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Abstract

State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image.

However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was

proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it

incurs a lower computational cost. However, this method is vulnerable to self-occlusion due to head rotation.

Therefore, we propose a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction.

This research is novel compared with previous works, in the following three respects. First, self-occlusion of the

input face is detected automatically by estimating the head pose using a cylindrical head model. Second, a 3D

model fitting scheme is designed based on selected visible facial feature points, which facilitates 3D face

reconstruction without any effect from self-occlusion. Third, the reconstruction performance is enhanced by using

the estimated pose as the initial pose parameter during the 3D model fitting process.

The experimental results showed that the self-occlusion detection had high accuracy and our proposed method

delivered a noticeable improvement in the 3D face reconstruction performance compared with previous methods.
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Introduction

3D face modeling originated with Parke’s pioneering

studies [1,2], which aimed to generate realistic faces for

computer animation. Since Parke’s work, 3D face recon-

struction has attracted considerable attention from many

computer vision researchers because it has many useful

applications, such as pose-invariant face recognition

[3,4], age-invariant face recognition [5,6], 3D face gener-

ation for game and movie characters [7,8], monitoring

suspects using surveillance camera systems, video con-

ferencing, and automatic face conversion of a 2D face

image into a 3D face for 3D TV.

3D face modeling technologies can be divided into two

basic approaches. One approach uses specific sensors,

such as stereographic cameras, structured light, or 3D

laser scanners [9]. These methods produce accurate 3D

face data, but they are expensive and require additional

operations, such as calibration. To overcome these lim-

itations, a monocular camera-based approach has been

researched intensively. This approach can be categorized

further into single view-based and multi-view-based

approaches. The multi-view-based approach uses more

2D facial information than the single view-based approach,

but it has some limitations such as a requirement for mul-

tiple images and detection of the correspondences among

the images. In this study, we focus on the single view-

based approach.

Among the single view-based methods, shape-from-

shading (SFS) is a traditional method for deriving a 3D

facial shape from the brightness variations in a single

image. However, SFS-based methods have impractical

constraints because the Lambertian reflectance model

and a known light source direction need to be assumed

to produce accurate results [10-12]. Recently, several

new techniques have been proposed to overcome this

problem. These methods reconstruct a 3D face by mod-

eling the relationships between the intensities and the

depth information of the face using statistical learning

techniques, such as principal component analysis (PCA),

partial least squares, and canonical correlation analysis

[13-16]. However, all of these methods assume that the

input face is viewed from the front, but this strict
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constraint cannot always be satisfied in real world appli-

cations, such as surveillance camera systems.

The state-of-the-art 3D morphable model (3DMM),

which was proposed by Blanz and Vetter [3,17], is a

single-image-based 3D face reconstruction method that

requires no frontal pose constraint. In this method, 3D

face reconstruction is performed by fitting a morphable

model to a 2D image. The reconstructed 3D face is repre-

sented by model parameters that minimize the texture re-

sidual errors between the rendered model image and the

input image. To generate a high-quality 3D face, the

model parameters contain rendering parameters, such as

the camera geometry and illumination direction, as well

as facial texture and shape parameters. Therefore, 3DMM

can reconstruct a more realistic 3D face in less restrictive

conditions. However, it has a high computational com-

plexity because of the large number of model parameters

that need to be estimated simultaneously [4]. In addition,

3DMM requires manual initialization and a dense point-

to-point correspondence between all of the face images.

Simplified versions [5,6,18-20] of 3DMM have been

proposed to reduce these computational costs. Unlike

the original 3DMM, most simplified 3DMM (S3DMM)-

based methods use a sparse shape model, which is con-

structed by statistically learning a data set of 3D facial

feature points (FFPs). The FFPs indicate the salient fea-

tures of a face, such as the corners of the eyes, nose tip,

and the corners of the mouth.

S3DMM reconstructs a 3D facial shape (that consists

of 3D FFPs) by finding the optimal shape parameter and

the pose parameter that minimizes the difference be-

tween the projected 3D FFPs of the shape model and the

input 2D FFPs. Therefore, the S3DMM-based method

does not need to find a dense correspondence between

the faces and it has a lower computational complexity

because of the drastic reduction in the number of para-

meters. However, some of these methods [18,19] still

have the limitation that the input face needs to be a

frontal view whereas others [5,6,20] are unaffected by

pose variations. Wang et al. [20] proposed an automatic

framework for 3D face reconstruction on the basis of an

arbitrary view image and estimated the shape and pose

parameters using an expectation-maximization (EM) al-

gorithm. However, they did not report any quantitative

results and only qualitative results were presented from

some test images in their experiments. Park et al. [5,6]

used S3DMM to create a 3D aging model for age-

invariant face recognition. They derived a 3D facial shape

by alternating the pose parameter and the shape param-

eter until the shape residual error converged. The pose

and shape parameters were estimated separately using

the least squares method. This alternation methodology

is used in most S3DMM-based methods [5,6,18,20] be-

cause it reduces the computational time and produces a

linear cost function, compared with the one-step meth-

odology that estimates all of the parameters at the same

time using a non-linear optimization process.

Existing methods [5,6,20] are known to perform using

an arbitrary view, but they are not robust to pose varia-

tions. This is because they are vulnerable to self-

occlusion errors in the 2D input FFPs caused by pose

changes. If an input face is rotated, some parts of the face

are self-occluded by other parts. Therefore, the occluded

facial region is not visible in a rotated face image, and the

real FFPs placed on the region are also not observable.

As a result, the FFPs detected on the rotated face image

contain location errors caused by self-occlusion. These

errors degrade the performance of S3DMM-based 3D

face reconstruction. Unfortunately, existing S3DMM-

based methods have not addressed this problem.

Therefore, we propose a solution to the self-occlusion

problem of S3DMM-based 3D face reconstruction. Our

proposed method consists of the following two steps. In

the first step, visible FFPs that are not affected by

self-occlusion are automatically discriminated from

self-occluded FFPs by estimating the head pose using a

cylindrical head model. In the next step, 3D face recon-

struction is performed using a model fitting scheme

based on selected visible FFPs to reduce the self-

occlusion effect. The performance of the 3D face recon-

struction is enhanced by using a pose estimated with

the cylindrical head model as the initial pose parameter

in the proposed model fitting. In experiments, we evalu-

ated the performance of our proposed method qualita-

tively and quantitatively by using ground-truth 3D face

data acquired with a 3D laser scanner. The experimental

results showed that the visible FFPs were selected with

high accuracy and that the 3D face reconstruction per-

formance with the proposed method was improved

greatly compared with previous S3DMM-based meth-

ods. Comparisons of previous methods and our pro-

posed method are summarized in Table 1.

The remainder of this paper is organized as follows. In

the following section, the S3DMM is explained and the

self-occlusion problem is analyzed. In Section “Proposed

3D face reconstruction method”, our proposed method

is described, including the automatic selection of visible

FFPs and the model fitting strategy. The experimental

results are presented in Section “Experimental results”.

Finally, our conclusions are summarized in Section

“Conclusions”.

S3DMM and self-occlusion problem

S3DMM

In S3DMM, the geometry of a face is defined as a shape

vector S ¼ X1;Y1;Z1;X2; . . .Yn;Znð ÞT 2 R3n, which con-

tains the X , Y , and Z-coordinates of n vertices. The
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original 3DMM generally uses a dense shape with thou-

sands of vertices, whereas S3DMM uses a sparse shape

with only dozens of vertices. In order to build a morph-

able shape model, S3DMM performs PCA on a training

set of shape vectors Sj. The mean shape s0 and m shape

variations si are then obtained, and a new shape S can

be expressed as a linear combination of the mean shape

s0 and the shape variations si as follows:

S ¼ s0 þ
X

m

i¼1

βisi ð1Þ

where β ¼ β1; β2; . . . ; βm
� �T

is the shape parameter and

m is the dimension of the shape parameter which was

determined to represent 99 % of the shape variations of

the training face set [21]. Finally, a new 3D facial shape

can be generated by changing the shape parameter β.

Given the 2D FFPs of an input face image, such as

s2d ¼ x1; y1; x2; . . . ynð ÞT 2 R2n , the shape parameter β

needs to be determined such that it minimizes the shape

residual between the projected 3D facial shape generated

by the shape parameter and the input 2D facial shape.

The optimal shape and pose parameters β;Rθ;Tð Þ are

obtained from (2):

argminβ;Rθ ;T P Rθ
~Sþ ~T

� �

� ~s2d
�

�

�

�

2
ð2Þ

Where ~S is a 3 × n matrix that is reshaped from the

3n× 1 model shape vector S obtained using (1), ~s2d is a

2 × n matrix that is reshaped from the 2n× 1 input shape

vector s2d , P is a 2 × 3 orthographic projection matrix, ~T

is a 3 × n translation matrix consisting of n translation

vectors T ¼ tx ty tz
� �T

, and Rθ is a 3 × 3 rotation matrix

where the yaw angle is θ. Note that in this paper, we

consider mainly yaw rotation because the self-occlusion

caused by yaw rotation is relatively greater than that

caused by pitch rotation, and tz is set to 0 because an

orthographic projection is assumed.

Several methodologies are used to estimate the model

parameters for S3DMM. We used the alternation meth-

odology of [5], which alternately finds the optimal

shape parameter and pose parameter until the shape re-

sidual converges, because this approach reduces the

computational cost by transforming a non-linear cost

function into a linear one. As shown in Algorithm 1,

the procedure for 3D model fitting is as follows. First,

the shape parameter β0 and translation parameter T0

are initialized to 0 and the input 2D FFPs s2d are

aligned with the 2D mean shape obtained by projecting

the 3D mean shape (s0) with a frontal pose onto the x–

y plane. As the alignment method, we use the Procrus-

tes analysis, which includes translation, rotation, and

scaling [22]. The optimal model parameters are deter-

mined by alternately updating the pose parameter (Rθ,

T) at the fixed β and updating the shape parameter β

at fixed (Rθ,T) until the shape residual error converges.

The cost function is solved as a least squares problem

and the rotation matrix is calculated by QR decompos-

ition, as in [5]. Finally, a new 3D facial shape S3d is recon-

structed by applying the optimal shape parameter β to (1).

Algorithm 1 3D Model Fitting [5]

Input: s2d ¼ x1; y1; x2; . . . ; ynð ÞT

Output: S3d ¼ X1;Y1;Z1;X2; . . . ;Yn;Znð ÞT

1. Initialization

Set β0= 0, T0 = 0 and k= 1.

2. Alignment

s2d is aligned with the 2D mean shape obtained by

projecting the frontal 3D mean shape (s0) onto the

x–y plane.

3. Update Rθ and T with the fixed shape parameter

argmin Rθ ;Tð Þk
P Rθ

~Sþ ~T
� �

� ~s2d

�

�

�

�

2

β¼βk�1

Table 1 Comparison of the previous methods and the proposed method

Categories Methods Strengths Weaknesses

Frontal view Shape-from-Shading [10-12] - No requirement for training data - Infeasible constraints (Lambertian reflectance
model and known light source direction )

Modeling the relationship between intensities
and depths [13-16]

- Low computational complexities - Requires pixel-by-pixel alignment between
intensities and depth map
- Requirement of training data

Simplified version of 3D morphable model[18,19] - Low computational complexity - Requirement of training data

Arbitrary view 3D morphable model [3,17] - Robust to pose and illumination
variation
- Less sensitive to self-occlusion

- High computational complexity
- Dense correspondence between faces
- Requirement of training data

Simplified version of 3D morphable model
- EM algorithm [20]
- Least squares [5,6]

- Low computational complexity - Requirement of training data
- Self-occlusion problem

Simplified version of 3D morphable model
- Proposed method

- Low computational complexity
- Robust to self-occlusion

- Requirement of training data
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Update the shape parameter with the fixed pose

parameter

argminβk P Rθ
~Sþ ~T

� �

� ~s2d

�

�

�

�

2

Rθ ;Tð Þ¼ Rθ ;Tð Þk

4. Reconstruct (S3d)k using the shape parameter βk
5. Verify whether

P Rθ
~S3d

� �

k
þ ~T

� �

� ~s2d

�

�

�

�

�

�

Rθ ;Tð Þ¼ Rθ ;Tð Þk

< E

If not, go to Step 3 and k= k + 1

6. β= βk and (Rθ,T) = (Rθ,T)k
7. Reconstruct S3d using the final shape parameters

Self-occlusion problem

S3DMM-based methods reconstruct a 3D facial shape

from 2D FFPs detected in an input 2D image. Therefore,

these methods are vulnerable to large location errors

that affect the 2D FFPs observed in a given image. Un-

fortunately, the observed 2D FFPs may have severe loca-

tion errors caused by self-occlusion when detecting the

2D FFPs in a highly rotated face image, as shown in

Figures 1 and 2.

Figure 1 shows self-occlusion errors that occur after

comparing the observed 2D FFPs with the ground-truth

2D FFPs of the facial contours. When detecting the fa-

cial contour FFPs in a half-profile view image, the visible

FFPs laid on the visible facial region can be detected as

those of the ground-truth facial contour, but the

observed FFPs on the occluded facial region are located

in the outline of the face because the occluded real facial

contour cannot be observed, as shown in Figure 1a.

Therefore, the 2D FFPs observed in a rotated face image

have location errors, which are the differences between

the observed FFPs and the occluded real FFPs, as shown

in Figure 1c. These errors increase as the degree of

head rotation increases, as shown in Figure 2. As a re-

sult, this self-occlusion problem degrades the S3DMM

performance.

Proposed 3D face reconstruction method
Overall procedure of the proposed method

The proposed 3D face reconstruction process starts with

the localization of the FFPs in a given 2D face image. To

detect self-occlusion in an input face, the head pose is

estimated using a cylindrical head model-based method

[23]. The estimated pose can then be used to determine

which FFPs are self-occluded. Next, a sparse 3D facial

shape is reconstructed using the model fitting process

based on the selected visible FFPs. Subsequently, a dense

3D facial shape is interpolated from the reconstructed

sparse 3D facial shape using the Thin Plate Spline (TPS)

method [24,25]. Finally, the facial texture directly

extracted from the input image is mapped onto the

dense 3D facial shape. The overall procedure of the pro-

posed method is shown in Figure 3.

Head pose estimation

The head orientation of an input face is useful for deter-

mining whether the FFPs are self-occluded. There are

many appearance-based head pose estimation methods.

Manifold embedding methods such as PCA, KPCA,

LDA, and kernel discriminant analysis have been used to

extract texture features, and these features are used to

estimate the discrete head pose [26-29]. Murphy-

Chutorian et al.[30] used local gradient orientation and

estimated the continuous yaw and pitch using support

vector regression. However, the accuracies of these

methods can be affected by the detection performance

in the face region and these methods require many

training samples [31]. Therefore, we used a cylindrical

head model [23] in this study, which is a geometry-

based head pose estimation method. In general,

S3DMM-based methods alone can estimate the head

pose because they can rotate the 3D shape model as

closely as possible to the pose of the input face to find

the best-matched shape model for the input 2D facial

Figure 1 Self-occlusion errors found in the observed 2D FFPs: (a) the observed 2D FFPs on the facial contour; (b) the ground-truth 2D FFPs

on the facial contour; (c) self-occlusion error caused by difference between the observed 2D FFPs and the ground-truth 2D FFPs.

Lee et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:176 Page 4 of 20

http://asp.eurasipjournals.com/content/2012/1/176



shape. However, pose estimation by S3DMM is vulner-

able to self-occlusion because the head pose is obtained

from the relationship between the projected 3D FFPs of

the shape model and the 2D FFPs detected in the image.

As shown in Figure 1, self-occlusion errors may occur

between the projected 3D FFPs and the observed 2D

FFPs in a highly rotated face image. Consequently, these

errors lead to lower accuracy results during head pose

estimation with S3DMM.

Therefore, instead of using the pose estimator

included in S3DMM, we employed a cylindrical head

model to estimate the pose. The estimated pose is used

for self-occlusion detection. The cylindrical head model,

proposed by Ohue et al. [23], was used to detect the dir-

ection of a driver’s face in a real-time system. This

method is based on the assumption that a human head

is basically cylindrical in shape, as shown in Figure 4a.

The head pose is calculated simply by using three facial

Figure 3 Overall procedure of the proposed method.

Figure 2 Self-occlusion errors increase as the degree of the head rotation increases: (a) almost frontal views (0°, ±15°); (b) highly rotated

views (±30°, ±45°).
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lines, namely, the right facial edge, left facial edge, and

the center line of the face, as shown in Figure 4b. The

yaw angle θ of the face is calculated using the following

equation:

θ ¼ arcsin
xm � xc

r

� �

ð3Þ

where r is the radius of the cylinder, xm is the x-coordin-

ate of the cylinder center line and xc is the x-coordinate

of the facial center line. Here, the radius r and the center

line xm are obtained from the x-coordinates of the right

and left facial edges, i.e., r ¼ xl � xrð Þ=2 and xm ¼
xl þ xrð Þ=2 , respectively, as shown in Figure 4b. When

detecting the facial edge lines xl and xr in a rotated view,

the cylindrical head model does not require the occluded

facial edge line, and instead it uses the newly observed

facial edge line of the rotated view, as shown in Figure 5.

Therefore, this method is less affected by self-occlusion.

As shown in (3), the performance of this method

depends on how accurately the three lines are detected

in the face image. Ohue et al. [23] used image processing

methods, such as a Sobel filter and histogram analysis,

to detect the lines. However, in our study, the three lines

are obtained from the 2D FFPs which are manually

annotated or automatically detected using the Active

Appearance Models (AAMs) algorithm [32]. The

selected FFPs and the three facial lines are shown in

Figure 4c, where the facial center line is on the center

point of the bottom of nose while the facial right and left

boundaries are obtained from the midpoint between the

two points located on each side of the facial contour,

respectively.

Determination of visible FFPs

In this section, we present a method for automatically

discriminating the visible FFPs and occluded FFPs by

using the estimated head pose. The human head has a

3D structure but its shape varies slightly from person to

person. Thus, the set of visible FFPs is inconsistent even

with the same head pose and it changes depending on

the individual. However, the individual differences be-

tween the sets of visible FFPs are not very large, and

therefore, we use the generic visible FFP set for each

yaw angle. This set is defined by manually analyzing the

training set of 3D FFPs annotated in the 3D face scans.

When defining the generic set of the visible FFPs for

each pose, a point is excluded as occluded in the generic

set of visible FFPs if it is occluded in the face of a certain

individual. In this manner, we can prepare an FFP index

table that contains the indices of the visible FFPs for

each head pose. Figure 6 shows the defined visible FFPs

(as crosses) and the occluded FFPs (as circles) for each

yaw angle. In this study, the yaw angles are quantized as

seven discrete angles, which range from −45° to +45° at

intervals of 15°, because the visible FFPs do not change

greatly over a 15° interval.

Finally, given the estimated head pose, the pose angle

is quantized into one of the seven discrete angles, and a

masking matrix Mθ is obtained from the index table of

the visible FFPs related to the quantized angle θ, as

shown in Figure 7. Each component of the masking

matrix Mθ represents a visible FFP as 1 and an occluded

FFP as 0:

Mθ ¼ m1m2m3 . . .mn½ �

mi ¼
1 1½ �T ; if ith point is visible
0 0½ �T ; if ith point is occluded

	

ð4Þ

Figure 5 Cylindrical head model is less affected by self-

occlusion. This method does not require the occluded facial edge

when detecting the right and left facial edges in a rotated view, and

instead it uses the newly observed facial edge.

Figure 4 Cylindrical head model estimates a head pose under the assumption that the human head is cylindrical: (a) cylindrical head

model; (b) top view of the cylindrical head model where the pose angle is calculated using the three facial lines, namely, the right facial edge,

the left facial edge, and the center of the face; (c) selected FFPs for the facial lines and the three lines.
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where i =1,2, . . ., n, and n is the number of vertices. We

used 80 vertices in this study. Mθ is a 2 × 80 binary

matrix, the pose angle θ has one of the seven discrete

values, and mi is a 2 × 1 column-vector.

3D Face model fitting

A detailed description of the proposed model fitting

method is shown in Algorithm 2. This is a modified ver-

sion of the earlier S3DMM-based algorithm mentioned

in Section “S3DMM”. The proposed model fitting

scheme is based on the selected visible FFPs, which

eliminates the self-occlusion effect. As a result, the cost

function of (2) is modified as follows:

argminβ;Rθ ;T Mθ
�
P Rθ

~Sþ ~T
� �

� ~s2d

� �
�

�

�

�

2
ð5Þ

where the symbol “°” represents the Hadamard product,

which is known as entry-wise multiplication [33], while

Mθ is the masking matrix at rotation angle θ. Mθ is

obtained from the index table of the visible FFPs for the

estimated pose, as explained in Sections “Head pose esti-

mation” and “Determination of visible FFPs”. We can

Figure 7 Masking matrix generation.

Figure 6 Generic visible FFP sets for seven head poses (cross: visible FFP; circle: occluded FFP).
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calculate the shape residual between the visible FFPs of

the shape model and the input 2D facial shape using this

masking matrix. The shape parameter β and pose par-

ameter (Rθ,T) can be obtained without any self-

occlusion effect by minimizing this shape residual. The

proposed 3D model fitting algorithm has the following

two advantages compared with the previous method:

1) The pose angle θ̂ estimated by the cylindrical model

is used for the pose parameter initialization.

Therefore, the parameter estimation starts from a

relatively exact initial pose parameter, which

enhances the 3D face reconstruction performance.

During the alignment step, an accurate alignment

result is obtained by aligning the input 2D FFPs with

the FFPs of the 2D mean shape, which are obtained

by rotating the 3D mean shape (s0) from 0° to θ̂ and

projecting it onto the x–y plane.

2) 3D model fitting is achieved on the basis of the

visible FFPs by using the masking matrix. Therefore,

the proposed method can reconstruct 3D faces that

are less affected by self-occlusion.

Algorithm 2 Proposed 3D Model Fitting

Input: s2d ¼ x1; y1; x2; . . . ; ynð ÞT

Output: S3d ¼ X1;Y1;Z1;X2; . . . ;Yn;Znð ÞT

1. Initialization

Set θ0 ¼ θ̂ , T0 ¼ 0, M ¼ M�θ , and k= 1.

(θ̂ is the angle estimated by the cylindrical model

and �θ is a quantized angle of θ0 .)

2. Alignment

s2d is aligned with the 2D mean shape produced by

rotating the 3D mean shape (s0 ) from 0° to θ̂ and

projecting it onto the x–y plane.

3. Update the shape parameter with the fixed pose

parameter

argminβk M
�
P Rθ

~Sþ ~T
� �

� ~s2d

� �
�

�

�

�

2

Rθ ;Tð Þ¼ Rθ ;Tð Þk�1

Update Rθ and T with the fixed shape parameter

argmin Rθ ;Tð Þk
M

�
P Rθ

~Sþ ~T
� �

� ~s2d

� �
�

�

�

�

2

β¼βk

4. Reconstruct S3dð Þk using the shape parameter βk
5. Verify whether

M
�
P Rθ

~S3d

� �

k
þ ~T

� �

� ~s2d

� �
�

�

�

�

�

�

Rθ ;Tð Þ¼ Rθ ;Tð Þk

< E

If not, go to Step 3 and k= k + 1

6. β= βk and (Rθ,T) = (Rθ,T)k
7. Reconstruct S3d using the final shape parameter

Dense 3D facial shape and texture mapping

A sparse 3D facial shape is produced as the reconstruc-

tion result after model fitting. Therefore, we have to

perform interpolation to produce a dense 3D facial

shape. Interpolation is achieved by mapping a generic

dense mean shape onto the reconstructed sparse 3D fa-

cial shape using the TPS algorithm [24,25]. The TPS

mapping function is designed by learning the relation-

ship between the FFPs of the generic 3D mean shape

and the reconstructed 3D facial shape, which is similar

to [24]. Let u be the FFPs of the generic mean shape and

F (u) be the FFPs of the reconstructed facial shape. The

mapping function is then:

F uð Þ ¼ cþ AuþW
T s uð Þ ð6Þ

where c represents a translation, A is a rotation, W is

the non-linear deformation, and s(u) is a spline function.

The mapping function F(u) is then used to transform all

of the other vertices in the mean shape, which produces

adapted dense 3D face.

Finally, an available texture in the input 2D image is

mapped onto the dense 3D facial shape to complete the

3D face reconstruction. However, some facial texture

regions can be self-occluded in rotated view images.

Thus, the bilateral symmetry of a face is used for texture

mapping to recover the self-occluded texture. Specifically,

we produce a mirrored image of the half-face contained in

the visible region, and use the mirrored texture of the visible

half-face for texture mapping in the occluded facial region.

Experimental results

Face database

For the experiments, we acquired 86 male and 64 female

3D face scans using a 3D laser scanner (Cyberware 3030

RGB model) [34]. To construct 3D shape models, each

3D face scan was manually annotated with 80 FFPs, and

the annotated 3D FFPs were aligned with others by Pro-

crustes analysis [22]. An iterative alignment method was

applied to our data to produce accurate aligned data. A

reference face scan was randomly selected and 3D FFPs

in the remaining face scans were aligned with 3D FFPs

in the reference face scan. The mean FFPs of the aligned

data became the new reference FFPs in the next iter-

ation, and this process was repeated until the mean FFPs

stopped changing. The final aligned 3D FFPs were used

to build a 3D shape model in the training stage. The

training and test data-sets were divided using the leave-

one-out methodology, which uses a single data as the

test data and the remaining data as the training data.

2D face images of 150 subjects were obtained by pro-

jecting the textured 3D face scans as test images. In

other words, we obtained face images of seven different

head poses by rotating the face scans at 15° intervals in

the range −45° to +45° and projecting them onto the

x–y plane. Therefore, the total number of test images

was 1050 (150 subjects × 7 poses). The resolution of the
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obtained 2D images is 1200 × 900 pixels and the size of

the facial region was approximately 350 × 350 pixels.

Figure 8 shows examples of the 2D face test images

obtained. Given a test image, 2D FFPs were detected for

3D model fitting in S3DMM. In the experiments, we

used two methods to detect 2D FFPs in the test images

for ideal and practical cases. In the ideal case, Test data

1 was created by combining the ground-truth 2D FFPs

in the visible facial region and the manually marked 2D

FFPs (observed 2D FFPs) for the self-occluded facial

regions, as shown in Figure 9a. The ground-truth 2D

FFPs were acquired by rotating the ground-truth 3D

FFPs (manually annotated points on a face scan) and

projecting them onto the x–y plane. In the case of a

rotated facial image, it is difficult to detect the ground-

truth 2D FFPs on the self-occluded region because they

are not visible. Therefore, the manually marked 2D FFPs

(observed 2D FFPs) were used in the self-occluded facial

regions. Test data 1 could be regarded as ideal data be-

cause all of the FFPs were obtained manually. In the

practical case, Test data 2 was derived by automatically

detecting the FFPs using the AAMs fitting algorithm, as

described in Figure 9b. The AAMs used in this work is

based on the simultaneous inverse compositional algo-

rithm [32]. These data may have AAMs fitting errors as

well as errors caused by self-occlusion.

We used the root mean squared error (RMSE) to

measure the similarity between the reconstructed facial

shape and the corresponding ground-truth facial shape.

Let the reconstructed facial shape vector be Sre= [X’1,Y’1,

Z’1,X’2, . . .,Y’n,Z’n]
T and the corresponding ground-truth

facial shape vector be Sgt= [X1,Y1,Z1,X2, . . .,Yn,Zn]
T.

Given these two shape vectors, the RMSE is calculated

as follows:

e ¼
1

n

X

n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � X′
ið Þ2 þ Yi � Y ′

ið Þ2 þ Zi � Z′
ið Þ2

q

ð7Þ

where n is the number of FFPs.

Figure 9 Procedure for generating the two types of test data: (a) Test data 1 is manually obtained by combining the ground-truth 2D FFPs

for the visible facial regions and the manually marked 2D FFPs for the self-occluded facial region; (b) Test data 2 is derived by automatically

detecting the FFPs using the AAMs fitting algorithm.

Figure 8 Test image samples for the seven head poses.
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Effect of self-occlusion on 3D face reconstruction

To demonstrate the effect of self-occlusion on the per-

formance of the previous S3DMM method, we per-

formed 3D face reconstruction using the S3DMM

algorithm found in Section “S3DMM” with the

ground-truth data and Test data 1. The ground-truth

data was obtained by projecting the ground-truth 3D

FFPs onto the x–y plane, and hence no errors were

caused by self-occlusion, whereas Test data 1 con-

tained errors, as shown in Figure 9a. Figure 10 shows

the RMSEs of the reconstructed facial shape for the

two types of test data. As shown in Figure 10, the

RMSE increased sharply when using Test data 1

because the degree of head rotation increased, and

thus the location errors in the 2D FFPs in the

occluded facial region also increased. In the highly

rotated views (±45°), the RMSE differences between

the two data sets were greater than approximately

1 mm. Both data-sets had the same RMSE in the

frontal view (0°), because the frontal view was not

affected by self-occlusion. The results showed that the

2D FFP location errors caused by self-occlusion se-

verely deteriorated the reconstruction performance of

the earlier S3DMM algorithm.

Head pose estimation performance

This section details the performance of the cylindrical

model-based pose estimation method compared with

QR decomposition-based head pose estimation, which

was used in [5], and the effect of using the estimated

pose as the initial pose parameter on the proposed 3D

reconstruction method. Figure 11 and Table 2 show the

mean absolute errors (MAEs) with the two different

head pose estimation methods using Test data 1 and 2.

The results clearly show the following:

1) The cylindrical model-based method showed better

performance with the highly rotated face images

(±30°, ±45°) because this method used facial features

that were less sensitive to self-occlusion.

2) The QR decomposition-based method showed

slightly better performance with the almost frontal

face images (±15°, 0°) because the FFP location error

in these images caused by self-occlusion was small

and this method used a relatively larger number of

facial features. However, these facial features were

more sensitive to self-occlusion because the

Figure 11 Performance comparisons of the different head pose estimation methods: (a) Test data 1; (b)Test data 2.

Figure 10 Performance comparisons of the previous S3DMM

with the ground-truth data and Test data 1 according to the

pose of the input face.
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performance of this method was severely degraded

in the highly rotated images.

3) The results were similar irrespective of the data set

that was used, but the pose estimation error with

Test data 2 was slightly larger than that with Test

data 1 because the automatically obtained test data

had more severe FFP location errors than the

manually obtained test data. However, even in such

case, the proposed 3D reconstruction method

showed better performance than the previous

method. This result will be discussed in Section

“Quantitative results with yaw variations”. In order

to remove noisy FFPs, we need a different approach

such as texture analysis around each FFP.

To evaluate the effects of different head pose estima-

tion methods on 3D face reconstruction, we applied QR

decomposition and the cylindrical head model to our

proposed S3DMM algorithm seen in Section “3D face

model fitting”, respectively. As shown in Figures 12a,b,

the two methods showed similar performances in the

−15° to +15° pose range, but the performance of the cy-

lindrical model is better than that of the QR decompos-

ition method at ±30° and ±45°, regardless of the test

data-set. The method based on QR decomposition

showed better pose estimation performance with the

almost frontal face images, but this method did not

show a better 3D face reconstruction performance, as

shown in Figure 12, because the low pose estimation

error was compensated for by our proposed model fit-

ting algorithm from Section “3D face model fitting”.

Note that the cylindrical model-based method showed

considerably better pose estimation performance with

highly rotated face images, which led to an improvement

in 3D face reconstruction performance.

In this work, the yaw angle estimated by the cylin-

drical model was used as the initial pose parameter

(θ0 ¼ θ̂ ), as shown in the initialization step of the pro-

posed 3D model fitting algorithm in Section “3D face

model fitting”. To demonstrate the effect of using the

estimated pose as the initial pose parameter, we further

obtained results to compare the following two cases with

Test data 1 and 2: the first case used the estimated pose

whereas the second case did not. In the first case, 3D

model fitting began with shape parameter estimation be-

cause the approximate initial pose was known, as shown

in Algorithm 2 in Section “3D face model fitting”. In the

second case, the initial pose parameter was not provided,

and hence the pose parameter had to be estimated prior

to shape parameter estimation, as shown in Step 3 of

Algorithm 1. As shown in Figures 13a,c, both cases pro-

duced similar RMSEs with the almost frontal views

Figure 12 3D face reconstruction performance comparisons when using the cylindrical head model and the QR decomposition as a

pose estimator for self-occlusion detection: (a) Test data 1; (b) Test data 2.

Table 2 Performance comparisons of the two different methods for head pose estimation

Data set Test data 1 Test data 2

Method Cylindrical model (proposed method) QR decomposition [5] Cylindrical model (proposed method) QR decomposition [5]

MAE 2.23° 3.46° 2.39° 3.86°
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(−15° to +15°). However, the first case showed the better

performance with the highly rotated views (±30°, ±45°),

irrespective of the test data-set used. As shown in

Figures 13b,d, the use of the estimated pose was also

more efficient than not using the estimated pose in

terms of the processing time. Based on these observa-

tions, we found that an accurate initial pose parameter

led to a performance improvement during 3D face re-

construction based on our proposed algorithm and

reduced the number of iterations required for 3D model

fitting.

In summary, the cylindrical model-based method is

suitable for selecting a reliable set of visible FFPs while

the use of the estimated yaw angle as the initial pose

parameter indicates that the proposed 3D model fitting

algorithm shows better reconstruction performance with

higher efficiency.

Quantitative performance of the proposed method

Quantitative results with yaw variations

To evaluate the performance of our proposed method,

we obtained results from the two test data sets with yaw

variations using the proposed algorithm and we com-

pared its performance with that of the previous S3DMM

algorithm found in Section “S3DMM”.

Figure 14 shows the RMSEs of the proposed method

and the previous method with Test data 1 and 2. As

shown in Figure 14, the proposed algorithm produced a

Figure 13 Performance comparisons with the estimated pose and without the estimated pose: (a) 3D face reconstruction performance

with Test data 1; (b) processing time with Test data 1; (c) 3D face reconstruction performance with Test data 2; (d) processing time with Test

data 2.
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significantly lower RMSE than the previous method as

the head rotation increased. This was because the FFP

self-occlusion errors increased with the head rotation.

Figure 14b showed that although Test data 2 contained

self-occlusion errors and detection errors, because they

were obtained automatically using the AAMs algorithm,

the results showed that the proposed method provided

superior performance compared to the previous method.

However, if detection errors of the FFPs were very large,

the reconstruction performance of the proposed method

could be significantly degraded because these FFPs still

contained large detection errors, although self-occlusion

errors were excluded by the proposed method. This

problem of FFP detection is a common limitation of

S3DMM-based methods.

We also obtained results from Test data 1 and 2 using

the one-step parameter estimation method. The one-

step methodology has been used for model parameter

estimation by the S3DMM-based method, which simul-

taneously estimates the shape and pose parameters using

a non-linear optimization algorithm [3,17,19]. In this

study, one-step parameter estimation was achieved using

Figure 14 Performance comparisons of the proposed method and the previous method based on the alternation methodology: (a)

Test data 1; (b) Test data 2.

Figure 15 Performance comparisons of the proposed method and the previous method based on the one-step methodology: (a) Test

data 1; (b) Test data 2.
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Figure 16 Performance comparisons of the proposed method and the previous method with yaw and pitch variations: (a, b) Test data 1

and 2 at 30° pitch angle; (c, d) Test data 1 and 2 at 15° pitch angle; (e, f) Test data 1 and 2 at −15° pitch angle; (g, h) Test data 1 and 2 at −30°

pitch angle.
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Figure 17 Examples of faces reconstructed using Test data 1 (a, b: previous method and proposed method at 15°; c, d: previous method

and proposed method at 30°; e, f: previous method and proposed method at 45°; red solid lines represent the accurate frontal and profile shapes

of the ground-truth face)
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Figure 18 Examples of faces reconstructed using Test data 2 (a, b: previous method and proposed method at 15°; c, d: previous method

and proposed method at 30°; e, f: previous method and proposed method at 45°; red solid lines represent the accurate frontal and profile shapes

of the ground-truth face).

Lee et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:176 Page 16 of 20

http://asp.eurasipjournals.com/content/2012/1/176



code available in MATLAB [35]. We compared the one-

step methodology using all FFPs (previous method) with

one using only visible FFPs (proposed method). Figure 15

shows the RMSEs for both methods. In the highly

rotated views (±30°, ±45°), the proposed method using

selected visible FFPs showed considerably better per-

formance than the previous method using all of the FFPs

with both test data-sets. With the almost frontal views

(0°, ±15°), both methods delivered similar reconstruction

performances. From the observations in Figures 14 and

15, the proposed strategy of using the visible FFPs was

an adequate solution for the self-occlusion problem dur-

ing S3DMM-based 3D face reconstruction.

Quantitative results with yaw and pitch variations

In this experiment, we tested whether yaw and pitch var-

iations affected the performance of the proposed

method. For this experiment, face images were generated

with yaw and pitch variations by rotating and projecting

the textured face scans of 150 subjects, as explained in

Section “Face database”. A head pose set consisted of 28

different poses, which were a combination of seven yaw

angles (0°, ±15°, ±30°, ±45°) and four pitch angles (±15°,

±30°). The total number of the test images is 4200 (150

subjects × 28 poses). To evaluate the performance of the

proposed method using these test images, Test data 1

and 2 were obtained from the test images, as explained

in Section “Face database”, and the performance of the

proposed algorithm from Section “3D face model fitting”

was compared with that of the previous algorithm seen

in Section “S3DMM”. Figure 16 shows the effects of yaw

and pitch variations on the performance of the proposed

method. In this figure, each graph shows the RMSEs of

the proposed method and the previous method with yaw

variations at a fixed pitch angle. From the results, it is

found that the performance of the proposed method was

remarkably improved compared to that of the previous

method even with yaw and pitch variations. This was be-

cause the self-occlusion error caused by yaw variations

was more dominant than that caused by pitch variations.

Consequently, it is found that the occlusion error oc-

curred by a combination of yaw and pitch could be com-

pensated for using the proposed algorithm by

considering only yaw variations, as shown in Figure 16.

However, the performance of the proposed method

degraded slightly when both head yaw and tilt occurred

because the cylindrical model could only estimate head

yaw. In order to improve the performance of the pro-

posed method when both head yaw and tilt occur, we

need another tilt estimator.

Qualitative performance of the proposed method

We obtained qualitative results for the proposed method

and the previous method using Test data 1 and 2.

Figure 17 shows the reconstructed results for four sub-

jects from our database when using Test data 1. The first

column shows the ground-truth images while the a-, c-,

and e- columns show the reconstructed faces using the

previous method when the yaw angle of the input face

was 15°, 30°, and 45°, respectively. The b-, d-, and f- col-

umns show the reconstructed faces using the proposed

method when the yaw angle of the input face was 15°,

30°, and 45°, respectively. In the same way, Figure 18

shows the faces reconstructed using Test data 2. As

shown in Figures 17 and 18, the performance of the pro-

posed method was almost the same as that of the previ-

ous method with a 15° head pose because the almost

frontal view is negligibly affected by self-occlusion. How-

ever, we observed the following with the highly rotated

views (30°, 45°):

1) The proposed method showed that the frontal and

profile shapes were similar to the ground-truth facial

shapes.

2) The previous method produced a wider facial

contour in the frontal view compared with the

ground-truth facial shape because self-occlusion

error occurred, as shown in Figure 19. Figure 18

showed that the proposed method remarkably

improved the reconstruction performance compared

Figure 19 Examples of 3D faces reconstructed using the

proposed method and previous method at a 45° input view.

The previous method produced a wider facial contour in the frontal

view compared with the ground-truth facial shape: (a) Test data 1;

(b) Test data 2.
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with the previous method, even with the practical

data (Test data 2).

Finally, we present the reconstruction results for

real-world images from the FacePix database [36] and

the CAS-PEAL-R1 database [37]. Figure 20 shows in-

dividual results for five subjects in the Face Pix data-

base, where the rows indicate different subjects and

the seventh column shows the test images. The first

and fourth columns show different views of the ori-

ginal image. The a- and c- columns show the results

with the previous method, whereas the b- and d- col-

umns show the results with the proposed method.

Figure 21 shows the results for five subjects in the

CAS-PEAL-R1 database. From these figures, we can

find that:

1) With highly rotated face images, the proposed

method provided reconstructed facial shapes in the

frontal and profile views that were closer to the

ground-truth shape than the previous method were.

In particular, the previous method had a wider facial

contour in the frontal view compared with the

ground-truth facial shape.

2) With almost frontal face images, the performance of

the proposed method was similar to that of the

previous method because self-occlusion error was

very small, as shown in the fourth and fifth rows of

Figure 20 and in the third, fourth, and fifth rows of

Figure 21.

The proposed 3D face reconstruction required about

0.1 s per test image using our proposed algorithm based

on an alternation methodology and about 3.6 s per test

image using the algorithm based on a one-step method-

ology. The computation times were measured on an

Intel Core i5 CPU 750, 2.7 GHz, 3 GB RAM machine.

Conclusions

We analyzed the self-occlusion problem that occurs in

S3DMM-based 3D face reconstruction and proposed a

method for solving this problem. Our main contribu-

tions are summarized as follows

� The 3D model fitting scheme of S3DMM was

modified to make it suitable for 3D face

reconstruction based on visible FFPs. The

reconstruction accuracy of the proposed method

Figure 20 Reconstruction tests using subjects from the FacePix database.
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was improved greatly compared with the original

S3DMM-based method by using the visible FFPs

having no self-occlusion errors.

� To exclude self-occluded FFPs in the 3D model

fitting process, self-occluded FFPs were separated

automatically from visible FFPs using a pose

estimation method based on a cylindrical head

model and an index table of visible FFPs.

� The reconstruction performance was enhanced by

using the estimated pose as the initial pose

parameter during the 3D model fitting process.

Since the proposed method can automatically recon-

struct a 3D face from an arbitrary-view image, it can be

applied for to a variety of useful applications, such as 3D

game and animation character generation, and 2D

frontal face generation from a side-view face image

which can be used for monitoring suspects in surveil-

lance cameras.

In future works, we would research about the 3D face

reconstruction method robust to the detection error of

FFP by combining the information of FFP and facial tex-

ture. In addition, we would develop a more accurate 3D

face reconstruction method for a wide range of pose var-

iations and study a new method to solve the self-

occlusion problem without eliminating occluded FFPs.
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