
ORIENTED REAL BLOWUP

W. D. GILLAM

Abstract. Let X be an analytic space, D ⊆ X a Cartier divisor. The (simple) oriented
real blowup of X along D is a proper map of topological spaces BloD X → X where the
preimage of D is the oriented circle bundle N∗

D/X/R>0 associated to the normal bundle
of D in X. The aim of this brief note is to give a simple explanation of this “well-known”
construction and its basic properties, and to carefully explain how it is related to the
“Kato-Nakayama spaces” of logarithmic geometry. We also provide a discussion of the
symplectic geometry of oriented real blowups.

1. Introduction

Let X be a topological space, π : L → X a complex line bundle on X, s : X → L
a section of π. Locally on X we can find an isomorphism (π, ϕ) : L → X × C of line

bundles over X and we can then consider the subspace Bϕ
L,sX ⊆ L consisting of those

l ∈ L satisfying the condition

ϕ(l)|(ϕsπ)(l)| = |ϕ(l)|(ϕsπ)(l).(1)

If (π, ϕ′) is another trivialization, then we can find a map t : X → C∗ making the diagram

X × C

(x,z)7→(x,t(x)z)

��

L

(π,ϕ)
;;xxxxxxxxx

(π,ϕ′) ##F
FF

FF
FF

FF

X × C

commute, so ϕ′(l) = (tπ)(l)ϕ(l) for all l ∈ L. Since (tπ)(l)|(tπ)(l)| ∈ C∗ for every l ∈ L,
we will have

ϕ(l)|(ϕsπ)(l)| = |ϕ(l)|(ϕsπ)(l)
iff (tπ)(l)ϕ(l)|(tπ)(l)(ϕsπ)(l)| = |(tπ)(l)ϕ(l)|(tπ)(l)(ϕsπ)(l)
iff (tπ)(l)ϕ(l)|(tπsπ)(l)(ϕsπ)(l)| = |(tπ)(l)ϕ(l)|(tπsπ)(l)(ϕsπ)(l)
iff ϕ′(l)|(ϕ′sπ)(l)| = |ϕ′(l)|(ϕ′sπ)(l)

(note tπ = tπsπ because s is a section) which says Bϕ
L,s = Bϕ′

L,s. Since the subspace Bϕ
L,s

of L does not depend on the choice of trivialization, these subspaces defined locally on X
by choosing trivializations glue to a globally defined subspace BL,s ⊆ L.

Notice that:
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1.1. The subspace BL,sX ⊆ L is invariant under the R>0 action inherited from the C∗

scaling action on L (though it is not invariant under the full C∗ action, or even under the
R∗ action). Indeed, the scaling action is given in a local trivialization ϕ by scaling ϕ(l),
and multiplying ϕ(l) by a positive real number preserves the condition (1).

1.2. The subspace BL,sX contains the zero section of L because (1) is trivially satisfied
when ϕ(l) = 0. Likewise, we have BL,0L X = L (here 0L : X → L is the zero section)
because the condition (1) is trivially satisfied when (ϕsπ)(l) = 0. We let B∗

L,sX denote
the complement of the zero section in BL,sX.

1.3. The subspace BL,sX is natural under pullback of line bundles and sections: if f :
X ′ → X is a map of topological spaces, then Bf∗L,f∗sX

′ = X ′ ×X BL,sX.

1.4. In particular, if we pull back to the zero locus D of s, we obtain a cartesian diagram

L|D //

��

BL,sX

��
D // X

of topological spaces.

1.5. Similarly, if x ∈ X is not in the zero locus D ⊆ X of s, then the set of nonzero
l ∈ π−1(x) satisfying (1) (in some trivialization) form a torsor under the R>0 scaling
action.

1.6. The quotient BloL,sX := B∗
L,sX/R>0 is called the simple oriented real blowup (of

X along L, s). BloL,sX is a closed subspace of the oriented circle bundle (see §1.9)
S1L = L∗/R>0 and is therefore proper over X. Removing zero sections and taking R>0

quotients in (1.4), we obtain a cartesian diagram

S1L|D //

��

BloL,sX

��
D // X

of topological spaces. Using (1.5), we see similarly that BloL,sX → X is an isomorphism
away from D (it is a proper bijection).

1.7. Given line bundles L1, . . . , Ln and sections si of Li, we can consider the tensor product
L of the Li with the section s = s1 · · · sn. The natural map L1 ×X · · · ×X Ln → L given
by (l1, . . . , ln) 7→ l1 ⊗ · · · ⊗ ln is (C∗)n equivariant for the (C∗)n action on L given by
composing the product character (λ1, . . . , λn) 7→ λ1 · · ·λn with the usual scaling action.
One checks easily that this induces a map

BL1,s1 X ×X · · · ×X BLn,sn X → BL,sX

which is Rn
>0 equivariant when Rn

>0 acts on BL,s through the product character. Taking
quotients by Rn

>0 yields a map

BloL1,s1 X ×X · · · ×X BloLn,sn X → BloL,sX.
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1.8. We can do the same constructions in the category of analytic spaces. When D ⊆ X
is a Cartier divisor in an analytic space X, D is the zero locus of a tautologically defined
section s of the line bundle L = OX(D). We will set BD X := BL,sX and BloD X :=
BloL,sD to ease notation. In this case OX(D)|D = ND/X , so the cartesian diagram in
(1.6) takes the form:

S1ND/X
//

��

BloD X

��
D // X

The simple oriented real blowup is the basic construction discussed in this paper. We
will use it to define the oriented real blowup in §1.13. The oriented real blowup arises
naturally in log geometry, particularly in the construction of the Kato-Nakayama space
associated to a log analytic space with log structure determined by a normal crossings
divisor [KN]. This is discussed in §2 where we show in §2.5 that the Kato-Nakayama space
associated to an analytic space X with log structure determined by a Cartier divisor D
always maps to BloD X. In the case of a normal crossings divisor in a smooth analytic
space, this induces a map from the Kato-Nakayama space to the oriented real blowup,
which is easily seen to be an isomorphism (§2.6). This section is basically my explanation
of the remark (1.2.3) in [KN] and probably has significant overlap with [KN94], [P], [M].

1.9. Oriented circle bundle. If L is a complex line bundle over a topological space X,
let L∗ be the corresponding principal C∗ bundle (i.e. the complement of the zero section).
Let

S1L := L∗/R>0

denote the quotient of this principal bundle by the action of R>0 ⊂ C∗. The principal S1 =
C∗/R>0 bundle S

1L is called the oriented circle bundle associated to L. The identification
L∗ = (L∨)∗ induces an orientation reversing isomorphism S1L ∼= S1L∗. If one has a
Hermitian metric ⟨ , ⟩ : L ⊗ L → C on L, then S1L can be identified with the locus of
v ∈ L with ⟨v, v⟩ = 1.

For any positive integer n, there is a natural isomorphism

S1(L⊗n) = (S1L)/µn,

where µn ⊆ S1 ⊆ C is the group of complex nth roots of unity acting on S1L through
the inclusion µn ⊆ S1 and the principal bundle action of S1 on S1L. The isomorphism is
given by taking [u] ∈ (S1L)/µn = L∗/(R>0 ⊕ µn) to [u⊗n] ∈ S1L⊗n.

The oriented circle bundle τ : S1L → X inherits an orientation (relative to X) from
the complex orientation of L, so that R1 τ∗Z = Z. More generally, one could perform
the construction of S1L starting from any rank two real bundle L, in which case the
monodromy representation ρ : π1(X) → AutZ = Z/2Z corresponding to the local system
R1 τ∗Z is identified with the first Stieffel-Whitney class of L under the sequence of natural
isomorphisms

Hom(π1(X),Z/2Z) = Hom(H1(X,Z),Z/2Z)
= H1(X,Z/2Z).
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Going back to the case of a complex line bundle, the E2 term of the Leray spectral sequence
for τ looks like

H0(X,Z)

**VVV
VVVV

VVVV
VVVV

VVVV
VV

H1(X,Z)

**UUU
UUUU

UUUU
UUUU

UUUU
UU

H2(X,Z) · · ·

H0(Z,Z) H1(X,Z) H2(X,Z) · · ·
It is a well-known special case of Cartan’s general results on the Leray sequence for EG →
BG that the d2 boundary maps here are given by cup product with c1(L) ∈ H2(X,Z), so
one has a simple method of computing H∗(S1L,Z). The universal example is

S1OPn(−1) = (Cn+1 \ {0})/R>0

= S2n+1.

1.10. Higher codimension. Having defined the oriented real blowup BloD X along a
Cartier divisor D in a complex variety X, one may also wish to define the oriented real
blowup BloZ X along a higher codimension closed subvariety Z ↪→ X (or along a non
Cartier divisor). Assuming everything is smooth, one would probably expect that the

preimage of Z in BloZ X should be the sphere bundle S2codimCZ/X−1NZ/X = N∗
Z/X/R>0.

At least when everything is smooth, one could presumably define something like this
directly by mimicking our construction in the Cartier divisor case, but it is easiest to
simply define

BloZ X := BloE BlZ X,

where E is the exceptional (Cartier!) divisor in the usual blowup BlZ X. In the smooth
(or l.c.i.) situation where E = P(NZ/X), we will have NE/BlZ X = OE(−1) and the total
space of OE(−1)∗ is just N∗

Z/X so the preimage of Z in BloZ X (which is the preimage of

E in BloE BlZ X) is the expected sphere bundle OE(−1)∗/R>0 = N∗
Z/X/R>0.

1.11. Example: The complex plane. The motivating example is the simple oriented
real blowup of the complex plane C at the origin. Here we have

B0C = {(z, Z) ∈ C2 : z|Z| = |z|Z}
and Blo0C = B∗

0C/R>0 is the subspace of Cz × S1
Z given by

Blo0C = {(z, Z) : z = |z|Z},
which maps to C by projection to the first factor.

Consider the usual C∗ action scaling on C. The induced R>0 action on C has one
effective orbit for each point of S1 ⊂ C and the origin is in the closure of each such orbit;
each such orbit closure is a half infinite interval R≥0 with the evident R>0 action. The C∗

action on C lifts naturally to an action on Blo0C by the rule λ · (z, Z) = (λz, λ/|λ|Z), so
that the induced R>0 action is trivial on the “exceptional locus” {(0, Z) : Z ∈ S1}. This
has the effect of separating out the effective R>0 orbit closures, so that

R≥0 × S1 → Blo0C
(r, Z) 7→ (rZ, Z)

is a C∗ equivariant isomorphism for the action λ · (r, Z) := (|λ|r, λ/|λ|Z) on the domain,
and the effective R>0 orbit closures in Blo0C are disjoint and each is isomorphic to R≥0.
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In particular, Blo0C ∼= R≥0 × S1 is a half infinite annulus and the exceptional locus is its
boundary in the manifold sense.

Similarly, we can consider the simple oriented real blowup of Cn along the normal
crossings divisor D = {z1 · · · zn = 0} given by the union of the coordinate hyperplanes
H1, . . . , Hn. This is the subspace of Cn

z1,...,zn × S1
Z given by

BloD = {(z1, . . . , zn, Z) : z1 · · · zn = |z1 · · · zn|Z}.
What we will later call the oriented real blowup BloH1,...,Hn Cn of Cn along D is the
subspace of Cn × (S1)nZ1,...,Zn

defined by

BloH1,...,Hn Cn = {(z1, . . . , zn, Z1, . . . , Zn) : zi = |zi|Zi for all i}.
Notice that:

1.11.1. The oriented real blowup maps to the simple oriented real blowup via

(z1, . . . , zn, Z1, . . . , Zn) 7→ (z1, . . . , zn, Z1 · · ·Zn)

and this map, which clearly commutes with the projections to Cn
z1,...,zn , is an isomorphism

away from the set of points (z1, . . . , zn) contained in two or more coordinate hyperplanes.

1.11.2. The oriented real blowup

BloH1,...,Hn Cn = π∗
1 Blo0C1 ×Cn · · · ×Cn π∗

nBlo0C

is nothing but the fibered product of the pullbacks of Blo0C. As in the C example, the
simple oriented real blowup is the quotient of (the complement of the zero section in)

BD Cn := {(z1, . . . , zn, Z) : z1 · · · zn|Z| = |z1 · · · zn|Z}
by the R>0 action scaling the CZ factor. The oriented real blowup has a similar quotient
description obtained by pulling back the quotient description of Blo0C = B∗

0C/R>0. The
map from the oriented real blowup to the simplified oriented real blowup is obtained as
the quotient by Rn

>0 of an obvious lifted map

B0C×Cn · · · ×Cn B0C → BD Cn

(after removing the zero sections). Note that this lifted map is Rn
>0 equivariant for the

Rn
>0 action on BD An inherited from the R>0 action on BD An via the map

Rn
>0 → R>0

(λ1, . . . , λn) 7→ (λ1 · · ·λn).

1.12. Cohomology groups. When X is a smooth analytic space and D ⊆ X is a normal
crossings divisor, then it is clear from the above local considerations that BloD X is a
smooth (oriented) manifold with boundary δ given by the preimage of D. This manifold
with boundary is homotopy equivalent to its interior, so we have

H∗(BloD X) = H∗(X \D).

There is an isomorphism of relative cohomology groups

H∗(BloD X, δ) = H∗(X,D)

because the space Y obtained from BloD X by contracting δ to a point is the same as
the space obtained from X by contracting D to a point, and both cohomology groups in
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question (at least in positive degree) agree with the cohomology of Y—c.f. Theorem 2.13
and the related discussion in [H]. The map of pairs

τ : (BloD X,S1ND/X) → (X,D)

induces a map of long exact cohomology sequences of pairs

· · · // Hi(X,D) // Hi(X)

��

// Hi(D) //

��

· · ·

· · · // Hi(BloD X,S1ND/X) // Hi(BloD X) // Hi(S1ND/X) // · · ·

which is often useful for computations.

1.13. Oriented real blowup. We have reserved the name oriented real blowup for the
following construction built from the simple oriented real blowup. Suppose D = D1∪· · ·∪
Dn is a (“scheme theoretic”) union of Cartier divisors in an analytic space X, so each Di

is the zero locus of a section si of a line bundle Li and D is the zero locus of the section
s1 · · · sn of the tensor product line bundle L := L1 · · ·Ln. Let

BloD1,...,Dn X := BloD1 X ×X · · · ×X BloDn X

be the fibered product over X of the oriented real blowups of the Di. The tensor product
map

L1 ×X · · · ×X Ln → L

is easily seen to take

BD1 X ×X · · · ×X BDn X

into BD X and this map is Rn
>0 equivariant for the Rn

>0 action on L inherited from the
scaling action on L via (??). Removing the zero sections and taking quotients we obtain
a map

BloD1,...,Dn X → BloD X.

Now suppose X is a smooth analytic space and D is a simple normal crossings divisor in
X. Then locally near any point of X, D is a union of smooth divisors D1, . . . , Dn meeting
like the first n coordinate hyperplanes in Adim X and we can form the space BloD1,...,Dn X.
These locally defined spaces over X glue to yield a space OBlD X which we will call the
oriented real blowup of X along D.

Remark 1.13.1. The oriented real blowup of the Deligne-Mumford stack of marked,
stable nodal curves Mg,n along the (normal crossings) divisor D := Mg,n \Mg,n param-
eterizing “strictly nodal” curves is called the Harvey bordification e.g. by Looijenga in
[EL]. (Really the Harvey bordification refers to an extension of the action of the mapping
class group on Teichmüller space to an action on a larger space whose quotient is the real
blowup of Mg,n along its boundary.)



ORIENTED REAL BLOWUP 7

1.14. Orientations. Let us make a few remarks about orientations of oriented real
blowups. First of all, by an orientation, one always means a choice of trivialization (global
section) of a principal Z2 bundle (double cover). Of course an orientation need not exist
if the bundle is non-trivial, but if there is an orientation, then the set of orientations is
a torsor under Z2. All other notions of orientation are defined in terms of this one. For
example, an orientation of a real line bundle L is an orientation of the Z2 principal bundle
L∗/R>0. This means that for any open subset U ⊆ M , there is a partition

Γ(U,L∗) = Γ(U,L∗)+
⨿

Γ(U,L∗)−

of the set Γ(U,L∗) of nowhere-vanishing sections into pieces called the “positive” sections
and the “negative” sections; the pieces are preserved by the restriction maps and are
invariant under scaling by positive real-valued functions (and are exchanged by s 7→ −s),
but they may be empty. An orientation of an n-dimensional smooth manifold M is an
orientation of the real line bundle ∧nTM .

Sometimes people say that an orientation of a real line bundle L over a topological space
X is a nowhere-vanishing section of L up to rescaling by a positive real valued function
on X—that is, an element of

Γ(X,L∗)/Γ(X, C( ,R>0)).

Such an orientation determines an orientation in the above sense because there is a natural
monomorphism

Γ(X,L∗)/Γ(X, C( ,R>0)) → Γ(X,L∗/R>0).

In situations where one has “partitions of unity,” this monomorphism is bijective because
the only obstruction to lifting an element of Γ(X,L∗/R>0) to an actual nowhere vanishing
section of L lies in H1(X, C( ,R>0)) = 0, but in general this map is not surjective. For
example, there are real line bundles on the long line that deserve to be called orientable
(that is, they are orientable in the above sense), but which have no global non-vanishing
sections.

One can uniquely extend orientations under mild hypotheses:

Lemma 1.0.1. Let f : X → Y be a double cover, U ⊆ Y an open dense subset of Y
with closed complement Z = Y \ U . Suppose every point z ∈ Z has a cofinal system of
neighborhoods V in Y such that V \ Z is connected. Then any section s : U → X over U
extends uniquely to a global section s : Y → X of f .

Proof. Fix a point z ∈ Z. By the hypothesis, we can find a neighborhood V of z in Y
such that V \ Z is connected and such that f : f−1(V ) → V is a trivial double cover.
The topological space V is connected (because it contains the connected space V \ Z as
a dense subspace) and f : f−1(V ) → V is a trivial double cover, so f−1(V ) has two
connected components V1, V2 each isomorphic to V via f . Since V \ Z is connected, so
is s(V \ Z) ⊆ f−1(V ), so it is contained in exactly one of V1, V2, say V1. Since V \ Z is
dense in V and V1 is isomorphic to V via f , s(V \ Z) is dense in V1, so any section of
f : f−1(V ) → V extending s : U ∩ V → f−1(V ) must take values in V1, hence the inverse
of the isomorphism f |V1 : V → V is the unique such extension. Since s extends uniquely
to a neighborhood of any z ∈ Z, the unique local extensions of f glue to a global section
s of f . �
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The typical situation where the lemma does not apply is when Y is a circle and Z is a
point. The hypotheses of the lemma certainly hold in the situation of the following

Proposition 1.0.1. Let M be a manifold with boundary Z, U = M \Z the interior. Then
any orientation of U extends uniquely to an orientation of M .

If M is an oriented manifold with boundary Z, then its boundary Z inherits an orienta-
tion by the “outward normal first” convention, which we now explain. The most difficult
thing to understand here is the definition of the “outward normal direction”. It is more
direct to work with differentials and the conormal bundle rather than vector fields and the
normal bundle. A boundary-defining function f on a smooth manifold M with boundary Z
is a smooth function f : M → R≥0 to the nonnegative reals (with coordinate t) vanishing
Z so that f∗dt (or rather, its restriction to Z) is in the kernel of

Γ(Z, T ∗M |Z) → Γ(Z, T ∗Z)

(i.e. is a section of the conormal bundle N∨
Z/M ) and is a nowhere vanishing on Z.

The basic local case is where M = Rn × R≥0 with coordinates x1, . . . , xn, λ, so that
Z = {λ = 0}. The cotangent sheaf of M is freely generated by dx1, . . . , dxn, λ, while
the cotangent sheaf of Z is freely generated by dx1, . . . , dxn, so the conormal sheaf of
Z in M is freely generated by dλ. The function f : M → R given by f(x, λ) := λ is
evidently a boundary-defining function with f∗dt = dλ. The key point is that any other
boundary-defining function yields the same orientation on the conormal bundle:

Lemma 1.0.2. Suppose f = f(x, λ) : M → R≥0 is a boundary defining function on
M = Rn × R≥0. Then there is a strictly positive smooth function g : Z → R>0 so that
f∗dt = gdλ in Γ(Z,N∗

Z/M ), hence [f∗dt] = [dλ] in the set Γ(Z,N∗
Z/M/R≥0) of orientations

of the conormal bundle.

Proof. We have

f∗dt =
∂f

∂λ
dλ+

n∑
i=1

∂f

∂xi
dxi

f∗dt|Z =
∂f

∂λ

∣∣∣∣
λ=0

dλ+
n∑

i=1

∂f

∂xi

∣∣∣∣
λ=0

dxi

So, to say that f is a boundary defining function is to say that

∂f

∂xi

∣∣∣∣
λ=0

= 0

for i = 1, . . . , n and that

g :=
∂f

∂λ

∣∣∣∣
λ=0

is a nowhere-vanishing smooth function of x1, . . . , xn. But actually, it must be a positive
smooth function of the xi, else it would be strictly negative for some x, which would violate
the Mean Value Theorem because f(x, 0) = 0, f is a nonnegative function, and all the
other partials of f vanish at (x, 0). �
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The lemma implies that any two boundary-defining functions on a manifold M with
boundary Z determine the same orientation of N∗

Z/M (because this is a local question,

so we reduce to the situation of the lemma) so, since we can always find a boundary-
defining function locally, we have a global orientation of N∗

Z/M called the inward normal

orientation. As it turns out, the more natural orientation is the opposite orientation,
called the outward normal orientation, which we always use by default unless otherwise
indicated. If M itself is oriented, then there is a unique orientation of Z so that the
isomorphism

N∨
Z/M ⊗ ∧n−1T ∗Z → ∧nZ

β ⊗ α1 ∧ · · · ∧ αn−1 7→ β

obtained from adjunction of the exact sequence

0 → N∨
Z/M → T ∗M |Z → T ∗Z → 0

is orientation-preserving (for the outward normal orientation).

This “outward normal first” convention is the one which makes Stokes’ Theorem hold.
That is, the diagram

Γ(M,∧n−1T ∗M)

��

d // Γ(M,∧nT ∗M)∫
��

Γ(Z,∧n−1)

∫
// R

will commute if Z is given the outward normal first orientation it inherits from the compact,
oriented, smooth manifold M . For example, consider the unit interval M = [0, 1] with
coordinate t, with its usual orientation [dt]. The boundary Z = {0, 1} consists of two
points. A point is canonically oriented because ∧0T (Point) = R is naturally oriented,
but the point 0 inherits the opposite of the canonical orientation from M via the outward
normal first convention (because the outward normal direction at 0 is −dt since t is a
boundary-defining function at zero, so dt gives the inward normal direction) while the
point 1 inherits the canonical orientation because the outward normal direction at 1 is dt
(because 1− t is a boundary-defining function near 1).

Now let us put all of this together and discuss the orientation of S1 × R≥0 = Blo0C
(c.f. §1.11) and its boundary circle. First of all, by Proposition 1.0.1, the usual orientation
[dx∧ dy] on C∗ extends uniquely to an orientation of Blo0C. The orientation inherited by
the boundary S1 via the outward normal first convention is not the usual counterclockwise
orientation, but rather the clockwise orientation, as is clear from Figure 1 below. This is
because the counterclockwise orientation is the one that S1 would inherit as the boundary
of the unit disc, while our circle has the rest of the manifold to its “outside”.

1.15. Example: Nodal curves. Consider the nodal curve f : A2
z1,z2 → A1

z given by

z 7→ z1z2. Then the pullback of the Cartier divisor {0} ⊂ A1
z under f is the Cartier

divisor D = {z1z2 = 0} ⊂ A2
z1z2 , which is the nodal curve given by the union of the two

coordinate axes H1,H2. The functoriality properties of (simplified) oriented real blowup
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Figure 1. The orientation on S1 inherited from Blo0C via the outward
normal first convention is not the usual counterclockwise orientation.

yield a commutative diagram

BloH1,H2 A2 //

&&MM
MMM

MMM
MMM

BloD A2

��

// Blo0A1

��
A2
z1,z2

// A1
z.

To understand the maps in this diagram, start from the diagram

BH1,H2 A2 //

��

BD A2 //

��

B0A1

��
A2
z1,z2 × A2

Z1,Z2

(z1,z2,Z1,Z2) 7→(z1,z2,Z1Z2) //

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWW

A2
z1,z2 × A1

Z

��

(z1,z2,Z)7→(z1z2,Z) // A1
z × A1

Z

��
A2
z1,z2

(z1,z2)7→z1z2 // A1
z,

where the lower vertical maps should be viewed as the bundle OA1(0) over A1 and its
pullback to A2, and the diagonal map should be viewed as the fibered product OA2(H1)×A2

OA2(H2) of line bundles on A2. The top vertical maps are the inclusions of the subspaces:

BH1,H2 A2 = {(z1, z2, Z1, Z2) : zi|Zi| = |zi|Zi, i = 1, 2}
BD A2 = {(z1, z2, Z) : z1z2|Z| = |z1z2|Z}
B0A1 = {(z, Z) : z|Z| = |z|Z}.
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The maps are R2
>0 equivariant for the actions

(λ1, λ2) · Z = λ1λ2Z

(λ1, λ2) · Z1 = λ1Z1

(λ1, λ2) · Z2 = λ2Z2.

Removing the locus where Z = 0, Z1 = 0 or Z2 = 0 and taking the quotient by this action
yields the diagram:

BloH1,H2 A2 //

��

BloD A2 //

��

Blo0A1

��
A2
z1,z2 × (S1)2Z1,Z2

(z1,z2,Z1,Z2) 7→(z1,z2,Z1Z2) //

++XXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXX

A2
z1,z2 × S1

Z

��

(z1,z2,Z) 7→(z1z2,Z) // A1
z × S1

Z

��
A2
z1,z2

(z1,z2)7→z1z2 // A1
z,

where the top vertical arrows are the inclusions of the subspaces:

BloH1,H2 A2 = {(z1, z2, Z1, Z2) : zi = |zi|Zi, i = 1, 2}
BloD A2 = {(z1, z2, Z) : z1z2 = |z1z2|Z}
Blo0A1 = {(z, Z) : z = |z|Z}.

Notice that the fiber of BloH1,H2 A2 → Blo0A1 over a point (0, Z) in the “exceptional
locus” {0} × S1

Z ⊂ Blo0A1 is the locus

{(z1, z2, Z1, Z2) ∈ BloH1,H2 A2 : z1z2 = 0, Z1Z2 = Z},

which can be described as a coproduct

{(z1, 0, Z1, Z/Z1) : z1 = |z1|Z1}
⨿

{(0,0,Z1,Z2):Z1Z2=Z}

{(z1, 0, Z/Z2, Z2) : z2 = |z2|Z2}.

This we recognize as the coproduct

Blo0A1
z1

⨿
(0,Z1)∼(0,Z/Z1)

Blo0A1
z2(1)

obtained by gluing the exceptional locus of Blo0A1
z1 (which is also its boundary in the sense

of manifolds) to the exceptional locus of Blo0A1
z2 in an orientation reversing manner.

Notice that the gluing (1) depends on the parameter Z ∈ S1
Z . More canonically, the

inclusion of the axes A1
z1

⨿
0A1

z2 ↪→ A2
z1,z2 , and the flat family f having this as fiber over

0, yield an identification N0/A1
z1
⊗N0/A2

z2
= N0/A1

z
, so we see that an orientation reversing

identification S1N0/A1
z1

∼= S1N0/A2
z2

is the same thing as a point of S1N0/A1
z
= S1

Z .

Notice also that the gluing (1) of two half infinite annuli is homeomorphic to C∗. The
fiber of BloH1,H2 → Blo0A1 at a point z ̸= 0 away from the exceptional locus is just the
fiber

f−1(z) = {(z1, z2) : z1z2 = z}

of f , which is also a C∗. In fact, the map BloH1,H2 A2 → Blo0A1 is a locally trivial
C∗ bundle over the half infinite annulus with monodromy given by a Dehn twist around
S1 ⊂ C∗.
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2. Kato-Nakayama Spaces

2.1. Log structures. Let X = (X,OX) be a locally ringed space over C. A prelog
structure on X is a map αX : MX → OX (we often simply write MX and suppress
notation for αX) of sheaves of monoids on X, where OX is regarded as a monoid under
multiplication. A map of prelog structures is a morphism of monoids over OX . A prelog
structure is called a log structure iff the map

αX |α−1
X O∗

X : α−1
X O∗

X → O∗
X

is an isomorphism. For a log structure MX we suppress notation for this isomorphism,
thereby regarding O∗

X as a subsheaf of MX . To any prelog structure MX , we can functo-
rially associate a log structure Ma

X and a morphism of prelog structures a : MX → Ma
X

initial among maps from MX to a log structure; if MX is already a log structure, this map
a will be an isomorphism so we suppress it from notation and simply writeMX = Ma

X . We
form Ma

X by setting Ma
X := MX ⊕α−1

X O∗
X
O∗

X , where the pushout is taken in the category

of sheaves of monoids on X. The structure map Ma
X → OX is given by [m,u] 7→ αX(m)u

using the universal property of the pushout, and the map a : MX → Ma
X is given by

m 7→ [m, 1].

There is an obvious way to pull back a log structure MX on X along a map (f, f ♯) :
X ′ → X. We simply declare f∗MX to be the log structure on X ′ associated to the prelog
structure

f ♯f−1αX : f−1MX → OX′ .

Locally ringed spaces over C with log structure form a category where a map (X ′,M′
X) →

(X,MX) is a map f : X ′ → X of the underlying locally ringed spaces over C together
with a map f∗MX → M′

X of log structure on X ′.

2.2. Divisorial log structures. Let X be an analytic space and let U be an open subset
of X. The sheaf of submonoids of (OX , ·) given by

MX := {f ∈ OX : f |U ∈ O∗
U}

is an important example of a log structure on X often called the divisorial log structure.
(By Hartog’s Theorem, this isn’t a particularly interesting log structure unless X \U has
codimension one in X.) If the complement D := X \ U is a Cartier divisor in X, then
notice that MX contains the units O∗

X and any “local equation” f for D.

If D ⊆ X is a Cartier divisor, one can also define a log structure MX on X as follows.
Locally, where we have an equation f for D (a nowhere vanishing section of the invertible
sheaf OX(D)), we let MX be the log structure associated to the prelog structure αf :
N → OX taking 1 to f . If f ′ is a different local equation for D, then we can write f ′ = vf
for a unique v ∈ O∗

X . The log structures associated to αf ′ and αf are then isomorphic via
the map [n, u] 7→ [n, vnu]. The locally defined log structures glue to a global log structure
via these natural local isomorphisms.

2.3. Aside. Suppose X,D “are” locally finite type C schemes, so, locally, X = SpecA
and D = SpecA/f . Then X \D = SpecAf so certainly f ∈ MX(X) as mentioned above,
but it may not be true that f and O∗

X(X) = A∗ generate the monoid MX(X) because f
may be reducible: e.g. take A = C[z1, z2], f = z1z2.
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In general, this reducibility is desirable for a good theory of normal crossings divisors.
For example, f := y2−x2(x−1) ∈ A := C[x, y] is irreducible in the local ring A(x,y) of the
origin, but reducible in its Henselization where there is a square root u of the unit x− 1
and f can be factored as (y + ux)(y − ux). (Since this u is analytic near the origin, one
also has this reducibility in the local ring of the analytic space A2 at the origin.) For this
reason, one usually works with the étale topology of X (or its associated analytic space)
in these situations, even though the definition of MX makes perfect sense on the Zariski
site of the scheme X. In the latter example, the characteristic monoid MX,x/OX,x at the
origin x would be the free monoid on one generator f if calculated in the Zariski topology,
whereas it is the free monoid on two generators (y+ux), (y−ux) if calculated in the étale
topology or on the analytic space. One should keep in mind in the sections that follow
that even if X “is” a locally finite type C scheme, the sheaf of monoids MX should always
be thought of as a sheaf on the étale site of X or on the analytic space X.

2.4. Kato-Nakayama spaces. Let X be a locally ringed space over C equipped with
a log structure MX . The Kato-Nakayama space X log has as points pairs (x, F ) where
x ∈ X and F : MX,x → S1 is a monoid homomorphism satisfying

F (u) = u(x)/|u(x)| for all u ∈ O∗
X,x ⊆ MX,x.(2)

Given an open subset U ⊆ X and a section m ∈ MX(U), we tautologically obtain a
function

ϕm : U log → S1

(u, F ) 7→ F (mx).

The topology on X log is the coarsest topology on this set making the map

τ : X log → X

(x, F ) 7→ x

containuous and making the maps ϕm continuous (for the usual metric topology on S1).

The Kato-Nakayama space is an inverse limit preserving functor from log locally ringed
spaces over C to topological spaces.

Suppose there is a chart for MX : a finitely generated submonoid P of an abelian group,
generated by p1, . . . , pn say, and a map of monoids α : P → MX(X) (this is the same
thing as a map of sheaves of monoids PX → MX) such that the map from the pushout

PX ⊕α−1O∗
X
O∗

X → MX

is an isomorphism (in the category of sheaves of monoids on X). The map

X log → X × (S1)n(3)

(x, F ) 7→ (x, F (α(p1)x), . . . , F (α(pn)x))

is clearly monic (onto a closed set in fact), so we can use the product topology onX×(S1)n

to endow X log with a topology making the projection (x, F ) 7→ x a proper continuous map
to X. It can be shown that this topology on X log is the same as the one defined above.

The paradigm example is when X = Spec(P → C[P ]), meaning X is the analytic
space associated to the C scheme SpecC[P ] and X has the log structure associated to the
prelog structure P → OX . In this case, the topological space of X is the set of monoid
homomorphisms P → C (with the topology induced by the metric topology on C), while
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the Kato-Nakayama space of X is the set of monoid homomorphisms P → R≥0×S1. The
map τ : X log → X is the map induced by composing with the monoid homomorphism

R≥0 × S1 → C
(λ, u) 7→ λu.

(View S1 and R≥0 as submonoids of (C, ·) in the usual way.)

2.5. The map. Let D be a Cartier divisor in an analytic space X. We will now explain
how to construct a natural map of topological spaces

X log → BloD X(4)

(over X) from the Kato-Nakayama space to the simplified oriented real blowup. The
ideal sheaf OX(−D) of D is an invertible OX module. I first claim that, for any x ∈ X,
any nonzero f in the fiber OX(−D)|x, and any lift f ∈ OX(−D)x of f to the stalk, we
have f ∈ MX,x. Indeed, if mx ∈ OX,x is the maximal ideal, then we have OX(−D)|x =
OX(−D)x/mxOX(−D). If g ∈ OX(−D)x is a local equation for D near x, then ·g :
OX,x → OX(−D)x is an isomorphism, so we can write f = gh for some h ∈ OX,x and, in
fact, we must have h ∈ O∗

X,x because otherwise h would be in mx and f would be zero in

the fiber. Now, we already mentioned that g ∈ MX,x, so certainly f = gh ∈ MX,x since
h is a unit, so this proves the claim.

I next claim that (2) implies that F (f) ∈ S1 (which we may speak of in light of the
first claim) is independent of the choice of lift f of the nonzero element f of the fiber
OX(−D)|x to the stalk OX(−D)x. Hence F determines a map

F : OX(−D)|∗x → S1.(5)

Indeed, if f
′
is another lift, then we can write f

′
= f +m′ for some m′ ∈ mxOX(−D)x.

As before, if we choose a local equation g ∈ OX(−D)x for D near x, then we can write

f = gh, m′ = gm, for h ∈ O∗
X,x and m ∈ mx, hence f

′
= gh+ gm. Now we compute

F (f) = F (gh)

= F (g)F (h)

= F (g)h(x)/|h(x)|

using (2). Similarly, since h+m ∈ O∗
X,x, we find that

F (f
′
) = F (gh+ gm)

= F (g)F (h+m)

= F (g)(h(x) +m(x))/|h(x) +m(x)|
= F (g)h(x)/|h(x)|

because m ∈ mx is zero in the fiber OX,x/mx = C. This proves the claim.

The condition (2) implies that the map (5) is C∗ equivariant for the scaling action on the
fiber and the usual action λ · Z = λ/|λ|Z of C∗ on S1 so it descends to an S1 equivariant
map F : OX(−D)|∗x/R>0 → S1. This in turn may be viewed as a point of S1OX(D) lying
over the point x ∈ X, so we have produced a map (of sets over X at least)

X log → S1OX(D).(6)
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I claim this map is continuous. Since both spaces map continuously to X, the question
is local on X, hence we may assume there is a chart α : P → MX(X) and a function
g ∈ Γ(X,OX(−D)) cutting out D. Let p1, . . . , pn be generators for P . After possibly
shrinking X again, we can write g = upe11 · · · penn in MX(X) for some unit u ∈ Γ(X,O∗

X)
(dropping notation for image under α). Using the local equation g to make the identifica-
tion S1OX(D) = X ×S1, the map (6) can be written (x, F ) 7→ (x, F (gx)) ∈ X ×S1. This
fits into the commutative diagram

X log
(3) //

(6)
$$I

II
II

II
II

II
II

X × (S1)n

(x,v1,...,vn) 7→(x,(u(x)/|u(x)|)v1···vn)

��
X × S1,

so since the topology on X log is inherited from the horizontal map (3) and the vertical
map is clearly continuous, we conclude that the map (6) is also continuous.

Finally, I claim that the map (6) factors through the closed subspace BloD X ⊆ S1OX(D),
which will complete the construction of (4). Again, the question is local on X, so we can
assume there is a global function g ∈ Γ(X,OX) cutting out D. The function g determines
a trivialization of OX(D), hence an identification S1OX(D) = X × S1 of spaces over X.
Under this identification, the map (6) is given by

X log → X × S1

(x, F ) 7→ (x, F (gx))

and BloD X ⊆ S1OX(D) is identified with the subspace of X × S1 consisting of points
(x,Z) satisfying g(x) = |g(x)|Z.

The easiest thing to do now is to appeal to continuity: Since we already showed (6) is
continuous, it suffices to establish the desired factorization on a dense set, so it suffices
to check that g(x) = |g(x)|F (gx) when x ∈ X \D, which is clear from (2) because when
x ∈ X \D, we have gx ∈ O∗

X,x and hence F (gx) = g(x)/|g(x)|.

Example 2.5.1. Consider the case X = A1
t , D = {0}. Then the map N → Γ(X,OX)

mapping 1 to t ∈ Γ(X,OX) is a global chart for the divisorial log structure MX . In this
case, the map (3) used to define the topology on X log is

X log → X × S1

(z, F ) 7→ (z, F (tz))

which is a closed embedding onto the set of (z, Z) with z = Z|z|. In fact, by following
through the definitions, we see that the map (4) is an isomorphism X log ∼= BloD X.

2.6. An important case. Slightly generalizing this example, if X is a smooth analytic
space and D ⊆ X is a normal crossings divisor, then the Kato-Nakayama space X log will
be isomorphic to the oriented real blowup OBlD X. Indeed, first consider the case where D
is smooth. Then OBlD X = BloD X and the claimed isomorphism is provided by the map
(4), since one can reduce to the case of the above example by working locally: the local
picture of D ⊆ X looks like {0} ⊆ A1 times a trivial factor. In the general case, D ⊆ X
looks locally like a union of coordinate hyperplanes in An and the divisorial log structure
splits as the direct sum of the log structures associated to each individual hyperplane.
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Consequently, the Kato-Nakayama space in this local case is the fibered product over X
of the Kato-Nakayama spaces of the log schemes with divisorial log structures associated
to smooth divisors. But by definition, OBlD X is described locally in terms of similar
fibered products, so the fibered product over X of the maps (4) will provide the desired
isomorphism.

3. Symplectic Geometry

This section contains some brief remarks on the symplectic geometry of oriented real
blowups. Let X be a complex manifold, L → X a holomorphic line bundle equipped with
a Hermitian metric

⟨ , ⟩ : L⊗ L → C.
Suppose we have a holomorphic, nonvanishing section s : U → L of L over an open subset
U ⊆ X. Then we obtain a smooth function ⟨s, s⟩ from U to R>0 ⊆ C, and hence a smooth
function ln⟨s, s⟩ from U to R. One checks easily1 that the (1, 1)-form

ωL :=
i

2π
∂∂ ln⟨s, s⟩

= − i

2π
∂∂ ln⟨s, s⟩

=
i

4π
(∂ + ∂)(∂ − ∂) ln⟨s, s⟩

= d

(
i

4π
(∂ − ∂) ln⟨s, s⟩

)
is independent of the choice of such an s. Since we can always choose such an s locally,
we obtain a global (1, 1)-form ωL.

For any n ∈ Z, if we give L⊗n the natural metric ⟨ , ⟩n inherited from the metric ⟨ , ⟩
on L, then we have ωL⊗n = nωL because if s is a nowhere vanishing section of L, then sn

is a nowhere vanishing section of L⊗n and we have

ln⟨sn, sn⟩n = ln(⟨s, s⟩n)
= n ln⟨s, s⟩.

The (1, 1)-form ΘL := ∂∂ ln⟨s, s⟩ is called the curvature form (of L with the given
metric). We prefer to keep the constant i/(2π) around and work with ωL instead of ΘL

for the following reasons: First of all, the differentials

d = ∂ + ∂ and dc =
i

4π
(∂ − ∂)

are real meaning that df and dcf are real-valued 1-forms for any smooth, real-valued
function f (this is easy to see in local coordinates), so the form ωL can be regarded as a
real 2-form, and the form

α := dc ln⟨s, s⟩
can be regarded as a real 1-form. Furthermore, the global 2-form ωL is closed (because
locally we have the 1-form α with dα = ωL), and the corresponding de Rham cohomology
class [ωL] ∈ H2

dR(X) is the the first Chern class c1(L) [GH, Page 140].

1c.f. the computation on Page 30 of [GH]



ORIENTED REAL BLOWUP 17

The form ωL is of interest for various reasons beyond the fact that it represents the
first Chern class in de Rham cohomology. For example, recall [GH, Pages 29, 148]2 that
a (1, 1)-form ω is called positive iff the associated pairing

ω : TX ⊗ TX → C
is a Hermitian metric. Similarly, a line bundle L is called positive iff it admits a Hermitian
metric such that ωL is positive (it turns out that this is equivalent to the existence of a
positive (1, 1)-form β such that [β] = c1(L) in de Rham cohomology). The basic example
is the line bundle O(1) on Pn, which comes with a tautological Hermitian metric via the
inclusion of its dual in the trivial bundle Pn × Cn+1 and the usual Hermitian metric on
Cn+1. With this metric, the (1, 1)-form ωO(1) is positive, and the corresponding Hermitian
metric is called the Fubini-Study metric, denoted ωFS .

In the rest of this section, we will consider the following situation: X is a complex
manifold, D a complex submanifold of codimension one, L → X a holomorphic line bundle,
s is a holomorphic section of L which vanishes to order n along D, but is nonvanishing
elsewhere. We allow n to be zero or negative, in which case s has a pole of order −n
along D, but is nonvanishing elsewhere. In either case, s trivializes L away from D, so
any 2-form ω representing c1(L) (or a multiple of it) becomes exact after restricting to
X \D. The oriented real blowup τ : X → X of X along D is a manifold with boundary
D = S1ND/X , so it is homotopy equivalent to its interior X \D = X \D, hence we also

know that the 2-form τ∗ω is exact on X, so we can write τ∗ω = dα for some 1-form α on
X. Away from D, where

τ : X \D → X \D
is an isomorphism, we have a natural choice for such an α, namely τ∗α, where α is defined
using the nonvanishing section s : X \D → L as above.

In fact, we will see momentarily that this real 1-form τ∗α on X \D extends uniquely
to X, and the extended 1-form α has some very nice properties. Let π := τ |D : D → D
be the projection for the circle bundle S1ND/X , and let T ∗

π be the sheaf of π-relative

differentials on D, defined by the exact sequence

0 → π∗T ∗D → T ∗D → T ∗
π → 0.

The circle bundle D is naturally oriented by the “outward normal first” convention of
§1.14 in light of the fact that it is the boundary of the smooth manifold X, and of course
D is oriented, so π has a natural relative orientation, hence we have a well-defined map∫

: Γ(D,T ∗
π ) → Γ(D,Ω0)

from relative 1-forms on D to smooth functions on D given by integrating over the fibers
of π.

Theorem 3.1. Let X,D,L, s,X,D be as above. The (real) 1-form

τ∗α =
i

4π
(∂ − ∂) ln⟨s, s⟩

extends uniquely to a global 1-form α on X with dα = τ∗ωL. In particular, τ∗c1(L) = 0
in H2

dR(X). The image of α|D in Γ(D,T ∗
π ) integrates to n over every fiber of π.

2The definition of positive in [GH] might differ from ours because of the point at which the constant
i/(2π) is inserted.
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Proof. Since X \D = X \D is dense in X, such an extension α is unique if it exists, so
it suffices to construct it locally. The equality dα = τ∗ωL will then be automatic because
we have the equality dα = ωL on the dense open set X \D by definition of ωL. Note that
formation of the oriented real blowup is local §1.3. The final statement is also local, so
we can assume X = Cn with coordinates z1, . . . , zn and D = {z1 = 0}. The hypothesis on
s ensures that we can write s = zn1 s

′ for a holomorphic nonvanishing section s′, so α is
given on X \D by

α =
i

4π
(∂ − ∂) ln⟨zn1 s′, zn1 s′⟩

=
ni

4π
(∂ − ∂) ln(z1z1) +

i

4π
(∂ − ∂) ln⟨s′, s′⟩

= α1 + α2,

where we set

α1 :=
ni

4π
(∂ − ∂) ln(z1z1)

=
ni

4π

z1dz1 − z1dz1
z1z1

α2 =
i

4π
(∂ − ∂) ln⟨s′, s′⟩.

The section s′ is nowhere vanishing, so α2 is a global 1-form on X, hence τ∗α2 is the
pullback of a global 1-form on X. The issue is only in extending τ∗α1 to a global 1-form
on X. By trivial special cases of the compatibility with oriented real blowup and pullback
(§1.3) and the example in §1.11, we have

X = BloD X

= (Blo0Cz1)× Cn−1
z2,...,zn

= (R≥0 × S1)× Cn−1
z2,...,zn .

We give R≥0 and S1 coordinates λ and t, so dt freely generates the cotangent sheaf of
S1 and a function on S1 is a 2π-periodic function of t (t is really the coordinate on the
universal cover of S1). The map τ is given by

(λ, t, z2, · · · , zn) 7→ (λeit, z2, . . . , zn),

so we have:

τ∗z1 = λeit

τ∗dz1 = eitdλ+ λieitdt

τ∗z1 = λe−it

τ∗dz1 = e−itdλ− λie−itdt

τ∗(z1z1) = λ2,

hence we compute

τ∗α1 =
ni

4π

λdλ+ λ2idt− (λdλ− λ2idt)

λ2

=
−n

2π
dt.
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The fortunate pole cancellation shows that τ∗α1 extends to a global 1-form α1 ∈ Γ(X,T ∗X),
hence the 1-form τ∗α on X \ D also extends to a global 1-form α on X and we have
α = α1 + τ∗α2. If we restrict α1 to the boundary (i.e. we set λ = z2 = · · · = zn = 0) and
integrate over the boundary D (i.e. integrate over t), we appear to get∫

α1 =

∫ 2π

0

−n

2π
= −n,

but actually we get n because we got the −n by integrating over the circle in the usual
counter-clockwise orientation, but this is the opposite of the orientation on the boundary
inherited from the natural orientation on X and the outward normal first convention
(§1.14). Note that α1 and α have the same integral over the boundary because τ∗α2|D =
π∗(α2|D) is pulled back from D, hence it is zero in the relative cotangent sheaf T ∗

π , hence
integrates to zero over the fibers of π. �

3.1. Example: The Riemann Sphere. For the sake of concreteness and to make sure
we have all of our signs, constants, and orientation issues straight, let’s go through the
case X := P1, D = [0 : 1] ∈ P2, X = BloD X. The space X is topologically a disc. Here
our divisor (point) D is the complement of the open subset

U0 = C ↪→ P1

w 7→ [1 : w],

which is the origin in the other chart

U1 = C ↪→ P1

z 7→ [z : 1].

We have the non-vanishing section s : U0 → O(−1) defined by s(w) := (1, w). On
U0 ∩ U1 ⊆ U1 this section is given by s(z) = (1, z−1). On U1, we know that the Fubini-
Study form ωFS is given by

ωFS =
i

2π
∂∂ ln⟨t, t⟩

for any non-vanishing section t of O(−1) over U1. In particular, we know that the Fubini-
Study form ωFS is given on U1 ∩ U0 = {z ̸= 0} by

ωFS =
i

2π
∂∂ ln⟨s, s⟩

=
i

2π
∂∂ ln(1 + z−1z−1)

=
i

4π
(∂ + ∂)(∂ − ∂) ln(1 + z−1z−1)

= dα,

where we set

α :=
i

4π
(∂ − ∂) ln(1 + z−1z−1)

as usual. We know by general theory that the above formula for ωFS on U1 ∩ U0 must
extend (uniquely) to the origin in U1; we can see this very explicitly in this case by making
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the computation

ωFS =
i

2π
∂∂ ln(z−1z−1(zz + 1))

=
i

2π
∂∂ ln(1 + zz)− i

2π
∂∂ ln(zz−1)

=
i

2π
∂∂ ln(1 + zz),

which is the usual expression for ωFS we would get by using the nowhere-vanishing section
t(z) := (z, 1) of O(−1) over U1. Continuing to expand this out, we get

ωFS =
i

2π
∂

(
zdz

1 + zz

)
=

i

2π

dz ∧ dz

(1 + zz)2

=
i

2π

(−2i)dx ∧ dy

(1 + x2 + y2)2

=
1

π

dx ∧ dy

(1 + x2 + y2)2
,

where z = x+ iy. We can integrate this by changing to polar coordinates:∫
X
ωFS =

∫
U1

ωFS

=

∫
R2

1

π

dx ∧ dy

(1 + x2 + y2)2

=
1

π

∫ 2π

0

∫ ∞

0

rdrdθ

(1 + r2)2

=

∫ ∞

0

2rdr

(1 + r2)2

=

∫ ∞

1

du

u2

= 1,

where we made the substitution u = 1+ r2. We also know from our discussion above that
τ∗α extends uniquely to a global 1-form α on X. We have τ−1(U1) = Blo0C = R≥0 × S1

with coordinates λ, t, with τ given by (λ, t) 7→ λeit. As usual, we view S1 as the quotient
S1 = Rt/2πZ, so that the usual orientation [dt] of Rt gives an orientation of S1. Then we
compute

τ∗z = λeit

τ∗dz = eitdλ+ λieitdt

τ∗z = λe−it

τ∗dz = e−itdλ− λie−itdt.
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If we massage the formula for α a little bit to get

α =
i

4π
(∂ − ∂) ln(z−1z−1(zz + 1))

=
i

4π

zdz − zdz

zz
+

i

4π

zdz − zdz

1 + zz
,

then we easily compute

τ∗α =
i

4π

2λ2idt

λ2
+

i

4π

−2λ2idt

1 + λ2

=
i

4π
(2idt)− i

4π

λ2idt

1 + λ2

=
−1

2π
dt+

1

4π

λ2

1 + λ2
dt,

which is the formula for our extension α of τ∗α to Blo0C. If we now restrict this to the
boundary S1 of Blo0C (i.e. we set λ = 0) and integrate, we get −1. But we integrated
over S1 using its counterclockwise orientation, which is the opposite of the orientation it
has as the boundary of Blo0C, so we do indeed check that Stokes’ Theorem works out
here: ∫

X
ωFS =

∫
X
τ∗ωFS

=

∫
X
dα

=

∫
∂X

α

= −
∫ 2π

0

−dt

2π

= 1.
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