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Abstract— This paper presents a flexible approach for cali-
brating omnidirectional single viewpoint sensors from planar
grids. These sensors are increasingly used in robotics where
accurate calibration is often a prerequisite. Current approaches
in the field are either based on theoretical properties and do
not take into account important factors such as misalignment
or camera-lens distortion or over-parametrised which leads to
minimisation problems that are difficult to solve. Recent tech-
niques based on polynomial approximations lead to impractical
calibration methods. Our model is based on an exact theoretical
projection function to which we add well identified parameters
to model real-world errors. This leads to a full methodology
from the initialisation of the intrinsic parameters to the general
calibration. We also discuss the validity of the approach for fish-
eye and spherical models. An implementation of the method is
available as OpenSource software on the author’s Web page.
We validate the approach with the calibration of parabolic,
hyperbolic, folded mirror, wide-angle and spherical sensors.

I. INTRODUCTION

Many calibration methods for omnidirectional cameras
have been presented in the past few years, they differentiate
themselves mainly by the type of mirror taken into account
(hyperbolic or parabolic), by the projection model used
(skewness, alignment errors, ...), the information that is
considered as known (for example the mirror parameters) and
the method used (auto-calibration, grids, ...). Non-parametric
[11] approaches have also been studied. These provide inter-
esting insights into general sensor calibration but in practice
a stable calibration is difficult to obtain.

Auto-calibration techniques inspired by the division model
[2], [3] have lead to uncalibrated omnidirectional structure
and motion [7]. However a limitation to the approach comes
from the precision reported, that is well adapted to outlier
rejection (RANSAC) but less satisfying for reconstruction
and motion estimation. In robotics it is often a prerequisite
to have accurately calibrated sensors.

In the specific case of perspective cameras, methods using
planar grids [14] are popular because of the simplicity of
use and the accurate results they procure. This article aims
at generalising this type of approach to central catadioptric
sensors. We made the choice of using standard planar grids
because they are commonly available and simple to make. In
[10], the authors propose a method relying on a polynomial
approximation of the projection function. With this model,
initial values of the projection function are difficult to obtain
so the user has to select each point of the calibration grid
independently for the calibration. We will show that by using
an exact model to which we add small errors, only four
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points need to be selected for each calibration grid. The
parameters that appear in the proposed model can also be
easily interpreted in terms of the optical quality of the sensor.

Figure 1 presents the different parameters that could be
taken into account for example in the case of a parabolic mir-
ror with a telecentric lens. Gonzalez-Barbosa [5] describes
a calibration method to estimate all of these parameters.
However too many parameters make the equations difficult
to minimise because of the numerous local minima, the need
for a lot of data and the numerical instability introduced into
the Jacobian. We decided to reduce the number of parameters
by making the assumption that the errors due to the assembly
of the system are small (Fig. 2).

To obtain a calibration that stays valid for all central
catadioptric systems, we use the unified model of Barreto-
Geyer [4], [1] and justify its validity for fisheye and spherical
sensors (Section II). In Section III we describe the different
steps of the projection model. Section IV discusses the
initialisation of the parameters and Section V the calibration
steps. Finally, we validate the approach on real data.

II. UNIFIED PROJECTION MODEL

For sake of completeness, we present here a slightly
modified version of the projection model of Geyer and
Barreto [4], [1] (Fig. 4). We choose the axis convention
depicted in Figure 3. The projection of 3D points can be
done in the following steps (the values for (ξ, η) are detailed
Table I and the mirror equations are given in Table II) :
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1) world points in the mirror frame are projected onto
the unit sphere, (X )Fm

−→ (X s)Fm
= X

‖X‖ =
(Xs, Ys, Zs)

2) the points are then changed to a new reference frame
centered in Cp = (0, 0, ξ), (X s)Fm

−→(X s)Fp
=

(Xs, Ys, Zs + ξ)
3) we then project the point onto the normalised plane,

m = ( Xs

Zs+ξ , Ys

Zs+ξ , 1) = �(X s)
4) the final projection involves a generalised camera

projection matrix K (with [f1, f2]� the focal length,
(u0, v0) the principal point and α the skew)

p = Km =


 f1η f1ηα u0

0 f2η v0

0 0 1


m = k(m) (1)

A generalised camera projection matrix indicates we are
no longer considering the sensor as a separate camera and
mirror but as a global device. This is particularly important
for calibration because it shows that f and η cannot be
estimated independently. We will note γi = fiη.

We will call lifting the calculation of the X s correspond-
ing to a given point m (or p according to the context) :

�
−1(m) =




ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 y
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 − ξ


 (2)

TABLE I

UNIFIED MODEL PARAMETERS

ξ η
Parabola 1 −2p

Hyperbola d√
d2+4p2

−2p√
d2+4p2

Ellipse d√
d2+4p2

2p√
d2+4p2

Planar 0 -1
d : distance between focal points

4p : latus rectum

TABLE II

MIRROR EQUATIONS

Parabola
p

x2 + y2 + z2 = z + 2p

Hyperbola
(z+ d

2 )2

a2 − x2

b2
− y2

b2
= 1

Ellipse
(z+ d

2 )2

a2 + x2

b2
+ y2

b2
= 1

Plane z = − d
2

With ’−’ for a hyperbola and ’+’ for an ellipse :

a = 1/2(
p

d2 + 4p2 ± 2p) b =

q
p(

p
d2 + 4p2 ± 2p)

a) Validity for fish-eye lenses: In [13], the authors show
that the unified projection model can approximate fisheye
projections. A point imaged by perspective projection can
be written:

mu = (x, y, 1) = (
X

Z
,
Y

Z
, 1)

with ξ = 1, the same point imaged by the unified projection
model gives:

md = (
X

Z + ‖X‖ ,
Y

Z + ‖X‖ , 1)

By algebraic manipulation, we obtain the following relation:

ρu =
2ρd

1 − ρ2
d

, with ρ =
√

m2
x + m2

y

which is the division model, known to approximate a large
range of fisheye lenses [2].

b) Validity for spherical mirrors: A spherical sensor
does not have a single viewpoint. However the results
obtained by approximating it by a single projection center
give satisfying results [7].

III. PROJECTION MODEL

Compared to the theoretical model, an extra distortion
function is added that models the misalignment between the
mirror and camera but also the telecentric distortion (ie. the
deviation of the telecentric lens’s projection function from
the ideal, orthographic projection model) for the parabolic
case. The different transformations that intervene and the
associated unknowns (Fig. 2) are:

1) rotation and translation from the grid reference frame
to the mirror reference frame (extrinsic parameters),

2) reflexion on the mirror and projection of the points on
the normalised plane (mirror parameter ξ),

3) application of the distortion induced by the lens(es)
(distortion parameters),

4) projection in the image with the generalised camera
projection matrix (camera intrinsic parameters).

Had we considered the system as a separate mirror and
camera, the distortion would have been applied before the
collineation induced by η. The effect is however the same as
it consists only in a change of variable.



A. Extrinsic parameters

The extrinsic parameters describe the transformation be-
tween the grid frame and the camera frame. Quaternions can
be used advantageously to parametrise the rotation [9]. We
will note V 1 = [qw1 qw2 qw3 qw4 tw1 tw2 tw3] the unknowns
and W the corresponding transformation.

B. Mirror transformation

The mirror transformation was detailed in Section II and
consists simply in applying � that depends only on V 2 = [ξ].

C. Distortion

We will consider two main sources of distortion [12] :
imperfection of the lens shape that are modeled by radial
distortion and improper lens and camera assembly (which
can also include misalignment between the camera optical
axis and the mirror rotational axis) that generate both radial
and tangential errors. In the case of a paracatadioptric sensor,
an extra telecentric lens is often added to enable the use of a
perspective camera (and not orthographic). The lens has the
same size as the mirror border and introduces radial errors.

Five parameters can be used to model the distortion [6].
A three parameter model was chosen for the radial distortion
(with ρ =

√
x2 + y2) :

L(ρ) = 1 + k1ρ
2 + k2ρ

4 + k5ρ
6 (3)

Different models can be used for the tangential distortion
according to the relative importance of the alignment and
angular errors. We added two extra variables to model the
tangential distortion dx :

dx =
[

2k3xy + k4(ρ2 + 2x2)
k3(ρ2 + 2y2) + 2k4xy

]
(4)

We will note D the distortion function and V 3 =
[k1 k2 k3 k4 k5] the parameters.

D. Camera model

A standard pin-hole model was used for the generalised
camera projection P :

P (X,V 4) =
[

γ1(x + αy) + u0

γ2y + v0

]
, V 4 = [α γ1 γ2 u0 v0]

(5)

E. Final equation

Let G be the composition of the different projection
functions and let V be the 18 parameters :

G = P ◦ D ◦ H ◦ W, V = [V 1 V 2 V 3 V 4]

If the grid is composed of m points gi, with their associ-
ated image values ei, the solution to the calibration problem
can be obtained by minimising the following function :

F (x) =
1
2

m∑
i=1

[G(V, gi) − ei]
2 (6)

This cost function minimises the euclidean distance be-
tween the projection of the grid and the extracted values in
the image. The corresponding Jacobians can be written as :

∂G

∂V
=

[
∂P

∂D 2×2

[
∂D

∂H 2×2

[ ∂H

∂W 2×2

∂W

∂V 1 2×7

∂H

∂V 2 2×1

]

. . .
∂D

∂V 3 2×5

]
2×12

∂P

∂V 4 2×5

]
2×18

(7)

IV. INITIALISATION OF THE PARAMETERS

The presented method is based on the non-linear minimisa-
tion of (6) that can be solved using for example a Levenberg-
Marquardt approach. For the minimisation to be successful,
we need to obtain initial estimates of the parameters.

By assuming that the errors from the theoretical model are
small, we have k1 ≈ k2 ≈ k3 ≈ k4 ≈ k5 ≈ α ≈ 0, γ1 ≈ γ2.

We still need to find the extrinsic parameters of the
grids and values for [ξ, γ, u0, v0]. The image center can be
used to initialise the principal point (u0, v0) or it can be
approximated by the center of the mirror border (assumed to
be a circle).

Experimentally, we will show that errors in the values of
(ξ, γ) do not have a strong influence over the accuracy of the
extraction process (Section VI-F). We will start by assuming
ξ = 1 and show that we can estimate linearly the focal length
from at least three image points that belong to a non-radial
line image. Once this step applied, the extrinsic parameters
can be estimated from four points of a grid of known size.

A. Mirror border extraction for principal point estimation

The mirror border extraction is not straight forward be-
cause of the density of information around the mirror edge.
However from an estimate of the mirror radius and center
given by the user (for example by clicking on an image), we
can refine the values by applying the following steps :

1) remove the points that are too far from the given circle,
2) remove the points on the rays between the center and

the edge points,
3) from the remaining points, create a list of possible

circle centers and radii by random sampling. The
median values of the lists give a robust estimate of
the mirror center and radius.

B. Estimation of the generalised focal length

From equation (2), with ξ = 1, we obtain:

�
−1(m) ∼


 x

y
f(x, y)


 , f(x, y) =

1
2
− 1

2
(x2 + y2) (8)

Let p = (u, v) be a point in the image plane. Thanks to
the estimate of the principal point, we can center the points
and calculate a corresponding point pc = (uc, vc). This point
follows the equation on the normalised plane that depends
on γ: pc = γm:

�
−1(m) ∼


 uc

vc

g(uc, vc)


 , g(m) =

γ

2
− 1

2γ
(u2

c + y2
c ) (9)



If this point belongs to a line image defined by the normal
N =

[
nx ny nz

]�
, we obtain:

�
−1(m)�N = 0 ⇐⇒




nxuc + nyvc + a
2 − b

u2
c+v2

c

2 = 0
a = γnz

b = nz

γ

Let us assume, we have n points p1,p2, ...,pn belonging
to a same line image, they verify the system :

Pn×4C4×1 = 0, with P =




uc1 vc1
1
2 −u2

c1+v2
c1

2
...

...
...

...

ucn vcn
1
2 −u2

cn+v2
cn

2




By singular value decomposition (SVD) P = USV�, the
least square solution is obtained from the last column of V
associated to the minimal singular value.

To obtain N and in particular γ from C = [c1 c2 c3 c4]�,
the following steps can be applied:

1) Calculate t = c2
1 + c2

2 + c3c4 and check that t > 0.
2) Let d =

√
1/t, nx = c1d and ny = c2d.

3) We check that n2
x + n2

y > thresh (with for example
thresh = 0.95) to be sure the line image is not radial,

4) If the line is not radial, nz =
√

1 − n2
x − n2

y .

5) Finally, γ = c3d
nz

If the user selects three points or more on a line image,
we can obtain an estimate of the focal length. (This process
can in fact be applied to three randomly chosen points in the
image to obtain an estimate of the focal length in a RANSAC
fashion. This way we obtain an auto-calibration approach.)

V. CALIBRATION STEPS

We suggest the following calibration steps to initialise the
unknown parameters, make the associations between the grid
points and their reprojection in the image and finally launch
the minimisation:

1) (Optional) the user selects the mirror center and a point
on the mirror border. The values are then re-estimated
to obtain the center of the circle that is an estimate of
the principal point (u0, v0) (Fig. 5). Alternatively, the
center of the image is used,

2) the user selects at least three non-radial points belong-
ing to a line image, from here we estimate the focal
length γ (Fig. 6),

3) for each calibration image, the user is then asked to
select the four grid corners and the extrinsic parameters
are estimated (Fig. 7),

4) the grid pattern is then reprojected and a sub-pixel
accuracy extraction is performed (Fig. 8),

5) we can then perform the global minimisation.

Sub-pixel point extraction: The sub-pixel point extrac-
tion for perspective cameras stays locally valid for omnidi-
rectional sensors.

Fig. 5. Extraction of the mirror border

Fig. 6. Estimation of the focal length from line image points

VI. EXPERIMENTAL RESULTS

Our calibration approach was tested with five different
configurations: parabolic, hyperbolic, folded mirror, wide-
angle and spherical sensors. A different camera was used
each time. Care was taken to obtain points over the entire
field of view for each sensor. An image was set aside
during the calibration and then used to validate the intrinsic
parameters.

To validate our model, we need to obtain a low residual
error after minimisation and a uniform distribution of the
error. It is not necessary do check the error distribution over
the complete image as we assume a rotational symmetry
of the sensor. For each calibration, we will show the radial
distribution of the fitting error with a curve representing the
median value of the fitting error for different intervals of ρ.

We may note that polynomial approximations are often
valid only locally and badly approximate the projection
around the edges. This bias will have a negative impact for

Fig. 7. Grid corners used to initialise the extrinsic grid parameters



Fig. 8. Sub-pixel accuracy extraction of the remaining points

example when estimating the motion of the camera using a
maximum likelihood estimation under the assumption of a
Gaussian distribution of the error.

The results will be summarised in a table containing the
initial values after steps (0) and (1) and the results after
the minimisation. [ex,ey] indicates the reprojection error in
pixels. The values prefixed by ’Val.’ correspond to the error
obtained on the image put aside for the validation. (b) means
the mirror border was used to initialise the principal point.

A. Calibration of the parabolic sensor

The parabolic sensor (ξ = 1) used in this study consists of
a S80 parabolic mirror from RemoteReality with a telecentric
lens and a perspective camera with an image resolution of
2048 × 1016. The calibration points were obtained from 8
images of a grid of size 6× 8 with squares of 42 mm. Table
III summarises the results. After minimisation, we can see
that the error is correctly distributed over the image (Fig. 9).

TABLE III

CALIBRATION RESULTS FOR THE PARABOLIC SENSOR

Initialisation
[u0,v0] (b) = [983.65, 545.17], γ = 569, [ex,ey] = [1.92, 2.02]

Final Values 3σ
[γ1,γ2] [597.00, 594.71] [6.88, 8.05]
[u0,v0] [583.31, 547.47] [3.98, 4.19]
[k1, k2] [-0.0857, 0.0147] [0.0078, 0.0045]
[ex,ey] [0.17, 0.31] [0.43, 0.78]

Val. [ex,ey] [0.18, 0.28]

Distortion: If we do not take into account the distortion
during the calibration, the error increases to [0.74, 0.82]
which confirms that the radial distortion function is needed
to account for the error induced by the telecentric lens.

B. Calibration of the hyperbolic sensor

In the hyperbolic case, the mirror is a HM-N15 from
Accowle (Seiwapro) with a perspective camera with an
image resolution of 800 × 600. 6 images of a grid of
size 8 × 10 with squares of 30 mm were taken. Table IV
summarises the results. After minimisation, we can see a
slight bias in the error that is more important in the center
of the image (Fig. 10).

C. Calibration of a folded catadioptric camera

Folded catadioptric sensors combine typically two mirrors
and follow the single viewpoint constraint [8]. They have the

TABLE IV

CALIBRATION RESULTS FOR THE HYPERBOLIC SENSOR

Initialisation
[u0,v0] (b) = [390.67,317.69], γ = 270, [ex,ey] = [1.02, 1.24]

Final Values 3σ
[γ1,γ2] [237.89, 237.23] [8.14, 7.89]
[u0,v0] [387.21, 321.34] [ 1.69, 1.76 ]

[ξ] 0.75 0.05
[k1, k2] [-0.105, 0.013] [0.009, 0.001]
[ex,ey] [0.29, 0.31] [0.73, 0.82]

Val. [ex,ey] [0.24, 0.26]
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Fig. 10. Pixel error versus dis-
tance - hyperbolic sensor

advantage of being compact and relatively cheap to manu-
facture. The 10 images used had a resolution of 640 × 480,
the grids had a size of 6 × 8 with squares of 30 mm. Table
V summarises the results. We can see a very slight bias in
the error that is stronger around the mirror border (Fig. 11).

TABLE V

CALIBRATION RESULTS FOR THE FOLDED CATADIOPTRIC CAMERA

Initialisation
[u0,v0] (b) = [298.53, 269.50], γ = 156.14, [ex,ey] = [0.368, 0.576]

Final Values 3σ
[γ1,γ2] [136.29, 132.80] [3.21, 3.14]
[u0,v0] [299.01, 267.72] [1.47, 1.23]

[ξ] 0.69 0.03
[k1, k2, k3, k4] ×
1e−3

[-108.03, 11.79, -2.38, 2.28] [4.67, 0.79, 0.55, 0.44]

[ex,ey] [0.12, 0.18] [0.28, 0.44]
Val. [ex,ey] [0.16, 0.15]

D. Calibration of a wide-angle sensor

The calibration was also tested on a wide-angle sensor
(∼ 70o) on 21 images of resolution 320×240 . The grid used
was the same as in the hyperbolic case. For the wide-angle
sensor, there is no border so the center of the image was
taken to initialise the principal point. Table VI summarises
the results. As before, we can see a very slight bias towards
the edges in Figure 12.

The strong change in γ after minimisation is probably due
to the radial distortion and the change in ξ. The value of ξ
does not have a simple interpretation for wide-angle sensors.



TABLE VI

CALIBRATION RESULTS FOR THE WIDE-ANGLE SENSOR

Initialisation
[u0,v0] = [160, 120], γ = 448, [ex,ey] = [0.73, 0.69]

Final Values 3σ
[γ1,γ2] [1070.84, 1079.70] [0.60, 0.60]
[u0,v0] [166.16, 109.94] [1.56, 1.13]

[ξ] 3.05 0.021
[k1] -0.74 0.13

[ex,ey] [0.13, 0.12] [0.12, 0.13]
Val. [ex,ey] [0.07, 0.26]
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Fig. 11. Pixel error versus dis-
tance - folded catadioptric camera
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tance - wide-angle sensor

E. Calibration of a camera with a spherical mirror

Finally we tested a low-quality camera consisting of a
webcam in front of a spherical ball. The image resolution
was of 352 × 264. 7 images were used with a similar grid
as in the parabolic case.

The border extraction process did not prove very efficient
for this sensor so the image center was used as an initial value
for the principal point. Table VII summarises the results.

Figure 13 shows the radial distribution of the error. The
error seems to be uniformly distributed (Fig. 13).

TABLE VII

CALIBRATION RESULTS FOR THE SPHERICAL MIRROR

Initialisation
[u0,v0] = [184, 127], γ = 137.7, [ex,ey] = [0.65, 0.62]

Final Values 3σ
[γ1,γ2] [164.10, 161.95 ] [11.06, 10.96]
[u0,v0] [185.98, 126.24] [0.49, 0.35]

[ξ] 0.95 0.12
[k1, k2] [-0.32, 0.066] [9.2, 7.5] ×1e−3
[ex,ey] [0.17, 0.15] [0.38, 0.34]

Val. [ex,ey] [0.16, 0.15]

F. Point extraction

To analyse the effect of errors on the mirror parameters
over the point extraction process, we counted the amount
of correctly extracted points obtained after the extrinsic
parameters were estimated from four points, and the grid
was reprojected followed by a sub-pixel accuracy extraction.
Table VIII summarises the results for errors in (ξ, η) ranging
from 0 to 40 %. These values indicate that the extraction
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Fig. 13. Pixel error versus distance - spherical sensor

TABLE VIII

INFLUENCE OF ERRORS IN (ξ, η) OVER THE POINT EXTRACTION

PROCESS

% error in (ξ, η) 0 10 20 30 40
% of correct points 99.7 88 81 83 76

process presents a certain robustness to imprecise initial
values. We still managed to calibrate the sensor with an error
of 40 %.

CONCLUSION

In this article, we presented a general calibration approach
for single viewpoint omnidirectional cameras. The calibra-
tion steps are simple without the need to know the mirror
parameters. We justified theoretically that the method can
be used to model central catadioptric, fisheye and spherical
sensors. These results were confirmed experimentally with
the calibration of a wide range of sensors.
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