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Abstract

A recent strand of work in view synthesis uses deep learn-

ing to generate multiplane images—a camera-centric, lay-

ered 3D representation—given two or more input images at

known viewpoints. We apply this representation to single-

view view synthesis, a problem which is more challenging but

has potentially much wider application. Our method learns

to predict a multiplane image directly from a single image

input, and we introduce scale-invariant view synthesis for

supervision, enabling us to train on online video. We show

this approach is applicable to several different datasets, that

it additionally generates reasonable depth maps, and that

it learns to fill in content behind the edges of foreground

objects in background layers.

1. Introduction

Taking a photograph and being able to move the camera

around is a compelling way to bring photos to life. It requires

understanding the 3D structure of the scene, reasoning about

occlusions and what might be behind them, and rendering

high quality, spatially consistent new views in real time.

We present a deep learning approach to this task which

can be trained on online videos or multi-camera imagery

using view synthesis quality as an objective—hence, the

approach does not require additional ground truth inputs such

as depth. At inference time, our method takes a single RGB

image input and produces a representation of a local light

field. We adopt the multiplane image (MPI) representation,

which can model disocclusions and non-Lambertian effects,

produces views that are inherently spatially consistent, is

well-suited to generation by convolutional networks, and can

be rendered efficiently in real time [37].

Our approach is the first to generate multiplane images

directly from a single image input, whereas prior work has

only estimated MPIs from multiple input views (anywhere

from a stereo pair [37] to twelve images from a camera ar-

ray [4]). Compared with multiple-input view synthesis, ours

is a much more challenging task. We want the network to

learn where different parts of the scene are in space without
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Figure 1. Our network generates a multiplane image (MPI) from

a single image input. The MPI can be used to render images from

novel viewpoints, and to generate a disparity map. (Video frames

here and in other figures are used under Creative Commons license

from Youtube user Sona Visual.)

being able to observe correlations between multiple views,

and without any chance to look even a tiny bit ‘around the

corner’ of objects. A particular difficulty arises when super-

vising such a system using view synthesis because of the

global scale ambiguity inherent in the input data. We address

this with a method of scale invariant view synthesis which

makes use of sparse point sets produced in the course of gen-

erating our training data. We also introduce an edge-aware

smoothness loss which discourages the depth-maps derived

from our predicted MPIs from being unnaturally blurry, even

in the absence of depth supervision.

We train and evaluate our method using a dataset of online

videos, and measure the quality of derived depth-estimates

on the iBims-1 benchmark. We show the versatility of our ap-

proach by comparing it to two previous view synthesis meth-

ods using different representations: one that predicts com-

plete 4D light fields and learns from a narrow-baseline multi-

angle light field dataset, and another that predicts layered

depth images and learns from wide-baseline stereo-camera

imagery. Our method not only achieves higher quality view

synthesis than these but is more general, not requiring light

field data or known-scale inputs for training.
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2. Related work

We build on work in two areas—view synthesis and depth

prediction—that are themselves highly related. Learning-

based methods have been applied to both of these domains.

Single-view depth prediction. There has been great inter-

est in the task of predicting a depth map, or other suitable

geometric representation, from a single RGB image. How-

ever, depth maps alone do not enable full synthesis of new

views, because they do not capture content that is occluded

in the reference view but visible in a desired target view. Con-

versely, accurate depth is also not strictly required for high-

quality view synthesis—for instance, inaccurate depth in

textureless regions might be imperceptible, and planarity re-

lationships might be more perceptually important compared

to strict accuracy. At the same time, depth and view synthe-

sis are highly intertwined, and many recent depth prediction

methods use view synthesis as implicit supervision [7, 9, 36].

Like these methods, we use additional views of scenes as

supervision, but we explicitly focus on the application of

new view synthesis, and hence use a more expressive scene

representation (MPIs) compared to depth maps.

Other recent work, like ours, uses videos in the wild as a

source of training data for geometric learning. For instance,

Lasinger et al. learn a robust single-view depth predictor

from a large dataset of 3D movies, by first extracting op-

tical flow between the left and right frames as a form of

pseudo-depth for supervision [15]. Chen et al. produce large

quantities of sparse SfM-derived depth measurements from

YouTube videos for use in training depth networks [2]. How-

ever, these prior methods focus on depth, while our method is

the first to our knowledge to learn single-view view synthesis

from videos in the wild.

Learned view synthesis. Traditionally, methods for view

synthesis operated in the interpolation regime, where one

is provided with multiple views of a scene, and wishes to

interpolate views largely within the convex hull of their

camera positions. A number of classical approaches to this

problem have been explored [10, 16], including methods that

involve estimation of local geometric proxies [1, 11, 23, 38].

Learning-based approaches to this interpolation problem

have also been explored. Learning is an attractive tool for

view synthesis because a training signal can be obtained

simply from having held-out views of scenes from known

viewpoints, via predicting those views and comparing to the

ground truth images. Some approaches predict new views

independently for each output view, leading to inconsistency

from one view to the next [5, 12]. Other methods predict

a single scene representation from which multiple output

views can be rendered. In particular, layered representations

are especially attractive, due to their ability to represent

occluded content. For instance, multiplane images (MPIs),

originally devised for stereo matching problems [30], have

recently found success in both learned view interpolation

and extrapolation from multiple input images [37, 27, 4, 21].

However, none of these methods are able to predict an MPI

from a single input image.

Most related to our work are methods that predict new

views from single images. This includes work on synthe-

sizing a full light field from a single view [28], predicting

soft disparity maps [34], inferring layered representations

like layered depth images (LDIs) [31, 26], or segmenting

the input and predicting a 3D plane for each segment [19].

We borrow the MPI representation introduced for view inter-

polation and extrapolation, apply it to the single-view case,

and show that this representation leads to higher quality

results compared to light fields and LDIs.

Depth can also be used as a starting point for view syn-

thesis, as in recent work from Niklaus et al. that predicts a

depth map from a single view, then inpaints content behind

the visible surfaces to enable high-quality single-image view

synthesis [22]. However, this method requires dense, accu-

rate depth supervision and multiple stages of post-processing.

Our method learns to predict an MPI as a single stage, using

only multiple views (e.g., video frames) as supervision.

3. Approach

At inference time, our method takes a single input im-

age and generates a representation from which novel views

at new camera positions can be freely generated (Fig. 1).

For training, all we require is videos with static scenes and

moving camera, which we process as follows.

3.1. Data

We apply SLAM (Simultaneous Localization and Map-

ping) and structure-from-motion algorithms to videos to

identify motion sequences, estimate viewpoints, and gener-

ate a sparse point cloud. We follow the method of Zhou et

al. [37]: the only difference is that we retain the sparse point

cloud and a record of which points were tracked in each

frame (referred to as visible points), which they do not use.

At training time, we sample pairs of frames (source and

target) from the resulting sequences. Each pair gives us a

source image Is and a target image It, together with their

viewpoints vs and vt (camera intrinsics and extrinsics). Ad-

ditionally, we extract the set of visible points for the source

frame and map them into camera space, resulting in a set

P = {(x, y, d), . . .} of triples where (x, y) is the position

within the source image, and d the depth of that point.

In our experiments, we apply this processing to videos

from the RealEstate10K dataset [37], giving us over 70000

sequences and over 9 million frames.

3.2. Representation and rendering

We use multiplane images (MPIs) as our scene repre-

sentation, which support differentiable rendering [37]. As
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Figure 2. The multiplane image representation. See Section 3.2.

illustrated in Fig. 2, an MPI consists of a set of D fronto-

parallel planes in the frustum of a reference camera, arranged

at fixed depths d1, . . . , dD, from d1 = dfar to dD = dnear,

and equally spaced in disparity (inverse depth). Each plane

or layer has an RGBA image: we write ci and αi for the

color and alpha channels of layer i, each with a resolution

W ×H = N . An MPI can also be considered as an instance

of the stack of acetates model of Szeliski and Golland [30]

with soft alpha and a specific choice of layer depths.

Given a source image Is at viewpoint vs our network f
outputs an MPI whose reference camera is at vs:

{(c1, α1), . . . , (cD, αD)} = f(Is). (1)

Warping. The first step in rendering a novel image from an

MPI is to warp each layer from the source viewpoint to the

desired target viewpoint vt:

c′i = Wvs,vt
(σdi, ci), α′

i = Wvs,vt
(σdi, αi). (2)

The warping operation W computes the color or alpha value

at each pixel in its output by sampling bilinearly from the

input color or alpha. To do this, it applies a homography to

each target pixel’s coordinates (ut, vt) to obtain correspond-

ing source coordinates (us, vs) at which to sample:





us

vs
1



 ∼ Ks

(

R−
tn

T

a

)

K−1
t





ut

vt
1



 , (3)

where n is the normal vector and a the distance (both relative

to the target camera) to a plane that is fronto-parallel to the

source camera at depth σdi, R is the rotation and t the

translation from vt to vs, and Ks, Kt are the source and

target camera intrinsics.
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Figure 3. Our system, trained on online video, learns to predict mul-

tiplane images directly from single image inputs. Scale-invariant

view synthesis allows us to apply view synthesis loss despite the

global scale ambiguity in our training data.

This procedure and the compositing that follows are the

same as in Zhou et al. [37], except for the introduction of

the scale factor σ in Eq. 2 and Eq. 3. The layer depths di are

multiplied by σ, scaling the whole MPI up or down corre-

spondingly. As described in Section 3.3, choosing the right

scale σ allows us to overcome the scale ambiguity inherent

to SfM models and achieve scale-invariant synthesis.

Compositing. The warped layers (c′i, α
′

i) are composited

using the over operation [24] to give the rendered image Ît:

Ît =

D
∑

i=1

(

c′iα
′

i

D
∏

j=i+1

(1− α′

j)
)

. (4)

We can also synthesize a disparity-map D̂s from an MPI, by

compositing the layer disparities (i.e. inverse depths):

D̂s =

D
∑

i=1

(

d−1
i αi

D
∏

j=i+1

(1− αj)
)

. (5)

Note that although layer depths are discrete, the disparity-

map can be smooth because αi blends softly between layers.

3.3. Scaleinvariant synthesis

Visual SLAM and structure-from-motion have no way

of determining absolute scale without external information:

each of our training sequences is therefore equally valid

if we scale the world (including the sparse point sets and

the translation part of the camera poses) up or down by

any constant factor. This is not an issue when dealing with

multiple-image input since the relative pose between the

inputs resolves the scale ambiguity, but it poses a challenge

for learning any sort of 3D representation from a single input.

To address this ambiguity, prior work on single-view depth

prediction typically employs a scale-invariant depth loss

[3, 32] or more recently even a scale-and-shift invariant

depth loss [15]. These methods can be seen as finding the
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scale factor which minimizes a scale-dependent loss, and rely

on there being a closed-form solution for this scale factor.

View-synthesis losses are subject to the same problem:

the scale of each training instance is arbitrary, but without the

correct scale, rendered images cannot match ground truth.

We could try to minimize a view synthesis loss over all

possible scale factors, but the rendering operations (Eqs. 2–

4) make this not amenable to a closed-form solution, and

direct optimization for scale at run-time will be prohibitively

slow.

We observe that although scale is unknown, the camera

poses vs, vj and the point set Ps do have a consistent scale

for each training example. Therefore we can use the point

set to compute a scale factor to apply in rendering. We com-

pute the scale factor σ which minimizes log-squared error

between the predicted disparity D̂s and the point set Ps:

σ = exp





1

|Ps|

∑

(x,y,d)∈Ps

(ln D̂s(x, y)− ln(d−1))



 (6)

where D̂s(x, y) denotes bilinear sampling from the dis-

aparity map at position (x, y). The scale factor σ thus ob-

tained is applied in Eqs. 2 and 3, ensuring that the rendered

image Ît no longer varies with the scale of the input view-

points and point set. Ît is therefore suitable for use in training

with view-synthesis losses.

3.4. Losses

Our overall loss combines a view synthesis loss, a smooth-

ness loss on the synthesized disparity, and a sparse depth

supervision loss:

L = λpL
pixel + λsL

smooth + λdL
depth (7)

We now describe each of these in turn.

Synthesis. To encourage the rendered image at the target

viewpoint to match the ground truth, we use an L1 per-pixel

loss:

Lpixel =
∑

channels

1

N

∑

(x,y)

|Ît − It|. (8)

We can optionally add an image gradient term to this, but we

did not find it to be consistently helpful.

Edge-aware smoothness. For natural images, depth discon-

tinuities are typically accompanied by discontinuities in the

image itself (though the reverse is not the case) [6]. This

idea has been used in classical computer vision, notably in

stereo correspondence [25], and also in a variety of different

smoothness losses for learning depth prediction [9, 17, 33].

These losses work by encouraging depth to be smooth wher-

ever the input image is smooth.

We apply this idea as follows. First, let G be the sum over

all channels of the L1 norm of the gradient of an image (we

use Sobel filters to compute the gradient):

G(I) =
∑

channels

∥

∥∇I
∥

∥

1
(9)

We define a source edge mask Es which is 1 wherever the

source image gradient is at least a fraction emin of its maxi-

mum over the image.

Es = min
(

G(Is)

emin ×max(x,y) G(Is)
, 1
)

(10)

Our edge-aware smoothness loss then penalizes gradients

higher than a threshold gmin in the predicted disparity map,

but only in places where the edge mask is less than one:

Lsmooth =
1

N

∑

(x,y)

(

max(G(D̂s)− gmin, 0)⊙ (1−Es)
)

,

(11)

where ⊙ is the Hadamard product. As with our synthesis

loss, Lsmooth is an average over all pixels. In practice we set

emin = 0.1 and gmin = 0.05.

As noted earlier, there are many possible formulations of

such a loss. Our Lsmooth is one that we found creates qualita-

tively better depth maps in our system, by allowing gradual

changes in disparity while encouraging discontinuities to be

accurately aligned to image edges.

Sparse depth supervision. The point set Ps allows us to

apply a form of direct but sparse depth supervision. We adopt

the L2 loss of Eigen et al. on log disparity [3] (as noted in

Section 3.3, σ is the scale factor that minimizes this loss—it

is equivalent to the variable α in Eigen et al.’s scale-invariant

loss, under lnσ = α):

Ldepth =
1

|Ps|

∑

(x,y,d)∈Ps

(

ln
D̂s(x, y)

σ
− ln(d−1)

)2

(12)

3.5. Implementation

Network. We use a DispNet-style network [20], specified

in Table 1. We pad the input (the single RGB image Is) to

a multiple of 128 in height and width, and crop the output

correspondingly. The first D − 1 channels of the output

give us α2, . . . , αD. The back layer is always opaque, so

α1 = 1 and need not be output from the network. When

initializing our network for training, we set the bias weights

on the last convolutional layer so that the mean of the initial

output distribution corresponds to an initial alpha value of

1/i in layer i. This harmonic bias helps ameliorate an issue

during training in which layers which are not near the front

of the MPI volume are heavily occluded and have very small

gradients with respect to our losses.
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Input k1 c1 k2 c2 Output

Is 7 32 7 32 conv1

MP2(conv1) 5 64 5 64 conv2

MP2(conv2) 3 128 3 118 conv3

MP2(conv3) 3 256 3 256 conv4

MP2(conv4) 3 512 3 512 conv5

MP2(conv5) 3 512 3 512 conv6

MP2(conv6) 3 512 3 512 conv7

MP2(conv7) 3 512 3 512 conv8

Up2(conv8) + conv7 3 512 3 512 conv9

Up2(conv9) + conv6 3 512 3 512 conv10

Up2(conv10) + conv5 3 512 3 512 conv11

Up2(conv11) + conv4 3 512 3 512 conv12

Up2(conv12) + conv3 3 128 3 128 conv13

Up2(conv13) + conv2 3 64 3 64 conv14

Up2(conv14) + conv1 3 64 3 64 conv15

conv15 3 64 3 64 conv16

conv16 3 34 - - output

Table 1. Our network architecture. Each row describes two convolu-

tional layers in sequence: k1,k2 are the kernel sizes and c1, c2 the

numbers of output channels. Input shows the input to the first layer,

where MP2 denotes maxpooling with a pool size of 2 (thus halving

the size), Up
2

denotes nearest-neighbour upscaling by a factor of 2,

and + is concatenation. Each layer is followed by ReLU activation.

The final row shows a single convolutional layer, which is instead

followed by sigmoid activation. For details of how the outputs are

translated into MPI layers, see Section 3.5.

We follow Zhou et al. [37] and model each layer’s color

as a per-pixel blend of the input image with a predicted

global background image Îbg. In that work, blend weights are

predicted for each pixel in each MPI layer. We reason instead

that content that is visible (from the source viewpoint) should

use the foreground image, and content that is fully occluded

should use the background image. Therefore we can derive

the blend weights wi from the alpha channels as follows:

wi =
∏

j>i

(1− αj), (13)

ci = wiIs + (1− wi)Îbg. (14)

The background image is determined by the remaining three

channels of the network output. Because it is difficult for the

network to learn to predict αi and Îbg simultaneously, during

training we set Îbg to be a linear interpolation between Is

and the network output, with the contribution of the network

increasing gradually over the first sbg training steps.

Training. In our experiments, D (the number of MPI planes)

is 32, sbg = 100,000, and our losses are weighted as follows:

λp = 1, λs = 0.5, λp = 0.1. We train using the Adam

Optimizer [13] with a learning rate of 0.0001.

4. Experiments

We present quantitative and qualitative evaluations of

our method on the RealEstate10K dataset, depth evaluations

with the iBims-1 benchmark, and comparisons with previous

view synthesis methods on the Flowers and KITTI datasets.

Because of the very visual nature of the view synthesis task,

we strongly encourage the reader to view the additional

examples, including animations, in our supplementary video.

4.1. View synthesis on RealEstate10K

To investigate the effects of our different losses and MPI

background prediction, we train several versions of our

method on videos from the RealEstate10K dataset [37]:

• full: Our full method, as described in Section 3.

• nodepth: As full, but with no depth loss, i.e. λd = 0.

• noscale: As full, but with no depth loss and no scale-

invariance, i.e. λd = 0, σ = 1.

• nosmooth: As full, but with no edge-aware disparity

smoothness loss, i.e. λs = 0.

• nobackground: As full, but with no background predic-

tion. Instead, all MPI layers take their color from the

input, i.e. ci = Is.

To compare these methods, we measure the accuracy of

synthesized images using the LPIPS perceptual similarity

metric [35] and PSNR and SSIM metrics, on a held-out set

of 300 test sequences, choosing source and target frames

to be 5 or 10 frames apart. At test time, we use the point

set to compute the scale factor σ in the same way as we do

during training—for a fair comparison, we also do this for

the noscale model. Results are in Table 2 (LPIPSall, PSNRall

and SSIMall columns).

We observe that nodepth performs a little worse than full,

and noscale performs considerably worse still. This shows

that direct depth supervision—although sparse—is of some

benefit, but that the improvement from our scale-invariant

synthesis is more significant. As expected, for all variants,

performance decreases with larger camera movement.

Somewhat unintuitively, the nosmooth and nobackground

models outperform the full model on PSNR and SSIM met-

rics. But at larger distances the LPIPS metric, which attempts

to measure perceptual similarity, shows benefits from our

smoothness loss and from allowing the network to predict

the background layer, with the full model performing best.

Qualitatively, the nobackground model introduces un-

pleasant artefacts at the edges of foreground objects, whereas

the full model is able to use the background layer to predict

the appearance of some disoccluded content, as shown in

Fig. 4. To quantify this effect, we first compute a disocclu-

sion mask Mt for each image by warping and compositing

the blend weights wi used in the full model:
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LPIPSall ↓ PSNRall ↑ SSIMall ↑ PSNRdisocc ↑ SSIMdisocc ↑

Method n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

full 0.103 0.155 26.4 23.5 0.859 0.795 19.7 17.9 0.513 0.480

nodepth 0.120 0.178 26.2 23.4 0.854 0.791 19.2 18.0 0.525 0.496

noscale 0.149 0.221 25.4 22.8 0.837 0.771 18.5 17.3 0.496 0.470

nosmooth 0.104 0.159 26.4 23.6 0.860 0.798 19.6 18.4 0.540 0.527

nobackground 0.099 0.162 26.8 23.7 0.867 0.802 18.7 17.7 0.509 0.499

Table 2. Ablation studies on images from RealEstate10K video sequences. n indicates the number of frames between source and target in the

video sequence. ‘all’ metrics are computed on the whole image (with a 5% crop), ‘disocc’ metrics on disoccluded pixels only, i.e. those

where Mt > 0.6. We observe that scale-invariance gives a large benefit, depth supervision a smaller one, and that predicting background

content does not clearly help overall but does improve performance for disoccluded pixels and on perceptual similarity. See Section 4.1.

(a) (b) (c) (d) (e)

Figure 4. Use of the background image. For each region we show

(a) the input image Is, (b) the predicted background Îbg , (c) a

rendering generated by our full method from a slightly different

viewpoint, (d) a visualization of where Îbg is used in rendering:

pixels whose value comes 90% or more from the background are

highlighted, (e) the same region rendered by our nobackground

model. Comparing (c) and (e), images rendered by our full model

show cleaner edges with fewer artefacts than those rendered by

the nobackground model. Comparing (a) and (b), the network has

learned to erode the edges of foreground objects and to predict

what color may be behind them, although some artefacts remain.

w′

i = Wvs,vt(σdi, wi),

Mt = 1−
D
∑

i=1

(

w′

iα
′

i

D
∏

j=i+1

(1− α′

j)
)

. (15)

Mt tells us how much of the composited value at each

pixel comes from the background image. We use it to com-

pute metrics only on diosccluded pixels, i.e. those where

Mt is greater than some threshold. Results are in Table 2

(PSNRdisocc and SSIMdisocc columns). Although noback-

ground achieves slightly better scores than full over the whole

image, it performs worse on these disoccluded areas.

The nosmooth model achieves plausible view synthesis

results, but this is not the only potential application of MPIs.

For other tasks, such as editing or object insertion, it is

desirable to have accurate depth maps. As shown in Fig. 5,

nosmooth performs significantly worse than our full model

Input image w/o smoothness loss with smoothness loss

Predicted disparity

Figure 5. Effect of smoothness loss on predicted disparity. As shown

in these examples, our edge-aware smoothness loss encourages the

predicted disparity to be smooth where the input image is smooth,

and consequently also encourages it to have sharp edges aligned

with visible object boundaries.

in this regard: it both lacks sharp edges where depth should

be discontinuous, and introduces discontinuities where depth

should be smooth. Our point set depth data is insufficient to

evaluate depth accuracy on the RealEstate10K dataset, so for

a quantitative measurement we turn to another benchmark.

4.2. Depth evaluation

While our objective is view synthesis not depth predic-

tion, we can conveniently synthesize disparity maps from

our MPIs, and use them to evaluate depth performance. Here

we measure this using the iBims-1 benchmark [14], which

has ground truth depth for a variety of indoor scenes. As

in Niklaus et al., we scale and bias depth predictions to

minimize the (L2) depth error before evaluation [22]. In Ta-

ble 3, we compare performance with three depth-prediction

methods: MegaDepth [18], Depth in the Wild [29] and the

recent “3D Ken Burns Effect” system [22]. Of our models,

the full version performs the best, at a level comparable to

MegaDepth, despite that method’s much heavier reliance

on explicit depth supervision. As we would expect, remov-

ing depth supervision and/or scale invariance leads to worse

performance. Our nosmooth model performs the worst, con-
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Method rel ↓ log10 ↓ RMS ↓ σ1 ↑ σ2 ↑ σ3 ↑

DIW 0.25 0.10 1.00 0.61 0.86 0.95

MegaDepth (Mega) 0.23 0.09 0.83 0.67 0.89 0.96

MegaDepth (Mega + DIW) 0.20 0.08 0.78 0.70 0.91 0.97

3DKenBurns 0.10 0.04 0.47 0.90 0.97 0.99

Ours: full 0.21 0.08 0.85 0.70 0.91 0.97

nodepth (λdepth = 0) 0.23 0.09 0.90 0.67 0.89 0.96

noscale (σ = 1) 0.23 0.09 0.89 0.65 0.89 0.97

nosmooth (λsmooth = 0) 0.24 0.09 0.94 0.65 0.87 0.96

nobackground (ci = Is) 0.22 0.09 0.90 0.67 0.90 0.97

Table 3. Measuring depth prediction quality with the iBims-1 bench-

mark [14]. While not state of the art in terms of depth prediction,

our method is comparable to other systems that use explicit depth

supervision, even when we use no depth supervision at all. We

reran the MegaDepth model to ensure consistency; results for other

methods are as reported by Niklaus et al. [22]. See Section 4.2.
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Figure 6. Results of running our method on the Flowers dataset,

inputting a central view and synthesizing views from the four corner

angles. We visualise the distribution of SSIM and PSNR metrics

across the test set of 100 light fields (dotted lines and numbers in

the legend show the mean values). See Section 4.3.

firming that our edge-aware smoothness loss is valuable in

learning to predict MPIs that correspond to good depth-maps.

4.3. View synthesis on Flowers light fields

We now apply our method to other datasets. Srinivasan et

al. introduced a dataset of light field photos of flowers, and

a method for predicting the entire light field from a single

image [28]. This dataset consists of over 3000 photographs,

each one capturing a narrow-baseline 14 × 14 grid of light

field angles. This dataset has no point cloud data for deter-

mining scale, so we cannot apply our scale-independent view

synthesis approach. However, the scale is constant across

the whole dataset so we can simply set σ = 1 and rely on

Our prediction Srinivasan
et al.

Ours w/o 
background

Ours Ground
truth

Figure 7. Comparisons on Flowers light fields. Views rendered by

our method without using the predicted background show blurri-

ness and repeated edge artefacts at depth boundaries, which the

predicted background ameliorates. Our predictions improve on

those of Srinivasan et al. by avoiding occasional large ‘floating’

foreground artefacts, and by reducing the distortion of background

elements. See Section 4.3.

PSNR ↑ SSIM ↑

Method all disocc. all disocc.

Evaluated at 384 × 128 pixels

Tulsiani et al. 1 16.5 15.0 0.572 0.523

Ours (‘low res’)2 19.3 17.2 0.723 0.631

Ours (full)3 19.5 17.5 0.733 0.639

w/o background 19.3 16.9 0.731 0.627

Evaluated at 1240 × 375 pixels

Ours (full) 19.3 17.4 0.696 0.651

w/o background 19.1 16.7 0.690 0.634

1 Their method predicts layers at 768 × 256 resolution but ren-

ders at 384 × 128 to avoid cracks.
2 For a fair comparison, our ‘low res’ model is trained to predict

layers at 768 × 256.
3 Our full method predicts layers at 1240 × 375.

Table 4. Evaluation on city sequences from the KITTI dataset.

We compute PSNR and SSIM metrics over all pixels and over

‘disoccluded’ pixels only. The upper part of the table compares

results at a rendering resolution of 384 × 128, for comparison with

the model of Tulsiani et al. The lower part shows that our model

also performs well when evaluated at full resolution. The ‘w/o

background’ rows show the result of taking our MPI and ignoring

the background image by replacing each layer’s color with the input

Is. Especially on disoccluded pixels, using the background image

leads to a substantial improvement. See Section 4.4.

the network to learn the appropriate scale. For this task, we

add a gradient term to our synthesis loss. We train our model

on the Flowers dataset by picking source and target images

randomly from the 8 × 8 central square of light field angles,

and evaluate the results on a held-out set of 100 light fields.
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Tulsiani et al. 
(disparity)

Ours
(disparity)

Tulsiani et al.
(output)

Ours
(output)

Ground truth

c

Input

b

a

b

a

c

Figure 8. Comparison on KITTI city sequences. (a) Erroneous bright spots in Tulsiani et al.’s depth-maps lead to unpleasant visual artefacts.

(b) Comparing depth maps shows structures (the car, the Stop sign) identified by our method but missing from theirs. (c) In challenging areas

their method produces sharp but distorted output, ours tends to produce blurrier output. See Section 4.4.

For comparison, we retrained the model of Srinivasan et al.

[28] using their publicly available code.

As shown in Fig. 6, our method improves on that of Srini-

vasan et al. Even if we eliminate the background image

during testing (i.e. set color ci = Is throughout) we achieve

higher PSNR and SSIM measures (along with lower abso-

lute error) on the test set; using the predicted background

image we see an additional small improvement. Our method

has other advantages over theirs: we do not require com-

plete light field data for training, and our representation can

be rerendered at arbitrary novel viewpoints without further

inference steps. Fig. 7 shows some qualitative comparisons.

4.4. View Synthesis on KITTI

Instead of sampling source and target viewpoints from

a sequence or light field, we can also apply our model to

data where only left-right stereo pairs are available, such as

KITTI [8]. Tulsiani et al. showed the possibility of using

view synthesis as a proxy task to learn a two-layer layered

depth image (LDI) representation from such data [31]. We

train our model on the same data using 22 of the city category

sequences in the ‘raw’ KITTI dataset, randomly taking either

the left or the right image as the source (the other being the

target) at each training step. Because the cameras are fixed,

the relative pose is always a translation left or right by about

0.5m. Again, the scale is constant so we set σ = 1, and again

we add a gradient term to the synthesis loss. We compare

our synthesized views on 1079 image pairs in the 4 test

sequences with those produced by their pre-trained model.

The representation used by Tulsiani et al. is less capable

of high-quality view synthesis than our MPIs, because lack-

ing alpha it cannot model soft edges, and because its splat-

based rendering generates low-resolution output to avoid

cracks. Both methods exhibit many artefacts at the image

edges, so we crop 5% of the image away at all sides, and

then compute PSNR and SSIM metrics on all pixels, and

also on ‘disoccluded’ pixels only (as estimated by a multi-

view stereo algorithm). For a fair comparison with Tulsiani

et al., our ‘low res’ model matches theirs in resolution; we

also train a ‘full’ model at a higher resolution. Both models

achieve improvements over theirs. The effect of our predicted

background is small over the whole image, but larger when

we consider only disoccluded pixels. Results are shown in

Table 4, and qualitative comparisons in Fig. 8.

5. Conclusion

We demonstrate the ability to predict MPIs for view syn-

thesis from single image inputs without requiring ground

truth 3D or depth, and we introduce a scale-invariant ap-

proach to view synthesis that allows us to train on data with

scale ambiguity, such as that derived from online video. Our

system is able to use the predicted background image to ‘in-

paint’ what lies behind the edges of foreground objects even

though there is no explicit inpainting step in our system—

although we typically do not see inpainting of more than a

few pixels at present. A possible future direction would be

to pair MPI prediction with adversarial losses to see if more,

and more realistic, inpainting can be achieved.
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