
Single View Modeling of Free-Form Scenes

Li Zhangy Guillaume Dugas-Phocionz Jean-Sebastien Samsonz Steven M. Seitzy

yDepartment of Computer Science and Engineering zEcole Polytechnique

University of Washington, Seattle, WA, 98195 91128 Palaiseau Cedex, France

Abstract

This paper presents a novel approach for reconstructing

free-form, texture-mapped, 3D scene models from a single

painting or photograph. Given a sparse set of user-specified

constraints on the local shape of the scene, a smooth 3D

surface that satisfies the constraints is generated. This prob-

lem is formulated as a constrained variational optimization

problem. In contrast to previous work in single view recon-

struction, our technique enables high quality reconstruc-

tions of free-form curved surfaces with arbitrary reflectance

properties. A key feature of the approach is a novel hier-

archical transformation technique for accelerating conver-

gence on a non-uniform, piecewise continuous grid. The

technique is interactive and updates the model in real time

as constraints are added, allowing fast reconstruction of

photorealistic scene models. The approach is shown to yield

high quality results on a large variety of images.

1 Introduction

One of the most impressive features of the human visual

system is our ability to infer 3D shape information from a

single photograph or painting. A variety of strong single-

image cues have been identified and used in computer vi-

sion algorithms (e.g. shading, texture, and focus) to model

objects from a single image. However, existing techniques

are not capable of robustly reconstructing free-form objects

with general reflectance properties. This deficiency is not

surprising given the ill-posed nature of the problem–from

a single view it is not possible to differentiate an image of

an object from an image of a flat photograph of the object.

Obtaining good shape models from a single view therefore

requires invoking domain knowledge.

In this paper, we argue that a reasonable amount of user

interaction is sufficient to create high-quality 3D scene re-

constructions from a single image, without placing strong

assumptions on either the shape or reflectance properties of

the scene. To justify this argument, an algorithm is pre-

sented that takes as input a sparse set of user-specified con-

The support of Intel Corporation, Microsoft Corporation, and the National

Science Foundation under grants IIS-0049095 and IIS-9984672 is grate-

fully acknowledged.

Figure 1: The 3D model at right is generated from a single

image and user-specified constraints.

straints, including surface positions, normals, silhouettes,

and creases, and generates a well-behaved 3D surface sat-

isfying the constraints. As each constraint is specified, the

system recalculates and displays the reconstruction in real

time. The algorithm yields high quality results on images

with limited perspective distortion.

We cast the single-view modeling problem as a con-

strained variational optimization problem. Building upon

previous work in hierarchical surface modeling [16, 6, 17],

the scene is modeled as a piecewise continuous surface rep-

resented on a quad-tree-based adaptive grid and is computed

using a novel hierarchical transformation technique. The

advantages of our approach are:

� A general constraint mechanism: any combination of

point, curve, and region constraints may be specified

as image-based constraints on the reconstruction.

� Adaptive resolution: the grid adapts to the complex-

ity of the scene, i.e., the quad-tree representation can

be made more detailed around contours and regions of

high curvature.

� Real-time performance: a hierarchical transformation

technique is introduced that enables 3D reconstruction

at interactive rates.

A technical contribution of our algorithm is the formula-

tion of a hierarchical transformation technique that handles

discontinuities. Controlled-continuity stabilizers [19] have



been proposed to model discontinuities in inverse visual

reconstruction problems. Whereas hierarchical schemes

[16, 6] and quad-tree splines [17] enabled fast solutions for

related variational problems, our approach for integrating

discontinuity conditions into a hierarchical transformation

framework is shown to yield significant performance im-

provements over these prior methods.

The remainder of the paper is structured as follows. Sec-

tion 2 formulates single-view modeling as a constrained op-

timization problem in a high dimensional space. In order

to solve this large scale optimization problem efficiently

with adaptive resolution, a novel hierarchical transforma-

tion technique is introduced in Section 3. Section 4 presents

experimental results and Section 5 concludes.

1.1 Previous Work on Single View Modeling

The topic of 3D reconstruction from a single image is a

long-standing problem in the computer vision literature.

Traditional approaches for solving this problem have iso-

lated a particular cue, such as shading [7], texture [15],

or focus [11]. Because these techniques make strong as-

sumptions on shape, reflectance, or exposure, they tend to

produce acceptable results for only a restricted class of im-

ages. Of these, the topic of shape from shading, pioneered

by Horn [7], is most related to our approach in its use of

variational techniques and surface normal analysis.

More recent work by a number of researchers has shown

that moderate user-interaction is highly effective in creating

3D models from a single view. In particular, Horry et al.

[8] and Criminisi et al. [3] reconstructed piecewise planar

models based on user-specified vanishing points and geo-

metric invariants. Shum et al. [14] generated similar mod-

els from panoramas using a constraint system based on user

input. The Façade system [4] modeled architectural scenes

using collections of simple primitives from one or more im-

ages, also with the assistance of a user. A limitation of these

approaches is that they are limited to scenes composed of

planes or other simple primitives and do not permit mod-

eling of free-form scenes. A different approach is to use

domain knowledge; for example, Blanz and Vetter [1] have

obtained remarkable reconstructions of human faces from a

single view using a database of head models.

A primary source of inspiration for our work is a series

of papers on the topic of Pictorial Relief [10]. In this work,

Koenderink and his colleagues explored the depth percep-

tion abilities of the human visual system by having several

human subjects hand-annotate images with relative distance

or surface normal information. They found that humans are

quite proficient at specifying local surface orientation, i.e.,

normals, and that integrating a dense user-specified normal

field leads to a well-formed surface that approximates the

real object, up to a depth scale. Interestingly, the depth scale

varies across individuals and is influenced by illumination

conditions. We believe that the role of this depth scale is

mitigated in our work, due to the fact that we allow the user

to view the reconstruction from any viewpoint(s) during the

modeling process–the user will set the normals and other

constraints so that the model appears correct from all view-

points, rather than just the original view. The surface inte-

gration technique used by Koenderink et al. is not attractive

as a general purpose modeling tool, due to the large amount

of human labor needed to annotate every pixel or grid point

in the image. Although it is also based on the principles put

forth in the Pictorial Relief work, our modeling technique is

much more efficient, works from sparse constraints, and in-

corporates discontinuities and other types of constraints in

a general-purpose optimization framework.

An interesting alternative to the approach advocated in

this paper is to treat the scene as an intensity-coded depth

image and use traditional image editing techniques to sculpt

the depth image [20, 9, 12]. While our framework allows di-

rect specification of depth values, we found that surface nor-

mals are easier to specify and provide more intuitive surface

controls. This conclusion is consistent with Koenderink’s

findings [10] that humans are more adept at perceiving lo-

cal surface orientation than relative depth.

2 A Variational Framework for Sin-

gle View Modeling

The subset of a scene that is visible from a single image

may be modeled as a piecewise continuous surface. In our

approach, this surface is reconstructed from a set of user-

specified constraints, such as point positions, normals, con-

tours, and regions. The problem of computing the best sur-

face that satisfies these constraints is cast as a constrained

optimization problem.

2.1 Surface Representation

In this paper, the scene is represented as a piecewise contin-

uous function, f(x; y), referred to as the depth map. Sam-

ples of f are represented on a discrete grid, g i;j = f(id; jd),
where the i and j samples correspond to pixel coordinates

of the input image, and d is the distance between adjacent

samples, assumed to be the same in x and y. Denote g as

the vector whose components are gi;j .

A set of four adjacent samples, A=(i; j), B=(i + 1; j),
C=(i + 1; j + 1), and D=(i; j + 1) define the corners of a

grid cell. Note that a cell, written as A-B-C-D, is specified

by its vertices listed in counter-clock-wise order.

The technique presented in this paper reconstruct the

smoothest surface that satisfies a set of user-specified con-

straints. A natural measure of surface smoothness is the thin



plate functional [19]:

Q0(g) =
1

2d2

X
i;j

[�i;j(gi+1;j � 2gi;j + gi�1;j)
2

+2�i;j(gi+1;j+1 � gi;j+1 � gi+1;j + gi;j)
2

+
i;j(gi;j+1 � 2gi;j + gi;j�1)
2℄ (1)

where �i;j , �i;j , and 
i;j are weights that take on values of

0 or 1 and are used to define discontinuities, as described in

Section 2.2.2.

2.1.1 Piecewise Continuous Surface Representation

While it is convenient to represent a surface by a grid of

samples, users should have the freedom to interact with a

continuous surface by specifying constraints at any location

with sub-grid accuracy. Given a sampled surface g i;j , we

represent the continuous surface f(x; y) using a triangular

mesh. Specifically, each grid cell is divided into four trian-

gles by inserting a vertex at the center with depth defined

as the average of the depths of the four corner samples, and

adding edges connecting the new vertex with the four cor-

ners. The resulting mesh defines a piecewise planar surface

over the cell. The depth of each point in the cell can be

expressed as a barycentric combination of the depth values

of four corner samples. Grid cells that intersect discontinu-

ity curves are omitted from the representation and appear as

gaps in the reconstruction.

2.2 Constraints

Our technique supports five types of constraints: point con-

straints, depth discontinuities, creases, planar region con-

straints, and fairing curve constraints. Point constraints

specify the position or the surface normal of any point on

the surface. Surface discontinuity constraints identify tears

in the surface, and crease constraints specify curves across

which surface normals are not continuous. Planar region

constraints determine surface patches that lie on the same

plane. Fairing curve constraints allow users to control the

smoothness of the surface along any curve in the image.

2.2.1 Point Constraints

A point constraint sets the depth and/or the surface normal

of any point in the input image. A position constraint is

specified by clicking at a point in the image to define the

(sub-pixel) position (x0; y0), and then dragging up or down

to specify the depth value. A surface normal is specified by

rendering a figure representing the projection of a disk sit-

ting on the surface with a short line pointing in the direction

of the surface normal (Figure 2(a)). This figure is superim-

posed over the point in the image where the normal is to

be specified and manually rotated until it appears to align

(a) (b) (c)

(d) (e) (f)

Figure 2: Modeling constraints. (a) The effects of position

(blue crosses) and surface normal constraints (red disks with

needles). (b) A depth discontinuity constraint creates a tear.

(c) A crease constraint (green curve). (d) The blue region is

a planar region constraint. (e) A fairing curve minimizing

curvature. (f) A fairing curve minimizing torsion makes the

surface bend smoothly given a single normal constraint–this

type of constraint is useful for modeling silhouettes.

with the surface in the manner proposed by [10]. In order to

uniquely determine the normal from its image plane projec-

tion, we assume orthographic projection.

A position constraint f(x0; y0) = f0 defines the follow-

ing constraint


00gi;j + 
10gi+1;j + 
01gi;j+1 + 
11gi+1;j+1 = f0 (2)

where (x0; y0) is located in grid cell [id; (i+1)d℄�[jd; (j+
1)d℄ and 
00, 
01 ,
10, and 
11 are the barycentric coordi-

nates of (x0; y0), as described in Section 2.1.1. Specifying

the normal of a point (x0; y0) to be (Nx; Ny; Nz)
T, defines

the following pair of constraints

f(x0 + d; y0)� f(x0 � d; y0)

2d
= �

Nx

Nz

(3)

f(x0; y0 + d)� f(x0; y0 � d)

2d
= �

Ny

Nz

(4)

Substituting Eq. (2) for f(x0�d; y0) and f(x0; y0�d)
yields two linear constraints on g. An example of the effects

of position and normal constraints is shown in Figure 2(a).

2.2.2 Depth Discontinuities and Creases

A depth discontinuity is a curve across which surface depth

is not continuous, creating a tear in the surface. A crease is

a curve across which the surface normal is not continuous

while the surface depth is continuous. Depth discontinuities



and creases are introduced to model important features in

real-world imagery. For example, mountain ridges can be

modeled as creases and silhouettes of objects can be mod-

eled as depth discontinuities. These features can be easily

specified by users with a 2D graphics interface.

Depth discontinuities and creases are modeled by defin-

ing the weights �i;j , �i;j , and 
i;j in the smoothness objec-

tive function of Eq. (1). Given a depth discontinuity curve,

let A-B-C be a set of three consecutive colinear grid points

that cross the curve, and D-E-F-G a cell that the curve inter-

sects. For each such tuple A-B-C, the term (gA�2gB+gC)
2

is dropped from Q0 by setting �B or 
B to 0. For each such

cell D-E-F-G, the term (gD�gE�gF+gG)
2 is also dropped

by setting �G to 0. Each crease curve is first scan con-

verted [5] to the sampling grid points. Then, all the terms

(gA � 2gB + gC)
2 are dropped if B is on the curve; all the

terms (gD�gE�gF +gG)
2 are dropped if either edge D-E

or edge F-G is on the curve. Otherwise, all the weights are

1 by default. Examples of depth discontinuity and crease

constraints are shown in Figures 2(b) and (c) respectively.

2.2.3 Planar Region Constraints

The necessary and sufficient conditions for surface planarity

over a regionR are fxx(x; y) = fxy(x; y) = fyy(x; y) = 0,

8(x; y)2R, and define the following constraints on g

gA � 2gB + gC = 0 (5)

gD � gE � gF + gG = 0 (6)

for all three consecutive colinear grid points A-B-C in R,

and for all cells D-E-F-G in R. An example of a planar

region constraint is shown in Figure 2(d).

2.2.4 Fairing Curve Constraints

It is often very useful for users to control the smoothness of

the surface both along and across a specific curve. For ex-

ample, surface depth is made to vary slowly along a curve in

Figure 2(e), and the surface gradient is made to vary slowly

across a curve in Figure 2(f). Fairing curves provide bet-

ter control of the shape of the surface along salient contours

such as silhouettes, and are achieved as follows.

Suppose that a user specifies a curve �(l) = (x(l); y(l))T

in the image. To maximize the smoothness along the curve,

the following integral is minimized

Qd(�) =

Z
l

(
d2

dl2
f(�(l)))2dl (7)

The gradient of the surface across � is (rf)Tn� , where

rf = (fx; fy)
T is the gradient of the surface f(x; y) at the

point �(l) and n� (l) = (� d
dl
y(l); d

dl
x(l))T is the normal

of � . To make the surface gradient across �(l) have small

variation, the integral

Qs(�) =

Z
l

(
d

dl
((rf)Tn� ))

2dl (8)

is minimized. Note that d
dl
((rf)Tn� ) is the derivative of

the surface gradient across the curve with respect to the

curve parameter.

The terms d2

dl2
f(�(l)) and d

dl
((rf)Tn� ) may be dis-

cretized as

d2

dl2
f(�(li)) = f(�(li+1))� 2f(�(li�1)) + f(�(li�1))

((rf)Tn� )(li) = f((�+
d

2
n� )(li+1))�f((��

d

2
n� )(li+1))

d

dl
((rf)Tn� )(li) = ((rf)Tn� )(li+1)� ((rf)Tn� )(li)

where f�(li)g are sampling points on the curve. Conse-

quently, Eqs. (7) and (8), can be expressed as quadratic

forms of g. The resulting equations are added, with weights

�� and �� , into Eq. (1), resulting in a modified surface

smoothness objective function Q(g):

Q
(�) = ��Qd(�) + ��Qs(�)

Q(g) = Q0(g) +
X
�

Q
(�) (9)

We call ��Qd(�) the curvature term and ��Qs(�) the tor-

sion term. Note that Q(g) is a quadratic form.

2.3 Linearly Constrained Quadratic Opti-

mization

Based on the surface objective function and constraints pre-

sented in Section 2.1 and 2.2, finding the smoothest surface

that satisfies these constraints may be formulated as a lin-

early constrained quadratic optimization. Point constraints

and planar region constraints introduce a set of linear equa-

tions, Eqs. (2-6), for the depth map g, expressed asAg = b.

Surface discontinuity and crease constraints define weights

�, �, and 
 and fairing curve constraints introduce
P
�

Q
(�)

in Eq. (9). Q(g) is a quadratic form and can be expressed as

gTHg, where H is the Hessian matrix. Consequently, our

linearly constrained quadratic optimization is defined by(
g� = argmin

g

fQ(g) = gTHgg

subje
t to Ag = b
(10)

The Lagrange multiplier method is used to convert this

problem into the following augmented linear system�
H AT

A 0

� �
g

�

�
=

�
0

b

�
(11)



The Hessian matrixH is a diagonally-banded sparse ma-

trix. For a grid of size N by N , H is of size N 2 by N 2,

with band width of O(N) and about 13 non-zero elements

per row. Direct methods, such as LU Decomposition, are

of O(N4) time complexity, and are therefore do not scale

well for large grid sizes. Iterative methods are more appli-

cable. We use the Minimum Residue method [13], designed

for symmetric non-positive-definite systems. However, the

linear system arising from Eq. (10) is often poorly condi-

tioned, resulting in slow convergence of the iterative solver.

To address this problem, a hierarchical basis precondition-

ing approach with adaptive resolution is presented in the

next section.

3 Hierarchical Transformation with

Adaptive Resolution

The reason for the slow convergence of the Minimum

Residue method is that it takes many iterations to propa-

gate a constraint to its neighborhood, due to the sparseness

of H. The first row of Figure 4 shows an example of this

constraint propagation process, where the two normal con-

straints generate only two small ripples after 200 iterations.

Multigrid techniques [18] have been applied to this type of

problem, however, they are tricky to implement and require

a fairly smooth solution to be effective [16]. Szeliski [16]

and Gortler et al. [6] use hierarchical basis functions to ac-

celerate the solution of linear systems like Eq. (11). We

review their approach next, to provide a foundation for our

work which builds upon it.

In the hierarchical approach, a regular grid is represented

with a pyramid of coefficients [2], where the number of co-

efficients is equal to the original number of grid points. The

coarse level coefficients in the pyramid determine a low res-

olution surface sampling and fine level coefficients deter-

mine surface details, represented as displacements relative

to the interpolation of the low resolution sampling. To con-

vert from coefficients to depth values, the algorithm starts

from the coarsest level, doubles the resolution by linearly

interpolating the values of current level, adds in the dis-

placement values defined by the coefficients in the next finer

level, moves to the next finer level, and repeats the proce-

dure until the finest resolution is obtained. Using similar

notation as Szeliski’s [17], the process can be written

pro
edure CoefToDepth(
oef)
for l = L� 1 down to 1

for every grid point P in level l

depthP = 
oefP +
P

Q2NP

wP;Q � depthQ

return depth

end CoefToDepth

where L is the number of levels in hierarchy, 
oefP is the

hierarchical coefficient for P , NP is the set of grid points in

Figure 3: A cell is the primitive for 2D hierarchical transfor-

mation. The depth at the center point I is interpolated from

the midpoints E, F, G, and H, which are in turn interpolated

along each edge of the cell.

level l � 1 used in interpolation for P in level l, and wP;Q

is a weight that will be described later. Level 0 consists of a

single cell, with coefficients defined to be the depth values

at the corners of the cell.

In previous work, the weightswP;Q were defined to aver-

age all the points in NP , resulting in a simple averaging op-

eration for computingP fromNP . This approach implicitly

assumes local smoothness within the region defined by NP ,

resulting in poor convergence in the presence of discontinu-

ities. In practice, this choice of weights causes the artifact

that modifying the surface on one side of a discontinuity

boundary disturbs the shape on the other side during the it-

erative convergence process. As a result, it takes longer to

converge to a solution, and results in unnatural convergence

behavior. The latter artifact is a problem in an incremen-

tal solver where the evolving surface is displayed for user

consumption, as is done in our implementation. To address

this problem, we next introduce a new interpolation rule to

handle discontinuities between the grid points in NP .

The basic unit in the 2D hierarchial transformation tech-

nique is the cell shown in Figure 3, where the depth for

corners A, B, C, and D has already been computed and the

task is to transform coefficients at E, F, G, H, and I to depth

values at these points. With the same notation as in the pro-

cedure, CoefToDepth, NE = fA;Bg, NF = fB;Cg,

NG = fC;Dg,NH = fD;Ag, and NI = fE;F;G;Hg.

gE ; gF ; gG; and gH are first interpolated from A, B, C, and

D along edges, and then offset by their respective coeffi-

cients ~gE ; ~gF ; ~gG, and ~gH . Second, gI is interpolated from

gE ; gF ; gG; and gH and offset by its coefficient, ~gI . The two

interpolation steps above use continuity-based interpolation

with weights defined as

wP;Q =

8<
:

eP;QP
Q2NP

eP;Q
if

P
Q2NP

eP;Q > 0;

0 otherwise:

where

eP;Q =

�
1 if edge P� Q is 
ontinuous;
0 otherwise:

In the absence of discontinuities, the proposed



continuity-based weighting scheme is the same as simple

averaging schemes used in previous work [16, 17]. In the

presence of discontinuities, only locally continuous coarse

level grid points are used in the interpolation. The new

scheme prevents interference across discontinuity bound-

aries and consequently accelerates the convergence of the

Minimum Residue algorithm. The second and third rows of

Figure 4 show a performance comparison between standard

hierarchical transformation and our transformation with

continuity-based weighting on a simple surface modeling

problem with one discontinuity curve. The improvement of

our algorithm is quite evident in this example. In the third

row, our new transformation both accelerates the propaga-

tion of constraints and removes the interference across the

discontinuity boundary. We have found this kind of behav-

ior very typical in practice and find that adding continuity-

based weighting yields dramatic improvements in system

performance.

To summarize our approach in brief, instead of solving

Eq. (11) directly, we solve the hierarchical coefficients ~g

of the grid point g instead. The conversion from ~g to g

is implemented by the procedure, CoefToDepth, with

continuity-based weighting. The procedure implements a

linear transformation and can be described by a matrix S

[16]. Substituting g = S~g into Eq. (10) and applying the

Lagrange Multiplier method yields the transformed linear

system [6]:�
STHS STAT

AS 0

� �
~g

�

�
=

�
0

b

�
(12)

The matrix STHS is shown to be better conditioned [16],

resulting in faster convergence. The number of floating

point operations of the procedure CoefToDepth and its

adjoint [16] is approximately 4N 2 for a grid size of N �N .

Considering that there are around 13 non-zero elements per

row in H, the overhead introduced by S in multiplying

STHS with a vector is about 30%. Given the considerable

reduction in number of iterations shown in Figure 4, the

total run time is generally much lower using a hierarchical

technique, even with this overhead.

3.1 Adaptive Surface Resolution

As an alternative to solving for the surface on the full grid,

it is often advantageous to use an adaptive grid, with higher

resolution used only in areas where it is needed. For ex-

ample, the surface should be sampled densely along a sil-

houette and sparsely in areas where the geometry is nearly

planar. We support adaptive resolution by allowing the

user to specify the grid resolution for each region via a

user-interface. Subdivision may also occur automatically–

in our implementation, discontinuity and crease curves are

automatically subdivided to enable accurate boundaries. A

quad-tree representation is used to represent the adaptive

grid. By modifying our hierarchical transformation tech-

nique to operate on a quad-tree grid, as in [17], the run time

of the algorithm is proportional to the number of subdivided

grid points, which is typically much smaller than the full

grid.

Modifying the algorithm to operate on a quad-tree re-

quires the following changes. First, the triangular mesh rep-

resentation in Section 2.1.1 is adapted so that each inserted

vertex is connected to all the grid points on the cell, not just

to the four corners. Second, expressions for the first and sec-

ond derivatives of f in terms of g should be derived from

the quad-tree representation, e.g., by interpolating a regu-

lar grid neighborhood around each point from the triangular

mesh. Finally, special care should be taken to approximate

surface and curve integrals by summations, e.g., Eq. (1), on

the non-uniform grid, by weighing each term in the summa-

tion according to the size of the local neighborhood. The

full details of these modifications are omitted here for lack

of space, but can be found online [21].

4 Experimental Results

We have implemented the approach described in this paper

and applied it to create reconstructions of a wide variety of

objects. Only three of these results are presented in this

section but higher resolution images and 3D VRML mod-

els can be found online [21]. We encourage the reader to

peruse these results online to better gauge the quality of the

reconstructions.

Smooth objects without position discontinuities are es-

pecially easy to reconstruct using our approach. As a case

in point, the Jelly Bean image in the first row of Figure 5 re-

quires only isolated normals and creases to generate a com-

pelling model, and can be created quite rapidly (about 20

minutes, including time to specify constraints) using our in-

teractive system. The first row of Figure 5 shows the input

image, quad-tree grid with constraints, a view of the quad-

tree from a novel viewpoint, and a texture mapped render-

ing of the same view. For this example, the user worked

with a 32�32 grid that was automatically subdivided as the

crease curves were drawn. This model has 144 constraints

in all, 3396 grid points, and required 25 seconds to converge

completely on a 1.5GHz Pentium 4 processor, using our hi-

erarchical transformation technique with continuity-based

weighting. The system is designed so that new constraints

may be added interactively at any time during the model-

ing process–the user does not have to wait until full con-

vergence to specify more constraints. The second row of

Figure 5 shows a single-view reconstruction of The Great

Wall of China. This example was much more challenging

than the Jelly Bean, due to the complex scene geometry and

significant perspective distortions. Despite these obstacles,



a 3D model was reconstructed that appears visually con-

vincing from a significant range of views. This model has

135 constraints, 2566 grid points, and required 40 seconds

to converge completely.

An interesting application of single view modeling tech-

niques is to reconstruct 3D models from paintings. In

contrast to other techniques [4, 8, 1, 3], our approach

does not make strong assumptions about geometry, making

it amenable to impressionist and other non-photorealistic

works. Here we show a reconstruction created from a self-

portrait of van Gogh. This model has 264 constraints, 3881

grid points, and required 45 seconds to converge. This

was the most complex model we tried, requiring roughly

1.5 hours to design. For comparison, it takes 70 seconds

to converge without using the hierarchical transformation

and 3 minutes using the hierarchical transformation with-

out continuity-based weighting, i.e., an inappropriately-

weighted hierarchical method can perform significantly

worse than not using a hierarchy at all. Note, however,

that there is significant room for optimization in our imple-

mentation; we expect that the timings for both hierarchical

methods could be improved by a factor of 1.5 or 2.

5 Conclusions

In this paper, it was argued that a reasonable amount of user

interaction is sufficient to create high-quality 3D scene re-

constructions from a single image, without placing strong

assumptions on either the shape or reflectance properties of

the scene. To justify this argument, an algorithm was pre-

sented that takes as input a sparse set of user-specified con-

straints, including surface positions, normals, silhouettes,

and creases, and generates a well-behaved 3D surface sat-

isfying the constraints. As each constraint is specified, the

system recalculates and displays the reconstruction in real

time. A technical contribution is a novel hierarchial trans-

formation technique that explicitly models discontinuities

and computes surfaces at interactive rates. The approach

was shown to yield very good results on a variety of images.

There are a number of interesting avenues for future re-

search in this area. In particular, single-view modeling has

the inherent limitation that only visible surfaces in an image

can be modeled, leading to distracting holes near occluding

boundaries. Automatic hole filling techniques could be de-

veloped that maintain the surface and textural attributes of

the scene. Another important extension would be to gener-

alize to perspective projection as well as other useful pro-

jection models like panoramas.

References

[1] V. Blanz, T. Vetter, ”A morphable model for the synthesis

of 3D faces”, ACM SIGGRAPH Proceedings, pp. 187–194,

1999.

[2] P. J. Burt, E. H. Adelson, “The Laplacian pyramid as a com-

pact image code”, IEEE Trans. on Comm. vol. 31, no. 4, pp.

532-540, 1983.

[3] A. Criminisi, I. Reid, and A. Zisserman, “Single view metrol-

ogy”, Int’l Conf. on Computer Vision, pp.434-442, 1999.

[4] P. Debevec, C. Taylor, and J. Malik, “Façade: modeling and

rendering architecture from photographs”, ACM SIGGRAPH

Proceedings, pp. 11-20, 1996.

[5] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer

Graphics: Principles and Practice, Addison-Wesley Publish-

ing Company, Inc., pp. 72-91, 1990.

[6] S. Gortler and M. Cohen, “Variational modeling with

wavelets”, TR-456-94, Dept of Computer Science, Princeton

Univ, 1994.

[7] B. K. P. Horn, “Height and gradient from shading”, Int’l J. of

Computer Vision, vol. 5, no. 1, pp. 37-75, 1990.

[8] Y. Horry, K. Anjyo, K. Arai, “Tour into the picture: using a

spidery mesh interace to make animation from a single im-

age”, ACM SIGGRAPH Proceedings, pp. 225-232, 1997.

[9] S.B. Kang, “Depth painting for image-based rendering appli-

cations”, Tech. Rep. CRL, Compaq Computer Corporation,

Cambridge Research Lab., Dec. 1998.

[10] J. J. Koenderink, “Pictorial Relief”, Phil. Trans. of the Roy.

Soc.: Math., Phys, and Engineering Sciences, 356(1740), pp.

1071-1086, 1998.

[11] S. K. Nayar, Y. Nakagawa, “Shape from focus”, IEEE Trans.

on PAMI, vol.16, no.8, pp. 824-831, 1994.

[12] B. M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based

modeling and photo editing”, ACM SIGGRAPH Proceedings,

pp. 433-442, 2001.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical recipes in C, Cambridge University Press,

pp. 83-89, 1988.

[14] H.-Y. Shum, M. Han, and R. Szeliski. “Interactive construc-

tion of 3D models from panoramic mosaics”, IEEE Conf. on

CVPR, pp. 427-433, 1998.

[15] B. J. Super, A. C. Bovik, “Shape from texture using local

spectral moments”, IEEE Trans on PAMI, vol. 17, no. 4, pp.

333-343, 1995.

[16] R. Szeliski, “Fast surface interpolation using hierarchical ba-

sis functions”, IEEE Trans. on PAMI, vol. 12, no. 6, pp. 513-

528, 1990.

[17] R. Szeliski, H.-Y. Shum, “Motion estimation with quadtree

splines”, IEEE Trans. on PAMI, vol. 18, no. 12, pp. 1199-

1209, 1996.

[18] D. Terzopoulos, “Image analysis using multigrid relaxation

methods”, IEEE Trans. on PAMI, vol. 8, no. 2, pp. 129-139,

1986.

[19] D. Terzopoulos, “Regularization of inverse visual problems

involving discontinuites”, IEEE Trans. on PAMI, vol. 8, no. 4,

pp. 413-424, 1986.

[20] L. Williams, “3D paint”, Proceedings of the Symposium on

Interactive 3D Graphics Computer Graphics, pp. 225-233,

1990.

[21] “Single view modeling project website”,

http://grail.cs.washington.edu/projects/svm/.



Methods Iteration 0 Iteration 200 Iteration 1200 Iteration 2500 Iteration 9500

Figure 4: Performance comparison of solving Eq. 11 by using no hierarchical transformation, traditional transformation, and

our novel transformation in terms of number of iterations. The model has approximately 1400 grid points, and 4 constraints.

original image constraints 3D wireframe novel view

Figure 5: Examples of single view modeling on different scenes. From left to right, the columns show the original images,

user-specified constraints on adaptive grids, 3D wireframe rendering, and textured rendering.


