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ABSTRACT Path planning algorithms for unmanned aerial or ground vehicles rely on Global Positioning

System (GPS) information for localization in many surveillance and reconnaissance applications. However,

disruption of GPS signals, by intention or otherwise, can render these algorithms ineffective. This paper

provides a way of addressing this issue by leveraging range information from additionally placed stationary

objects in the environment called Landmarks (LMs). The placement of LMs and the route followed by

the vehicle is posed as an integer program such that the total travel and LM placement cost is minimized.

The proposed formulation of the optimization problem also allows for a limited field-of-view of the sensor

on-board the vehicle. For instances that are hard to solve for optimal solutions using the integer program,

we present two fast heuristics to find good feasible solutions. We provide a systematic framework and

algorithms for the problem, and evaluate the system using numerical, simulation and experimental results.

INDEX TERMS GPS-denied environments, integer linear programming, localization, vehicle-routing.

I. INTRODUCTION

The use of Unmanned Vehicles (UVs) is growing at a rapid

rate as a result of the versatility of UVs as a platform. UVs

have found their way into a plethora of disparate applica-

tions spanning anywhere within personal (photography) [6],

community (bridge inspection) [5], business (package deliv-

ery) [7] or military (surveillance, intelligence) [8], [11]

domain. Improvements in the field of computer science,

material science, electrical, and aerospace engineering have

enabled expansion of the potential of these UVs drasti-

cally with researchers trying to push its boundaries even

further [1], [3]. Most of the aforementioned applications con-

cerning autonomous navigation of the UVs through a spec-

ified path or sequence of waypoints rely on GPS signal

for localization. Autonomous navigation demands seam-

less knowledge of position and orientation of the UV to

ensure proper decision-making. GPS is one such medium

that can deliver accurate information of the UV’s position
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and orientation. However, disruption of GPS signals either

intentionally (e.g. signal jammer) or unintentionally (e.g.

urban high-rise blockage) could potentially render these tech-

niques not applicable [2], [12]. Furthermore, most indoor

environments and many parts of terrain in an urban canyon

of an outdoor environment do not have access to GPS; even

if available, the access is intermittent and not reliable. Hence,

localization in a GPS-denied or GPS-restricted environment

is an absolute requirement and thus, is an active area of

research.

GPS-denied navigation relies on local resources with

known coordinates called Landmarks (LMs) for navigation.

Whilst the knowledge of position and orientation is one

important factor for autonomous navigation, its efficiency is

certainly bolstered by path planning and resource planning

techniques to utilize perishable and limited resources effi-

ciently. For instance, a vehicle making repeated visits to a

set of waypoints (WPs) will conduce poor utilization of time,

fuel [29], [30], [33], [34] and other such resources [20], [22].

Thus, a natural problem of interest is to (i) plan a route

via pre-specified WPs that will ensure efficient resource
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utilization and (ii) minimize selection of LMs to enable posi-

tion and orientation information retainment for successful

navigation. Localization in GPS-denied environments require

sensing, and correspondingly, localization procedures are

dependent on the available of sensory measurements such as

range and/or bearing measurements from LMs. Since sensory

measurements are usually contaminated with noise, the prob-

lem of localization also requires filtering the noise in order to

determine an accurate estimate of location and orientation.

Our initial formulation of the path planning problem was

developed in [28]. However, our previous work lacked rig-

orous numerical, simulation and hardware results to support

the theory. In this paper, we provide extensive simulation and

hardware cases to compare different scenarios that clearly

stresses the importance of optimal routing and navigation in

uncertain environments. The hardware setup adheres to all

the theoretical constraints and enables successful navigation

of our unmanned vehicular platform (Turtlebot 2.0) using

estimated states calculated with the help of optimally placed

LMs. Further, the theory developed previously considered

the sensor mounted on the UV to have a 360◦ Field-of-

View (FOV). While some sensors such as RFIDs, LiDARs

can potentially have circular FOV, many sensors such as

non-scanning RADARs, most low-cost cameras do not have

a circular FOV. This limited the robustness of our algo-

rithm. So, keeping this practical consideration in our mind,

we imposed a FOV constraint on our algorithm to encompass

a wide range of sensors (especially vision based sensors such

as cameras). In this paper, we generalize our formulation to

have a FOV constraint and develop a multi-camera system

(having limited FOV) to detect distances from multiple LMs

simultaneously. The LMs are fixed points in the environ-

ment whose locations are known a priori. They are created

using AR-Tag markers [18]. This setup helps us solve the

data-association problem and enable simultaneous detection

at the same time. The details regarding the markers, setup and

hardware experiments are explained in later sections.

II. LITERATURE REVIEW

Several authors tried to tackle the problem of routing

UVs through GPS-denied environment previously. D. Wong

et. al. [37] used computer vision techniques to address the

issue of vehicle localization in GPS-denied environments.

Variants of Simultaneous Localization andMapping (SLAM)

techniques have proven to be quite effective for indoor nav-

igation [15], [36]. Infrastructure aided localization for aerial

and ground vehicles have been used in [17] where devices

are pre-installed in the infrastructures that can provide range

measurements to the vehicles. This was successfully car-

ried out in California PATH’s Automated Highway Sys-

tems (AHS) program. C. H. Ou [19] proposed a vehicular

Ad-Hoc Network based localization approach where vehicles

estimate their localization using periodic signals sent by a

pair of Road Side Units (RSUs) which are very similar to

what we are referring to as Landmarks (LMs) in our literature.

A. Khattab et. al. [13] modified the previous approach using

FIGURE 1. System architecture.

a 2-way time of arrival information to reduce the requirement

of 2 RSUs to 1 per site for communication and therefore,

localization. However, all techniques mentioned above con-

centrated on Landmark placement for localization without

considering optimization of placement and / or selection of

such ‘‘Road Side’’ information. All of these papers have an

underlying assumption that information from LMs is avail-

able in abundance.

Given a path of a vehicle, the problem of optimally placing

a minimum number of LMs was addressed in [21]. Given

the placement of all the LMs, the problem of routing a UV

through all the target locations reduces to the well known

Traveling Salesman Problem (TSP), which is NP-Hard. This

was further built upon and the problem of simultaneous LM

placement and routing for UVs was formulated in [28].

This paper focuses on providing a systematic framework

to include practical constraints (such as FOV) and vali-

dates it with hardware implementation. We use range-only

measurements for estimation. We also provide comparative

numerical, simulation and experimental results to show the

performance and efficiency of our algorithms for several

scenarios.

III. SYSTEM ARCHITECTURE

The overall workflow is shown in Fig. 1. The localization

requirements for any path assigned to the vehicle must sat-

isfy the following criteria: There must be at least 2 LMs in

the sensing range of the vehicle from any point along the

assigned path, or alternatively, there must be at least two

edges incident on the vehicle’s position at any time instant

of the Relative Position Measurement Graph (Ref to Fig. 2).

This requirement is according to Hermann-Krener criteria

detailed in [10]. Song and Grizzle [27] stated that the bounds

or uncertainty is related to the eigenvalues of the observability

gramian which means,

• the vehicle should have path to at least 2 LMs (Fig 2) for

the errors to stay bounded if a single sensor (range-only

or bearing-only) is used, i.e., the vehicle is able to sense

its relative range or relative bearing angle from at least

2 LMs to relatively localize itself with respect to these

Landmarks,
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FIGURE 2. Relative position measurement graph.

• the estimation algorithm will provide meaningful local-

ization estimates if and only if the system is observable,

• an edge of RPMG is established only when the vehicle

comes within the sensing range of the LM,

• path to more than 2 LMs quickens the convergence rate

of the estimation algorithm.

The idea of using stationary landmarks to aid localization

in a GPS-denied setting has been addressed previously in

[25], [28], [32]. There are also a number of techniques that use

so-called proxy landmarks for localization. Proxy landmarks

can refer to either the use of additional UVs specifically for

the purpose of localization or radio signals received from

suitably positioned neighboring vehicles [14], [23], [24].

In scenarios where sufficient LMs are not available, addi-

tional LMs may be suitably placed to aid navigation. In this

article, we allow for a discrete set of locations where one

can place additional LMs. In addition to finding the LM

placement, we also find the optimal tour for the vehicle so

that each of the given targets is visited at least once. In the

next section, we state the coupled landmark placement and

path planning problem for the vehicle.

IV. PROBLEM STATEMENT

Given a vehicle starting from a depot whose coordinates are

known, a set of targets or waypoints (WPs) to visit and a set of

potential landmark (LM) placement locations, our goal is to

find an optimal sequence for visiting WPs as well as a subset

of LM locations such that:

1) The route starts and ends at the depot and visits each

WP at least once;

2) There are at least 2 LMs within the sensing range and

field of view of the vehicle from any point along the

path;

3) The total travelling and LM placement cost is mini-

mized (joint optimization).

This problem is referred to as Single Vehicle Path plan-

ning with Localization Constraints (SVPLC). The problem

FIGURE 3. Problem scenario.

scenario is presented in Fig. 3. For mathematically formulat-

ing and modeling this problem, we use the following simpli-

fying assumptions:

1) The vehicle travels at a constant velocity on a

2-dimensional plane;

2) The vehicle cannot move backwards;

3) The vehicle’s on-board sensors have a constant sensing

range with respect to every landmark;

4) The physical sizes of the vehicle and the LMs are small

as compared to the size of the topographical area in

which it is traversing;

5) The vehicle has a high turn rate.

In the ensuing section, we will discuss a joint optimization

technique to reduce the combined cost of LM placement and

travel, and present a formulation of the problem which takes

the FOV constraint into account as well. We will also discuss

heuristic approaches.

V. MATHEMATICAL MODELS, ALGORITHMS AND

NUMERICAL RESULTS

In the absence of localization constraints, note that the

SVPLC reduces to a standard TSP which is NP-Hard [21],

[31], [32]. In the presence of localization constraints, it is

possible that some TSP tours may not be feasible for the

SVPLC. In this section, we will first mathematically formu-

late the SVPLC as an integer program. For hard instances or

problems of larger size, we present heuristics that can provide

high quality solutions for the problem. Next, we present

numerical results to discuss the performance of the Integer

Linear Programming (ILP) and the heuristics.

Overall, the problem is solved offline for the vehicle route

and the optimal locations where landmarks need to be placed.

This solution is then used with an online estimation algorithm

to localize the UV in the GPS-denied environment as the UV

traverses its route (Refer to Fig. 1).

A. AN INTEGER LINEAR PROGRAM

We define SVPLC on a set of targets V (including the

depot location) and a set of potential LM locations K.
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Let G = (V ,E) be a complete, directed graph where E is the

set of directed edges joining any pair of vertices inV . For each

edge e = (i, j) ∈ E , we define one binary variable xij which

takes the value 1 if the edge e is traveled by the vehicle and

0 otherwise. The cost of edge e = (i, j) is denoted by cij = ce.

We assume this travel cost is symmetric; that is for any edge

e = (i, j), cij = cji = ce. For each potential LM location

k ∈ K , we define one binary variable yk which takes the value

1 if the location k is used to place a LM and 0 otherwise. The

cost for placing a LM at k is denoted by dk . Given a vertex

subset, S ⊆ V , denote δ+(S) := {(i, j) : i ∈ S, j ∈ V \ S}

and δ−(S) := {(i, j) : i ∈ V \ S, j ∈ S}. Informally, δ+(S)

is the set of all the directed edges which start from a vertex

in S and end at a vertex in J \ S, i.e., δ+(S) consists of edges

leaving the set S. On the other hand, δ−(S) is the set of all the

directed edges which start from a vertex in V \ S and end at

a vertex in S, i.e., δ−(S) consists of edges entering the set S.

The formulation is as follows:

min
∑

e∈E

cexe +
∑

k∈K

dkyk

subject to: x(δ+(j)) = 1, ∀j ∈ V , (1)

x(δ−(j)) = 1, ∀j ∈ V , (2)

x(δ+(S)) > 1, ∀S ⊂ V , (3)
∑

k∈Kes

yk > 2xe, ∀e ∈ E, es ∈ e, (4)

xe ∈ {0, 1}, ∀e ∈ E, (5)

yk ∈ {0, 1}, ∀k ∈ K . (6)

Degree constraints in (1) and (2) ensure that all the targets

are visited exactly once by the path. The subtour elimination

constraints stated in inequalities (3) prevent solutions that

include a subtour not connecting all the targets and the depot.

Inequalities (4) state the localization requirements of the

path. These are also referred to as the edge-covering con-

straints in this article. To state the requirements, we first

partition each edge into segments of fixed length. When the

vehicle is traveling edge e = (i, j) from i to j and on segment

s, a LM location is considered to be in the sensing range of

segment s or ‘‘covers’’ s if the location is in the field of view

of the vehicle from both the endpoints of s (Fig. 4). For any

segment s corresponding to edge e, letKes denote the subset of

potential LM locations that are in the field of view of segment

s. Therefore, for the vehicle to localize itself as it travels from

i to j, there must be at least two LMs placed in every subset

Kes corresponding to the edge e = (i, j). Refer to Fig. 5 for a

feasible placement of LMs corresponding to an edge.

A key feature of the proposed model is that it is func-

tionally versatile. It can handle non-uniformity among the

potential LM locations, together with heterogeneity among

the costs and covering capabilities associated with potential

LMs. Moreover, additional, practical constraints can be read-

ily added to the model. For clearance requirement between

every two LMs placed, if locations i and j are too close to

each other and cannot be selected together, we can apply

FIGURE 4. Edge (i, j ) is split into four segments. For segment s, a LM is
placed such that it is in the field of view from the end points of
segment s.

yi + yj ≤ 1; and for clearance requirement between every

LM and every edge, if location i is too close to edge e and

they cannot be selected together, we can enforce xe + yi ≤ 1.

B. HEURISTICS

Although the proposed ILP approach has several advantages,

there are still scenarios where finding optimal solutions is

time consuming, including (a) if the size of an instance is

large, and a fast solution is desired; (b) if it is possible to

place LMs almost anywhere in the field, instead of choosing

from a discrete set of locations; and (c) if there is a constraint

on the number of available LMs. To address these issues,

in this subsection, we propose heuristics to find good feasible

solutions relatively fast.

We propose a couple of heuristics that follow two key

steps. In the first step, we ignore the localization constraints

in the SVPLC and solve the single TSP spanning the tar-

gets and the depot. In the second step, we use the TSP

tour obtained in the first step and place the LMs. Both

the heuristics use the well known Lin-Kernighan-Helsgaun

(LKH) algorithm [9], [16] to find a near-optimal TSP tour.

In the first heuristic1 (referred to as Heuristicint ), we use the

integer program proposed in the previous section also for

landmark placement; however, we fix the xe values of the

TSP tour obtained using the LKH algorithm and solve the

simpler integer program. In the second heuristic (referred to

asHeuristicapp), we use a greedy algorithm for LMplacement

proposed in [32]. It is globally suboptimal, but locally optimal

with respect to every edge being traveled. This algorithm

is of polynomial time complexity, thus, under certain cir-

cumstances, if the solution must be obtained within a very

short period of time, it would be beneficial to utilize such an

algorithm.

1Heuristicint involves solving the integer programwith the xe values fixed.
Strictly speaking a heuristic is an algorithm that runs in polynomial time in
the size of the input. But here, as we consider only 15 waypoints, once we fix
the xe values, we could solve each instance of the integer program in the order
of a second. Therefore, with an abuse of notation, we refer to Heuristicint as
a heuristic.
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FIGURE 5. A feasible placement of LMs for edge (i, j ).

C. COMPUTATIONAL PERFORMANCE AND ANALYSIS OF

THE RESULTS

In order to solve the ILP, we implemented separation and

branch and cut algorithms to find an optimal solution. Our

algorithms were implemented in C++ (gcc version 4.6.3),

using the elements of Standard Template Library (STL) in

the CPLEX 12.7.1 framework. All the computations were

performed on a Dell Precision T5500 workstation (Intel Xeon

E5360 processor @2.53 GHz, 12 GB RAM).

We observed that when the cost for placing any LM is very

small compared to the length of the path, the proposed ILP

formulation can still be solved to exact optimum efficiently.

Under this category, instances with 50 (or fewer) target loca-

tions and 250 (or fewer) potential locations for LM placement

can be solved exactly within several minutes in general, some

even within 5 seconds.

However, when the cost for placing a LM becomes larger,

e.g. comparable to the length of the path, the time complexity

of the computation increases rapidly. Under this category,

some instances with 15 target locations and 150 potential

locations for LM placement required around one hour to be

solved exactly. No instance with 50 or more target locations

and 250 or more potential locations for LM placement has

been solved exactly within a time limit of two hours.

In addition, after analyzing the log data of the CPLEX

solver, we observed that for many instances being exactly

solved, it only takes 2-3 minutes to find a feasible solution

relatively close to the exact optimum and around ten minutes

to find out the optimum solution; However, it takes more than

an hour to ‘‘prune all infeasible branches’’ and ‘‘close the

gap between upper and lower bounds’’ (which is the way to

guarantee optimality in integer programming).

We now present computational results for harder instances

of the problem, i.e., when the cost of placing a LM is

TABLE 1. The cost of the solutions obtained by the heuristics and the ILP.

relatively large. For the instances presented in tables 1,2,

the vehicle travels through 15 waypoints (including its depot)

scattered in a 100 × 100 grid. 250 locations are feasible for

LM placement. The sensing range is 35 and the FOV is 90◦.

The cost for placing every LM is set to be 20 units. Table 1

shows the cost of the solutions obtained by the heuristics and

the ILP. Table 2 shows the running time of the respective

algorithms. Given these results, specially when the LM costs

are high, Heuristicint provided the best trade-off between

solution quality and running times.

VI. SIMULATION RESULTS

In this section, we implement the entire system architec-

ture in simulations to test the performance of the proposed

algorithms and understand the effects of the changes in the

problem parameters on the trajectories of the vehicle.

A. SIMULATION SETUP

Weutilize ourMATLAB code suiteCNS Time-varying Topol-

ogy System [25], [26] to simulate the behaviors of the vehicle.

31008 VOLUME 8, 2020



S. Misra et al.: Single Vehicle Localization and Routing in GPS-Denied Environments Using Range-Only Measurements

TABLE 2. The computation times required by the heuristics and the ILP
in seconds.

For estimation, it implements the Extended Information Filter

(EIF), which is the information form of the Extended Kalman

Filter (EKF), to estimate the states of the vehicle as it travels

along its assigned path. All simulations are performed using

the estimated data computed by the EIF, instead of exact loca-

tion or orientation information. Meanwhile, for all figures in

this section displaying vehicle trajectories, the blue dashed

lines correspond to the trajectories directly computed by the

EIF, while the red solid lines correspond to the ‘‘actual’’ tra-

jectories which have considered errors and noise into account.

A fixed set of 150 potential locations where LM informa-

tion can be introduced are placed relatively uniformly in a

100 × 100 m2 testing area. The cost for setting up every LM

is assumed to be identical. To reduce cross-disturbance, any

two LMs being introduced must have a clearance of no less

than 3m. The sensing range for the range or bearing sensors,

ρs, vary from 15 to 35 meters.

Every 0.1 second, the vehicle performs one measurement

with respect to known LMs in its adjacency. To make the sim-

ulations more realistic, we set the initial position uncertainty

in both x and y directions as 5m for the vehicle, correspond-

ing to the stage of the UV departure. The noise in velocity

measurement is 0.1m/s and the noise in range measurement

is 0.4m.

B. RESULTS WITH 360◦ FOV

In this subsection, we present a series of results assuming the

on-board sensor(s) have a 360◦ FOV. The vehicle repeatedly

visits a fixed sequence of targets (obtained by solving the

TSP). First, we show the necessity of a minimum number

of landmarks to reliably traverse the given path (for this

instance, the optimal number of LMs needed is 6). In Fig. 6,

we place only one LM and show the output trajectories

from the simulation. As expected, the vehicle deviates sig-

nificantly from its desired path with each routing loop. The

estimation and localization error become worse as the vehicle

moves farther away from the LM. In Fig. 7, we have three

LMs which is still fewer than the minimal number required

(which is 6). However, the vehicle is able to localize itself

FIGURE 6. Vehicle path for sensing range = 35m and controller gain =

2.0. This simulation uses just 1 LM.

FIGURE 7. Vehicle path for sensing range = 35m and controller gain =

2.0. This simulation uses 3 LMs.

and route through the WPs with some errors in its position

and heading. This is because it is able to perform valid

measurements to two or more LMs periodically in its entire

trajectory. This case becomes weakly observable as proven

by A. Chakraborty et. al. in [4]. The two scenarios discussed

above have reduced sets of LMs than required, which increase

uncertainty in localization and yield unoptimized results,

as the lengths of the actual trajectories also increase.

In the third case shown in Fig. 8, 25 LMs are uniformly

placed all over the testing area such that wherever the vehicle

is located in the area, it will always be able to sense two or

more LMs. This kind of LM placement reduces our problem

to a simple TSP which can be efficiently solved even if

we start considering other restrictions like obstacles. The

localization errors are significantly less in this case. However,

utilizing a large number of LMs can significantly increase the

LM placement cost, which too, is undesirable for engineering

applications.

Now, we present our solutions by solving the ILP in Fig. 9

and Fig. 10. It can be observed from Fig. 9 and Fig. 10

that multiple solutions with the same optimal cost may exist,

especially when the set of feasible LM placement locations

VOLUME 8, 2020 31009
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FIGURE 8. Vehicle path for sensing range = 35m and controller
gain = 2.0. This simulation uses 25 LMs uniformly distributed in the area.

FIGURE 9. Vehicle path for sensing range = 35m and controller
gain = 2.0 and 6 LMs (Optimal placement).

is large. In addition, we find that the gain of the propor-

tional controller used for routing determines the turn rate and

trajectory smoothness of the vehicle. The controller gain by

default is 2.0, and the corresponding minimum distance from

path to waypoints (targets) during turning is 1.0m. When the

gain decreases, the minimum distance can increase, hence

the trajectory can become smoother. An illustration of this

change can be seen in Fig. 11 with the vehicle following a

smoother trajectory.

C. RESULTS WITH 90◦ FOV

We present results of simulations under a restricted FOV

(±45◦) for the onboard sensor. This scenario corresponds to

the experimental setup if we equip two cameras on-board.

Fig. 12 corresponds to the optimal solution when the cost

for placing every LM is 1 unit. The length of the path is

327m (which is only 3m longer than the shortest TSP path

possible) and 28 LMs are placed. It is evident that the vehicle

is able to localize itself and achieve the routing mission

safely. According to our joint optimization, when the cost

for placing every LM is raised to 20 units, the new optimal

solution would use a longer path of 350m, but only requires

FIGURE 10. Another optimal LM placement. Vehicle path for sensing
range = 35m and controller gain = 2.0. 6 LMs are optimally placed at
locations different from the ones in Fig. 9.

FIGURE 11. Optimal solution for sensing range = 35m and controller
gain = 1.0.

FIGURE 12. Vehicle path for sensing range = 35m and controller
gain = 2.0. This solution uses 28 LMs.

25 LMs (displayed in Fig. 13). However, compared to the

previous subsection where 6 LMs are sufficient, the num-

ber of LMs required here is larger due to the additional

FOV constraints.

31010 VOLUME 8, 2020
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FIGURE 13. Vehicle path for sensing range = 35m and controller
gain = 2.0. This solution uses 25 LMs.

FIGURE 14. Vehicle path for sensing range = 35m and controller
gain = 2.0. This solution uses 14 LMs.

FIGURE 15. Vehicle path for sensing range = 35m and controller
gain = 2.0. This solution uses 4 LMs.

In the following discussion, we use the same path as

in Fig. 12 and gradually reduce the number of LMs

placed. 14, 4 and 2 LMs are placed to aid in localization

in Figures 14, 15 and 16, respectively. The vehicle is still able

to navigate through the target locations for most of the time,

although the level of error clearly increases as the number

of LMs placed is reduced. The reason is that whenever the

FIGURE 16. Vehicle path for sensing range = 35m and controller
gain = 2.0. This solution uses 2 LMs.

FIGURE 17. Vehicle path for sensing range = 15m and controller
gain = 2.0. This solution uses 28 LMs.

vehicle is able to detect two LMs within its proximity, our

state estimation algorithm will converge and offer a reason-

ably good update. Even when only one LM is detectable,

the vehicle may still be able to use interoceptive sensors

like IMU, encoders, etc. to assess its motion and attitude

information such as velocity and turn rate, and additional

LM information could help reducing the error in estimation.

Thus, it is possible to utilize our heuristics to deliver a plan

for routing and LM placement even when the resources for

localization become more restricted under certain conditions.

To conclude this section, we would like to show how our

architecture can also be used to test variations like changes in

sensing range. For example, Figures 17, 18 and 19 utilize the

same LM placement as Figures 12, 14 and 15, respectively,

but the sensing range here is reduced to 15m from 35m. It is

evident that the levels of error increase considerably. When

the sensing range is reduced, the number of LMs required to

ensure safe localization and routing will increase.

VII. EXPERIMENTAL RESULTS

A. HARDWARE SETUP

The hardware experiments were performed in an area of

grid size 4 × 8 m2. Fig. 20 shows an instance of navigation
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FIGURE 18. Vehicle path for sensing range = 15m and controller gain =

2.0. This solution uses 14 LMs.

FIGURE 19. Vehicle path for sensing range = 15m and controller gain =

2.0. This solution uses 4 LMs.

FIGURE 20. Experimental setup.

through 4 WPs with the help of 8 LMs in the given space.

We used Turtlebot 2.0 (Fig. 22) as our platform to conduct

the experiments [35]. Turtlebot 2.0 is amobile platform that is

built on top of iRobot create and used Orbbec Astra camera(s)

to sense the environment. It is powered by open source ROS

FIGURE 21. Camera setup 1.

platform and comes with many pre-installed ROS libraries

to facilitate building customized applications. The Orbbec

Astra is an RGBD Camera with 60◦ field-of-view (FOV) and

an image sensing range of 0.6m to 8m. It weighs 0.3 kg

with a dimension of 165 × 30 × 40 mm (with Turtlebot

2.0 mounting capability). It also provides an RGB stream

of size 640 × 480 pixels at 30 frames per second, making

it ideal for our use. We mount multiple such cameras on

our Turtlebot 2.0 to increase the total effective FOV of the

sensor system. This helps in sensing range or bearing angle

or both from multiple LMs. We restrict our experiments to

range-only measurements and consider AR-Tags as LMs.

The details of camera and AR-Tag setup is explained in

the following subsection (VII-B). The LMs (AR-Tags) are

manually placed at their respective coordinates with the help

of the MOCAP system which itself has a 3 − 5 mm level of

accuracy. Therefore, their locations and placements are prone

to human error. This is taken care by increasing the measure-

ment noise considered during estimation. The optimal LM

placement algorithm used for hardware experiments consid-

ered vehicle size, however, it didn’t consider LM occlusion.

We assumed that using communication (RFID) based range

sensors would circumvent the occlusion issue in practical

outdoor scenarios, thus, obviating the need to use occlu-

sion as an active optimization constraint. During our exper-

iments, we restrict the vehicle to be moving at a maximum

speed of 0.05 m/s to maximize point turn capability of the

vehicle.

B. CAMERA SETUP, AR-TAG SETUP AND SENSOR FUSION

The update step for the EKF requires the exteroceptive

sensors mounted on a vehicle to detect/communicate with

external environment agents frequently. In this case, the exter-

nal environment agents are AR-Tags [18] acting as Land-

marks (LMs) and the exteroceptive sensor is a set of Orbbec

Astra cameras mounted on the Turtlebot 2.0 [35] platform.

As mentioned in the previous subsection, each Astra camera

have a 60◦ FOV. So, we mounted 2 cameras on our plat-

form to have a total of 90◦ FOV as shown in Fig. 21, and

Fig. 22. The Orbbec Astra camera is a stereo camera, which
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FIGURE 22. Turtlebot2 with camera setup.

can measure depth alongside providing an RGB stream, thus

helping in improving the accuracy of range measurements

when required. The LMs are equipped with AR-Tags. These

tags are generated and detected by using an existing ROS Ar

Track Alvar package that can be integrated with the local-

ization and navigation algorithm for range sensing purpose.

Sample AR tags are shown in Fig. 23. Their detection works

in a way similar to that of QR codes as well, with focus

on range and orientation detection rather than information

storage optimization as in the case of QR codes. We have

used a combination of ROS Astra camera package, ROS AR

TrackAlvar package [18], ROS tf transform package to obtain

the relative ′x ′ and ′y′ position of the tags with respect to

the centroid of the Turtlebot, thereafter, using this informa-

tion to calculate the range of the LMs from the vehicle as

ρ =
√

x2 + y2.

Each LM is represented by 4 tags, marking the 4 faces

of a cuboid as shown in Fig. 24. The center of one face

(say F1) is selected as the center of the LM. The range

measurement obtained from the LM is always relative to F1,

i.e., the positions of the other 3 faces are all relative to the first

face F1. This enables us to consider each LM as a point source

thus making the range detection process easy and uniform.

As shown in Fig. 25, multiple LMs were detected by the

cameras simultaneously within a range of 1m to 3m with an

accuracy of ±3 cm at 20 − 25 Hz.

C. NAVIGATION RESULTS

We performed several experiments with true and estimated

states. Thewaypoints were generated in a grid of size 4×8m2.

The sensing range of the camera was set to 3 m. The viewing

FIGURE 23. AR Tags.

FIGURE 24. Landmark (LM) setup.

angle and range were chosen to match the simulated sensor

outputs with the actual sensor setup. A low controller gain

(Kp = 0.2) was chosen to reduce the effect of non-linear

system/process noise while the vehicle is inmotion. However,

as mentioned above, the vehicle’s velocity was kept low too at

a constant value of 0.05 m/s) to mimic point-turn capability.

The set of grid points in a grid of size 0.5×0.5 was chosen as

the set of potential landmark locations. A p value of 0.05m

(collision avoidance distance) was used for the separation

distance between the vehicle and any location where the

landmarks were to be placed. Although this distance can be

increased, a small value was chosen to make the instances

feasible. The algorithm (Heuristicint ) presented in Sec. V is

then used to compute the subset of locations where LMs are

to be placed and the vehicle route. Using the LMs at the

locations obtained from the algorithm, an Extended Kalman

Filter (EKF) was used to estimate the position and heading of

the vehicle using the rangemeasurements. A detailed compar-

ison among the various cases for the hardware experiments

and their subsequent results are provided in the subsection

below (VII-D).

D. HARDWARE RESULTS

The hardware experiments were conducted to test the per-

formance of the combinatorial optimization problem when

applied to real world navigation and routing scenarios. The

testing and comparisons were categorized in the following

subsections.
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FIGURE 25. Simultaneous 10 LM detection.

FIGURE 26. Vehicle path with true states being fed back to the controller.

1) EFFECT OF ESTIMATION WITH REAL SENSORS ON THE

CONTROLLER

The vehicle path in this subsection is fixed and LMs are

placed using the second step in Heuristicint . It can be seen

from Fig. 26, 27, 28 and 29 that the difference between nav-

igation using true states versus estimated states is small. For

all the hardware trajectory plots, the blue solid line denotes

the actual path followed by the vehicle and the red dashed line

denotes the estimation output of the filter. We performed this

experiment considering a camera setup as shown in Fig. 21

with 90◦ FOV, 3m sensing range approximately and 4 LMs

as shown in Fig. 24. We consider that a WP is reached if

the vehicle is anywhere within 15 cm around the concerned

WP. This helps in compensating for the inertial lag of the

vehicle. It can be seen from the 3σ bound plots that the errors

FIGURE 27. Vehicle path with estimated states being fed back to the
controller.

are within bounds, thus, the filter is consistent. This shows

that the proposed algorithms found a set of LM positions

corresponding to the WPs that enabled successful navigation

of the vehicle with proper EKF tuning.

2) PERFORMANCE OF THE ALGORITHMS WITH SIMULATED

SENSOR DATA AND MEASUREMENTS

In this subsection, both the vehicle path and the LM place-

ment are obtained using Heuristicint . The result obtained

in the previous experiments are further verified by using a

different set of WPs and their respective LM positions to

perform a more complicated Zig-Zag trajectory as shown

in Fig. 30 using simulated LMs. The error plot correspond-

ing to this trajectory is shown in Fig. 31 which reflects
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FIGURE 28. Error plot for Fig. 26 with ±3σ bounds for routing with true
states being fed back to the controller.

FIGURE 29. Error plot for Fig. 27 with ±3σ bounds for routing with
estimated states being fed back to the controller.

FIGURE 30. Vehicle path with estimated states being fed back to the
controller.

that the vehicle navigates properly keeping the error withing

3σ bounds for more than 99.7% of the time (3σ percent-

age). On achieving successful navigation for open-loop cases

FIGURE 31. Error plot for Fig. 30 with ±3σ bounds for routing with true

states being fed back to the controller.

FIGURE 32. Vehicle path with estimated states being fed back to the
controller.

(Fig. 26, 27 and 30), we went on to implement our algorithm

in a complicated closed-loop scenario. It can be observed

from Fig. 32 and 33 that our combined algorithm is also capa-

ble of finding out optimal solution for WPs and trajectories

similar to the real-world and successfully navigate through

them using the estimated states. The experiments were done

considering simulated sensor measurements with 90◦ FOV,

3m sensing range.

3) PERFORMANCE OF THE ALGORITHMS WITH REAL

SENSOR DATA AND MEASUREMENTS

In this subsection, both the vehicle path and the LM place-

ment are obtained using Heuristicint . It can be seen from

Fig. 34 and 35 that the Turtlebot was able to successfully

start from the depot, route through all the points and return

to its depot. The hardware experiment was limited by the

availability of real LMs, sensor detection rate (limited to

approximately 10 Hz on average), processing speed and

capability of the on-board computer and the space avail-

able for conducting the experiment. The routing and nav-

igation was completely independent of MOCAP inputs.
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FIGURE 33. Error plot for Fig. 32 with ±3σ bounds for routing with
estimated states being fed back to the controller.

FIGURE 34. Vehicle path with estimated states and real sensors with 90◦

FOV (Closed Loop).

FIGURE 35. Error plot for Fig. 34 with ±3σ bounds for routing with
estimated states and real sensors with 90◦ FOV (Closed Loop).

The MOCAP system was used only to capture the actual path

traversed by the bot during its tour. It can be seen that the

estimates are mostly within ±3σ bounds with intermittent

spikes in the data. The spikes are caused due to higher degrees

of non-linearity during the turns. The overall measurement

noise is factored in by considering a higher error covariance

for measurement noise that in turns smooths out the overall

trajectory.

The video for the experiment is available using the link

https://youtu.be/4F3muxX8zL0.

VIII. CONCLUSION

The numerical, simulation and hardware experiments show

that the proposed optimization framework works effectively

in practice using range-only measurements from landmarks.

Comparing the results in sections VII-D.2 and VII-D.3, it can

be seen that the quality of the routing can be affected by

the quality and capability of the sensors used for measure-

ments. The best range detectionwas achieved using simulated

LMs as simulated measurements are not prone to detection

failures due to ambient conditions. We have used cameras

and AR-Tags to measure ranges from respective LMs. This

setup provides a good range estimate, however, it is lim-

ited by the camera quality, resolution and ambient lighting

conditions. Developing better ranging sensors was beyond

the scope of our work and can be considered as a future

direction of research. We believe that this work can have

significant contribution towards advancing automated driving

and path planning for aerial package delivery. As mentioned

in Section VII-A, the LM placement is prone to measurement

approximation and human errors. In the future, we plan to

estimate the location of the LMs along with the vehicle

states simultaneously. We also plan to impose the turning

radius constraints of the vehicle and include them in the

optimization.
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