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Abstract

Single wall carbon nanotube (SWNT)-Nafion composite actuators have been demonstrated
for 0.1 - 18 %, w/w doping of purified SWNTs within the polymer matrix. The high purity
SWNTs, >95%w/w, were prepared using thermal oxidation and acid treatments for both in-house
synthesized pulse laser vaporization SWNTs and commercially obtained HiPco material.

Characterization of the purified SWNTs was performed using thermogravimetric analysis,

scanning electron microscopy, optical absorption and Raman spectroscopy. Homogeneous
dispersions of SWNTs in a Nation polymer series were demonstrated using a combination of

homogenization and high speed mixing techniques. Evaluation of SWNT-Nafion composites

showed a
"debundling"

of the SWNT average bundle diameter when dispersed in the polymer

matrix. Further analysis showed the efficient distribution of the high aspect ratio, conductive

SWNT materials promoted actuation of the Nafion composite membrane to be reached at SWNT

doping levels as low as 0.5% w/w. Utilizing a 2-electrode bimorph cantilever actuator immersed
into an aqueous 1 M LiCl solution, tip deflections up to 4.5 mm were observed.
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1.0 Introduction

The development of electrochemical sensors and actuators has been a recent area of study,

with preliminary advancements in artificial muscle and micro-electromechanical systems (MEMS)

technologies. An electrochemical actuator is defined as a device that converts synergistic

electrical and chemical processes to produce a mechanical response. The mechanical response

typically resembles a bending or flexing of the actuating material, resulting from the

electrochemical
excitation.1

These devices have potential applications in medicinal procedures like

arterial bypass surgery, where delicate catheter insertion and manipulation is critical to success.

Other developments for medicine may come from microactuators being applied to artificial muscle

research. Another field that is optimistic for actuator development is optics, where microactuators

may be employed for positioning of mirrors or lenses. Additionally, it has been proposed that

aircraft will be constructed with "microflaps" that improve drag properties for enhanced
landing.2

Regardless of the many scientific applications for actuators, it is imperative for researchers to

evaluate and characterize the necessary properties that allow for successful technological

integration.

Studies designed to evaluate actuation properties specific to conducting polymers, carbon

nanotubes, and ion-exchange polymer metallic composites (IPMCs) have been reported by many

groups in the
literature.2"6 The most prominent conducting polymers are

polypyrrole3,4

and

polyacetylene.2Controlled variations of redox reactions on the polymer backbone account for the

observed
actuation.2^Work done by Baughman et. al., has initiated the analysis of carbon

nanotubes as actuating devices, operating via a non-Faradaic
mechanism.5

Another very popular

area for thin film polymeric actuators has been the analysis of metal-doped Nafion actuators,

which function via ion intercalation and osmotic effects. Although each of these systems operates



under different conditions and mechanisms, the overall goal is to produce a highly efficient

actuator for device application.

In this thesis project, a series of single wall carbon nanotube (SWNT)-polymer composites is

evaluated to identity potential polymer electrode films that are suited for actuator development.

An SWNT-Nafion actuator has been developed and characterized using common mechanical

analyses. The series of uniform composites was prepared by dispersing purified SWNTs with

varying weight percents into the Nafion polymer matrix, followed by solution casting, allowing for

analysis of the physical properties in each respective film. Instrumental analysis of SWNTs and

SWNT-Nafion composites was performed using optical spectroscopy, thermogravimetric analysis

(TGA), and scanning electron microscopy (SEM). Quantification of each bimorph cantilever

actuator (device responsive to changes in opposite electrode expansion when electrically

stimulated) was achieved using displacement analysis via an optical lever apparatus. The results

display a novel, characterized actuating device based on an SWNT-polymer composite that

achieved significant displacements.

1.1 Electrochemical Actuators

Construction of electrochemical actuators consists of three components: anode, cathode, and

electrolyte. Ionic species are transported through the electrolyte intercalating at the anode and

cathode to satisfy either oxidation and reduction (redox) reactions or establish electric double

layers, producing faradaic and non-faradaic processes, respectively. The charge transfer initiates

dimensional changes in the actuator electrodes, producing axial strain (A Length/Length), and a

corresponding macroscopic deflection. Electrochemical actuators are different than other

actuator types like electrostatic and piezoelectric, since an applied voltage stimulates the operation

rather than an electric field. This provides a significant advantage for electrochemical actuators



since only a few volts or less are needed to produce work responses that are an order of

magnitude greater than electrostatic or piezoelectric
ones.2

Electrochemical actuators satisfy many of the ideal properties necessary for development of

artificial muscle or MEMS devices, but also contain several disadvantages. Shahinpoor highlights

several key factors which are required for micromanipulation: (1) flexible material, (2) long cycle

life, and (3) fast, simple reaction
mechanism.7

More specifically, actuator electrodes should be

thin, with minimal inner electrode separation, to promote higher rates of diffusion for ionic

intercalation. Also, surface effects should minimize electrode resistance to enhance electrical

stimulus. Electrolyte selection requires ionic species, which have high mobility to maintain fast

transfer rates between electrodes in the faradaic actuators. Baughman has cited these

characteristics as dominating factors in the large work per cycle and force values obtained for

conducting polymer actuators and polymeric gel actuators, respectively. While electrochemical

actuators exemplify many key features, there are several limitations that require attention. Most

importantly is the necessity of an electrolyte solution, discouraging any attempts for solid-state

structures. Some attempts however, are being directed towards use of a solid electrolyte, like

hydrated polyvinyl alcohol)/H3P04.2A second observed shortcoming is the limited cycle life of

the electrochemical actuators largely attributed to the doping/dedoping effects of ion intercalation

for faradaic actuators.2A disadvantage shown for IPMC actuators is delamination of the surface

metal coating such as gold on
polypyrrole2

or platinum on
poly(acrylnitrile)8

that is responsible for

actuation at high voltages. While these characteristics outline important guidelines for actuator

development, consideration of several types, namely conducting polymer, gel fiber and ionic

conducting Nation, can in turn provide further understanding.

Substantial work has been done to evaluate the electrochemical properties of gel, conducting

polymer, and IPMC systems. The reports show encouraging developmental results, but each



varies substantially between polymer type, electrolyte selection, pH, and excitation voltages. It is

the purpose of this section to outline the current state of field for these actuator systems,

describing the reported values as a means of comparison for carbon nanotube actuators and

potential SWNT-polymer composite actuators.

Polyelectrolyte gels are unique in that under an electric field, they swell in volume inducing a

mechanical change. A recent report using poly(acrylonitrile) (PAN) gel fibers exhibited swelling

when exposed to alkaline media and contraction during acidic conditions. These gel fibers

deposited with platinum or htercalated with graphite fibers, produced an approximately 40-50%

elongation after 10 minutes of electrical
activation.8These values are considerably higher than

polythiophene, which was shown to expand by only 2% after 20minutes.9Although the PAN gel

systems produced considerable strain, slow reaction times and high voltages (10-20 V excitation)

display inferior properties to other actuator
systems.8

Better performance systems have been

observed with conducting polymers likepolypyrrole3'4and
polyacetylene.2These conducting

polymers operate through redox reactions, causing length changes in the carbon-carbon bonds on

the polymer backbone. Electrolyte and charge density effects have also been cited as potential

mechanistic factors for conducting polymer
actuators.3Film expansion values for these films have

been reported to equal 3% forpolypyrrole4at neutral pH and 1.6% for alkali-doped polyacetylene

films.2 While the ionic dopant species has been shown to be a critical parameter during actuation,

solvent effects are reported to be just as significant. Osmotic effects have been proposed to

significantly alter the degree of actuation in conducting polymers by increasing film expansion

upon decreased electrolyte concentration. Bay et. al., attribute this result to the influx of water

into the polymer films from the high ionic strength of the doped polymer
matrix.3

This study

supports the significance of the internal electrochemical redox reactions at the polymer backbone

and shows that normalization of electrolyte concentrations is critical for comparison of different



conducting polymer
systems.3

While attempts to develop actuators using conducting and gel

polymers have been realized, increased response rates, higher cantilever deflection limits, and

lower operating voltages have been characteristically shown for the ionic polymer Nation.

The perfluorinated ionomeric polymer,
Nafion (Figure 1), has been shown to actuate under

electrical stimulus in an electrolyte solution when doped with significant amounts of metal. The

prominent structural model for Nafion considers a hydrophobic region with the fluorocarbon

backbone and interstitial channels with ionic clusters that contain sulfonate groups (Figure 2). The

micellular-like ionic clusters have sulfonate groups with bound H20 and counterions, usually FT or

Na+. While the interstitial channels have some H20 present, mostly it is void volume. Variations

in morphology for these locations, the ionic clusters and interstitial channels, is directly affected by

the cation charge bound to the sulfonate.10

Actuation using Nafion in aqueous electrolytes has been performed routinely upon surface

metal doping, typically platinum or gold, at concentrations >3
mg/cm2.58

Abe et. al., first showed

the effects of counter cation species in the electrolyte, concluding that Lf produced the largest

displacement, ~1 mm towards the anode. The mechanism provided for this electrochemical

actuation supports the bending and relaxation processes observed. Upon electrical excitation (a

few volts or less), the hydrated counter cation moves to the cathode side of the electrode, swelling

the composite with water, and inducing a bend in the film towards the anode. After prolonged

electrical excitation of the film, there is an observed relaxation or creeping process back towards

the cathode side. Osmotic effects have been cited as the source of this occurrence. Therefore,

the presence ofwater has an astounding impact on the overall mechanism.

Improvements to the actuation process, namely enhanced load capability, larger

displacements, and surface modifications, have been the focus of recent
work.11,12Film thickness

effects on load capability have shown that doubling the thickness for each Nafion film corresponds
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Figure 1: Structure ofNafion.*



Figure 2: Structural model ofNafion depicting polar ionic cluster regions and a nonpolar
backbone. In the diagram, (A) is the hydrophobic fluorocarbon, (B) is the interstitial
void volume, and (C) is the hydrated ionic cluster comprising a sulfonate and cation
(M -typically FF or Na+).



to an 8-fold increase in force generated."While commercially available films are -200 urn,

Shahinpoor et. al., have developed a procedure to produce 2 mm thick Nafion
films.11

Another

group has evaluated the metal doping characteristics ofNafion films by roughening the surface to

increase surface area sufficient to enhance platinization for an observed 50% increase in

displacement.12 While platinum has been the traditional metal to dope Nafion, other reports have

investigated effects of
gold,13*14

and
copper-platinum,15

as superior dopants. Although the surface

effects have been studied in considerable detail, significant effort has also been made towards

understanding the ffcO and ionic conductivity effects within the Nafion matrix. Nafion has been

shown to have both bound and non-bound water present, with the amounts and ratios varying with

the type of counter cation present. The ability to hydrate the counter cation, especially as it

migrates during electrochemical actuation, is a property distinct to each cation. Electrolytes with

lithium cations have been shown to exhibit the best actuation properties. This can be attributed to

the high ionic conductivity16and large hydration spheres observed for Lf in the Nafionmatrix.6

Although promising results have been shown for Nafion-based actuators, the necessity to have ion

intercalation at the cathode introduces a time deficiency for migration, similar to the gel and

conducting polymer systems.

1.2 Carbon Nanotube Actuators

Demonstration of carbon nanotube actuators in 1999 by Baughman et. al., displayed a novel

material for conversion of electrical energy into mechanical energy. Preliminary results predicted

the highest work capacity of known actuating
materials.5The single wall carbon nanotube devices

were constructed using strips of "buckey
paper"

sheets assembled from as-produced laser-

generated material. Each strip was placed on opposite sides of an insulating piece ofdouble -stick

tape and the carbon nanotube electrodes were connected to clamped platinum electrical leads.

The device was inserted in a 1M NaCl solution and several volts were applied, producing



deflection at the cantilever tip up to about a centimeter (Figure 3). Further characterization

showed that the bimorph cantilever actuator produces strain results which are >0.2%. This value

already exceeds the highest strain value of- 0.1% known for ferroelectric ceramics. Theoretical

predictions indicate that carbon nanotube actuators can potentially reach strain values of -1%

when the carbon nanotubes exist as individual SWNTs, i.e. not bundled. The initial work showed

surface area measurements using the Brunauer-Emmett-Teller (BET) method of the

buckeypapers to be -300 rrrVg, whereas individual SWNTs are predicted to have values of -1600

m /g. This correlates with the five-fold decrease of observed strah versus the theoretical values

based on surface area assignments. A result that is explained by only the exterior SWNTs in the

bundles participating in the actuation (Figure 4), highlighting an important observation to support

the mechanism for actuation. It was concluded that the actuation in carbon nanotubes is caused

by charge injection from the electrolyte salt present in solution, promoting an electric double
layer.5

In rum, the charge induces quantum mechanical expansion of the covalent framework of the

carbon nanotubes, producing an observed strain. Therefore, a larger degree of actuation was

proposed for debundled SWNTs, resulting from an increased surface area, thereby enhancing

electric double layer effects. Overall, the initial study by Baughman et. al., has displayed the

extreme potential for carbon nanotube actuators and provides a preliminary understanding of the

mechanism which supports this technology.

There have been a number of recent reports describing potential applications of carbon

nanotube actuators. An example is the pneumatic response for carbon nanotube buckey papers

due to gas formation between carbon nanotube layers, also shown by Baughman et. al.17Results

indicate >2% contraction of the carbon nanotube sheets when exposed to a 5M NaCl solution and

voltages between +0.5 and +1.5 V. Although these results are impressive, the requirement to

develop consistent carbon nanotube paper layers to form reproducible pneumatic actuators with
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Figure 3: Representation of the bimorph cantilever actuator deflection reported for carbon
nanotube actuators.
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Figure 4: Electric double layer effects reported for carbon nanotube actuators of (A) individuals

SWNTs, and (B) bundled SWNTs.
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long life cycles is limiting.17 Other attempts to study the actuation properties of individual SWNTs

has been fraught with difficulties, although some success has been achieved growing carbon

nanotubes across pre-trenched wafers using the CVD process, and monitoring potential actuation

using an Atomic Force Microscopy (AFM)
tip.18

Additional attempts are being made to develop

"nanotweezers,"
where individual SWNTs bound to anAFM tip under an applied dc voltage cause

the two carbon nanotubes to approach each other. Such techniques may be applicable to the

development ofmanipulating structures for
nanoelectronics.19

1.3 Carbon Nanotubes

Each type of carbon nanotube, single wall or multi-wall, exhibits unique and useful properties

for both basic science and applied technology. Although SWNTs are the focus of this thesis

project, a brief overview of the properties of multi-wall carbon nanotubes (MWNTs) will be

described to highlight the differences between the two types. MWNTs are composed of

concentric layers of graphene sheets stabilized by Van der Waal's interactions. Observed

MWNT diameters range from 2-25 nm, lengths are -1 micron, and spacing between coaxial

layers equal 0.34 nm.20Synthesis of MWNTs is primarily performed by arc-discharge

techniques,21

while alternative methods using quartz substrates produce similar quality and
yield.22

Structural rigidity ofMWNTs plays a key role in polymer composite studies, evident from Jin et.

al., to physically align MWNTs within a polymer matrix by mechanical
stretching.23

Structural

properties ofMWNTs include the ability to be twisted and
"kinked," before elastically returning to

original shape. Research indicates that these kinks may potentially lead to functionalization of the

carbon nanotube sidewalls, increasing chemical reactivity. The conduction mechanism in

MWNTs is under debate since results supporting both ballistic and diffusive currents have been

reported.21The discrepancies may be attributed to the varying helicities of carbon nanotube layers

in a MWNT, thereby showing both types of conduction occur dependent on carbon nanotube
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formation. Work by de Heer et al., has shown that conduction in a MWNT occurs only on the

most external layer, indicating primarily structural support by internal
layers.25 Multi-wall carbon

nanotubes are also being used as fundamental demonstrations for the Aharonov-Bohm
effect,26

field and light emission properties,21and tip
"sharpening"

by Scanning Tunneling Microscopy for

potential nano-scale
probes.27

1.4 Single Wall Carbon Nanotubes

Although MWNTs have several key applications, this thesis focuses on the properties and

applications of single wall carbon nanotubes (SWNTs). The structure of SWNTs is best imagined

when looking at a single sheet of graphite (graphene) and rolling the sheet such that the edges

match. Each generated tube incorporates hexagonal benzene rings along the cylindrical shaft,

carbon atoms being
sp2hybridized. The carbon nanotube caps include pentagon rings to create

the closed end with half of a buckeyball (Figure 5).28

Therefore, a carbon nanotube of Qo

character (containing 12 pentagons and 20 hexagons) can be imagined as an expansionary growth

within the fullerene that leads to a long, cylindrical structure for stability. The manner in which the

benzene rings orient along the nanotube structure determines the unique chirality-types associated

with carbon
nanotubes.20

Chirality is described by the roll-up vector for carbon nanotubes from a

graphene sheet. Representation of this vector for SWNTs is depicted by the following (Figure

6):20

Ch = n ai + m %; where a. and a> are lattice vectors, n and m are integers; and the

symmetry for the carbon nanotube is directly related to the unit
(n,m).29 Figure 6 indicates two

unique SWNT chiral types represented by dashed lines at
0

and 30, (n,0) zigzag carbon

nanotubes and (n,n) armchair carbon nanotubes, respectively. All other symmetry operations

between these two will be termed chiral carbon nanotubes and their properties will vary based on

helicity. Theory indicates that armchair carbon nanotubes are metallic, while zigzag and chiral

13



Chiral

Figure 5: Structural representations of fullerenes and single wall carbon nanotubes, displaying
variation in size for the fullerene endcaps of single wall carbon nanotubes and
arrangements of the hexagons in the single wall carbon nanotubes to produce
different helicities.
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Chiral

O : metal : semiconductor

Figure 6: Symmetry elements for SWNTs depicting the chiral designations for the (n, m)
vector. Each chirality represents a unique SWNT that corresponds to a certain

diameter and electronic structure. The points with open circles represent metallic
SWNTs whereas closed circles are for semiconducting.
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carbon nanotubes are semiconducting unless through symmetry (n-m)/3 = integer, then they also

will be metallic (see Figure 6).29

1.5 Structural and Electronic Properties

Derived from their symmetry, SWNTs exhibit various diameters, corresponding with unique

structural and electronic properties. SWNTs produced by certain synthetic procedures can

produce diameters as low as 0.7 nm, equivalent to the Q0
cap.30Most laser grown SWNTs

exhibit diameters of -1.2-1.4
nm,31

representative of a C24o
cap.20Recent work by three

independent groups has reported stable synthesis of the smallest diameter SWNT, - 0.4
nm.32"34

The chirality of the 0.4 nm SWNT is uncertain with one group reporting a (3,3)
armchair34

and

another a (5,0) zigzag
SWNT.32

As stated above, armchair and chiral SWNTs with symmetry equal to (n-m)/3, exhibit metallic

properties."Conduction in these structures follows a ballistic nature, with theoretical predictions

of a perfect conductor having a value of 4e2/h (where e is electron charge, and h is Planck's

constant); with groups reporting 25-50% of this value. Additional "quantum dof studies can

elucidate electron activity in metallic SWNTs by measuring the conductance vs. gate voltage, to

determine whether conducting oscillations exist from ordered electronic states along the length of

the tube. Results show that electrons can travel up to 10 urn before electron scattering distorts

the regular
oscillations.35

Consequently, conductance values for SWNTs have been reported to

equal
104 S/cm,5

with current capacities 1000 times that of a copper
wire.36

Single wall carbon nanotubes not displaying metallic symmetry offer a different set of

properties, closely resembling silicon in standard p-type metal-oxide-silicon field-effect transistor

(MOSFET) applications. These semiconducting SWNTs can be used as transistors, where

application of a negative bias causes conduction via hole carriers. Researchers indicate that

adsorbed species on the SWNT surfaces cause this p-type
doping,35

while in certain instances,
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atoms like potassium can orient to donate electrons to the SWNT, changing doping to
n-type.37

Overall, SWNTs offer tremendous potential for electronic applications, each directly related to the

unique properties exhibited by both metallic and semiconducting SWNTs during synthesis.

In addition to electronic properties, SWNT structure and sample morphologies are also being

widely investigated. It has been shown that SWNTs typically exist in bundles after purification

(Figure 7). Work by Gennett et al, has shown development ofpure "superbundles" with diameters

ranging up to
Jim.38

The resulting space between SWNTs in bundles is caused by Van der

Waal's interactions between individual SWNTs. The reported value for SWNT spacing in

bundles is 0.315 nm, approximately equal to the distance between graphene sheet layers in

graphite, 0.335 nm. Individual SWNT physical characteristics are of intense interest due to their

unique properties, and potential for composite applications. The high aspect ratios for the SWNTs,

i.e., nano-diameters versus micron-lengths, suggest utility as reinforcements in polymer and

ceramic
composites.39In addition, the elastic or Young's modulus, has theoretically been predicted

and experimentally verified to equal - 1
TPa.39'40

Tensile strength for individual SWNTs has

been estimated to equal 22
GPa.41

These reports correlate to strengths 10-100 times that of steel,

providing additional evidence for novel SWNT
materials.39

Although SWNTs exhibit high structural rigidity, they also have been shown to display

dynamic bending abilities, allowing the deformed carbon nanotubes to elastically return to resting

states. Thostenson et al, report bending angles in excess of 1 10, equivalent to very high strains

on the hexagonal carbon
bonds.39 Single wall carbon nanotube ribbons and fibers have also been

developed. The high elastic modulus of SWNTs has been demonstrated by the ability to tie knots

with bundles of SWNTs approximately 30 um in diameter.42

Elastic stretching appears to

redistribute the hybridization of carbon atoms from
sp2

to a varying hybridization between
sp2

and

sp3, depending on the degree ofstrain. Others have suggested a Stone-Wales defect whereby a
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1.2 nm

Figure 7: TEM image ofpurified SWNTs displaying the property ofbundling. Inset shows the
hexagonally close packed arrangement of the individual SWNTs that are separated by
Van derWaals interations: example diameter of 1.2 nm given. (TEM performed by
Mr. Kim Jones at the National Renewable Energy Laboratory, Golden, Co.)
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5-7 ring system is observed when stress is applied to the SWNT, altering the diameter and

chirality.20Applied stress can deform SWNTs in one of two manners: either kinks resulting in a

buckling effect, or torsional strain. Results by Srivastava et. al., indicate a delocalization in energy

from the 7t clouds at the site of strain, increasing chemical reactivity at that site. This nonlinear

distortion may result in novel applications for SWNTs like chemisorption of atomic
hydrogen,24

or

stress-induced nanotube
probing.20

Additional reports indicate that only chiral SWNTs undergo an

asymmetric torsional strain compared to pristine armchair and zigzag
SWNTs.39

Consequently,

variations in structure lead to significant modifications of electronic properties for SWNTs.

Many of the key applications being developed using SWNTs are a result of the unique and

versatile electronic properties these materials display. The extent to which a SWNT exhibits

metallic or semiconducting behavior is a direct result of the chirality associated with the individual

structure. Therefore, to understand the electronic states ofmetallic and semiconducting SWNTs,

it is pertinent to evaluate the characteristics of graphene, a 2D structure by which carbon

nanotubes theoretically derive from when curled to form a 1-D-like tube. The sp2hybridization of

carbon atoms in the sheet displays interesting conducting properties based on the electronic band

structures. The electronic state at the Fermi level is unique for graphene because the structure

displays a semimetal behavior. Semimetal band structure has been described by McEuen as a

crystal lattice where electrons can backscatter in the lattice like typical semiconductors, or

propagate through the lattice similar to
metals.35Graphene exhibits both properties, dependent on

the angle where electrons scatter in the lattice. Consequently, SWNTs will show similar

electronic properties based on the chirality, or angle of formation from the rolled up graphene

sheet.35
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1.6 Synthesis and Purification

The synthesis of SWNTs can be accomplished by several methods, each offering different

distributions of purity, diameter, and chirality types. The original discovery of SWNTs was with

carbon soot generated by the arc-discharge method. This method applies high voltages across

two metal-doped graphitic rods in the presence of an inert dmosphere to develop a vaporized

carbon plume (Figure 8).43'44

SWNTs have also been synthesized using a laser vaporization

procedure, where a source laser (such as Nd:YAG, Alexandrite, UV, IR, etc.) is applied to a

metal-doped graphite target under inert atmosphere and elevated temperatures. The resultant

metal-carbon vapor generates a plume which under flowing Ar(g), condenses outside of the

furnace into a mixture of SWNTs and synthetic impurities (Figure 9).38

However, drawbacks exist

for both the arc-discharge and laser grown methods, namely the extremely elevated temperatures

for carbon sources, amorphous carbon and metal impurities, and the high entanglement of

SWNTs. Several of these limitations have been addressed via an alternative method, namely

chemical vapor deposition (CVD) synthesis (Figure 10). Chemical vapor deposition introduces a

carbon feedstock gas over a catalyst-supported substrate at moderate temperatures. This method

has established a certain degree of control over helicity, diameter, and growth
orientation.45

Also,

the scalability ofCVD synthesis allows larger quantities of carbon nanotubes to be synthesized in

a more cost-effective manner. Similar to arc and laser, current CVD techniques also display

limitations on the yield, purity, and defects associated with synthesis, primarily based on the

catalyst
selection.45In an attempt to develop a synthetic procedure that could enable mass

production (kg - ton) of SWNTs, Smalley et. al., proposed the HiPco process in 1999. This

method employs passing CO(g) along with catalytic amounts of Fe(CO)5 through a heated reactor

chamber at optimized conditions of 1200C and 10 atm. One significant advantage of this process

is the continuous flow that allows for proposed reproducibility and scale -up potential.
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Figure 8: Representation of the arc-discharge apparatus used for synthesis of SWNTs.
Application ofhigh voltages between two carbon rods (connected at PI and P2) at
constant pressure under inert atmosphere, results in the production ofa carbon plume

containing SWNTs.
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Figure 9: Representation of the pulse laser vaporization apparatus used for synthesis of

SWNTs. Incident laser beam is controlled with mirrors to raster over the surface of a

graphite target in a high temperature furnace at a variable pressure under inert

atmosphere.
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Figure 10: Representation ofa chemical vapor deposition (CVD) apparatus used for synthesis of
SWNTs. Introduction ofa carbon feedstock gas (CH4 is shown above) over a
supported catalyst substrate at elevated temperatures results in the production of

SWNTs.
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While various techniques are employed for SWNT synthesis, purification has been a limiting

step for many researchers to develop high purity, pristine carbon nanotubes. Many reports

indicate experimental procedures for this crucial step.31'46Since laser-generated and commercially

obtained HiPco SWNTs are of interest for this thesis project, purification techniques related to

these materials will be addressed. Purification of laser-generated material has been reported by

Gennett and others to produce SWNTs with purities greater than 98%
w/w.38,47Purification of

these SWNTs was achieved by a nitric acid reflux followed by oxidation in air at 550 C.

Purification ofHiPco carbon nanotubes has been successful using a series of thermal oxidations

with subsequent hydrochloric acid washes to remove the catalytic iron from the as-produced

material.46

1.7 Carbon Nanotube-Polymer Composites

Another significant area of research is in the area of carbon nanotube-polymer composites.

The intentions are to develop novel materials exhibiting unique electrical, thermal, optical, and

mechanical properties. Evaluation of the potential uses for these nanotube-reinforced composites

can highlight new technologies that will originate from carbon nanotubes. Although the

preliminary development of successful composites has been achieved, current work is also

directed at studying the interactions associated between carbon nanotubes and polymer matrices:

the dominating property for applications in electronic devices. Several processing mechanisms

have been proposed stating that the polymer backbone is capable of a promoted wrapping around

the carbon nanotube to produce a uniform dispersion. The reverse-water solubilization mechanism

utilizes the hydrophobic nature of carbon nanotubes by non-covalent wrapping with such polymers

as polyvinyl pyrrolidone) and poly(styrene sulfonate). These polymers promote high solubility for

transfer of pristine carbon nanotubes into aqueous systems. Surfactant-assisted techniques have

attempted to reduce the interfacial adhesion energy between carbon nanotubes and polymers by

24



wetting the carbon nanotube surface with surfactants. Another proposed mechanism of

dispersion shows that the polymer poly(/-phenylenevinylene-co-2^-dioctyloxy-/7-phenylvinylene)

(PmPV), can coat SWNTs based on the helicity of the underlying carbon nanotubes. The

wrapping is directly related to the interaction of the carbon nanotube and polymer, with molecular

modeling displaying conformational changes in the polymer during the wrapping process. The

conformation changes are proposed to correlate with n-n stacking of the polymeric backbone

with the hexagonal structure of the carbon nanotubes along the helical
symmetries.49It is

proposed that each polymer will interact differently with carbon nanotubes, producing a unique

junction between each component. Within this junction, exists the charge transfer capability for

certain electronic devices. However, any impurities in the composite can act as electron traps and

distort the charge transfer process. One type being explored for photovoltaic devices is a photo

induced charge transfer resulting from the junction where the photo-excited polymer, poly(3-

octylthiophene), (electron donating) and carbon nanotubes (hole donating) transfer charge through

the composite
system.50

Considerable research has been devoted to developing composites that successfully transfer

load requirements from the polymer backbone to the dispersed carbon nanotubes. Ideal for such

applications, carbon nanotubes exhibit a large aspect ratio, which is conducive to formation of a

network within the polymer matrix. The established network at high doping levels can lead to a

percolation threshold, which is proportional to the aspect ratio, for SWNTs.51 Since the

tensile strength of carbon nanotubes has been predicted to be 10-100 times that of steel, SWNT-

polymer composites could significantly enhance the strength ofcomposite materials. Initial studies

focused on MWNT-polystyrene composites for load transfer effects, concluding that 1 % w/w

dispersions significantly increased the elastic modulus and break stresses of the resulting

composites by -40% and -25%, Although results are encouraging, the carbon
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nanotube material used in this study was as-produced MWNTs, containing metal catalyst

impurities and numerous structural defects. This preliminary work has perpetuated more in depth

analyses, including the recent proposal that SWNTs present superior load transfer abilities over

MWNTs, since the polymer chain is interacting directly with the outermost shell responsible for

carrying the imposed load.53 When using MWNTs, the internal shells are free to move and are

only stabilized by weak Van der Waal's forces, thereby allowing eventual deterioration of

composite strength. However, to develop successful composites using SWNTs, researchers have

proposed the necessity to overcome the bundling effects exhibited by SWNTs. Ajayan et. al.,

have calculated the force required to separate SWNTs individually from the bundles. Results

indicate that energetically it would be easier for a polymeric matrix to pull a SWNT from the end

of the bundle, rather than normal to the bundle, overcoming the carbon nanotube's Van derWaal's

interactions for the bundle. Depending on the interfacial strength between the carbon nanotube

and polymer matrix, this force normal to the bundle may result in shearing of the SWNT,

specifically at defective sites along the sidewall of the carbon
nanotube.54

While load transfer composites represent one area for carbon nanotube -polymer composite

applications, another significant approach utilizes the high thermal conductivity of carbon

nanotubes. Since thermal transport in solid structures results from a combination of conduction by

electrons and phonons, successful interaction between polymer matrices and carbon nanotubes

can be used for thermal management. Since theoretical predictions for thermal conductivity in

SWNTs equal 6000
W/mK,51

the integration of SWNTs into polymer composites shows extreme

potential for these applications. A recent report has shown a 125% increase in thermal

conductivity for a 1% w/w as-produced SWNT-epoxy
composite.51

In addition, molecular

modeling has provided certain theoretical insights to help support the observed carbon nanotube-

polymer interactions. Gong et. al., have reported an increase in Tg of 25 C, and an elastic
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modulus increase of 30% for epoxy composites with 1% w/w doping of carbon
nanotubes.55

Carbon nanotube-polyethylene composites have exhibited a higher glass transition temperature, Tg,

than the native polyethylene. These results have shown an increase in thermal expansion

coefficients for composite systems, explained by the rigidity of dispersed carbon nanotubes with

uniform phonon vibrations, preventing polymer rearrangement at higher
temperatures.56 A similar

report using carbon nanotube-polystyrene composites shows enhanced interaction between

polymer and carbon nanotubes due to a thermal expansion coefficient mismatch, which is

proposed to increase the interlocking mechanism when composites are cooled from their
melt.57

Overall, it seems evident that integration of carbon nanotubes with polymer matrices is a complex

interaction leading to potentially interesting thermal and physical properties.

While significant advances have been made in quantifying load transfer, thermal and electric

effects in carbon nanotube-polymer composites using impure materials, the necessary evaluation

using high purity samples will inevitably lead to more accurate results. Electrical and optical

properties of carbon nanotube-polymer composites have recently been a focus of extensive

research,58

showing great promise for
ultracapacitors,59

photovoltaic
devices,50

and photosensitive

applications.60In addition, the current molecular modeling studies have displayed several

interaction mechanisms to provide an initial understanding of the roles each component plays in the

composite. However, it will be through experimental modification and device development that

the mechanism of interaction for each carbon nanotube-polymer composite is determined.

1.8 Carbon Nanotube-Polymer Composite Actuators

Successful integration of high purity SWNTs with a polymer matrix to develop novel devices

is at the forefront ofmany research groups. Introduction of highly conductive SWNTs into the

Nafion polymer could significantly enhance the polymer film conduction, which may be potentially

sufficient for inducing actuation. Production of SWNT-Nafion composite actuators should require
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homogeneous dispersion of SWNTs throughout the polymer matrix. The interaction between

components may enhance debundling of purified SWNTs, thereby decreasing the percolation

threshold. Actuation within these samples may occur either through faradaic or non-faradaic

processes depending on the degree of dispersion and resulting actuation mechanism. If ion

intercalation is able to establish an electric double layer with the carbon nanotubes, the non-

faradaic process will result. However, if homogeneous dispersions are achieved, carbon

nanotubes would likely be coated with polymer, allowing ion intercalation to promote actuation of

the polymer component. Each of these possibilities will be evaluated upon successful actuator

development. The opportunity that this technology presents is largely an improved material

process, where polymer-based actuators could be made into ribbons, fibers, or sheets, entirely

dependent on the application. While this blend of research contains many possibilities, the cutting

edge nature provides scientific appeal and motivation for application in MEMs technologies and

artificial muscle research.
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2.0 Experimental

2.1 Synthesis ofHiPco and Laser SingleWall Carbon Nanotubes

Single wall carbon nanotubes (SWNTs) used in this thesis project were obtained via two

sources: (1) commercially obtained from Carbon Nanotechnologies, Inc.(CNI), produced by the

HiPco process (h-SWNTs); (2) synthesized using pulse laser vaporization(l-SWNTs). Synthesis

conditions for the HiPco process were outlined in the introduction.30 The schematic of the pulse

laser vaporization apparatus is depicted in Figure 11. The system design for the laser synthesis of

single wall carbon nanotubes allows for control over multiple parameters: chamber configuration,

raster pattern, furnace temperature, inert gas flow rate, chamber pressure, laser power density,

and target composition. In this study, the SWNTs were synthesized in a 2.4 L single quartz tube

chamber configuration, linear raster pattern over the target with a 50% overlap of a 2.5 mm laser

beam spot size, furnace temperature at 1200 C, and a flow rate of 100 seem of Ar^. The

graphite (1-2 pm) target (pressed at 20,000 psi) was doped with 0.6 atomic percent each ofNi

and Co. The other variables were controlled within an appropriate range to synthesize

reproducible 1-SWNTs, as listed by the following: chamber pressure between 300-500 mmHg, and

laser power density of 100 W/cm2.

2.2 Purification ofHiPco and Laser SingleWall Carbon Nanotubes

Procedures for purifying h-SWNTs and 1-SWNTs employed two different protocols, however

each contained oxidative treatments with acid and air oxidations at high temperatures. The

purpose of acid (whether HN03 or HC1) was to remove residual metal catalyst particles, while

thermal oxidation at various temperatures removed the amorphous carbon impurities. The

procedure for h-SWNTs was similar to the one reported by Chiang et.
al.,46

with minor

modifications being the type of firnace and slight variations on sonication and thermal oxidation

times. The procedure used is outlined as follows:
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Figure 11: Representation of the pulse laser vaporization apparatus used for synthesis of 1-

SWNTs applied to this thesis. Incident laser beam is controlled with mirrors to raster
over the surface of a Ni-Co doped-graphite target. Synthesis occurred in a 2.4 L
single quartz tube chamber configuration, linear raster pattern with a 50% overlap of a
2.5 mm laser beam spot size, furnace temperature at 1200 C, and a flow rate of 100
seem ofAr,(g)-
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Step 1: -50-70 mg of as-received h-SWNTs were compressed on a 0.02 urn, 47 mm

Anodisc filter using concentrated hydrochloric acid and placed on a Pl<s) boat in the
muffle furnace (Thermolyne 1300) at 225C overnight (-16 hrs) with occasional

opening ofdoor to promote air flow.

Step 2: Oxidized material was mixed with 20 mL of concentrated hydrochloric acid and

placed in sonic bath (Aquasonic 75D) for 1 hour.

Step 3: Acid solution was vacuum-filtered using 0.02 um, 47 mm Anodisc filter papers and
dried at 70C in vacuo for 1 hour.

Step 4: h-SWNT "paper"

removed from Anodisc filter paper and placed in muffle furnace
at 325C for 2 hours.

Step 5: Sonication and filtration step same as (2-3)

Step 6: h-SWNT "paper"
removed from Anodisc filter paper and placed in muffle furnace

at 425C for 1 hour.

Step 7: Sonication and filtration step same as (2-3)

Step 8: h-SWNT "paper"
removed from Anodisc filter paper and placed in muffle furnace

at 425C for 2 hours

In comparison to the above procedure, the protocol for purifying 1-SWNTs originated from the

publication by Dillon et.
al.,47

where the as-produced SWNTs are refluxed in 3M nitric acid for 16

hours, followed by an air oxidation at 550C. The only modification to the reported procedure was

thermal oxidation at temperatures between 500-525C, accounting for variations in altitude from

published report. Additionally, an acid wash using concentrated hydrochloric acid after the

thermal oxidation was occasionally necessary if residual metal catalyst remained. The purity for

both synthetic types was always >95% w/w, the target value for purified SWNTs used in this

thesis.

23 Characterization of Single Wall Carbon Nanotubes

Techniques used to characterize the single wall carbon nanotube material, including the

polymer composites, were the following: Thermogravimetric Analysis (TGA), Scanning Electron

Microscopy (SEM), optical absorption spectroscopy, and Raman spectroscopy. Each of these
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methods is outlined below, as well as a brief description of the sample preparations and

experimental conditions used to acquire the data.

Thermogravimetric anatysis (TGA) is a technique used to evaluate the thermal stability of

materials by monitoring the change in sample mass while being ramped through a

temperature range at a specified rate. The results can quantify decomposition

temperatures for samples under a given set of atmospheric
conditions.61

Applied to

SWNTs, the purity levels and percentage of residual metal catalyst impurities can be

determined quantitatively. Demonstration ofTGA analysis for SWNTs was reported by

Dillon et. al., and Figure 12 shows the overlay for the purification
process.47The

decomposition transition labeled (A) corresponds to the amorphous carbon impurities,

which decompose at lower temperatures compared to the (B) SWNTs. In addition,

qualitative analysis pertaining to the percentage of SWNTs in the as-produced material

can be evaluated.47The TGA instrument utilized for this thesis project was a TA

Instruments Model 2950. Samples were applied to a platinum pan in quantities between

0.3-1.0 mg and ramped at 5C/min from room temperature up to 950C under air at a gas

flow rate of 50 cmVmin and N2(g) purge at a gas flow rate of40 cm3/min.

Scanning Electron Microscopy (SEM) is a technique used to evaluate the surface

characteristics of a sample by detecting the electron scatter from the sample
surface.61

The microscopy analysis provides a sample -limiting, qualitative understanding of the

sample contents for imaged regions. When evaluating SWNTs, the analysis provides

information related to purity, including amorphous carbon coatings and metal catalyst

content. Additionally, SEM can provide an understanding of SWNT bundling effects,

specifically the bundle
diameters.46 Images generated for as-produced SWNTs, purified

SWNTs, and SWNT-doped polymer composites can compare the effects each
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Figure 12: Thermogram depicting the changes in weight percent of SWNTs over a temperature
range during thermogravimetric analysis. Transition (A) represents the amorphous
carbon impurities, and (B) represents the SWNTS for the 16 hrs. 3M HN03 sample.
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experimental modification has on the bundling effects of the SWNT material. The SEM

instrument used was a Hitachi S-900. Samples were prepared by applying SWNT

material directly to carbon tape, or by suspending SWNTs in acetone and then placing a

drop of solution on a TEM grid, which was applied to carbon tape or applied directly to

sample stub using silver paint. The instrument operated at an accelerating voltage of2 kV

and magnifications ranged from 5- 100 kX, with good picture quality.

Optical absorption spectroscopy is a common technique for evaluating the effects of

electromagnetic radiation on a sample in the UV-Vis-NIR region (120-2500 nm),

specifically the electronic transitions and optical
bandgaps.61 Single wall carbon nanotubes

have characteristic absorption peaks corresponding to changes in the electronic density of

states, related to Van Hove singularities: ranging from 1200-1900 nm for the
1st

singularity, 800-1100 nm for the 2nd

singularity, and 500-700 nm for the 3d

singularity

under typical arc or laser synthesis conditions for SWNTs.62

Modifications of these

absorption peaks can be used to evaluate dopant effects on the electronic transitions of

SWNTs as well as quantifying the diameter distributions of the SWNT samples.63The

UV-Vis-NIR instrument used was a Perkin-Elmer Lambda 900. SWNT samples were

typically prepared by spraying quartz plates with suspended material in acetone (-1 mg/10

mL), The suspensions were prepared by sonication for 30 minutes and sprayed via an

Anthem No. 155-7 sprayer under 20 psi N2(g), over the surface of the quartz plate.

Homogeneous coverage was achieved when care was taken to dispense the sprayed

solution at appropriate rates. Polymeric samples for UV-Vis-NIR analysis were either

solution cast on quartz plates or thin films prepared for scans if SWNT concentrations in

the polymer composites were low enough to cause transparency. The instrument scanned

over a wavelength range of 200-2500 nm at a data interval of 1 nm. In the NTR range,
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the instrument scan speed was 375 nm/minute, integration time of0.16 seconds, slit equal

to 1 nm, and gain set at 1. For the UV-Vis region, the scan speed was 375 nm/minute,

integration time 0.12 seconds, slit equal to 4.0 nm, and gain set at 1.

Resonant Raman spectroscopy is a technique used to monitor symmetric vibrations of a

sample at an excitation wavelength corresponding to an absorption peak. During Raman

excitation, the electrons are promoted to an excited state and immediately relaxed to a

vibrational level at the ground state. This analysis uses a tunable laser that can identify

the sample's maximum absorption wavelengths over a range by showing an increase in

the Raman intensity for each characteristic vibrational
transition.61

Specifically, Raman

spectroscopy has been shown to evaluate the diameter distributions for semiconducting

and metallic SWNTs due to resonant enhancement of the radial breathing mode,

dependent on the excitationwavelength.64For the series of experiments performed in this

project, 488 nm excitation corresponds to semiconducting SWNTs, while 633 nm

excitation is for metallic
SWNTs.64

The Raman instrument used was a Jobin-Yvon Super

LabRam Model Oil; SWNT samples were analyzed using an MSPLAN-100 objective

with 488 nm excitation from a 649 mW argon ion laser and 633 nm excitation from a 20

mW HeNe laser. The scan range was 150 - 3000 cm"1and the resolution of the 633 nm

excitation Raman data was 2.94
cm"1

at 150
cm"1

Raman shift and 1.96 cm"1at 3000 cm"1

Raman shift. During 488 nm excitation, the resolution was 4.96
cm"1

at 150
cm"1

Raman

shift and 3.67
cm"1

at 3000
cm"1

Raman shift.

2.4 Four-Point Conductivity of SWNT "Paper" and Polymer Composites

Measurements were conducted on SWNT "buckeypapers"

and polymer composites using

a 4-point wafer probe to determine volume resistance that was converted to volume conductivity

for the samples. The instrument was a Keithley programmable source unit with multimeter, set at

35



a voltage limit of 10.0 V and a continuous source current ranging from 1.0000 E-02 - 1.0000 E-03

Amps. Instrument values allowed for computation of an average voltage that was used to

determine the resistivity (p) upon correction for probe spacing and sample volume. The

conductivity (a) was then calculated by taking the reciprocal of p. These values represent the

volume conductivity for the SWNT samples and composite films, within experimental error.

2.5 Procedure for Preparing SingleWall Carbon Nanotube-Polymer Composites

Single wall carbon nanotube-polymer composites were prepared by addition of appropriate

values of carbon nanotubes to a predetermined volume of polymer. The equation (1) used to

calculate percent by weight ofSWNTs in the polymer is the following:

Equation 1:

Percent by weight = {mass SWNTs /[(polymer density* polymer volume * percent by

weight polymer) + mass SWNTs]} * 100

The composite solutions (mixture of appropriate mass of SWNTs and volume ofpolymer solution)

were first homogenized for five 10-minute intervals using an IKA Ultra Turrax T25 mixer at a

speed setting of 5 for 20 minutes, until a highly homogeneous solution resulted. The solutions were

then exposed to high shear stirring at room temperature for 72 hours in a 20 mL. After 72 hours,

the solutions were centrifuged to remove any non-dispersed materials. After centrifugation, the

mass of any residue was determined and the percent by weight was adjusted accordingly. Using

traditional solution-casting techniques, thin film membranes of -25 um thickness were cast onto a

Bytac

substrate. After stabilizing for 24 hours in air, the membranes were dried in-vacuo (100

mtorr) at 70C for 30 minutes. The resultant membranes were then easily removed from the

casting plate.

36



2.6 Preparation ofPlatinized SWNT-Nafion Composites

Reproducible electrical contacts to the Nafion composite membrane were achieved by utilizing

the previously reported chemical reduction of platinum ions on the surface of the Nafion

membrane. The platinizatbn of the composite films was achieved by first immersing the

composite membrane (-10 mm x 40 mm) into 20 mL 4mM tetraamine Pt(lT)Ch solution for 45

minutes. The membrane was removed, washed and re-immersed into a 20 mL 0. 1 M NaBIL 3:1

(distilled watenmethanol) solution to reduce the Pt (II) to Pt (0) for 1 hour. The anionic nature of

the composite membrane and the kinetic control of the experiment limited the depth ofpenetration

of the borohydride anion. After chemical reduction of Pt(II) to Pt(0), the membrane was thrice

immersed for 1 hour in 20 mL of 0.3 M HC104 acid solution. These washes removed residual Pt

(II) ions and reconverted the Nafion membrane to the protonated form. The platinized films were

dried at 70C in-vacuo for 1 hour.

2.7 Fabrication ofBimorph Cantilever Actuators

Bimorph cantilever actuators were prepared similarly to those by Baughman et.
al.,5

placing

two electrodes on each side of an insulating substrate. Strips of the platinized SWNT-Nafion

composites were cut in dimensions of 5 mm x 25 mm and applied to each side of a polyimide

insulator using GE Varnish. The composite films dried for 4-6 hours on the polyimide substrate at

room temperature. Platinum wire electrical leads were placed at one end of the polyimide

insulator with a Teflon clamp (VWR) pressing contacts between electrodes and wires. The

clamp's joint was sealed using GE Silicone II and the actuator was allowed to cure overnight at

room temperature. During deflection analysis, a reflective mirror was necessary on the tip of the

actuator. A thermal deposition of aluminum onto Kapton tape provided the reflective surface and

samples were cut into dimensions of 3.5 mm x 5 mm and applied to the actuator tip. The overall

SWNT-Nafion composite film electrode design and setup is depicted in Figure 13.
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Figure 13: Schematic for the fabrication ofbimorph cantilever actuators. SWNT-Nafion
Composite thin film electrodes were applied to each side ofa polyimide substrate;
electrical contacts were applied with a sealed clamp.
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2.8 Actuator Deflection Analysis using Optical Lever Apparatus

Evaluation of each actuator was performed using a laser deflection apparatus employing an

optical lever to ascertain cantilever actuator tip deflections. The bimorph cantilever actuator as

described above was inserted into a 1 M LiQaq) solution with the electrolyte solution level

completely submerging the platinized SWNT-Nafion electrodes, and the mirror protruding

vertically out of solution for deflection analysis. The incident laser beam, a 0.95 mW Helium -

Neon laser, was focused onto the actuator mirror surface. The reflected beam was monitored

using a data collection board. The actuator was electrically stimulated by a Keithley 236 Source

Measurement Unit under the following conditions: excitation step voltages ranging from 0.025

V to 2.0 V and observable cycling frequencies from 1 to 50 Hz. The setup for the actuator

deflection analysis is depicted in Figure 14. Measurements were conducted immediately upon

placing the actuator in the electrolyte solution.

Quantification of the bimorph cantilever actuator tip was achieved through integration of

optical lever theory. As represented in Figure 14, and using small-angle approximations for the

deflections, geometry enables the following expression to be derived:

Equation 2:

d = D* L/2B

The variables are as follows: d - bimorph cantilever actuator tip deflection; D - projected

displacement; L - length of cantilever arm measured from center ofmirror to the clamp; and B -

distance between the actuator and data collection board. The calculated experimental tolerance

for these measurements is 5 urn at a distance B, equal to 1 m.
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Source Measurement Unit

Data Collection Board

Figure 14: Diagram ofoptical lever analysis for acquisition ofbimorph cantilever actuator
displacement data. Incident Helium-Neon laser beam is focused on the aluminum
mirror at the tip of the actuator (as per Figure 1 1), and projected to a data collection
board for analysis. Variables presented for satisfying Equation 2: d = D* L/2B,
where the variables are the following: d - bimorph cantilever actuator tip deflection;
D - projected displacement; L - length of cantilever arm measured from center of

aluminum mirror to the top ofclamp; and B - distance between actuator tip and data
collection board.
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3.0 Results and Discussion

3.1 Purification and Characterization of Single Wall Carbon Nanotubes

As outlined previously, two methods were employed for synthesizing single wall carbon

nanotubes used in this thesis project. For both synthetic processes however, it was imperative to

develop a successful, reproducible method of purification to remove residual metal catalyst and

amorphous carbonaceous impurities before proceeding with composite preparation. An overview

of the h-SWNT purification process, modified from the reported procedure by Chiang et. is

depicted by the TGA results shown in Figure 15. The as-received h-SWNTs display a prominent

metal oxidation peak initiating at -150 C, and onset decomposition following at 325C, with

residue from remaining Fe203 being 27.5% w/w. The overlay shows the progressive removal of

iron metal catalyst residue from concentrated HC1 washes, and higher onset decomposition

temperatures for the hSWNTs'
transition. This reproducible method allowed the conversion of

hundreds of milligrams of as-received h-SWNTs into purified material. The purification process

typically produced yields averaging -10% w/w SWNT content from the as-received material.

Moreover, high purity, >95% w/w, hSWNTs following the aforementioned purification procedure

exhibit an onset decomposition temperature from TGA of 465C, and the residue is 3.3% w/w

(Figure 16). Qualitative evaluation of the as-received and purified h-SWNTs was accomplished

by SEM analysis. Figure 17a illustrates the surface characteristics of a random sample taken

from Lot Hpr 86- the as-received material from CNI. The amorphous coating and bundling is

apparent, but it is extremely difficult to assess what degree of impurities is present with this

technique. Reported TEM
images46 illustrate the metal catalyst impurities present in this material,

specifically Fe particles are embedded in coated SWNT bundles. Therefore, the purification

procedure requires the thermal oxidation with subsequent acid washes to remove the amorphous

coatings and embedded metal catalyst impurities.
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Figure 15: TGA overlay representative of the purification process used
for h-SWNTs. Data is

shown from each step during the purification process after thermal oxidation at 225C,

325C, 425C, and anneal at 425C.
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Figure 16: TGA overlay comparison between as-received h-SWNTs and high purity, >95% w/w

h-SWNTs.
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As-Received Purified

Figure 17: SEM images of (A) as-received h-SWNTs, and (B) purified, >95% w/w, h-SWNTs.

Magnification is 70,000x for both images.
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Single wall carbon nanotubes produced via the pulse laser vaporization technique exhibit

slightly different purity and thermal oxidation properties than those for hSWNTs. The typical

synthesis conditions outlined previously yielded as-produced 1-SWNTs at a rate of -100 mg/hr,

with 1-SWNT content ranging from 10-40% w/w as evidenced from TGA. Purification of these

materials was more straightforward than hSWNTs, in that less steps and a shorter time period

were required to achieve equivalent purities. A representative TGA overlay for the as-produced

and >95% w/w, purified 1-SWNTs is displayed in Figure 18. Compared to hSWNTs, two

differences are apparent for 1-SWNTs, namely the lack of a metal oxide transition and separation

of the amorphous carbon (region A) and SWNT decomposition transitions (region B).47

Another

important observation is the higher onset decomposition temperature for both as-produced and

purified 1-SWNTs compared to h-SWNTs. As-produced 1-SWNTs exhibit an onset decomposition

temperature of -315 C, and the residue is 14.6% w/w. The purified 1-SWNTs, >95% w/w, have

an onset decomposition temperature of 625 C, and the residue is 3.8% w/w. Realizing however,

variations in laser synthesis can lead to controlled modification of as-produced SWNT properties,

thereby altering the metal catalyst impurity and amorphous carbon contents. SEM images for the

as-produced and purified 1-SWNTs are shown in Figure 19. Since the report by Dillon et.

specifically states that any variation in synthesis which leads to metal encapsulation may impede

the success of the reported purification process. At times, the purification procedure was

modified with an HC1 wash in the sonic bath to remove any previously encapsulated metal

impurities from synthesis. However, it is shown that the degree of amorphous coatings observed

for hSWNTs is not present with the 1-SWNTs, but bundling is still apparent. Although these

variations are initially present between the as-produced hSWNTs and 1-SWNTs, reproducible

purification procedures unique to each material have been demonstrated and qualitative evaluation

of the purified SWNTs are quite similar, shown by SEM in Figures 17b and 19b, respectively.
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Figure 18: TGA overlay comparison between as-produced 1-SWNTs and high purity, >95% w/w

1-SWNTs. The separation in transitions between (A) amorphous carbon, and (B)
SWNTs is identified above.

46
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Figure 19: SEM images of (A) as-produced 1-SWNTs, and (B) purified, >95% w/w, 1-SWNTs.

Magnification is 50,000x for both images.

47



Evaluation of the surface conductivity for the purified 1-SWNT
"papers"

was performed using

4-point probe measurements. An initial evaluation of the approximate conductivities for these

materials was conducted. Variations in synthesis have been shown to alter the ratio of

metallic:semiconducting for the as-produced 1-SWNTs.66
Displayed in Table I are the synthesis

dates and average conductivities (S/cm) for a series of 1-SWNT "buckeypapers." The overall

average value for 95% confidence was 106 45 S/cm, which is two orders ofmagnitude less than

theoretical predictions for the maximum conductivity of a metallic
SWNT.67 Similar experiments

with hSWNTs were not conducted due to the purification procedure, which produced purified

material in quantities not applicable for resistivity measurements.

Table I: Four-Point Probe Conductivity Measurements for 1-SWNTs

Synthesis Date Average Conductivity (S/cm)
3/16/01 124.6

3/19/01 55.6

3/20/01 219.2

3/27/01 42.0

4/5/01 29.4

5/21/01 129.1

7/13/01 97.6

7/14/01 141.9

7/16/01 122.1

Average (95% confidence) 106 45

Characterization ofSWNTs for diameter distributions, relative ratios ofmetallic:semiconductor

SWNTs, and electronic effects has been determined by spectroscopy, namely optical absorption

and Raman spectroscopy. Previous work has shown the relationship between the absorption peak

in the near-infrared region corresponding to the density of states responsible for the
1st

Van Hove

singularity in semiconducting
SWNTs.68 This absorption peak is typically centered between 1400-

1800 nm, allowing the diameter range of semiconducting SWNTs present in the sample to be

calculated, shown by the following equation:
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Equation 3:

d=(8.041 x 10^*)X

The Xmax of the absorption peak (nm) is used to calculate the appropriate mean SWNT diameter

distribution (nm).68

Evident from Figure 20 for hSWNTs, there is a significant difference in

diameter distribution in as-produced and purified hSWNTs. From the purification, an observed

reduction in slope of the as-produced material displays the peak related to the
2d

Van Hove

singularity. Other transitions at higher energies are also shown, which correspond to metallic

transitions. Similarly, in Figure 21 the optical absorption spectrum is shown comparing as-

produced 1-SWNTs to purified 1-SWNTs. Interestingly, the
3rd

Van Hove singularity attributed to

metallic SWNTs is more prominent. Although the h-SWNTs exhibit a considerable shift in the 1st

Van Hove singularity, the 1-SWNTs display relatively no shift. This result may be attributed either

to digestion of smaller diameter SWNTs during the hSWNT purification process or bundling

effects which may alter the absorption properties. While relative comparisons between peak

heights and shifts in Amax maybe important, the glaring difference between hSWNTs and 1

SWNTs is the diameter distribution effects. Figure 22 represents an overlay of the optical

absorption spectra for purified h-SWNTs and 1-SWNTs. Corresponding to the diameter

relationship depicted in the figure from the
1st Van Hove singularity, the diameter distribution for

h-SWNTs ranges between 0.8 - 1.2 nm, and for 1-SWNTs between 1.1 - 1.5 nm. These values

are important since the aspect ratios of the SWNTs will be directly related to the diameter

distribution, potentially altering the percolation threshold for each SWNT type upon dispersion into

polymer matrices. Another interesting observation with Figure 22 is the relative peak ratios from

the
1st

to
Td Van Hove singularities, for hSWNTs and 1-SWNTs. Clearly the intensity ratio of

the 1-SWNTs (3.0) is higher than the h-SWNTs (2.5), potentially indicating certain impurity doping

effects which have been previously shown to quench the
1st Van Hove intensity.62'63
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Figure 20: Optical Absorption overlay for as-received h-SWNTs and purified, >95% w/w h-

SWNTs. The absorption peaks are labeled for the
1st

and
2" Van Hove singularities

of the semiconducting h-SWNTs. Corresponding diameters to the semiconducting
SWNTs from the

1st Van Hove absorption peak are labeled on upper x-axis.
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Figure 21 : Optical Absorption overlay for as-produced 1-SWNTs and purified, >95% w/w 1-

SWNTs. The absorption peaks are labeled for the
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and
2nd Van Hove
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Confirmation of the diameter distributions observed by optical absorption spectroscopy was

achieved through evaluation of the radial breathing mode from Raman
spectroscopy.64Figure 23

displays the Raman spectra associated with excitation at 488 nm, which results in resonant

enhancement of semiconducting SWNTs. Dresselhaus et. al., have reported the relationship

between Raman shift and SWNT diameter, evident by the following equation:

Equation 4:

C0rbm = 223 cm'Vdt

The Raman shift, corbm (cm"1), is used to calculate the diameter of the SWNTs, d,
(run).64

Results

indicate a diameter distribution for h-SWNTs of 1.0 - 1.25 nm, coinciding with the distribution from

UV-Visible -NIR spectroscopy. Likewise, the diameter distribution for the 1-SWNTs is between

1.25 - 1.45 nm, also in the range from UV-Visible -NIR spectroscopic results. For the metallic

SWNTs, resonant enhancement of the radial breathing mode occurs at excitations of 633 nm,

shown in Figure 24. The diameter distribution for hSWNTs is slightly different, with the range

consisting of 0.8 - 1.25 nm. However, for 1-SWNTs the diameter distribution range is 1.15 - 1.45

nm. Overall, optical absorption spectroscopy coupled with Raman spectroscopy has evaluated the

SWNTs used in this project and determined the diameter distribution ranges to be the following:

0.8 - 1.25 for h-SWNTs and 1.15-1.45 for 1-SWNTs.

3.2 SWNT-Polvmer Composites

Selected polymer matrices were investigated for composite dispersions with h-SWNTs and 1-

SWNTs at varying percents by weight. Development ofpractical applications for SWNT-polymer

composites is dependent on homogeneous dispersions, whether for load transfer from polymer

matrix to SWNTs, or percolation networks by the SWNTs responsible for electrically conductive

pathways. An initial study ofpolymers and surfactant molecules was conducted to determine the

materials suited for successful dispersion ofSWNTs. The structures in Figure 25 represented by
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Figure 25: Structural Formulas ofpolymers and surfactants evaluated for homogeneous SWNT-

polymer composite or SWNT-surfactant solutions. Polymers and surfactants

designated in blue were successful dispersions.
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blue are those, which have been observed as homogenous dispersions. Although there are

variations in the degree of dispersion, homogeneity was evaluated by centrifugation, film casting,

and optical absorption spectroscopy. The surfactant molecules shown: sodium dodecyl sulfate

and Triton-X-100, displayed assisted dispersion of SWNTs into aqueous solutions, providing an

aqueous system for potential fiber development. Each of the successful SWNT-polymer solutions

from Figure 25, were evaluated with composite dispersions up to 5% w/w, with several up to 10%

w/w, including Dais, Poly(acrylonitrile)-(PAN), and Poly(2-acrylamido-2-methyl-l-propanesulfonic

acid)-(PAMPS). Nafion, the polymer selected for the complete actuator study in this project was

successfully dispersed up to 18 % w/w. Comparison of conductivity between the successful

composite dispersions may indicate which polymer systems can be potential composite actuators,

dependent on the mechanism of actuation per polymer. Listed in Table II are four-point

conductivity measurements for 3% w/w as-received h-SWNT-polymer composites. Interestingly,

the Nafion composite exhibits the highest value from this composite study, followed by the

PAMPS polymer.

Table II: Four-Point Probe ConductivityMeasurements for 3% w/w h-SWNT-

Polymer Composites

Polymer Average Conductivity (S/cm)
Nafion 20.1

Poly(vinylbutyral) 0.00553

Poly(acrylonitriie) 0.0150

Poly(vinlypyridine) 1.93
Poly(2-acrylamido-2-methyl- 1 -

propanesulfonic acid)

13.8

3.3 Characterization of SingleWall Carbon Nanotube-Polymer Composites

After dispersions of SWNT-polymer composites were reproducibly achieved, other studies

were conducted to evaluate the effects SWNTs had on certain polymeric properties. Nafion was

selected as the polymer of primary interest for evaluation of composite film conductivity and
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optical spectroscopy effects. Since superior composite dispersions were achieved with Nafion

and surface conductivities were also highest for this polymer system, it is imperative to thoroughly

characterize this composite before actuator testing and analysis. The single wall carbon nanotube -

Nafion composite series with varying percents by weight of purified h-SWNTs was evaluated for

changes in conductivity following the procedure outlined in the Experimental section. Each of

these composite films was analyzed using the four-point probe conductivity measurement and the

results are presented in Figure 26. An overall exponential-like plot is observed with h-SWNT

doping effects at -5% w/w showing a significant enhancement of surface conductivity. Although

this value appears to represent a percolation effect, corroboration of this threshold is beyond the

scope of the project. It is certain that the hSWNTs have a dramatic effect on the electrical

conductivity over the surface of the Nafion composite films.

Investigation of the optical absorption spectra was performed to evaluate the effects of

Nafion on SWNTs for 1% w/w h-SWNT and 1-SWNT-Nafion composites. An overlay of the

optical absorption spectra for purified hSWNTs and the 1% w/w composite dispersion in Nafion

is shown in Figure 27. The curves, normalized at 1025 nm, display a quenching ofthe absorption

peak corresponding to the f Van Hove singularity for the composite solution compared to the

purified SWNTs. The specifics of these observed effects between hSWNTs and the Nafion

polymer is unclear and deferred to future studies. However, previous studies have shown

quenching of this peak from pH
effects,69

alkali and halogen doping62'63

and pressure
effects.70

Another possibility for absorption variation at the peak corresponding to the
1st Van Hove

singularity may be attributed to bundling effects, which have recently been predicted by
theory.71

Similar optical absorption results have also been observed for the 1% w/w 1SWNT-Nafion

composites, Figure 28. The spectral overlay for purified 1-SWNTs also shows quenching of the

peak corresponding to the
1st

Van Hove singularity. The variations in signal intensity and peak
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Figure 26: Plot of four-point probe conductivity measurements for the series ofh-SWNT-Nafion

composite films. Data indicates a percolation threshold of- 5% w/w from the inset

graph for these films.

59



i 1 1
r-

3*
o
o
c
(0
-Q

k-

o
(/>
n
<

Purified h-SWNTs
1% w/w h-SWNT Nafion composite
_i i i_ J_ _i i i_ _i i i_ _i i i_

400 800 1200 1600 2000

Wavelength (nm)

Figure 27: Optical Absorption overlay for purified, >95% w/w h-SWNTs, and 1% w/w purified

h-SWNT-Nafion composite. Spectra normalized at 1025 nm. Relative peak ratios

between 1st

and
2nd Van Hove absorption peaks for purified h-SWNTs and 1% w/w

purified h-SWNT-Nafion composite are 2.5, and 1.8, respectively.
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Figure 28: Optical Absorption overlay for purified, >95% w/w 1-SWNTs, and 1% w/w purified 1-
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resolution may be attributed to a preferential interaction of the Nafion with both h-SWNTs and 1-

SWNTs. In addition, bundling effects may be present, correlating to the theoretical predictions of

peak broadening due to larger SWNT bundles.71

While optical absorption spectroscopy has displayed certain variations of the SWNT

properties when dispersed in Nafion, these observations are insufficient to propose a definitive

interaction between polymer and dopant. Microscopy analysis has however, shown an important

conclusion which may lead to an accurate representation of the SWNT-Nafion interaction. While

spectroscopy data may be supported by theoretical predictions, SEM images indicate a potential

"debundling"
of both the h-SWNTs and 1-SWNTs when dispersed in Nafion. Figure 29 shows the

comparison of purified hSWNTs to a 10% w/w h-SWNT-Nafion composite film. The cross-

sectional view of the composite shows the highly dispersed SWNT bundles protruding from the

edge of the polymeric film. Microscopy analysis with statistical sampling ofmore than 20 bundles

calculated the average bundle diameter in the purified hSWNT paper to be 56 13 nm (95%

confidence). In comparison, the composite image represented average bundle diameters to equal

1 1 1 nm (95% confidence). This five-fold decrease in bundle size correlates to an ~ 25-fold

decrease in number ofh-SWNTs per bundle.72

Although SWNT-Nafion composites were characterized more rigorously, other important data

was acquired for SWNT-Dais composites. Optical absorption spectra were obtained for 1% w/w

1-SWNT-Dais composites. Interesting effects of centrifugation are shown in Figure 30. The

overlay plot shows the dramatic increase in resolution of the electronic transitions of the 1-SWNTs

evident from the fine structure of peaks, corresponding to each of the Van Hove singularities.

Again, there is an observed reduction in broadness of the absorption at the
1st

Van Hove peak to a

more resolved one. Since the analysis is between high purity 1-SWNTs and a centrifuged 1-
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Figure 29: SEM image comparison ofaverage bundle diameter of SWNTs upon dispersion of

SWNTs into Nafion. The microscopy analysis displays (A) purified, >95% w/w h-

SWNTs, (B) 10% w/w h-SWNT-Nafion composite, (C) diameter analysis ofpurified,
and (D) diameter analysis of composite. Average SWNT bundle diameter from

image (C) is 56 13 nm and 1 1 1 nm from image (D). Magnification at 70,000x for

images A, B, and C; and 100,000x for image D.
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Figure 30: Optical Absorption overlay for purified, >95% w/w 1-SWNTs, and 0.75% w/w

purified l-SWNT-Dais composite (centrifuged and uncentrifuged). Spectra
normalized at 1250 nm. Relative peak ratios between

1st

and
2nd

Van Hove
absorption peaks for purified, uncentrifuged composite, and centrifuged composite are
2.7, 2.0, and 1.9, respectively.
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SWNT-Dais composite, the results may correspond to the debundling effects predicted by theory

and preliminarily proposed with the SWNT-Nafion composites.

3.4 Evaluation of Single Wall Carbon Nanotube-Polymer Composite Actuators

Single wall carbon nanotube-polymer composites were each tested for actuator response using

the bimorph cantilever actuator setup described by Baughman et
al.5 Evaluation of each of the

successful dispersions of SWNT-polymer solutions shown in Figure 25, concluded that Nafion was

the only viable polymer for actuation at low SWNT doping levels, <10% w/w. Since Nafion has

been reported by many groups to actuate when doped with high percent by weights of noble

metals, it was necessary to evaluate whether the SWNTs were acting as a conductive network to

promote Nafion actuation, SWNTs were actuating independently, or both SWNTs and Nafion

were actuating conceitedly.

As seen in Figure 26, the conductivity of the series ofh-SWNT-Nafion polymer composite films

increases exponentially. To eliminate surface conductivity effects due to the resistive losses over

the surface of the film during actuator testing, a limited platinization process was employed to

establish a uniform contact between samples. This platinization process reproducibly resulted in a

platinum coating on the Nafion membrane to be ~ 0.1 microns as determined by SEM (Figure 31).

The resistivity of the films was a consistent 0.1 ohm*cm for platinized Nafion composites. Even

though the nanotube doped membranes with > 5% w/w SWNTs resulted in films with similar

conductivity without platinization, they were platinized in order to maintain consistency in the

experimental measurements. The corresponding plot for conductivity of the hSWNT-Nafion

composite series after the platinization procedure is shown in Figure 32. The percents by weight

ofh-SWNTs have been adjusted for the added platinum mass.

Analysis of each percent by weight SWNT doped Nafion composite actuator was performed

using the optical displacement analysis described in the Experimental. It was shown that both
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Figure 31: SEM image providing cross-sectional view ofa platinized h-SWNT-Nafion composite
film. Designation of the platinum, h-SWNTs, and nafion matrix is shown.
Magnification at 30,000x.
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excitation step voltages and frequencies altered the cantilever tip response. When the frequency

was doubled, typical trials displayed between 50-60% ofmaximum displacement. The complete

data set for all analyzed actuators by this method is included in Figure 33. Bimorph cantilever

actuators prepared with as-received h-SWNTs (buckeypaper constructed from filtration of

SWNTs suspended in 1 M HC1 solution) displayed displacement responses less than any of the

measured purified h-SWNT-Nafion composite actuators, including the 0.41% w/w sample. While

this result requires further study, the notion of as-produced h-SWNT actuators being inferior to h-

SWNT-Nafion composite actuators in aqueous electrolyte solutions is plausible since the

mechanism supporting Nafion actuation cites the important effects of water on enhancing the

generated response. Since fresh, newly prepared, h-SWNT-Nafion composite actuators showed

remarkable results, the practicality of storage and repeated use was also investigated. When

composite actuators were stored at room temperature in open air without any treatment (i.e.

rinsing of LiQaq) solution from sample), the actuator response was significantly reduced.

Evaluation of the 8.4 % w/w h-SWNT-Nafion composite actuator when stored in distilled water

for 1 week showed a decrease in actuator response by 60%. However, if maintained in the

LiCl(aq) solution for comparable storage times, the actuator response was not affected.

Comparison of the actuator response for SWNTs dispersed in Nafion resulting from two

different synthetic routes (i.e. pulse laser vaporization and HiPco), was also investigated.

Displacement measurements were observed for 3% w/w 1-SWNT and h-SWNT-Nafion

composite actuators to equal -0.3 mm at 2.0 V excitation and a frequency of 1 Hz.

Interestingly, this preliminary result shows no significant change in actuation based on variation in

diameter distribution for SWNTs dispersed inNation, although future work is necessary to support

this observation.
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Voltane f-M \J Freauenev 1Hz)

0.41 % v

Displacement Imml

vAv h-SWNTs
2.0 V 1.0 0.190
2.0 V 2.0 0.060

0.84 % w/w h-SWNTs
2.0 V 1.0 0.730
2.0 V 2.0 0.330

2.86% w/w h-SWNTs
0.5 V 1.0 0.100
1.0V 1.0 0.480
1.0V 2.0 0.330
2.0 V 1.0 1.210
2.0 V 2.0 0.650
2.0 V 5.0 0.140

2.93 % w/w h-SWNTs
0.5 V 1.0 0.050
1.0V 1.0 0.100
1.0V 2.0 0.080
2.0 V 1.0 0.300
2.0 V 2.0 0.240

4.21 % w/w h-SWNTs
0.5 V 1.0 0.160
1.0V 1.0 0.320
1.0V 2.0 0.290
2.0 V 1.0 2.090
2.0 V 2.0 1.110

6.32 % w/w h-SWNTs
0.25 V 1.0 0.080
0.5 V 1.0 0.140
1.0V 1.0 0.330
1.0V 2.0 0.140
2.0 V 1.0 0.560
2.0 V 2.0 0.380
2.0 V 5.0 0.080

6.49 % w/w h-SWNTs
0.5 V 1.0 0.200
1.0V 1.0 0.520
1.0V 2.0 0.240
2.0 V 1.0 1.690
2.0 V 2.0 1.120

8.41 % w/w h-SWNTs

0.2 V 1.0 0.060
0.5 V 1.0 0.200
1.0V 1.0 0.360
1.0V 2.0 0.190
2.0 V 1.0 0.680

2.0V 2.0 0.340
2.0 V 5.0 0.170

Voltaae (\ V Freauenev (Ht\

8.41 % w/w h-

Displacement Imml

SWNTs sample
stored for 1 week in H20

2.0 V 1.0 0.280

2.0 V 2.0 0.160
1.0 V 1.0 0.150
1.0 V 2.0 0.080

10.8% w/w h-SWNTs
0.025 V 1.0 0.030
0.05 V 1.0 0.040
0.1 V 1.0 0.090
0.25 V 1.0 0.170
0.5 V 1.0 0.330
1.0 V 1.0 0.610
1.0 V 2.0 0.410
2.0 V 1.0 1.070
2.0 V 2.0 0.510
2.0 V 5.0 0.250

12.8% w/w h-SWNTs
0.5 V 1.0 0.250
0.5 V 2.0 0.160
1.0 V 1.0 0.430
1.0 V 2.0 0.240
2.0 V 1.0 1.190
2.0 V 2.0 0.710
2.0 V 5.0 0.700

17.5% w/w h-SWNTs
0.5 V 1.0 0.620
0.5 V 2.0 0.410
1.0V 1.0 1.850
1.0 V 2.0 1.120
2.0 V 1.0 4.450
2.0 V 2.0 2.710
2.0 V 5.0 1.450

As-received h-SWNTs
0.5 V 1.0 0.110
1.0 V 1.0 0.200
2.0 V 1.0 0.230
2.0 V 2.0 0.160
2.0 V 5.0 0.060

3.10% w/w 1-SWNTs
1.0 V 1.0 0.160
1.0 V 2.0 0.090
2.0 V 1.0 0.310
2.0 V 2.0 0.210

Figure 33: Overview ofdata for h-SWNT-Nafion composite actuator study. The experimental
excitation conditions (applied voltages and operating frequencies) are listed for each
composite along with corresponding displacement values.
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The series of results for the varying percents by weight SWNT-Nafion composite actuators

was evaluated at the different experimental conditions. Figure 34 shows the graphical

representation of the displacement (mm) versus the SWNT doping level in Nafion for the largest

observed actuation: an excitation step voltage of 2.0 V and frequency of 1 Hz. While there is a

general trend of the displacement response to increase with higher doping levels, there is scatter

between the data points. Normalization of this data with the composite film's conductivity from

Figure 32, produces a relatively constant response (Figure 35). This leads one to propose a direct

relationship between displacement and film conductivity for SWNT-Nafion composite actuators.

Results at different excitation conditions show similar displacement effects, although the

displacement values are substantially less. Figure 36 shows the displacement data at 0.5 V and

frequency of 1 Hz. Similarly, Figure 37 depicts the displacement data at 1.0 V and frequency of

1 Hz, with the significant effect being higher values compared to 0.5 V. If the frequency is

doubled, as shown in Figure 38 for 1.0 V, there is a reduction in displacement by approximately

50%. A similar comparison was made at 2.0 V for frequency, namely Figure 34 at 1 Hz,

compared to Figures 39 and 40, at 2 and 5 Hz, respectively. Again, there is an approximate

reduction by 50% as the frequency doubles. Overall, the general trend in each plot however, is an

increase in cantilever tip deflection as the SWNT doping level is corresponding increased.

The effect of excitation voltage on displacement is shown for the 10.8% w/w SWNT-Nafion

composite actuator in Figure 41. There is a linear-like relationship for the excitation voltage on

cantilever tip displacement, although additional data points would be necessary to confirm this

relationship. However, i seems plausible from this data that the general scatter observed in the

deflection plots is a result of differences between actuator samples. These deviations could be

attributed to variations in surface conductivity between composite films, different adhesion to the

polyimide substrate, or disparities in the differential expansion during ion intercalation. Further
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Figure 34: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of
actuator cantilever tip at 2.0 V applied excitation and 1 Hz operating frequency.

71



0.06

a =
o &
n co 04

(o

Q. , 0.02

H 1 1 1 1 1 h

10 15 20

% w/w purified h-SWNTs in Nafion

Figure 35: Normalized deflection data for h-SWNT-Nafion composite actuators from Figure 33
with four-point conductivity values from Figure 31.
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Figure 36: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of
actuator cantilever tip at 0.5 V applied excitation and 1 Hz operating frequency.
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% w/w purified h-SWNTs in Nafion

Figure 37: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of

actuator cantilever tip at 1.0 V applied excitation and 1 Hz operating frequency.
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Vo w/w purified h-SWNTs in Nafion

Figure 38: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of
actuator cantilever tip at 1.0 V applied excitation and 2 Hz operating frequency.
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Figure 39: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of

actuator cantilever tip at 2.0 V applied excitation and 2 Hz operating frequency.
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Figure 40: Deflection data for h-SWNT-Nafion composite actuators. Measured displacement of

actuator cantilever tip at 2.0 V applied excitation and 5 Hz operating frequency.
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Figure 41: Deflection data for the 10.8 % w/w h-SWNT-Nafion composite actuators as a

function ofexcitation voltage. Shown is the relationship of applied excitation voltages
on the actuator cantilever tip displacement at 1 Hz operating frequency.
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analysis of excitation voltages and frequency effects on SWNT dopings could lead to optimization

of the actuator response for SWNT-Nafion composite actuators.

Another important observation for each of the h-SWNT-Nafion composite actuators > 1%

w/w, was the lack of relaxation of the cantilever tip, post-excitation. Abe et. al., has reported

relaxation of the cantilever tip due to osmotic effects back to initial state in <10
seconds.6The

SWNT-Nafion composite actuators did not exhibit such properties. Single wall carbon nanotubes

may alter the water content properties in Nafion films by reducing ionic mobility or dehydrating the

ionic clusters, due to the hydrophobicity of SWNTs.

Results indicate that the mechanism for SWNT-Nafion composite actuation is similar to that

reported for metal-doped Nafion actuators. Under a potential bias, solvated cations intercalate into

the Nafion matrix. This ion intercalation is enhanced for the SWNT-Nafion composite films by

the dispersed SWNTs, which form a highly conductive percolation network. The solvated cations

induce cathode expansion, which leads to differential expansion of the electrodes, and bending

towards the anode. Reversal of the potential will result in ion intercalation at the opposite

electrode, causing an overall device actuation if the potential bias is continuously alternated

between electrodes. The unique benefit of dispersed SWNTs within the Nafion matrix is

conductivity throughout the entire film. Application of these results to future researchmay allow

for development ofhighly efficient, SWNT-Nafion composite actuators.
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4.0 Conclusion

Successful incorporation of single wall carbon nanotubes into a polymer matrix resulted in

novel actuators, requiring significant steps involved with purification, characterization, and analysis

of the SWNT dopant material. Additionally, techniques required to efficiently disperse the

SWNTs into polymer matrices were also developed. Protocols were established to consistently

purify as-produced SWNTs either fom commercial sources like Carbon Nanotechnologies Inc.,

or in-house laser procedures, at purities >95% w/w. Upon characterization of these SWNT

materials, dispersion into various polymer matrices was consistently achieved. Specifically,

SWNT-Nafion composites were produced at doping levels up to 18% w/w. Interestingly, a

significant
"debundling"

effect was observed with SWNT-Nafion composites, displaying reduction

of average bundle diameters by a factor of five for the h-SWNT-Nafion composite films.

Single wall carbon nanotube-Nafion composite actuators were demonstrated with maximum

observed displacements for the platinized 17.5% w/w SWNT-Nafion composite film equal to 4.5

mm at 2.0 V and 1 Hz. Moreover, no relaxation of the cantilever tip was observed for the

SWNT-Nafion composite actuators. Normalization of the actuator tip displacement to composite

conductivity showed the direct relationship of conductivity on deflection for SWNT-Nafion

composite actuators. The percolation of the electrically conductive, high aspect ratio SWNTs,

enables a dramatic increase in the conductivity of the composite films. This property manifests

into superior actuation at low doping levels of SWNTs in Nafion, observing equivalent actuation

responses to the > 30% w/w noble metal-doped Nafion actuators. The use of SWNTs can

promote a higher degree of intercalation, rather than limited intercalation when only the surface of

the electrode film is conductive, as with the noble metal-Nafion actuators. Therefore, by using

SWNTs, greater actuator deflections are potentially possible since higher degrees of solvated

cation intercalation would lead to an increase in differential expansion between electrodes. Based
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on this initial
study,73

a couple of considerations have to be made to confirm this proposition,

namely, controlling the metallic:semiconductor ratio of the SWNTs, and production ofhigher doped

SWNT-Nafion composite actuators. The relative ratios of SWNT types were not investigated,

but have been reported to be -2/3 semiconducting SWNTs in the as-produced
material.66

Variations on synthesis leading to phase-pure metallic SWNTs would be advantageous to higher

composite conductivities, lowering SWNT percolation thresholds, and potentially producing better

SWNT-Nafion composite actuators. Overall, the incorporation of SWNTs into a polymer matrix

has been demonstrated and characterized for a novel device, namely an efficient SWNT-Nafion

composite actuator.
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5.0 Appendix

5.1 Preparation ofSWNT-Polymer Composite Fibers

In addition to characterization of other SWNT-polymer composites, attempts to develop

SWNT-polymer fibers were also investigated. Single wall carbon nanotube-polymer composite

solutions were extruded from dispersed solutions into an extruding solvent, typically propylene

glycol. Fiber extrusion using the SWNT-Polymer composite solutions was achieved using a 50 uL

syringe. Elution of the composite solution into selected extruding solvents, dependent on the

composite polymer solvent, occurred to prevent solubility. Various percent by weight composite

solutions were prepared in either polymeric or surfactant systems using Equation 1. Extruding

rates varied depending on the type and stability of SWNT-Polymer composite fibers, while

extrusion was manually controlled. Exploitation of polarity effects between solvents was the

driving force for fiber formation. While several attempts were fruitful, others were unable to be

removed from the extruding solvent. Evaluation of the complete study is shown in Table III,

indicating the SWNT content, polymer type, and fiber result.

Data from Table III indicates that composites of PAN and PVB were most successful for

producing SWNT-polymeric fibers. The dispersions of PMMA were not homogeneous and the

resultant fiber was formed from coagulation of the as-produced h-SWNTs, which were previously

reported to contain substantial amounts of carbonaceous impurities. Although fibers were

achieved, removal of the propylene glycol coating would be essential before actuator experiments

could be performed. While this data reflects preliminary success in fiber development, future

work designed to produce conductive SWNT-polymeric fibers and ribbons may lead to advances

in microactuators.
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Table III: Fiber Extrusion Attempts with SWNT-Polymer Composite Dispersions

SWNT Type1

Polymer/Solvent Extruding Solvent
Result'

10% w/w a-h-SWNTs Nafion/Ethanol Propylene Glycol No Fiber

10% w/w a-h-SWNTs PMMA/DMF Propylene Glycol Fiber formed but coated

l%w/wp-l-SWNTs PMMA/DMF Propylene Glycol No dispersion-formed a

monolayer film

4% w/w a-1-SWNTs PVB/Isopropanol Propylene Glycol Thick-irregular fibers

4% w/w p-1-SWNTs PAN/DMF Propylene Glycol Thin-short fibers

10% w/w a-h-SWNTs PAN/DMF Propylene Glycol Thin-short fibers

10% w/w a-h-SWNTs PAMPS/Water Hexanes Fiber formed in solution -

unable to be removed

10% w/w a-h-SWNTs PAMPS/Water Propylene Glycol Composite solution

adsorbed to glass surface

0.1% w/w p-h-SWNTs 2% SDS/Water Propylene Glycol No Fiber

0.1% w/w p-h-SWNTs 2% Triton -X/Water Propylene Glycol No Fiber

0.1% w/w p-h-SWNTs 2% Triton -X/Water 5% PVA in Water" Fiber with PVA coating-

unable to be removed

5% w/w a-h-SWNTs Dais/2-Propanol Propylene Glycol No fiber

The SWNT type is either designated (a-) for as-produced or (p-) for purified
"Results in red were successful fibers
3Dimethylformamide - (DMF)
45% w/w Polyvinyl alcohol) - (PVA) in water
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