technology for ocean development, underwater imaging technology can effectively

assist related tasks of ocean development. Underwater imaging technology is an
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effective way to obtain underwater images, and it is also used in

various underwater scenarios, such as the laying of submarine

cables (Ortiz et al., 2002), the survey of deep sea, and the

observation of fish schools (Howell et al., 2021). Obtaining

effective underwater environment information and target

information is the premise of ocean development. However,

due to the complex underwater imaging environment, the

quality of underwater information collected by common

sensors is low and difficult to use for other tasks.

In the marine environment, the complex imaging

environment leads to serious degradation of underwater

images collected by ordinary imaging equipment, and

problems such as color distortion, contrast reduction, and

image blurring occur. In the underwater imaging process,

different wavelengths of light have different attenuation rates

in underwater propagation (Clarke and James, 1939). In the

visible wavelength band, red light has a long wavelength

penetration is the weakest, most easily absorbed by water, its

propagation distance underwater is about 4 meters; blue light

and green light has a short wavelength, the absorption effect of

water is small, the propagation distance is farther. The variability

in the attenuation of different wavelengths of light in the

underwater environment leads to a general problem of color

distortion and an overall blue-green hue in underwater images.

Meanwhile, there are a large number of suspended particles and

plankton in the water, which scatter the imaging light and

background light making the underwater images blurred

(Wozniak and Dera, 2007).

Therefore, eliminating blurring and chromatic aberration of

underwater images caused by differential attenuation and

scattering through underwater image processing techniques is

the key to obtaining high-quality underwater images.

We propose a pixel processing-based underwater image

enhancement method DAC based on the differential attenuation

of different wavelengths of light in the underwater environment.

The quality of underwater images is enhanced by contrast

stretching and color differential attenuation compensation of

underwater images. The following contributions are made in

this paper:
Fron
1. We decompose the underwater image to be processed

under RGB color space based on the differential

attenuation of different wavelengths of light in the

underwater environment, further decompose each

channel image into a base layer containing image

structure information and a detail layer containing

image texture information, and propose a method to

compensate R channel detail information with G and B

channel detail information.

2. Our proposed method is a new approach to underwater

image processing that is not based on the underwater

physical imaging model, but only on image pixels, and is

capable of simultaneously removing image blur and
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correcting image chromatic aberration. And the paper

contains a large number of experiments based on pixel

information, such as verifying the associativity of the

mean value of G and B channel with image hue.

3. We provide codes for this paper, every one can get codes

from https://github.com/lailaiyun/Single-Underwater-

Image-Enhancement -Based-on-Di ff e r en t i a l -

Attenuation-Compensation.
2 Related work

The scattering effect of light by suspended particles and a

large number of plankton in the water, as well as the absorption

effect of water on different wavelengths of light cause problems

such as color attenuation, low contrast and blurring of

underwater images, which have serious impact on the

exploitation of the ocean. The enhancement of underwater

imaging technology can provide more useful information for

the development of the ocean, which can be divided into two

methods, one is the enhancement of hardware equipment, such

as underwater imagers and LIDAR imaging systems (Phillips

et al., 2019; Egorenko and Efremov, 2020). Unfortunately, for

hardware equipment enhancements often require higher costs.

The other approach is to process the acquired underwater

information by algorithms (Sahu et al., 2014). Among them,

there are also three methods for underwater image processing,

physical model-based image enhancement, non-physical model-

based image enhancement, and deep learning-based

image enhancement.

Non-physical model-based image enhancement is used to

enhance the quality of underwater images by directly processing

the pixel values of the underwater images. The classical non-

physical model algorithm for histogram equalization (Kaur et al.,

2011) uses contrast stretching (Abdullah-Al-Wadud et al., 2007)

to adjust the histogram of an image by distributing the

concentrated pixel points in the histogram evenly throughout

the Gray World Algorithm, redistributing the pixel values of the

image, and increasing the gap between the gray levels of the

histogram, thus achieving contrast stretching. In the deep ocean,

where light propagation is obstructed, artificial light sources are

often used for image acquisition, but using histogram

equalization for underwater images that are unevenly lit and

contain areas that are too dark or too bright can overstretch the

contrast of the processed image. In this regard, adaptive

histogram equalization (Pizer et al., 1987) is proposed to solve

the problem of global equalization of the image, which divides

the image into small blocks of equal size and performs local

histogram stretching for each small block of image to solve the

problem of image overstretching, but this proposed method

introduces the problem of noise being amplified, which affects

the peak signal-to-noise ratio of the image. In this regard,
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adaptive histogram equalization is proposed to solve the

problem of global equalization of the image, which divides the

image into small blocks of equal size and performs local

histogram stretching for each small block of image to solve the

problem of image overstretching, but this proposed method

introduces the problem of noise being amplified, which affects

the peak signal-to-noise ratio of the image. Later, many

improvements and fusion methods were proposed by

researchers, Ancuti et al. (Ancuti et al., 2012; Ancuti et al.,

2017) proposed a multi-scale fusion strategy approach

combining contrast enhancement and color correction, which

largely increased the color of underwater images. Besides,

frequency domain method (Yang et al., 2021) is also a non-

physical model image processing method. This method converts

the pixel point and position information in space to other

processing space, and filters the high frequency information

and low frequency information of the image, such as high pass

filtering and low pass filtering. Then it is back-converted to the

spatial domain to obtain the enhanced underwater image.

Huang (Huang et al., 2018) processes the image in RGB and

CIE-Lab color space, and stretches the histogram of the image to

enhance the quality of image. Kashif (Iqbal et al., 2010) proposed

an unsupervised colour correction method (UCM) for

underwater image enhancement. UCM stretches the image on

RGB and HSI colour space to archive color correction.

The underwater imaging model proposed by Jaffe-

McGlamery (McGlamery, 1980) recovers the degradation

process of underwater images in the form of a physical model

and is the basis for underwater image enhancement based on the

physical model. This underwater imaging model suggests that

the light energy of an underwater image consists of three

components as long as: forward scattering (scattering of light

by the underwater scene), backward scattering (scattering of

light by impurities in the water), and directly transmitted light

energy (Lu et al., 2016). Image enhancement algorithms based

on physical models are often used to enhance the quality of

underwater images by reducing the forward and backward

scattering of images (Li et al., 2018). Based on the underwater

imaging model, HE et al. (He et al., 2010) proposed a classical

de-fogging algorithm Dark Channel Prior (DCP), which is able

to estimate the depth map of the underwater image scene and

achieve image clarity. Paulo et al. (Drews et al., 2013) proposed

Underwater Dark Channel Prior (UDCP) by combining the

properties of color decay of underwater images in order to repair

underwater degraded images and obtain underwater images that

are clearer and contain realistic colors. In addition to this,

Akkaynak et al. (Akkaynak and Treibitz, 2018) (Akkaynak and

Treibitz, 2019) proposed a method for de-watering underwater

images and videos based on an underwater image imaging

model, which realistically restores the colors of underwater

images, making them closer to the colors as well as the true

form of land images. Wei (Song et al., 2018) proposes
Frontiers in Marine Science 03
underwater light appreciation prior to estimate the parameters

of the model, ambient background light and transmission.

In recent years, the development of deep learning has led to

outstanding performance in various fields, and it has gained

wide attention in underwater image processing. Generative

adversarial network models based on game ideas are also often

used in underwater image enhancement (Engin et al., 2018), but

in deep learning, pairs of datasets (containing degraded images

and corresponding high-quality images) are usually required to

train the network models. Cycle Generative Adversarial

Networks (Cycle-GAN) (Zhu et al., 2017) was proposed to

solve the problem of no paired dataset. Based on the paired

dataset generated by Cycle-GAN, Wang et al. (Wang et al., 2019)

proposed an underwater color image enhancement algorithm

Underwater Generative Adversarial Networks (UWGAN) based

on generative and adversarial network to make blurred, color-

biased underwater images clearer and more colorful. Islam et al.

combined both supervised and unsupervised learning methods

to propose a multimodal objective function-basedfully-

convolutional conditional Generative Adversarial Networks

based model for real-time underwater image enhancement,

and refer to as FUnIE-GAN (Islam et al., 2020), which

optimizes the loss function of generative adversarial networks

and provides enhancing underwater visual perception (EUVP)

datasets that can be used for both one-way and two-way training.

Even though Cycle-GAN is able to train the network by

synthesising underwater image datasets, there is still a gap

between the synthesised underwater image datasets and the

real underwater images, and the network model is not always

well trained. Therefore, the robustness and generalization of

deep learning-based underwater image enhancement algorithms

still have more room for improvement compared to traditional

algorithms based on physical and non-physical models. Ankita

(Naik et al., 2021) proposes a shallow neural network

architecture, Shallow-UWnet which maintains performance

and has fewer parameters than the state-of-art models. Chen

(Chen et al., 2021) proposed a new a new underwater image

enhancement method based on deep learning and image

formation model, we refer to as Image Formation. This

method works well, but lacks interpretability.
3 Differential attenuation
compensation

The complex imaging environment in the ocean causes severe

degradation of the underwater images acquired by underwater

imaging systems. In the aqueous medium, water molecules and

various substances contained in the water absorb light, and the

absorption has the property of increasing with decreasing

wavelength. The absorption of light energy by the water body

makes the underwater images suffer from low contrast, color shift
frontiersin.org
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and distortion. In addition, impurities in the water also cause

blurring and lack of ground realism in the underwater images. As

shown in Figure 1, we propose the Differential Attenuation

Compensation (DAC) method for the problems of underwater

images in the above paper, which uses a three-step strategy of

contrast enhancement, image decomposition and R channel

attenuation compensation to process underwater images

without relying on the underwater imaging system and thus

improve the quality of underwater images.
3.1 Contrast enhancement

The underwater environment contains a large number of

suspended particles, and because of the scattering effect, the

underwater image will be blurred, like a shroud of fog, and the

contrast is low. And in environments such as the deep sea and

other natural light can’t be illuminated, the use of artificial light

sources and other converging light illumination, the target scene

is not uniformly illuminated, the images collected in this

environment, some areas are brighter, some are darker.

Therefore, we use the Contrast Limited Adaptive Histogram

Equalization (Reza, 2004) (kumar Rai et al., 2012) method to

stretch each channel of the image.

ICCE = CLAHE(IC) (1)

C∈{R,G,B} denotes the red, green, and blue channels of the

image, ICdenotes theChannel imageof theoriginalunderwater image,

CLAHE() enotes the image processed with the Contrast Limited

Adaptive Histogram Equalization method, and ICCE denotes the

underwater image after contrast enhancement. Contrast Limited

Adaptive Histogram Equalization is an improvement to the adaptive

histogram equalization mentioned in the related work above.
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As shown in Figure 2, the algorithm uses a pre-set threshold

to limit the maximum magnitude of the histogram, crops the

histogram after computing the mapping function, and then

distributes the cropped pixel values uniformly to each gray

level of the image, suppressing the noise of the adaptive

histogram equalization. Also, bilinear interpolation is used to

stitch the divided image blocks in the adaptive histogram

equalization to remove the boundaries between image blocks.

We divide the underwater image into several equal-sized

image blocks evenly and calculate the histogram and the

corresponding mapping function in each image block

separately, mapping the pixel points located at the boundaries

with the mapping function of the adjacent image block. For non-

boundary pixel points, the mapping values of the four adjacent

image blocks for that pixel value are calculated separately for

linear interpolation.

As shown in Figure 3, it is the image before and after the

CLAHE method stretched and its channel images and the

corresponding histogram. The histogram distribution of each

channel before and after stretching is similar, but in the

underwater image after stretching, the R channel has more

pixels distributed in the large pixel value range, and the B

channel has more pixels distributed in the small pixel value

range. The stretched underwater image visibly partially removes

the blue hue or green hue of the original underwater image.

3.2 Image decomposition

Image decomposition refers to the decomposition of an

image into two parts, structure and texture. The structure part is

the larger scale base object in the image, we refer to as BL and the

texture part is the smaller scale detail object, we refer to as DL

Before image decomposition, the image needs to be pre-

processed with noise removal to prevent noise from being
FIGURE 1

Algorithm flow chart. Firstly, the image is contrast stretched, the base layer as well as the detail layer of the image is extracted, then the color
attenuation is compensated, and finally the color of the image is restored by the Gray World.
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considered as detai l information and affecting the

decomposition result of the image.

ICCE = BLC + DLC (2)

Where C∈{R,G,B} equation 2 shows that the C channel of

contrast- enhanced image ICCE is viewed as an accumulation of

two parts, the base layer BLC and the detail layer DLC

Due to the impact of plankton and suspended particles on

imaging in the underwater environment, the captured

underwater images are superimposed with too much

interference and severe noise. Then we decompose the image

into two parts, the base layer and the detail layer, using the image

mean value as the threshold. As shown in equation 3 we perform

mean filtering on the C channel of the contrast-boosted image

and consider the filtered image as the base layer of the channel.

BLC = ICCE ∗Z (3)

Where Z denotes the mean filter and * denotes the

convolutional transport. The selection of filter template size is

adaptively adjusted according to the image resolution. Figure 4

shows the effect of using a 4×4 filter template, a 4×4 filter
Frontiers in Marine Science 05
template, the minimum size of the image (filter size=minm, n)

and the maximum size of the image (filter size=maxm, n) as filter

templates for filtering the underwater image, respectively. The

template with too small size will make the underwater image too

smooth and produce red edges. In this paper, we choose the

largest size of the image as the filtering template, which can have

a better smoothing effect on the detail area of the underwater

image and retain the brightness information of the underwater

image, which is convenient for detail extraction. As mentioned

above we consider the image to be composed of a base layer and

a detail layer, so the detail layer for this channel is:

DLC = ICCE − ICCE ∗Z (4)

As shown in Figures 4A, B are the images processed with

4×4 filter template and 4×4 filter template respectively, in which

the divers and objects and the edges of the images have obvious

red lines, which make the images distorted. The size of the

images used in our experiments is mostly around 800 × 500,

much larger than 4 and 40. 4 (C) is the processing result of the

image when the size of filter template is min {m, n} and there is

obvious red distortion at the edges of the image, which makes
FIGURE 3

Comparison before and after contrast stretching.
BA

FIGURE 2

Contrast limiting principle. The cropped pixels are evenly divided into gray levels. (A) is the original histogram, (B) is the histogram after
cropping, the cropped pixels are uniformly filled at each gray level.
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the image quality significantly degraded. We have gone through

a lot of experiments to change the size of filter template, and

found that when the size of filter template is max {m, n} the

filtered image results are the best, as shown in 4 (D). In the figure

we only show the results of our individual experiments, but we

have actually tried many size of filter templates.
3.3 R channel attenuation compensation

Compared to red light, blue and green light decay relatively

slowly in water and travel the farthest distance. Therefore, we

believe that the R channel information of the image is more lost,

while the G channel and B channel information is more retained.

We observed several datasets of underwater images that have

been used more by researchers and found that most of the

underwater images appear blue and green, with most of the

images that appear blue being images taken in the deep sea,

while the green images were taken in relatively close waters. We

also found in our field research that the seawater close to the

coastline is generally very turbid due to the current and

sediment, normally appearing yellow, gradually appearing

green away from the coast, and gradually appearing blue as it

continues to move away from the coast. For the underwater

image with green hue, we believe that the G channel detail is the

most complete information retained by attenuation, and for the

underwater image with blue hue, we believe that the B channel

detail is the most complete information retained by attenuation.
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This is because under natural lighting conditions, red light is

generally depleted by attenuation at about 4m underwater.

As shown in Figure 3, the images before and after stretching

by the CLAHE method and their respective channel images as

well as the corresponding histograms are shown. Underwater

images in blue hue, the pixel values of the R channel are mostly

distributed around pixel values equal to 0. The corresponding R

channel images have many black dots, and during image

processing, when the pixel value of a pixel is very close to 0,

the computer may assume that the pixel value of the pixel is 0.

Therefore, the image information corresponding to this part

may be lost during the processing, and the corresponding

position in the image will become a black dot. In addition,

when the pixel value is small, it is difficult for the human eye to

distinguish the details in a darker image.

As shown in Figure 7 and Figure 8, we found that the pixel

values of the image R channel in the blue or green hue images are

relatively small after extensive statistical experiments, and the

vast majority of the R channel pixels in Figure 7 and Figure 8 are

below 50. Therefore, we believe that the loss of detail

information in the R channel of the image is serious, and we

need to compensate for the loss of detail information in the R

channel with the G channel or B channel.

After a large number of image tests, it was found that the

blue underwater images had the largest B channel mean and the

green underwater images had the largest G channel mean.

The pixel values of the R channel of the blue-green hue

underwater images are all relatively small.
B C DA

FIGURE 4

Comparison of the results of processing images with different filters. (A–D) is 4 × 4 filter templates, 40 × 40 filter templates, min of the image
size and max of the image size respectively.
FIGURE 5

The green hue underwater images.
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FIGURE 6

Comparison of mean values of green hue underwater images in Figure 5 for each channel.
FIGURE 7

The blue hue underwater images.
FIGURE 8

Comparison of mean values of blue hue underwater images in Figure 6 for each channel.
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Among the blue underwater images and the green

underwater images, as shown in Figure 5 and Figure 6, we

selected 20 representative images for analysis respectively, and

the analysis results are shown in Figure 7 and Figure 8. We

therefore compare the mean values of the G channel and the B

channel of the image to determine whether to compensate the

detail information of the R channel with the G channel or the B

channel.

Rcp =
BLR + DLB · if · Bave > Gave

BLR + DLG · ifGave > Bave

(
(5)

Where Gave, Bave are the mean values of G channel and B

channel of the image, respectively. Rcpis the R channel after

compensating the detail information, the above equation shows

that when Gave> Bave the image as a whole is green, the R channel

is compensated by the detail layer of the image G channel, and

when Bave> Gave the image as a whole is blue, the R channel is

compensated by the detail layer of the image B channel. Finally,

Rcp I
G
CE I

B
CE are combined as the result of underwater image after

R channel attenuation compensation.

As shown in Figure 7 and Figure 8, for the underwater

image in green hue, the mean value of the G channel is the

largest among the mean values of the RGB channels, and for the

underwater image in blue hue, the mean value of the B channel is

the largest among the mean values of the RGB channels. The

mean value of the R channel is the smallest in both the blue hue

underwater image and the green hue underwater image, and

even in the vast majority of cases the mean value of the R

channel is less than 50. In DAC, we first determine whether the

image is dominated by green or blue, and then compensate for

the lost detail information of the R channel with the detail

information of the dominant color. In DAC, we first determine

whether the image is dominated by green or blue, and then

compensate for the lost detail information of the R channel with

the detail information of the dominant color.

We think that the underwater image after compensating the

R channel partially eliminates the effect of attenuation on

the underwater image, but there is still some deviation

between the underwater image and the real color of the target

scene, so we introduce the Gray World Algorithm (Fu et al.,

2017) to eliminate the effect of different wavelengths of light

attenuation on the image and restore the real color of the target

scene. In our experiments, we found that most of the results

would show an overall red color of the image, so we used the

Gray World Algorithm with the following restrictions on the red

channel.

kR = a
Gray
Rave

(6)

kC =
Gray
Cave

,C ∈ G,B (7)
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kC =
Gray
Cave

,C ∈ G,B (8)

ICout = kCI
C
CE ,C ∈ G,B (9)

Where, Gray is the mean of the R, G, B channel mean. a is a

weight coefficient to control the color recovery of R channel, and

the value range is [0,1]. If a is too small, it will make the image

red compensation insufficient, resulting in the loss of some color

information and the overall blue-green mixed color of the image.

If the a is too large, it will make the image overcompensate and

appear reddish overall, especially the background part of the

image will appear pink or purple. In this paper, we choose a =

0.8 or better performance. Rave Gave Bave are the mean values of

Rcp I
G
EC IBEC respectively. kR kG and kB are scale parameters of R, G,

B channel respectively. ICout denotes the C channel of the

output image.
4 Experiment

4.1 Analysis for underwater image
enhancement benchmark dataset

In the experiments of this paper, the UIEB (Li et al., 2019)

underwater image enhancement benchmark dataset is used,

which consists of 950 real-world underwater images covering

the diversity of underwater environments and contains a variety

of underwater scenes, such as deep-sea fish, coral reefs,

submarine cables, underwater antiquities, etc. Most of the

underwater images in the dataset show blue-green color,

which satisfies the original intention of our proposed

algorithm. In this paper, we conduct experiments based on the

UIEB underwater image dataset, and to verify the effectiveness of

our algorithm, we compare it with other underwater image

enhancement methods for quantitative and qualitative analysis.

In this paper, two types of image quality evaluation metrics

are used to demonstrate the effectiveness of our algorithm. They

are the quality evaluation metrics for non-reference images and

the quality evaluation metrics for reference images. We used the

underwater color image quality evaluation metric (UCIQE)

(Yang and Sowmya, 2015) as an image quality evaluation

metric for non-reference images. UCIQE is a linear

combination of color intensity, saturation and contrast and is

an evaluation of uneven chromatic aberrations, blurring and low

contrast in underwater images. The smaller value of MSE

indicates that the processed image is closer to Ground Truth,

and the larger values of PSNR, SSIM, and UCIQE indicate better

image quality. The CLAHE algorithm is able to stretch the

contrast of underwater images in a limited way, which

increases the contrast and sharpness of the image, improving

the quality of underwater images. However, the range of

application is limited and can result in overexposure or
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https://doi.org/10.3389/fmars.2022.1047053
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lai et al. 10.3389/fmars.2022.1047053
underexposure of underwater images that are too bright or too

dark, as well as loss of detail in the image.

As shown in Figure 9, a histogram calculation of the original

image reveals that there are few pixel points in the red channel of

the unprocessed underwater image. In order to compensate

for the lost detail information in the R channel, we want to

stretch the image by CLAHE to make the pixel value of the R

channel image larger, as shown in Figure 9B, the image after

CLAHE stretching has more pixels in the large pixel value range

for each RGB channel compared to the original image, especially

the peak of the histogram of the R channel is obviously shifted to

the right, and the pixel value of the R channel has significantly

increased. However, due to the less information in the R channel,

the R channel information of the stretched image is still less, and

most of the pixel values are still distributed in the range of [0,35],

so there is no obvious red color in the CLAHE processed image,

and the image still shows a blue-green hue. While our method

compensates for the red channel detail information of the

underwater image, the histogram of the processed image

shows a peak around the pixel value equal to 135, with

significantly more pixels distributed in the large pixel value

range than in the original image and the CLAHE-processed

image, as shown in Figure 9C. The results of our method clearly

eliminate the blue-green hue of the original and CLAHE

processed images.

As shown in Figure 10, we compare our algorithm with

CLAHE. From the comparison, it can be seen that our algorithm

clearly eliminates the blue-green hue of the original image and

has a significant enhancement of the details of the image.

Figures 10A, C show that our method clearly eliminates the
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yellow-green hue in both the original image and the CLAHE

processing results. Because there is no hue interference, the

detailed information on the bill held in the diver’s hand is

clearer, and the information on the packaging of the item in

Figure 10C is clearer. As shown in Figures 10B, D, our method

clearly eliminates the blue hue in the Original image and CLAHE

processing results, so the fish outline and the details of the rocks

in the background are clearer, and our algorithm eliminates the

overstretched red shadows in CLAHE as shown in Figure 10D,

restoring the true shape of the image. Figure 10E, F showed that

the information of the objects in the boat was clearer because the

strong green hue were eliminated, so the outline of the objects in

the image was clearer, and there was no exposure of the upper

outline of the objects after the CLAHE method processing.

Figure 10G showed that each fish in the school of fish in the

image was clearer because the green hue was eliminated.

Gray World Algorithm makes the mean values of the three

channels of the underwater image converge to the same gray

value, which can eliminate the influence of ambient light on the

image and restore the true color of the image. Figure 11 shows

the comparison of the effect between the algorithm in this paper

and Gray World Algorithm. As can be seen from the figure, the

color balance in Gray World Algorithm makes the underwater

images have serious chromatic aberration and the overall color

of underwater images is reddish. As shown in Figure 11:

Figures 11A, B The effect images processed by Gray World

Algorithm have too much red information, which makes the

image lose its real color. Besides, according to Figure 11C it can

be found that the underwater image processed by Gray World

Algorithm has lost details. Therefore, we compensated the image
B CA

FIGURE 9

Image Contrast Stretching. (A) is the histogram of the original image, (B) is the histogram of the image stretched by the CLAHE algorithm, (C) is
the histogram of the image stretched by our DAC.
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B CA

FIGURE 11

The result of comparing with Gray World Algorithm. (A–G) are underwater images in various scenes processed using the Gray World algorithm
and our DAC algorithm, respectively.
TABLE 1 The quantitative analysis of comparing with Gray World Algorithm.

Figure 11 Method MSE ↓ PSNR ↑ SSIM ↑

(A) Gray world 168.66 19.55 0.931

(A) Our 116.86 22.76 0.948

(B) Gray world 109.24 18.63 0.763

(B) Our 98.53 21.09 0.813

(C) Gray world 157.614 18.632 0.451

(C) Our 100.788 17.451 0.763
Frontiers in Marine Science
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The bold values are the best values in the comparison result or our results. ↓ indicates that the smaller the value, the better the image quality, ↑ indicates that the larger the value, the better.
B C D E F GA

FIGURE 10

Effect of comparison with CLAHE. (A–H) are underwater images in various scenes processed using the CLAHE algorithm and our DAC
algorithm, respectively.
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for color attenuation and obtained images with more uniform

colors and richer details.

In addition, as shown in Table 1, the bold values are the

better values in the quantitative comparison. we also

quantitatively analyze our method with Gray World Algorithm

and we can find that our algorithm has a greater advantage over

Gray World Algorithm in the three metrics of MSE, PSNR and

SSIM (Hore and Ziou, 2010).

To demonstrate that our algorithm has a significant

improvement on underwater images, we performed a

qualitative analysis to make a comparison with UCM (Iqbal

et al., 2010), UDCP, ULAP (Song et al., 2018), CLAHE, Gray

World Algorithm, Image Information (Chen et al., 2021) and

FUnIE-GAN based on generative adversarial networks, and a

comparison of the experimental results is shown in the

following Figure 12.

In addition, we conduct the Mean Opinion Score (MOS) test

as subjective test. We find 25 volunteers on university campuses

to evaluate the images in Figure 12. The full score is 5 points. 25

volunteers are made up of teachers and students. The mean score

of 25 volunteers is shown in the Table 2. The bold values are the

best value in the comparison. The enhanced images by our DAC

method get the max score in each comparison. This also means

that the enhanced images by our DAC have obvious advantages

in the subjective test and more in line with human visual
Frontiers in Marine Science 11
aesthetics. Everyone can find the table of result scores by

subjective test in https://github.com/lailaiyun/Single-

Underwater-Image-Enhancement-Based-on-Differential-

Attenuation-Compensation.

As shown in Figure 12, by comparing with other algorithms,

we can see that our algorithm has a significant enhancement

effect on the image. The underwater image we processed

attenuates the color shift of the image, reduces the blue and

green hue of the image, and restores the true color of the image,

making it visually closer to the real sense of land. In addition, we

also enhance the image clarity and make the image more

detailed. UCM stretches the image in RGB and HSV color

space to enhance the quality of the image. FUnIE-GAN and

Image formation all claim to improve the contrast of the image.

However, through experimental comparison, it can be found

that our DAC method is significantly better than their

processing results in improving the contrast and details of

underwater images. Therefore, our method has obvious

advantages compared with the general method of improving

image quality by stretching.

Table 3 shows the results of the quantitative analysis of our

method with other methods for MSE, PSNR, SSIM, and UCIQE

metrics. The bold values are our results in comparison. The

analysis of the above table shows that the results of our method

are only larger than those of the Image Formation method in the
B C D E F G H IA

FIGURE 12

The DAC compares with classical and state-of-the-art methods on the UIEB dataset. (A–I) is the comparison results of original image with
UCM, UDCP, ULAP, CLAHE, gray world, FUnIE-GAN, Image Information and our DAC in each underwater scene.
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MSE comparison. The results of our method are only smaller

than the Image Formation method in the PSNR comparison, but

the results of our method are much higher than the Image

Formation method in both the SSIM and UCIQE comparisons.

And our method achieved the maximum value in the

comparison of SSIM and only scored less than the UCM

method in the comparison of UCIQE. Overall, it seems that

our method still has a clear advantage over other methods in

quantitative analysis.

We also compared the details of the images for each

method. The details of the stone statue and the box were

compared as shown in Figures 13, 14. In Figure 13 it can be

found that other algorithms have some exposure on the stone

image. Our algorithm corrects the problem of uneven

illumination of the stone image, enhancing the dark areas and

weakening the bright areas of the image. And it can be found in

Figure 14 that the image processed by the algorithm of this paper

has more details and the text part is clearer, which effectively

proves the improvement of the image details by the algorithm of

this paper.
4.2 Analysis for enhancing underwater
visual perception dataset

In addition to the UIEB dataset, the experiments in this

paper also use the synthetic underwater image dataset EUVP
Frontiers in Marine Science 12
provided by (Islam et al., 2020) in FUnIE-GAN. This dataset

consists of unpaired data and paired data. We select the

Underwater Dark in the paired data as dataset of our

experiment, and randomly selected 8 underwater images for

qualitative and quantitative analysis.

In addition, we also conduct the Mean Opinion Score (MOS)

test as subjective test.Wefind25volunteers onuniversity campuses

to evaluate the images in Figure 15. The full score is 5 points. 25

volunteers aremadeupof teachers and students. Themean score of

25 volunteers is shown in the Table 4. The bold values are the best

values in the MOS test. The enhanced images by DAC get the max

score in each comparison. This also means that the enhanced

images by our DAC have obvious advantages in the subjective test

and more in line with human visual aesthetics. Everyone can find

the table of result scores by subjective test in https://github.com/

lailaiyun/Single-Underwater-Image-Enhancement-Based-on-

Differential-Attenuation-Compensation.

As shown in Figure 15, the algorithms in this paper are

shown the comparison of the image processing results with the

traditional defogging algorithm CLAHE, DCP, the proposed

UDCP based on the DCP method, the relative global histogram

stretching(RGHS) method proposed by Huang (Huang et al.,

2018), Underwater Light Appreciation Prior (ULAP), and

Compressed Model for Underwater Image Enhancement

(UWnet) proposed by Ankita (Naik et al., 2021).

The results of the CLAHE, DCP, UDCP, and RGHS

methods removed the blurring of the images, but did not
TABLE 3 The quantitative analysis of comparing with other methods on UIEB dataset. Each value is the mean of the processing results of each
method in UIEB dataset.

Method MSE ↓ PSNR ↑ SSIM ↑ UCIQE↑

UCM 109.5064 20.9337 0.857 0.6408

UDCP 224.3492 11.537 0.5564 0.5816

ULAP 118.7066 19.5166 0.8368 0.6025

CLAHE 100.1878 19.9017 0.8884 0.6247

Gray World 114.1646 19.3598 0.8109 0.5617

Image Formation 63.4474 24.4169 0.8293 0.5133

Our 92.8167 20.9417 0.8885 0.6164
fron
The bold values are the best values in the comparison result or our results. ↓ indicates that the smaller the value, the better the image quality, ↑ indicates that the larger the value, the better.
TABLE 2 MOS of images in Figure 12.

MOS ↑ (A) (B) (C) (D) (E) (F) (G) (H) (I)

UCM 3 2.48 2.28 2.8 2.84 2.84 1.8 1.72 1.84

UDCP 1.76 2 1.8 1.8 1.92 2.12 2.08 2.2 1.96

ULAP 2.44 2.76 2.92 1.96 2.48 2.76 2.44 2.28 2.08

CLAHE 3.68 3.44 3.4 3.6 3.72 3.72 3.16 3.12 2.96

Gray World 2.24 1.8 2.08 2.32 2.96 2.2 1.52 1.8 1.96

FunIE-GAN 2.4 2.88 2.68 2.08 2.8 2.68 1.84 2.12 2.04

Image Formation 3.36 2.8 3.16 2.36 3.4 3.72 3.72 2.64 2.8

Our 4.08 4.08 4.04 4.28 4.72 4.48 4.04 4 4.2
tiersin
The bold values are the best values in the comparison result or our results. ↑ indicates that the larger the value, the better.
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eliminate the blue-green hue of the underwater images. The

resultant image details after Image Formation method and

UWnet method processing are not as clear as the details of the

image after our DAC method processing, as shown in the

comparison of Figure 15D, E), the sea urchin spine after DAC

method processing has more detail information.

As shown in Table 5, the data reflects the comparison of each

method. , the bold values are our results in the comparison. Our

DAC results achieve good values in MSE and SSIM, and

outperform most other methods, this means our DAC results

are similar to ground truth. From our experiences, larger PSNR

value do not seem to correlate with better visual quality of

images in many cases. Therefore, although the PSNR value of the

DAC result is not large, the visual effect is indeed better than

most methods, the detailed analysis about are shown in

subjective tests. Our DAC result get the lowest mean value

UCIQE in comparing. This is because UCIQE is a color related

metric, while the EUVP dataset is a synthetic dataset, and the

corresponding ground truth colors are richer, but the color of

the underwater environment in the real world is dull, as shown

in the first row of Figure 16. The color of the image processed by

our DAC method is more consistent with the actual situation.
5 Application

On the one hand, underwater image enhancement tasks can

provide high quality underwater images and videos that conform
Frontiers in Marine Science 13
to human visual habits, and on the other hand, they also serve as

a basis for other underwater development tasks by enhancing the

quality of underwater images and videos to improve the

robustness and accuracy of tasks such as underwater target

detection. In recent years, many researchers have proposed

some new research ideas by combining the underwater image

enhancement task with the object detection task. Yeh et al. (Yeh

et al., 2021) proposed a light-weight deep neural network (LDN),

the network contains color conversion network and Object

detection network, which quantitatively proved that correcting

the color of underwater images can improve the accuracy of

underwater target detection. Liu et al. (Liu et al., 2022) solved the

problem of low contrast and loss of color in underwater images

by a self-adaptive global histogram method and introduced the

convolutional block attention module (CBAM) in YOLO v5 to

adapt the network to target detection in underwater

environments. Zhao et al. (Zhao et al., 2021) designed a new

composite backbone network (CBresnet) and an enhanced path

aggregation network (EPANet) by improving the residual

network (ResNet) to form a novel composite fish detection

framework. The method demonstrates a strong detection

capability for underwater environmental targets.

Although we do not propose new methods applicable to

underwater target detection based on underwater image

enhancement in this paper, we have actually been working on

target detection tasks in underwater environments for many

years, and we have shown our latest progress in our other work.

As shown in the Figure 17 and Table 6 we briefly demonstrate
B C D E F G H IA

FIGURE 14

Comparison of text on the box. (A–I) are the textual information comparison of the original image with UCM, UDCP, ULAP, CLAHE, gray world,
FUnIE-GAN, Image Information and our DAC processed box image, respectively.
B C D E F G H IA

FIGURE 13

Comparison of stone statue detail. (A–I) are the detail information comparison of the original image with UCM, UDCP, ULAP, CLAHE, gray
world, FUnIE-GAN, Image Information and our DAC processed stone image, respectively.
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the performance improvement of the DAC method mentioned

in this paper for the underwater target detection task.

We have enhanced the underwater images provided by 2022

China Underwater robot professional contest, Everyone can get
Frontiers in Marine Science 14
it from: http://www.urpc.org.cn/index.html. It can be found that

the target information of the processed image detection becomes

clear. We applied the processed image to YOLO v7 (Wang et al.,

2022) target detection, and it can be found that more targets can
TABLE 4 MOS of images in Figure 15.

MOS (A) (B) (C) (D) (E) (F) (G) (H)

CLAHE 3.28 3.44 3.32 3.4 3.48 3.2 3.48 3.52

DCP 2.76 2.64 2.64 2.84 2.76 2.56 2.72 2.76

UDCP 2.88 2.72 2.48 2.56 2.8 2.28 2.28 2.84

RGHS 2.88 2.76 2.84 2.84 2.84 2.72 2.48 2.76

ULAP 3.28 2.96 2.92 3 3.44 2.56 2.6 3.36

FunIE-GAN 2.24 2.12 1.96 2.12 1.92 2.08 1.84 1.72

Image Formation 3.2 3.2 3.12 3.24 3.08 3.2 2.84 3.52

UW net 3.16 3.16 2.72 3.04 3.64 3 2.64 3.36

Our 3.56 3.72 3.48 4.2 4.08 3.6 3.6 3.68
frontiersin
The bold values are the best values in the comparison result or our results.
B C D E F G HA

FIGURE 15

The DAC compares with classical and state-of-the-art method on the EUVP dataset. (A–H) is the comparison results of original image with
CLAHE, DCP, UDCP, RGHS, ULAP, FUnIE-GAN, Image Information, UWnet and our DAC in each underwater scene.
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FIGURE 16

Original underwater images provided by 2022 China Underwater robot professional contest, and DAC results of these images.
FIGURE 17

Comparison of YOLO v7 target detection results.
TABLE 5 The quantitative analysis of comparing with other methods on EUVP dataset. Each value is the mean of the processing results of each
method in EUVP dataset.

Method MSE ↓ PSNR ↑ SSIM ↑ UCIQE ↑

CLAHE 82.2157 19.5938 0.8324 0.5861

DCP 120.48 20.7352 0.8848 0.5781

UDCP 179.685 15.4622 0.746 0.595

RGHS 64.5001 25.7784 0.9282 0.5903

ULAP 87.8695 22.4938 0.85347 0.5887

FUnIE-GAN 81.2569 23.3168 0.7747 0.5838

Image Formation 68.716 23.5785 0.909 0.6002

UWnet 80.0802 25.7124 0.8482 0.5411

Our 87.8287 19.3929 0.8363 0.5321
Frontiers in Marine Science
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The bold values are the best values in the comparison result or our results. ↓ indicates that the smaller the value, the better the image quality, ↑ indicates that the larger the value, the better.
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be detected in the enhanced image, as shown in Figure 17.

Application experiments related to YOLO v7 in the environment

with Intel(R) Core (TM) i7-12700KF@3.61 GHz CPU, 16GB

RAM, NVIDIA GeForce RTX 3080 Ti graphics card, Windows

10 Professional, Python version 3.8, CUDA version 11.6, and

Adam gradient descent optimizer. PyTorch version 1.12.0,

CUDA version 11.6. Gradient descent optimizer is Adam.

Learning rate update during training is step. Maximum

learning rate is 0.001. Frozen training batch size is 8, unfrozen

training batch size is 4. Momentum is 0.937.

As shown in Figure 16, the first row are original images, the

second row are DAC results of these images. These original

images provided by 2022 China Underwater robot professional

contest, these images are all collected from real underwater

scenes, we can clearly see that the colors of the images are

relatively monotonous. This reflects the fact that the underwater

image in the real world has dull color. Therefore, parameters

related to color will not get high value. This may explain the

lower values of color related UCIQE parameter in our

quantitative analysis in Table 5 on the synthetic underwater

dataset EUVP in Section 4.2.
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As shown in the Figure 17, the top left image in the figure

shows the original unprocessed image, the bottom left image

shows the detection result of the unprocessed image, the top

right image shows the underwater image after the DAC method,

and the bottom right image shows the detection result of the

processed underwater image. As the yellow box in the figure

shows, the processed underwater image is able to identify more

sea urchins.

In the comparison experiment, we process the original

images provided by 2022 China Underwater robot professional

contest with CLAHE, DCP, UDCP, RGHS, ULAP, Image

Formation and our DAC method respectively, and do not

change the label, and then train the YOLO v7 model. The

model can realize underwater target detection after trained.

Because the output images size of the FUnIE-GAN and

UWnet methods changes, resulting in a mismatch between the

image and the label, we do not compare the improvement of

YOLO v7 with the images processed by the FUnIE-GAN and

UWnet methods. At the 100th epoch, we get the original

underwater image dataset and the model mAPs of the datasets

processed by each method. As shown in Table 6, dataset

enhanced by CLAHE, DCP, RGHS, the corresponding mAP is

lower than that of the Original Image, which may be related to

the distortion of some images processed by these methods. The

mAP values corresponding to the datasets enhanced by UDCP,

ULAP, Image Formation, and DAC methods have been

significantly improved, and the mAP value corresponding to

the dataset processed by the DAC method is the largest, get the

increase of 3.17%. This proves that the enhanced underwater

images by our DAC method can significantly improve the

performance of related underwater object detection and

outperform other methods.

After demonstrating the performance improvement of our

DAC method on the task of underwater image object detection.

In order to verify that the underwater images processed by our

algorithm improve the efficiency of the vision task, it is shown
TABLE 6 All mAPs for original underwater images dataset and
enhanced underwater images dataset by CLAHE, DCP, UDCP, RGHS,
ULAP, Image Formation and DACmethod, are got at the 100th epoch.

Dataset mAP(%) ↑

Original Image 74.32

Enhanced Image by CLAHE 73.91

Enhanced Image by DCP 72.70

Enhanced Image by UDCP 75.26

Enhanced Image by RGHS 73.68

Enhanced Image by ULAP 75.79

Enhanced Image by Image Formation 77.02

Enhanced Image by DAC 77.49
↑ indicates that the larger the value, the better.
FIGURE 18

Canny operator edge detection results.
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that we also applied our processed images to the edge detection

of the Canny operator (Canny, 1986), as shown in Figure 18,

there is the comparison that the Canny edge detection results of

the original image and the image enhanced by each method.

In Figure 18, the first and third rows are the original image

and the result images after processing by each method, and the

second and fourth rows are the results of Canny edge detection

corresponding to each image. In the comparison of the second

row, the outline of the background stone in the image enhanced

by our method is clearer, and the outline of the seagrass in the

image is also clear. In the comparison in the fourth row, the

outlines of the stone in the images processed by our method are

clearer and the background noise is less. This proves that our

DAC method improves the quality of underwater images to a

certain extent and can improve the performance of underwater

exploitation related tasks.
6 Conclusion

In this paper, we propose a pixel processing-based

underwater image enhancement method DAC, which

decomposes the information of each channel of the

underwater image in RGB color space based on the

characteristic of differential attenuation of different

wavelengths of light in the underwater environment,

compensates the R channel detail information of the image,

eliminates the image blur and corrects the image chromatic

aberration, and obtains the underwater image closer to the real

color. In this paper, we propose a pixel processing-based

underwater image enhancement method DAC, which

decomposes the information of each channel of the

underwater image in RGB color space based on the

characteristic of differential attenuation of different

wavelengths of light in the underwater environment,

compensates the R channel detail information of the image,

eliminates the image blur and corrects the image chromatic

aberration, and obtains the underwater image closer to the real

color. To verify the effectiveness of the DAC algorithm, we

demonstrate the superiority of our algorithm by qualitative and

quantitative analysis in the experimental section and the

application section.
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