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ABSTRACT 

 

This paper examines the demand and supply of annual and multi-year insurance 
contracts with respect to protection against a catastrophic risk, such as a hurricane or 
earthquake, in a competitive market. Households are identical with respect to their 
exposure to the hazard but with different degrees of risk aversion. They determine 
whether or not to purchase an annual or multi-year contract so as to maximize their 
expected utility. Insurers who offer annual policies can cancel policies at the end of each 
year and change the premium in the following year. Multi-year insurance has a fixed 
annual price for each year and no cancellations are permitted at the end of any given year.  

The competitive equilibrium consists of a set of prices for a single year and multi-
year policy that segments homeowners who are not very risk averse into the non-
insurance category. Consumers who are not very risk averse decide not to purchase 
insurance. More risk averse individuals demand either single-year or multi-year policies 
depending on the premiums charged by insurers and their degree of risk aversion.  
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1. Introduction 

Insurance policies for property insurance are normally issued as annual contracts even 
though they are not precluded from offering coverage for a longer time period. If the risk 
of a loss is stable over time, then the insurer should be willing to offer a multi-year policy 
with a fixed annual premium reflecting risk. The variance of the losses to the insurer over 
time would be reduced in much the same way that an increase in the number of insured 
individuals reduces the variance. In this sense, offering a policy for more than one year is 
another form of risk diversification.  

The insurer who offers a multi-year policy at a fixed premium per year is restricted by 
not being able to either raise the premium and/or cancel policies if it suffers a very large 
loss that reduces its surplus significantly. This feature is similar to guaranteed renewable 
policy with locked premiums for health insurance (Pauly, Kunreuther, and Hirth, 1995, 
Frick, 1998, Pauly, Kunreuther, Menzel, and Hirth, 2011). On the other hand, the 
administrative cost of marketing a policy is lower for a multi-year policy than for annual 
contracts that have to be renewed each year. A multi-year policy is attractive to a risk 
averse consumer because the premium is stable over time. Furthermore, the consumer 
knows that it will not have to incur search costs in finding another insurer if its policy is 
canceled that has occurred historically when major catastrophes cause insurers to adjust 
their underwriting criteria.  

This paper examines from a theoretical perspective the relative attractiveness of 
multi-year policies and annual policies to insurers and to households facing a given risk 
in a competitive insurance market. We are particularly interested in pursuing this line of 
research because individuals are likely to find multi-year property insurance attractive 
relative to annual policies. Adding fixed-price multi-year property insurance policies to 
the menu of contracts offered by insurers should also lead to an increase in the demand 
for coverage.  

Empirical evidence supporting these points comes from a web-based controlled 
experiment played for real money where individuals had the option of purchasing 1-year 
or 2-year insurance contracts to protect their property against damage from a hurricane 
With respect to the 1-year policy, the price would increase in year 2 if a hurricane 
occurred in year 1 to reflect an updating of the probability of a disaster occurring in the 
following year. The premium for a 2-year contract was kept stable over time; however, 
the insurer charged a higher premium than for an annual policy offered in year 1 because 
it could not increase its premium in year 2 if a hurricane occurred in the previous year.  

The data reveal that when insurers offer individuals 1-year policies at an actuarially 
fair rate, approximately 62% of the subjects purchase insurance. When the same 1-year 
contract is offered along with a 2-year contract that has a loading cost of 5%, the demand 
for insurance increases to 73%---a statistically significant difference. Over 60% of those 
demand insurance preferred the 2-year policy even though its expected cost was 5% 
higher than buying two annual policies (Kunreuther and Michel-Kerjan, 2012). 

In practice, insurers do offer multi-year contracts for life insurance where the losses 
are normally independent of each other. Term-life policies are typically offered with 
premiums “locked in” for five to ten years; buyers can choose whether they want to pay 
extra for such guarantees over annual contracts knowing that they may drop coverage at 
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any time. Policyholders are then certain what their life insurance premiums will be over 
the next five or ten years, regardless of what happens to their health or the overall 
mortality rate of their insurer’s portfolio.  

Hendel and Lizzeri (2003) examine 150 term life insurance contracts, some of which 
have fixed premiums for 5, 10 or 20 years while others are 1-year renewable policies. 
They show that on average the extra prepayment of premiums to protect consumers 
against being reclassified into a higher risk category for a fixed period of time is more 
costly over the total period of coverage than a series of annual term policies that can be 
renewed but where premiums may fluctuate from year to year. Still, people buy those 
multi-year fixed-price life insurance policies, indicating that they view the stability of 
premiums as an important attribute in their utility function and are willing to pay more 
for it. 

An important difference between property and life coverage is that insurers are 
concerned about catastrophic losses to property due to natural disasters such as hurricanes 
and earthquakes. They thus have to reserve capital in to protect themselves against these 
extreme events. There is an opportunity cost to them of being forced to keep this capital 
in relatively liquid form rather than investing the money in securities that earn a higher 
expected return. 

 On the demand side, consumers may want to purchase multi-year property insurance 
policies is to avoid the search costs of looking for another insurer should their annual 
policy be canceled. After the 2004 and 2005 hurricane seasons many insurers did not 
renew coverage for a significant number of homeowners in the Gulf Coast (Klein 2007). 
While most of those residents were able to find coverage with other insurers, they 
typically had to pay a higher price than prior to these disasters and they were required to 
have a higher deductible (Vitelo, 2007). Others obtained coverage from state insurance 
pools, which grew significantly after the 2004 and 2005 hurricane seasons (Grace and 
Klein, 2009).  

Multi-year property insurance contracts can also improve social welfare by increasing 
the number of individuals whose homes are insured prior to a disaster. They will receive 
claim payments to restore property damaged from a hurricane or flood and have less need 
for federal disaster assistance. The cost to the general taxpayer is thus reduced.  

In this regard, the number of uninsured homes facing losses from natural disasters is 
significant. The Department of Housing and Urban Development (HUD) revealed that 41% 
of damaged homes from the 2005 hurricanes were uninsured or underinsured. Of the 
60,196 owner-occupied homes with severe wind damage from these hurricanes, 23,000 
did not have insurance against wind loss (U.S. Government Accountability Office, 2007). 
With respect to risks from flooding, Kriesel and Landry (2004) and Dixon et al. (2006) 
found that only about half of the homes in high-risk areas had flood insurance. In 
California, despite the well-recognized risk of earthquakes, only 12% of homeowners in 
the state had coverage against earthquake damage at the end of 2010 (California 
Department of Insurance, 2011).  

A principal reason for this lack of coverage is that many residents purchase coverage 
only after a disaster occurs and then allow their annual policy to lapse. Flood insurance in 
the U.S. provided by the federally run National Flood Insurance Program (NFIP) since its 
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creation in 1968 highlights this point.  Brown and Hoyt (2000) analyzed data from the 
NFIP between 1983 and 1993 found that flood insurance purchases were highly 
correlated with flood losses in the previous year. A recent analysis of all new policies 
issued by the NFIP from January 1, 2001 to 31 December 2009 revealed that the median 
length of time before these policies lapsed is 3 to 4 years. On average, only 74% of new 
policies were still in force 1 year after they were purchased; after 5 years, only 36% were 
still in place. The lapse rate is still high after correcting for migration and does not vary 
much across flood zones (Michel-Kerjan et. al. in press). 

The paper is organized as follows. Section 2 models the multi-period insurance 
problem and develops conditions for determining a competitive equilibrium. Section 3 
analyzes the case where the loss distribution facing each homeowner is Gaussian and 
where homeowner’s risk preferences are of the CARA form using an exponential utility 
function. Section 4 provides illustrative examples based on the Gaussian distribution and 
CARA utility function to show how the demand for annual and multi-year insurance 
contracts is impacted by changes in the costs affecting the price of insurance and the 
correlation between risks. Section 5 summarizes the paper and suggests directions for 
future research. 

 

2. Modeling Multi-period Insurance 

We consider an insurance market operating over two periods to cover a set of 
households exposed to a common catastrophic risk such as earthquake or hurricane risk. 
The insurance market is assumed to be competitive with free entry and exit, but subject to 
solvency regulation. Risk bearing capital is obtained from premium income and 
reinsurance. The price of reinsurance in period 1 is known, but the price in period 2 is 
uncertain, and is specified by a binary random variable with a specified increase or 
decrease relative to the price in period 1 which depends on whether  

Two types of products, single-period policies and multi-period policies, compete for 
consumer demand for insurance. Homeowners can purchase either no insurance, single-
year policies in one or both periods, or a multi-year policy purchased at the beginning of 
the first period and covering both periods. The competitive insurance price is determined 
so that it covers expected losses, marketing and operating expenses, plus the cost of risk 
capital necessary to provide protection against insolvency, where the level of the required 
capital is determined exogenously by the insurance regulator.  

We assume that households are identical in terms of their exposure to the hazard, but 
with some correlation in the losses, such as would be the case if a natural disaster 
damaged a number of insured homes. Denote the set of potential homeowners in the 
market by A. Homeowners are assumed to be risk averse with a ∈ A being a scalar index 
of risk aversion and with two–period separable risk preferences given by  

 V(x1, x2, a) = U x1, a  + U x2, a  (1) 

where U(x, a) is concave increasing in x, and x1 and x2 are monetary outcomes in periods 
1 and 2. Note that for simplicity we neglect discounting of utility in period 2. While A 
represents the set of potential homeowners, the actual distribution of homeowner risk 
aversion will be specified by the counting function defined for any a ∈ A by 
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G a = Number of Homeowners with risk aversion less than or equal to "a". 

To illustrate, suppose the number of homeowners is 100 of which 40 have a = 0.1 and 60 
have a=0.2. Then, G(a)=0 for a < 0.1, G(a)=40 for 0.1 ≤ a < 0.2, G(a) = 100 for a ≥ 0.2. 

We make the following assumptions concerning the hazard and the policies offered in 
the insurance market to homeowners.  

A1. Only full insurance is offered and each household a ∈ A faces the same 
annual/period risk X(a) of loss, distributed according to the generic cdf 
F0(x, μ, σ, ρ), with mean E X(a)  = μ and variance VAR X(a)  = σ2, where ρ ≥ 0 
is a scalar index which is intended to measure the extent to which the loss 
distribution for a book of business (BoB) made up of properties from the set A is 
fat-tailed. The loss distribution is assumed to be identical for both periods, and 
statistically independent between the periods. 

The impact of the index ρ will be specified below; it may be thought of as an index of the 
cost of reinsurance cover for a BoB made up of properties from the set A. We use ρ to 
model the impact of correlated losses on standard reinsurance pricing models with 
constant or increasing loading factors. The reinsurance will be an Excess of Loss (XoL) 
contract with fixed upper and lower limits designated as L1 n , and L2 n  respectively.  

A2. Firms offering single-year (SY) policies may cancel any policy at the end of the 
first period in response to increased cost of risk capital that leads them to want to 
reduce their BoB. Homeowners are aware of this possibility and assume that 
there is a probability q ∈ (0, 1) of cancellation, with an ensuing transaction cost 
of τ ≥ 0 to search for new coverage alternatives for period 2 if their policy is 
canceled. 

2.1 Demand for Single-Year (SY) and Multi-Year (MY) Policies 

Homeowners face the choice of purchasing either two single-year policies or a multi-
policy to cover the risks they face over the two–period horizon of interest. Of course, 
they may also elect to buy no insurance (NI) in one or both periods. At the beginning of 
period one, homeowners must either choose an MY policy covering both periods, or they 
must plan on some other sequence of SY policies or NI decisions. In doing so, we assume 
that homeowners have complete information on the prices they will face. 

A3: Homeowners know the prices for all policies in all states of the world  at the 
beginning of period 1. For the MY policy, the price per period price PM  is 
constant over both periods. For the SY policy, price in the first period is denoted 
PS1, and the state-contingent price in the second period is denoted PS2

w , where 
w ∈ d, u  reflects the state of the world in terms of reinsurance/capital costs with 
probability of state d = φ ∈ [0,1] and probability of state u = 1-φ. The 
consequences of these alternative states for the insurer are described below, but 
their general import is that the cost of reinsurance in period 2 will decrease in 
state d and increase in state u relative to period 1. 

At the beginning of period 1, there are three alternatives available to a homeowner:  
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i) Purchase an SY policy for period 1, at price PS1, possibly facing cancellation of this 
policy at the end of period 1, with probability q and with resulting transactions 
costs τ. 

ii) Purchase an MY policy at price per period of PM covering both periods 1 and 2. 

iii) Purchase No Insurance (NI). 

At the beginning of period 2, after the state of the world w ∈ d, u  is known, a 
homeowner faces the following choices (see Figure 1): 

i) If the homeowner chose either an SY policy or NI in period 1, then the homeowner 
can either choose NI or purchase an SY policy for period 2 at price PS2

w  where the 
price can either decrease to PS2

d  or increase to PS2
u  depending on reinsurance capital 

costs. 

ii) The homeowner who chose an MY policy in period 1 can continue to be covered 
under this MY policy or can cancel it with a cancellation fee ψ ≥ 0. The 
cancellation fee is set by the insurer so that it breaks even at the end of period 2. If 
there were no cancellation costs associated with an MY policy, then all 
homeowners will want to switch to an SY policy if the following two conditions 
hold: 

 the price of an SY policy decreased in period 2 so it was less than PM; and 

 the price differential between the MY and SY policy is greater than the 
transaction cost τ of purchasing a new policy.  

In this case, the MY insurer would only offer coverage in the state of the world 
w = u. As we show in the Appendix, PM is less than the MY insurer’s average cost 
at w = u, so that the MY insurer would suffer a loss in the process. It will have 
priced its policy under the assumption that it would recover its costs from 
revenues generated in both periods, but could not recoup these costs (some of 
which will be sunk in period 1) because its policyholders abandoned ship at the 
end of period 1. Hence, for MY insurance to be viable, the cancellation fee ψ 
imposed by the MY insurer has to satisfy: ψ  PM-Ps2

d -τ.5 In this case, all 
homeowners would maintain their MY policy in period 2.  

For our benchmark analysis in this paper, we assume, per A3, that homeowners are 
perfectly informed about prices and the probability distribution on the states of the world 
w ∈ {d, u}, i.e., they know φ. We assume that their beliefs about the cancellation 
probability q are fixed and independent of the actual BoB changes by insurers.6 Figure 1 
shows the relevant choices for a homeowner in period 2.  

 

                                                 
5 Our numerical examples show for typical values of insurance cost that the lower bound PM-Ps2

d -τ on the 
cancelation fee ψ will be only a small percentage of the MY premium. Indeed, the lower bound may even 
be negative if the MY insurer has significant marketing cost advantages and/or if τ is sufficiently large.  
6 Of course, q could be adjusted in rational expectation fashion so that it reflected the equilibrium outcomes 
of SY insurers between periods 1 and 2. 
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Figure 1: Homeowner’s Choice Problem in Period 2 

 

Given our assumption that homeowners will not cancel MY policies in period 2, the 
state-dependent insurance decision I2(a, w) of homeowner a ∈ A, w ∈ {d, u} at the 
beginning of period 2 will be the following: 

D2-i) I2 a, w  = MY if I1 a  = MY, with resulting period 2 utility of U(-PM,a)  

D2-ii) I2 a, w  = SY2
w if I1 a  ≠ MY and U(-PS2

w ,a) ≥ U(CE(NI, a), a) with 
resulting period 2 utility of U(-PS2

w , a) 

D2-iii) I2 a,w  = NI if I1 a  ≠ MY and U(-PS2
w ,a) < U(CE(NI, a), a) with resulting 

period 2 utility of U(CE(NI, a), a) 

where the certainty equivalents (CEs) of the various policies offered, MY and 
SY2

w, w � {d, u}, are CE MY  = -PM and CE SY2
w  = -PS2

w . The CE NI, a  is 

characterized by U(CE(NI, a), a) = E{U(-X(a), a)}.7 

The above three conditions can be interpreted in the following manner. A homeowner 
will have an MY policy in period 2 only if he purchased an MY policy in period 1 (D2-i). 
A homeowner will purchase an SY policy in period 2 if he did not purchase an MY 
policy in period 1 and is sufficiently risk averse so that the utility of having full insurance 
is greater than the expected utility of having no insurance in period 2. (D2-ii). He will be 
in state NI if the expected utility of having no insurance in period 2 exceeds the utility of 
SY(D2-iii).  

Demand in period 2 [D2 z, w ] for the policy options Z2 = {MY, SY2
w, NI} follows 

directly from the above. Let ∆2 z, a, w  = 1 if I2 a, w  = z and ∆2 z, a, w =0 otherwise, 
where z ∈ {MY, SY2

w, NI}. Then,  

 z ∈ {MY, SY2
w, NI}. (2) 

Equation (2) just allocates homeowners in period 2 to an MY, SY or NI policy as a 
function of their degree of risk aversion and whether the reinsurance/capital costs are in 
state d or u.  

                                                 
7 For convenience, we suppress explicit dependence of certainty equivalents on initial wealth levels W(a).  

2 2

A

D (z, w) (z,a, w)dG(a) , 
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Turning to period 1, recall that an SY insurer can cancel a policy at the end of period 
1, and that homeowners believe this will occur with probability q	and result in 
transactions costs τ. Then the certainty equivalent CE(SY1,a) of a first-period SY policy 
is characterized by  

 U CE SY1, a , a  = qU - PS1+ τ , a +(1-q)U(-PS1, a). (3) 

Equation (3) indicates that higher values of q reduces the attractiveness of an SY policy 
because the homeowner is more likely to have her policy canceled and will have to incur 
a search cost τ to find an insurer who will be willing to sell her a policy in period 2.  

The optimal period 1 decision (note that we ignore discounting) is then determined 
through dynamic programming as follows. First, define the expected utilities V1(z) 
associated with choosing each of the options z ∈ Z1 = {MY, SY1, NI} in period 1 and the 
optimal state-dependent choice following this in period 2. Then  

 V1 MY, a  = 2U -PM, a  (4) 

 

 V1 SY1, a  = U(CE(SY1, a), a) 

				+ φMax[U(-PS2
d , a),U(CE NI, a , a)] + 1-φ Max[U(-PS2

u , a), U(CE(NI, a), a)] (5) 

  

 V1 NI, a  = U CE NI, a , a  

				+ φMax[U(-PS2
d , a),U(CE NI, a , a)] + 1-φ Max[U(-PS2

u , a), U(CE(NI, a), a)] (6) 

where, in view of the possibility of cancellation of the SY policy at the end of period 1, 
the period 1 expected utility of choosing an SY policy is given by (3). 

Equation (4) states that a homeowner who purchases MY insurance in period 1 will 
continue to be insured by the same policy in period 2. Equation (5) states that a 
homeowner who purchases SY insurance in period 1 incurs the immediate cost of the 
premium PS1 and, with probability q, may incur an additional transactions cost τ if the 
policy is canceled at the end of period 1, as reflected in the CE of SY1 given in (3). This 
same homeowner has the option of buying a second SY policy in period 2 or NI, and will 
choose the best of these two options in each state of the world w ∈ {d, u}. Equation (6) 
states that a homeowner choosing NI in period 1 can choose purchase an SY policy in 
period 2 or remain uninsured (NI) and will choose the best of these options in each state 
of the world w ∈ {d, u}. 

The optimal first-period choice for homeowner a ∈ A is then given by 

 I1 a  = ArgMaxz [V1 z, a  | z ∈ Z1= MY, SY1, NI ]. (7) 

The demand in period 1[D1 z  for the policy options Z1= {MY, SY1, NI} follow 
directly from the above. Let ∆1 z, a  = 1 if I1 a  = z and ∆1 z, a  = 0 otherwise, where 
z ∈ {MY,	SY , NI}. Then,  
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z ∈ {MY, SY , NI}. (8) 

The above characterization of demand for MY and SY policies is general. Final 
demands for these policies in both periods depend on the distribution of homeowner risk 
preferences as reflected in their degree of risk aversion characterized by G(a). It also of 
course depends on the loss distribution X. In section 3 below we consider the special case 
where per period losses X are normally distributed and the risk preferences of 

homeowners are of the CARA form, U x,a  = -e-ax.  

 

2.2 Supply and Pricing of Insurance 

We assume a competitive insurance market which consists of two types of firms, 
those offering SY policies and those offering MY policies. Firms offering SY policies 
can adjust the size of their BoB at the end of period 1 in response to changes in the cost 
of reinsurance (i.e. in response to the realized state of the world w ∈ {d, u}) . In a 
competitive equilibrium, the size of the insurer’s BoB is determined by the minimum of 
the average cost curve for the insurer. SY insurers will therefore cancel some policies at 
the end of period 1 in the state of the world in which reinsurance rates increase from 
period 1 to period 2 and will expand their BoB when reinsurance rates decrease. MY 
insurers do not have this option and must provide coverage in both periods to all 
homeowners to whom they issued policies in period 1.  

Reinsurance costs are assumed to depend on the non-negative scalar index ρ > 0, 
which may be thought of as an index of the fat-tailed nature of the distribution of a BoB 
of size n from the set A (see A1). A more specific model for reinsurance pricing is 
discussed in section 4. The following assumption summarizes the relationship of the 
regulated solvency risk level and reinsurance costs for insurers.  

A4. Insurers are required to satisfy a regulatory solvency constraint.8  It requires for 
each period their combined premium revenue plus reinsurance be sufficiently 
large to pay all claims with a probability of at least 1 - γ*.  

This regulatory solvency constraint is similar to a safety first model that insurers 
often utilize to determine the optimal BoB and pricing decisions. It was first proposed by 
Roy (1952), examined in the context of the theory of the firm and profit maximization by 
Day, Aigner and Smith (1971) and applied to insurance by Stone (1973a and 1973b). 
Following the series of natural disasters that occurred at the end of the 1980s and in the 
1990s, many insurers focused on the solvency constraint to determine the maximum 
amount of catastrophe coverage they were willing to provide. More specifically they 
were concerned that their aggregate exposure to a particular risk not exceed a certain 
level. Today rating agencies, such as A.M. Best, focus on insurers’ exposure to 
catastrophic losses as one element in determining credit ratings, another reason for 
insurers to focus on the solvency constraint  (Kunreuther and Michel-Kerjan 2011). 

                                                 
8 We do not analyze the costs of insolvency here, but rather assume that any insolvencies are paid for by an 
independent mechanism that does not affect the supply and demand decisions modeled here. 

1 1

A

D (z) (z,a)dG(a) , 
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 For simplicity, we assume that insurers with a BoB of size n meet their solvency 
constraint by purchasing XoL reinsurance with limits L1 n , L2 n , with L1 n  = nμ (the 
expected loss cost for a BoB of size n) and L2 n  set to meet the solvency constraint. 
Consider an insurer with BoB = {a1, a2, …, an} and the associated total loss distribution 

X n  = ∑ X(ai)
n
i=1 , with cdf F L; X n . Then, L2 n  is characterized by9  

γ* =1-F L2(n);X n  = Prob{X n >L2(n)}. 

Figure 2 illustrates the above assumption on reinsurance attachment points and the 
solvency constraint. Reinsurance contracts are on a per period basis, corresponding also 
to the solvency constraints that are required to be fulfilled in each period.  

 

Figure 2: Illustrating reinsurance attachment points under assumption A4 

 

The costs to insurers of providing coverage encompass administrative and selling 
expenses, loss costs and reinsurance costs, and depend on the size of the BoB (n). 
Formally, the expected total costs per period for SY and MY policies are given as: 

 CSY n;r,ζ =C0 n +Cm n +μn+Cs(n;r, μ, σ, ρ) (9) 

   

 CMY n;r,ζ =C0 n +νCm n +μn+Cs(n;r, μ, σ, ρ) (10) 

                                                 
9 In the insurance literature, the negative cdf 1-F L;X n  is referred to as the exceedance probability (EP) 

curve. It is fundamental in reinsurance calculations since expected losses between any two attachment 
points can be calculated as the area under the EP curve between these attachment points. See Grossi and 
Kunreuther (2005) for details.  
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where the vector of parameter values is given by ζ = (μ, σ, ρ, γ*, φ, q, τ)	and where the 
elements of total expected cost are: C0 n  represents administrative and selling expenses; 
Cm n  represents marketing expenses; μn are total expected losses; and	Cs(n;r, μ, σ, ρ) 
represents reinsurance cost. Note that, with the exception of marketing costs, all of the 
elements of total expected cost are identical for SY and MY insurers. Concerning 
marketing costs, it is assumed that ν ∈ (0, 1] so that these per period marketing costs are 
likely to be less for an MY insurer since its policyholders in the second period are locked 
in as a result of first period choices. Thus, if SY and MY insurers were to choose the 
same BoB “n” in both periods, and if v	=	1, then both insurers would have identical total 
expected cost. However, SY insurers can adjust their BoB from period to period in 
response to changes in reinsurance costs, while the MY insurer is constrained to offer the 
same BoB in both periods. Thus, SY and MY insurers will in general face different total 
expected costs because of potential marketing cost advantages for the MY insurer and 
potential flexibility advantages of the SY insurer in responding to changing reinsurance 
costs.  

Reinsurance costs are net of expected payoffs from reinsurance contracts, which are 
all of the XoL variety. In other words, the reinsurance cost reflects the additional 
premium above the expected loss paid by the insurer to the reinsurer for protection 
against a portion of the loss between the attachment points of the XoL contract. We 
assume that the average underwriting costs [C0 (n)/n] are convex and decreasing as n 
increases to reflect the spreading of fixed costs over more policies. The average 
marketing costs [Cm n /n] are convex and increasing in n, representing the higher 
marginal cost of marketing as the insurance territory increases. Losses to the insurer have 
a mean μ and standard deviation σ. Average reinsurance costs [Cs(n;r,	μ, σ, ρ)/n] are 
convex in n and are dependent on whether the reinsurer is in state d or u so that 
r = r w , w ∈ d, u .	These costs are also assumed to be increasing in ρ (the fat-tail index) 
reflecting the need for the reinsurer to hold higher reserves due to an increased 
probability of experiencing large losses. 

The Appendix, Part 1, specifies the derivation of the average costs and the 
equilibrium conditions in a competitive market. Competitive equilibrium in both the SY 
and MY markets occurs where insurers of each type select a BoB that minimizes their 
average cost, CSY n;r,ζ /n, CMY n;r,ζ /n, with price given by the minimum of the 
respective average cost curve. The assumptions concerning the elements of average costs 
discussed in the Appendix, Part 1, assure the existence of the equilibrium for both SY and 
MY markets. These assumptions also imply a number of intuitively appealing results for 
the comparative statics of equilibrium prices and BoBs for both MY and SY insurers. For 
example, since reinsurance costs in period 2 increase (u) or decrease (d) relative to period 
1, depending on the state of the world, w ∈ d,u , equilibrium prices in the SY market 
satisfy: PS2

d  < PS1 < PS2
u  and the corresponding optimal BoBs satisfy: nS2

d  > nS1 > nS2
u . Also, 

the average costs of the MY insurer satisfy:  ACM2
d  < PM < ACM2

u  so that the MY insurer 
has positive profits in state w = d and losses in state w = u.10  

                                                 
10 In particular, as argued earlier, the cancelation fee needs to satisfy: ψ  PM-Ps2

d -τ in order to assure 
that the MY insurer will have viable operations in both the profitable state of the world w = d as well as the 
unprofitable state of the world w = u.   
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The model proposed here suggests a number of trade-offs on both the demand and the 
supply side in evaluating the survival and efficiency of MY vs SY policies in competitive 
equilibrium. On the demand side, MY policies offer a constant price over both periods 
and therefore are attractive to risk-averse homeowners in avoiding intertemporal price 
volatility. MY policies also protect homeowners from the transactions costs of policy 
cancellation (represented by the parameters q, τ above) associated with changes in the 
equilibrium BoB for SY insurers between periods 1 and 2 that result from changes in the 
cost of capital and reinsurance.  

On the supply side, there may be marketing and policy service cost savings associated 
with MY policies. However, MY policies expose the insurer to increased risk of 
reinsurance cost volatility, since the MY insurer cannot adjust his BoB in response to the 
realized state of the world w ∈ d,u  in contrast to the SY insurer. The ultimate outcome 
in terms of equilibrium prices and demands for MY vs SY policies is an empirical matter 
depending on which of these trade-offs dominates and on the risk preferences of 
homeowners. The results in the next sections illustrate this for the case of Gaussian loss 
distributions and CARA preferences.    

3. The Case of Gaussian Losses and CARA Preferences  

This section describes the case where X, the generic loss distribution facing each 
homeowner, is Gaussian N(μ, σ2) and where homeowner risk preferences are of the 

CARA form: U x, a  = -e-ax, where a > 0, i.e A = , the positive reals. We further 
assume that there is a non-negative correlation ρ ∈ 0, 1  between the loss distributions 
facing two homeowners X(a) and X(b), identical for all a, b ∈ A (a ≠ b). Thus, an insurer 
with a BoB of n homes would face an annual loss distribution with mean nμ and variance 
σ2[n+n n-1 ρ]. These assumptions allow certainty equivalents (CEs) for the demand 
equations to be computed easily. Reinsurance costs for this case can be also readily 
computed for Excess of Loss (XoL) contracts with fixed limits L1 n , L2 n , and linearly 
increasing loading factors. These costs can be shown to satisfy all of the assumptions 
detailed in the Appendix  Part 1, including increasing costs as ρ increases.  

Equilibrium prices under competition are determined by (T1) and (T2) as shown in 
the Appendix. These determine, for any given cost functions and reinsurance market 
conditions, the price vector {PM, PS1, PS2

d , PS2
u }. This price vector and the parameter 

vector ζ = (μ, σ, ρ, γ*, φ, q, τ) are assumed to be common knowledge for both insurers 
and homeowners. We calculate demand for each homeowner a ∈ A from the demand 
equations (2)-(8), obtaining market demand by aggregation over G(a).  

Note that, given the Gaussian and CARA assumptions, the Certainty Equivalent (CE) 
of No Insurance (NI) for homeowner a ∈ A in either period 1 or 2 is given by: 

CE(NI, a) = (μ+
aσ2

2
). Thus, conditions D2-i) – D2-iii) translate into the following 

decision rules for determining period 2 demand for homeowner a ∈ A:  

D2N-i)   I2 a, w  = MY if I1 a  = MY, with resulting period 2 utility of U(-PM,a)  
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D2N-ii) If I1 a  ≠ MY, then I2 a,w  = NI or SY whichever yields the maximum 
expected utility with a resulting period 2 utility of 
Max{U -PS2

w , a , U CE NI, a , a }. 

Period 1 demand for a ∈ A is then specified by (4)-(6) which are summarized as 
follows: 

D1N-i) I1 a  = MY if V1 MY, a  = 2U -PM, a  ≥ Max{V1 SY, a , V1 NI, a };  

D1N-ii) Else I1 a  = SY or NI, whichever gives the highest period 1 expected 
utility V1 NI, a , V1 SY, a  as given in (5)–(6), noting from (7) that the 
CE of purchasing SY insurance in period 1 is 

CE(SY1, a) = - 
1

a
log L(a, ζ) eaPS1 , with L(a, ζ) = qeaτ+(1-q).  

The consequences of the above rules for period 2 choices are summarized as follows. 
A homeowner who chose an MY policy in period 1 will continue it in period 2. A 
homeowner who chose either NI or SY policy in period 1 will choose the option, NI or 
SY that has a higher expected utility. This gives rise to two critical cutoff values of 
homeowner risk preferences, a2

d and a2
u, which are the cut off values for NI vs SY choices 

in period 2 given the state of the world w ∈ {d, u} so that:  

 

U CE NI, a , a  = Max{U -PS2
w , a ,U CE NI, a , a } for a < a2

w 

 

U -PS2
w , a  = Max{U -PS2

w , a ,U CE NI, a , a } for a ≥ a2
w. 

(11) 

The comparisons in (11) are equivalent to determining when PS2
w  > or	≤ μ+

1

2
aσ2, where 

the cutoff values are therefore given by: a2
w=

2(PS2
w -μ) 

σ2 , w ∈ {u, d}. Since, as noted above, 

PS2
d  < PS2

u , it follows that a2
d <	a2

u.  

The cutoff values in Period 2 indicate that consumers who are more risk averse will 
want to purchase an SY policy in period 1. Furthermore if the price of insurance is lower 
because the insurer is in the d rather than u state, consumers who are less risk averse will 
still be willing to purchase insurance (i.e. a2

d <	a2
u ). 

Given the period 2 choice, the optimal choice in period 1 is specified by D1N-i) - 
D1N-ii). To characterize this solution, define the critical threshold risk aversion 
a(PS1) ∈ A as the solution to V1 NI, a V1 SY1, a . In the Appendix Part 2, a(PS1)	is 
shown to exist and be unique. As we will see below, homeowners with risk aversion 
a	<	a(PS1) will prefer NI to SY in period 1 and homeowners with risk aversion a	>	a(PS1) 
will prefer SY to NI in period 1 (if these were the only choices available). From the 
definition of V1 NI, a ,V1 SY1, a  (see (5) and (6), we see that period 2 payoffs from 
choosing NI or SY in period 1 are identical.  so that a(PS1) is the solution to 
U(CE(NI, a), a) = U(CE(SY1, a), a). This is equivalent to CE(NI1, a) =	CE(SY1, a).  

For the CARA/Gaussian this yields the following identity characterizing a(PS1): 
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 a(PS1)	: 			μ+
1

2
aσ2 = 

1

a
log L(a, ζ) eaPS1 . (12)

Similarly, define the functions H1 a, NI-MY , respectively H1 a, SY-MY , as the 
value of PM for which V1 NI, a =V1 MY,a , respectively V1 SY1, a =V1 MY,	a . From 
(4)-(6), these functions are characterized by: 

 

H1 a, NI-MY : 	2U -PM,a  = U CE NI, a , a  + φMax[U(-PS2
d , a),U(CE NI, a , a)]

+ 1-φ Max[U(-PS2
u , a),U(CE(NI, a), a)]; (13) 

 

H1 a, SY-MY :  2U -PM,a  = U CE SY1, a , a  + φMax[U(-PS2
d , a),U(CE NI, a , a)]

+ 1-φ Max[U(-PS2

u
, a),U(CE(NI, a), a)] . (14) 

In the Appendix, Part 2, we show that there is a unique solution PM to (13)-(14) for every 
a ∈ A so that these functions are well defined. We also show that both functions are 
increasing in a ∈ A. Intuitively, this reflects the fact that as homeowners become more 
risk averse, they are prepared to pay a higher premium PM for  an MY contract. They 
prefer this multi-period contract over the alternatives for the following reasons: 

 Avoiding the risks of  suffering a large loss from not being insured (NI)  
 Having their policy cancelled or paying a higher premium in period 2  if they 

purchased an SY policy in period 1.  
 
Using the above functions (12)-(14), we can summarize the solution to the two-period 

dynamic programming problem characterizing the optimal choice for homeowner a ∈ A 
in period 1 as shown in Figure 3. This figure shows for arbitrary but fixed values of the 
prices PS1, PS2

d ,	PS2
u , the optimal period 1 demand response for homeowners as PM varies. 

Of course, PM is also fixed at its equilibrium value (see (T2) in the Appendix), but one 
can think of this figure as illustrating alternative demand outcomes as the MY 
equilibrium price PM varies, driven by the underlying costs in (10). 
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Figure 3. Period 1 Demand for NI, SY, MY 

 

 
The logic of Figure 3 is as follows. Each of the functions in (12)-(14) separates the set 

of homeowners A into two subsets for each of the three sets of binary choices {NI, SY}, 
{NI, MY}, {SY, MY} into those who prefer the first of these binary choices and those 
who prefer the second. Thus, in evaluating the two choices NI and SY in period 1, any 
homeowner a < a(PS1) prefers NI to SY and in any a >	a(PS1) prefers SY to NI. Similarly, 
in evaluating the two choices NI and MY in period 1, any homeowner a ∈ A such that 
PM > H1 a, NI-MY  prefers NI to MY and prefers MY to NI if PM < H1 a, NI-MY . 
Finally, in evaluating the two choices SY and MY in period 1, any homeowner a ∈ A 
such that PM > H1 a, SY-MY  prefers SY to MY and prefers MY to SY if 

PM < H1 a, SY-MY . This leads to a complete determination f consumer demand for any 

equilibrium price vector P = {PM, PS1, PS2
d , PS2

u }.  

The six values of Θi i=1…6 in Figure 3 illustrate how one determines the optimal 
policy choice for homeowners in period 1.  

 Consider the (a, PM) pair Θ1 Given its location relative to the three binary choice 

curves, homeowner a(Θ1) prefers MY to SY, SY to NI and MY to NI: so that this 
homeowner’s optimal period 1 choice at price PM(Θ1) is MY as shown.  

 For the Θ2 pair, homeowner a(Θ2) prefers SY to MY, SY to NI and MY to NI: so 
that this homeowner’s optimal period 1 choice at price PM(Θ2) is SY as shown. 

 For the Θ3 pair, homeowner a(Θ3) prefers SY to MY, SY to NI and MY to NI: so 
that this homeowner’s optimal period 1 choice at price PM(Θ2) is SY as shown. 

H1(a, NI-MY) 
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 For the Θ3 pair, homeowner a(Θ3) prefers SY to MY, SY to NI and MY to NI: so 
that this homeowner’s optimal period 1 choice at price PM(Θ3) is SY as shown. 

 For the Θ4 pair, homeowner a(Θ4) prefers NI to MY, NI to SY and SY to MY: so 
that this homeowner’s optimal period 1 choice at price PM(Θ4) is NI. 

 For the Θ5 pair, homeowner a(Θ5) prefers NI to MY, NI to SY and MY to SY: so 
that this homeowner’s optimal period 1 choice at price PM(Θ5) is NI.  

 For the Θ6 pair, homeowner a(Θ6) prefers MY to NI, NI to SY, and MY to SY: so 
that this homeowner’s optimal period 1 choice at price PM(Θ6) is MY. 

All that is required to produce consistent preferences is that the intersection point 
Θ*of H1 a, NI-MY  and H1 a, SY-MY  occur at a(PS1 . This follows directly from the 

fact that V1 MY,	a  = V1 NI, a  on H1 a, NI-MY  and V1 MY,	a  = V1 SY1, a  on 

H1 a, SY-MY , so that, at the intersection Θ*, V1 NI, a  = V1 SY1, a . Since a(PS1  is 
the unique solution to (12), all three of the binary choice functions must intersect at the 
same point Θ*. 

The logic of Figure 3 determines period 1 demand for any homeowner a ∈ A. 
Aggregate demand for each policy type (NI, SY, MY) is then determined by the 
distribution G(a) of homeowner risk aversion in the population. A typical distribution 
function G(a) is shown in Figure 3. With period 1 choices determined as above, period 2 
choices follow directly from D2N-i) - D2N-ii) following the logic of Figure 1. More 
specifically, if a homeowner bought an MY policy in period 1 then she will continue to 
have this policy in period 2. If the homeowner did not buy an MY policy in period 1, then 
she will decide  to either buy an SY policy in period 2 or be uninsured (NI) depending on 
on whether reinsurance costs increase (u) or decrease (d) relative to period 1. Thus, the 
CARA/Gaussian case is completely solved.  

To summarize, the price vector P = {PM, PS1, PS2
d , PS2

u } is determined for the SY and 
MY markets from the conditions defining competitive equilibrium in these markets, as 
characterized by (T1)-(T2) in Appendix, Part 1. We define the critical values of risk 
aversion aNM and aSM as the unique solutions to: 

PM = H1 aNM, NI-MY  ; PM = H1 aSM, SY-MY . 

We thus have the following critical values with respect to risk aversion in 
determining the option in period 1 which maximizes the homeowner’s expected utility 
when only two alternatives are available: 

 aNM when only NI and MY are available to the homeowner.  

 aSM when only SY and MY are available to the homeowner. 

  a(PS1) when only NI and SY are available to the homeowner.  

Given these critical values determining all possible binary choices, demand is then 
determined as follows: 



 17

i) There is a region from a = 0 to some aNI(P) = min{a(PS1), aNM}, such that 
homeowners with a < aNI(P) all choose NI in period 1 (in period 2 they choose 
the best of the two options of SY or NI depending on the state-dependent prices 
that obtain). 

ii) Defining  aSY P  = Max{aSM, a(PS1)}, there is a region, possibly empty, 
between a(PS1) and  aSY P , such that homeowners with a ∈ [a(PS1), aSY P ] 
choose SY in period 1 (in period 2 they choose the best of the two options of SY 
or NI depending on the state-dependent prices that obtain).  

iii) Homeowners with a ≥ max{aNI(P), aSM} all choose MY in period 1 (and they 
stick with this in period 2). 

Total market demand is then determined by (2) and (8), by integrating over the 
distribution G(a) of homeowner risk preferences. We thus have a complete solution to the 
CARA/Gaussian case.  

 

4. Illustrative Examples for the CARA/Gaussian Case 

This section provides some numerical examples to illustrate the outcomes for the 
CARA/Gaussian case derived in section 3. The elements of the expected total cost 
functions [see (9)-(10)] are specified as follows:  

Operating expenses C0 n  are represented as the sum of a fixed cost and a variable 
cost depending on the size of the BoB:  

 C0 n  = c0n + K,  c0 > 0, K > 0. (15) 

Marketing and selling expenses are assumed to be identical in both periods for the SY 
insurer and are specified by:  

 Cm n  = cmns,  cm > 0, s > 2. (16) 

The marketing and selling expenses for the MY insurer are assumed to be allocated 
equally to both periods (although they are the same or lower in Period 2) and are 
represented as a fraction ν ≤ 1 of an SY insurer for the same BoB. Total marketing and 
selling costs for the MY insurer with a BoB of size n equals 2 ν Cm n . 

Reinsurance costs vary across periods 1 and 2. For period 1, they are specified in the 
form of a linearly increasing loading factor. This implies that reinsurance costs include a 
factor that is proportional to the expected value of the reinsurance coverage and a second 
factor that increases quadratically as the size L2(n) -  L1(n) of the reinsurance tranche 
covered by the XoL treaty increases. Appendix, Part 3, characterizes the reinsurance 
costs facing the insurer.  

For the base case the parameters for the total cost function and the reinsurance costs 
specified in the Appendix satisfy the stylized assumptions in Table 1 for a multi-line 
insurer offering catastrophe coverage: 

 

 



 18

Table 1: Assumptions Underlying Calibration for the Base Case  

nμ- Re-Payout: Average Annual Loss net of 
Reinsurance Payout = 45% of the insurer’s 
total cost 

C0: Operating/Underwriting Expenses 
(excluding marketing), including attritional 
losses and loss adjustment expenses = 25% of 
the insurer’s total cost 

Cm: Marketing and selling Expenses = 15 % of 
the insurer’s total cost 

Cs: Reinsurance premium = 15% of the 
insurer’s total cost 

We assume for the base case that capital costs vary by ± 20%. The distribution of risk 
aversion in the population of homeowners is assumed to be lognormal with mean and 
variance so that 20% of the homeowners choose NI at the base case equilibrium prices.  
The number of homeowners was set at N=1000. These assumptions, together with the 
calibration benchmarks in Table 1, give rise to the parameters in Table 2 for the base case 
corresponding to (15)-(16) and (T11)-(T17) in Appendix. Part 3. Tables 3 and 4 detail the 
base case outcomes. The number of homeowners who demand MY policies in period 1 is 
580 with the remaining 220 purchasing an SY policy. Demand for SY policies in period 2 
increases to 416 if w = d since almost all of the uninsured individuals in period 1 now 
decide to purchase coverage. When w = u all the individuals who were NI in period 1 will 
remain uninsured in period 2 and those who bought an SY policy in period 1 will decide 
not to renew, so there will be no demand for SY policies in period 2. 
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Table 2: Base Case Parameter Values 

Number of Homeowners 
A

)a(dGN  

G(a) = NGA(a), GA(a) = lognormal(μA,σA) 

N = 1000 

μA= 0.0011847	
σA = 0.00004 

μ, σ, ρ, φ, τ, q 
μ = 20000, σ = 6000, ρ = 0.5,  

φ = 0.5, τ = 100, q = 0.1 

C0 n  = c0n + K c0 = 150, K=265000 

SY: Cm n  = cmns,	MY:ν Cm n   cm = 235, s = 2.01, ν = 1 

Cs1(n;r1, ζ) = λ1-1+ξ1x 1-F x, n, ζ dx
L2(n)

L1(n)
 λ1 = 1.25,	ξ1= 0.0000036 

Cs2(n;r2(w), ζ) = λ2(w)-1+ξ2(w)x 1-F x, n, ζ dx
L2(n)

L1(n)

λ2 d  = (1-δ)λ1, ξ2 d  = (1-δ)ξ2

λ2 u  = (1+δ)λ1, ξ2 u  = (1+δ)ξ2

δ = 0.2 

 

Table 3. Outcomes for the Base Case for the SY Insurer 

 1st Period 2nd Period w = d 2nd Period w = u

1) Equilibrium prices PS1, PS2
d , PS2

u  40,705 39,530 41,857 

2) Size of the BoB n 26.00 27.00 25.00 

3) Homeowner Demand for SY 
policies 

220 416 0 

4) Average Annual Losses  520,000 540,000 500,000 

5) Expected Reinsurance Payouts  44,464 46,143 42,786 

6) Reinsurance Premium 149,783 127,351 168,780 

7) Operating/Underwriting Expenses 268,900 269,050 268,750 

8) Marketing and selling Expenses  164,121 177,055 151,680 

Total Expected Cost per period  

(4-5+6+7+8) 
1,058,340 1,067,314 1,046,424 

Total Expected Cost 

Column1+φColumn2 +(1-φ)Column3 
2,115,208 
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Table 4. Outcomes for the Base Case for the MY Insurer 

 1st Period 2nd Period w = d 2nd Period w = u 

1) Equilibrium price PM 40,705 

 

2) Size of the BoB n 26.00 

3) Homeowner Demand for MY 
policies 

580 

4) Average Annual Losses  520,000 

5) Expected Reinsurance Payouts  44,464 

6) Reinsurance Premium 149,783 119,826 179,739 

7) Operating/Underwriting Expenses 268,900 

8) Marketing and selling Expenses  164,121 

Total Expected Cost per period  

(4-5+6+7+8) 
1,058,340 1,028,383 1,088,296 

Total Expected Cost 

Column1+φColumn2 +(1-φ)Column3 

 

2,116,679 

 

As the BoB for the MY insurer is constant over both periods and all states of the 
world, the only outcomes that change between periods1 and 2 are the reinsurance 
premiums, and hence the Total Expected Cost. Note that the BoB changes for the SY 
insurer as a function of the state of the world with a slightly larger (BoB when 
reinsurance premium decreases under the state of the world w = d and a slightly  lower 
BoB when reinsurance premiums increases when w = u. SY insurers choose the optimal 
BoB in each state of the world while the MY insurer must choose a constant BoB over 
both periods. This gives rise to lower Total Expected Costs over both periods for the SY 
insurer relative to the MY insurer since our base case assumes no marketing cost 
advantages for the MY insurer (ν = 1). The results for Demand for the base case are 
intuitive and follow the logic of Figure 3.  

We now consider some comparative results on SY vs MY policies as key parameters 
change. It should be noted from Figure 3 that in general neither policy type can be 
expected to dominate the other for all homeowners. The equilibrium outcomes will 
depend on the distribution of homeowner risk aversion. The more risk averse the 
population of homeowners, and the more significant are marketing cost advantages of 
MY insurers, the greater the demand for MY policies. Similarly, the greater the perceived 
probability q of policy cancellation, and the greater the transactions costs τ of finding a 
new insurer, the greater the advantage of MY over SY policies. These general advantages 
of MY policies are counterbalanced by the greater flexibility of SY insurers to adjust 
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their BoB in the face of volatility in capital costs and reinsurance premiums. Tables 5-8 
illustrate these results. 

Table 5 shows the effects of increasing q, homeowners’ belief of the probability of 
cancellation at the end of period 1 if they are insured under an SY policy. The effect of 
increases in q is to decrease CE(SY1, a) given in (3). With an eye on Figure 3, this 
increases H1(a, SY-MY) and increases a(PS1 . Since q has no effect on equilibrium prices 
(see the equilibrium conditions (T1)-(T2) in the Appendix), it follows that an increase in 
q will decrease SY demand and increase MY demand. The negative impact of an increase 
in q on SY demand in period 1 is intuitively clear. An increase in q also has a negative 
impact on SY demand in period 2 for the following reason: The cut-off values a2

d, a2
u for 

SY demand in period 2 are unaffected by q, so that the larger MY demand which is 
maintained in both periods, implies a decrease in SY demand.11 Overall, we see that 
increases in q will make SY policies less attractive in both periods. The results for 
changes in transactions costs τ would be similar. 

Table 6 shows the effects of changes in ν, reflecting the magnitude of the marketing 
cost advantage of the MY firm. As expected, as this advantage increases (i.e as ν 
decreases), price PM decreases and the BoB of the MY firm increases. The result is 
increased demand for MY insurance at the expense of both NI and SY demand. In the 
case analyzed in Table 6 where marketing costs for MY firms are half those of SY firms 
(i.e. ν = 0.5), SY policies are not viable in equilibrium.  

Table 7 shows the effects of changes in correlation ρ. As ρ increases, the amount of 
reinsurance cover L2(n)-L1(n) increases. The result is that for any fixed BoB, reinsurance 
premiums increase. In equilibrium, the optimal BoB decreases. As the SY firm is able to 
adjust its BoB in response to the changing state of the world, it is able to respond to the 
increased cost of reinsurance better than the MY firm by reducing its BoB in period 2 and 
increasing its price. The result is a decrease in demand for MY insurance and an increase 
in SY demand. Analogous results hold for the reinsurance volatility parameter δ. In 
general, the more costly reinsurance is, and the more volatile reinsurance premiums are 
under different states of the world, the larger the advantage of SY firms, relative to MY 
firms, in being able to adjust their BoB and prices in period 2.  

Finally, Table 8 shows the effects of shifts in the mean risk aversion μA for the 
population of homeowners. Neither the functions defining the geometry of Figure 3, nor 
the equilibrium prices are affected by μA (see the equilibrium conditions (T1)-(T2) in the 
Appendix). Increases in μA increases demand for MY policies relative to both NI and SY 
given an increase in preferences for insurance protection and stable prices over time as 
homeowners become more risk averse. Indeed, by changing the distribution of 
homeowner risk preferences, one can obtain equilibrium outcomes varying from 100% 
NI to 100% SY to 100% MY insurance choices (one need only choose a probability 
distribution function G(a) with mass centered wholly in the NI, SY or MY region). The 
actual outcome for any market will depend on homeowner characteristics.  

 

 
                                                 
11 This assumes positive SY demand in period 2.  
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5. Conclusions and Future Research 

This paper shows that in a competitive insurance market it is feasible and efficient for 
insurers to offer both single and multi-year policies given that the degree of risk aversion 
will differ between consumers who face a given risk. The proportion of individuals who 
choose each of these types of policies or prefer to remain uninsured depends on the 
marketing and reinsurance costs incurred by the insurer, the correlation across risks and 
the likelihood that an insured individual purchasing an SY policy in period 1 will have it 
cancelled because the cost of risk capital increases as a result of catastrophic losses in 
period 1. The findings also imply that if insurers only offer one an SY or MY policy, total 
demand for coverage will either decrease or stay the same from what it would be if both 
types of coverage were offered to homeowners. This is because some individuals would 
prefer to be uninsured in a single-policy world but would purchase coverage when more 
than one type of policy is offered to them. 

Future research on the tradeoffs between SY and MY policies on the demand and 
supply side could address the following issues: 

 Extending the number of periods that an MY policy is offered to determine the 
impact this will have on the relative prices of MY and SY policies and the 
demand for each type of coverage. If MY policies cannot be canceled, then the 
results of the above two period model (i.e. T = 2) can be extended to T > 2 in a 
straightforward manner. This requires only that the valuation equations (4)-(6) be 
extended to account for the continuing free choice of NI or SY policies for T >2.  

The state-dependent prices of an SY policy would be determined as in the two-
period model and would depend on the state-dependent reinsurance price in each 
period. A simple model for reinsurance prices for a T-period problem would be a 
generalization of the binary up-down model for the two-period problem with 
reinsurance prices increasing or decreasing with fixed probabilities. Insurers and 
homeowners make decisions with respect to an SY policy in a highly myopic 
manner because they both know they have the freedom to change their decisions 
in the next period.  

In extending the two-period model to T > 2, the decisions by the insurer and the 
consumer with respect to an MY policy would be affected by the expected 
evolution of reinsurance prices in all periods as well as the probability of a policy 
being canceled at the end of any period t <T (i.e. q), the costs of searching for a 
new policy should it be cancelled (i.e. τ ), and other determinants of the average 
insurance cost [e.g. marketing costs, correlation of risks between individuals (ρ)]. 

 Incorporating the possibility of individuals investing in mitigation measures to 
reduce their losses where there is an upfront cost associated with the measure but 
the benefits of mitigation accrue over a number of periods. An insurer offering an 
MY policy can guarantee a premium reduction for each of the periods the policy 
is in place. If an individual purchases an SY policy, then she may be uncertain as 
to whether another insurer will give her the same premium discount should her 
current insurer cancel her policy.  
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 Examining the impact of structural changes in the risk over time on the premiums 
that insurers would need to charge for MY policies relative to SY policies as the 
number of periods the policy is offered increases. These issues are relevant when 
examining the impact of climate change and the possibility of global warming on 
future losses from natural disasters such as hurricanes and flooding.  

More generally, this paper should be viewed as a first step in exploring the challenges 
and opportunities that multi-year contracts can play in providing protection against fat-
tailed risks. We have used a competitive market environment with perfect information by 
both parties to provide a benchmark case for addressing these issues. A number of other 
issues could be explored related to real-world constraints such as enforcement of 
contracts and uncertainties associated with the risks coupled with behavioral models of 
insurer and consumer behavior. 
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Table 5. Outcomes as Cancellation Probability q Varies 

 SY Outcomes MY Outcomes 

 q = 0.1 q = 0.2 q = 0.1 q = 0.2 

Average Equilibrium Price = 
Average Expected 

Cost= 
P1+φP2

d+(1-φ)P2
u

2
 

40,699 40,699 40,705 40,705 

Average Size of the BoB 

= 
n1+φn2

d+(1-φ)n2
u

2
 

26.00 26.00 26.00 26.00 

Average Homeowner Demand 

=
D1+φD2

d+(1-φ)D2
u

2
 

220 207 580 586 

Average Annual Losses  

= μ
n1+φn2

d+(1-φ)n2
u

2
 

520,000 520,000 520,000 520,000

Average Expected Reinsurance 
Payouts (See App. (T13)-(T14) ) 

= 
	Payout1+φPayout2

d+(1-φ)Payout2
u

2

44,464 44,464 44,464 44,464 

Average Reinsurance Premium 
(See App. (T15)-(T16) ) 

= 
Prem1+φPrem2

d+(1-φ)Prem2
u

2
 

148,924 148,924 149,783 149,783

Average Operating/Underwriting 
Expenses 

= 
C01+φC02

d +(1-φ)C02
u

2
 

268,900 268,900 268,900 268,900

Average Marketing and selling 
Expenses (multiply by ν for MY) 

= 
Cm1+φCm2

d +(1-φ)Cm2
u

2
 

164,244 164,244 164,121 164,121
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Table 6. Outcomes as MY Marketing Costs Factor ν Varies 

 SY Outcomes MY Outcomes 

 ν = 0.5 ν = 1 ν = 0.5 ν = 1 

Average Equilibrium Price = 
Average Expected 

Cost= 
P1+φP2

d+(1-φ)P2
u

2
 

40,699 40,699 37,192 40,705 

Average Size of the BoB 

= 
n1+φn2

d+(1-φ)n2
u

2
 

26.00 26.00 32.00 26.00 

Average Homeowner Demand 

=
D1+φD2

d+(1-φ)D2
u

2
 

0 220 1,000 580 

Average Annual Losses  

= μ
n1+φn2

d+(1-φ)n2
u

2
 

520,000 520,000 640,000 520,000 

Average Expected Reinsurance 
Payouts (See App. (T13)-(T14) ) 

= 
	Payout1+φPayout2

d+(1-φ)Payout2
u

2
 

44,464 44,464 54,535 44,464 

Average Reinsurance Premium (See 
App. (T15)-(T16) ) 

= 
Prem1+φPrem2

d+(1-φ)Prem2
u

2
 

148,924 148,924 210,312 149,783 

Average Operating/Underwriting 
Expenses 

= 
C01+φC02

d +(1-φ)C02
u

2
 

268,900 268,900 268,900 268,900 

Average Marketing and selling 
Expenses (multiply by ν for MY) 

= 
Cm1+φCm2

d +(1-φ)Cm2
u

2
 

164,244 164,244 249,126 164,121 

  



 26

Table 7. Outcomes as Correlation ρ Varies 

 SY Outcomes MY Outcomes 

 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 

Average Equilibrium Price = 
Average Expected 

Cost= 
P1+φP2

d+(1-φ)P2
u

2
 

40,699 41,812 40,705 41,822 

Average Size of the BoB 

= 
n1+φn2

d+(1-φ)n2
u

2
 

26.00 25.00 26.00 25.00 

Average Homeowner Demand 

=
D1+φD2

d+(1-φ)D2
u

2
 

220 279 580 90 

Average Annual Losses  

= μ
n1+φn2

d+(1-φ)n2
u

2
 

520,000 500,000 520,000 500,000 

Average Expected Reinsurance 
Payouts (See App. (T13)-(T14) ) 

= 
	Payout1+φPayout2

d+(1-φ)Payout2
u

2
 

44,464 53,334 44,464 53,334 

Average Reinsurance Premium (See 
App. (T15)-(T16) ) 

= 
Prem1+φPrem2

d+(1-φ)Prem2
u

2
 

148,924 177,377 149,783 178,445 

Average Operating/Underwriting 
Expenses 

= 
C01+φC02

d +(1-φ)C02
u

2
 

268,900 268,750 268,900 268,750 

Average Marketing and selling 
Expenses (multiply by ν for MY) 

= 
Cm1+φCm2

d +(1-φ)Cm2
u

2
 

164,244 151,803 164,121 151,680 
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Table 8. Outcomes as Mean Homeowner Risk Aversion μA Varies 

 SY Outcomes MY Outcomes 

 μA = 0.0011847 μA = 0.0012 μA = 0.0011847 μA = 0.0012 

Average Equilibrium Price = 
Average Expected 

Cost= 
P1+φP2

d+(1-φ)P2
u

2
 

40,699 40,699 40,705 40,705 

Average Size of the BoB 

= 
n1+φn2

d+(1-φ)n2
u

2
 

26 26 26 26 

Average Homeowner Demand 

=
D1+φD2

d+(1-φ)D2
u

2
 

220 154 580 722 

Average Annual Losses  

= μ
n1+φn2

d+(1-φ)n2
u

2
 

520,000 520,000 520,000 520,000 

Average Expected Reinsurance 
Payouts (See App. (T13)-(T14) ) 

= 
	Payout1+φPayout2

d+(1-φ)Payout2
u

2

44,464 44,464 44,464 44,464 

Average Reinsurance Premium (See 
App. (T15)-(T16) ) 

= 
Prem1+φPrem2

d+(1-φ)Prem2
u

2
 

148,924 148,924 149,783 149,783 

Average Operating/Underwriting 
Expenses 

= 
C01+φC02

d +(1-φ)C02
u

2
 

268,900 268,900 268,900 268,900 

Average Marketing and selling 
Expenses (multiply by ν for MY) 

= 
Cm1+φCm2

d +(1-φ)Cm2
u

2
 

164,244 164,244 164,121 164,121 
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Appendix  

 

1. Average Insurer Costs and Prices in a Competitive Market  

Competitive equilibrium in both the SY and MY markets occurs where insurers of 
each type select a BoB that minimizes their average cost, with price given by the 
minimum of the respective average cost curve. Thus, from (9), and noting that prices in 
the SY market are set after the state of the world w ∈ d, u  is known, we have : 

 
PS1 = Minn≥0 

CSY n;r1, ζ

n
; PS2

w  = Minn≥0
CSY n;r2(w) ,ζ

n
, w ∈ d, u  

(T1)

with the optimal BoBs for the SY insurer being the corresponding solutions, nS1,	nS2
d , nS2

u , 
to the indicated average cost minimization problems, where r  and r2(w) are reinsurance 
costs in periods 1 and 2, the latter being state dependent.  

Similarly, from (10), the equilibrium price in the MY market is determined by the 
minimum of the total average cost for the two periods, so that: 

 2PM = Minn≥0{
CMY n; r1, ζ +φCMY n; r2 d , ζ + 1-φ CMY n; r2 u , ζ

n
} (T2)

with the optimal BoB for the MY insurer being the corresponding solution nMY to (T2). 
Note that, for all n, CMY n; r2 d , ζ CMY n; r1, ζ CMY n; r2 u , ζ , so that average 
costs also satisfy: ACM2

d  < ACM1< ACM2
u  and therefore ACM2

d  < PM < ACM2
u , verifying the 

need for imposing a cancelation fee ψ  PM-Ps2
d -τ to assure expected breakeven 

operations for the MY insurer in period 2.  

Given our assumptions a competitive equilibrium exists for both the SY and MY 
markets yielding the price vector {PM, PS1, PS2

d , PS2
u } and the BoB vector 

{nM, nS1, nS2
d , nS2

u }. Some of these markets may be degenerate in the sense that there is no 
demand for one or other of these policies at the equilibrium prices. The assumptions on 
average costs imply a number of intuitively appealing results for the comparative statics 
of equilibrium prices and BoBs for both MY and SY insurers. For example, since 
reinsurance costs in period 2 increase or decrease relative to period 1 depending on the 
state of the world, equilibrium prices in the SaY market satisfy: PS2

d  < PS1 < PS2
u  and the 

corresponding optimal BoBs satisfy: nS2
d  > nS1 > nS2

u . Comparative statics with respect to 
the parameters in ζ = (μ, σ, ρ, γ*, φ, q, τ) can be derived using (9) and (10) together with 
(A3) and (A4) for SY and MY equilibrium prices. Due to the assumption with respect to 
average reinsurance costs equilibrium prices increase and equilibrium BoBs decrease as ρ 
increases for both SY and MY insurers.  

We record here one general comparative result between SY and MY policies. 
Suppose there are no marketing cost advantages for MY insurers (ν = 1 in (10)). Then the 
equilibrium price vector {PM, PS1, PS2

d , PS2
u } satisfies12: PM ≥ PS1+ φPS2

d  + (1-φ) PS2
u . In 

                                                 
12 This follows from (T1) - (T2) since ν = 1 implies CSY = CMY and from the fact that for any real valued 
functions f, g, h, the following inequality is evidently true:  
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particular, a risk neutral homeowner would always prefer SY policies to MY policies 
when ν = 1 and when there are no transactions costs for the homeowner from policy 
cancellation (τ = 0). Of course, even when τ = 0, risk averse homeowners might still 
prefer MY policies to avoid the risk of price volatility in period 2. Nonetheless, the above 
inequality expresses clearly one advantage of SY policies, namely the ability to adjust the 
BoB in the face of changing reinsurance costs.  

 

2. Proofs of the CARA/Gaussian Case 

This part of the appendix provides proofs of the basic properties of the 
CARA/Gaussian case shown in Figure 3. We assume a fixed parameter vector 
ζ = (μ, σ, ρ, γ*, φ, q, τ) and a price vector P = {PM, PS1, PS2

d , PS2
u }. To avoid special cases 

we assume that σ > τ ≥ 0 so that the uncertainty associated with the hazard is larger than 
the transactions costs of finding a new policy if the policy is cancelled.  

Claim 1: The solution a(PS1) in (12) is unique  

Proof: Consider the function arising from (12) defined as: 

 g(a) = μ+
1

2
aσ2 - 

1

a
log L(a, ζ) eaPS1  where L(a, ζ) = qeaτ+(1-q).    (T3)

To establish the claim, it suffices to show that the following properties for the function 

h(a) = ag(a) = aμ+
1

2
a2σ2 - log L(a, ζ) eaPS1 . 

P1: h(0) = 0; h' 0  = μ-(PS1+qτ);  

P2: h(a) > 0 for a > a = 
2(P + τ - μ)

σ2 ; 

P3: h''(a) > 0 (i.e., h is strictly convex for a > 0). 

Assume P1-P3. Then h(0) = 0 and h'(0) < 0. Since, by P1, h(a) > 0 for a sufficiently 
large (viz., for a > a), it must be that the continuous function h(a) has a minimum in the 
interval [0, a]. However, given P3, this minimum is unique and (again by P3) the value “a” 
at which h(a) crosses zero is also unique. We need therefore only show that P1-P3 hold 
(under the assumptions that σ > τ ≥ 0). 

P1 is obvious from direct calculation. P2 follows by noting that log( ) is monotonic 
increasing and eaτ > 1, so that 

 ln [qeaτ+(1-q)] <  ln (eaτ) = aτ. (T4)

Thus, for a > a, we have 

 h(a) = ag(a) > a(μ+
1

2
aσ2-P-τ) > a(μ+

1

2
aσ2-P-τ) = 0. (T5)

Concerning P3, it can be calculated that  

                                                                                                                                                 
Min{f(x)+φg(x)+(1-φ)h(x)|x≥0} ≥ Min{f(x) |x≥0}+φMin{g(x) |x≥0}+(1-φ)Min{h(x) |x≥0} 

assuming that all relevant minima exist. 
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 . (T6)

Both fractions in (T6) are clearly < 1. Thus, since σ > τ ≥ 0, 
, completing the proof of Claim 1. 

For the next claim, we need the following property of CARA risk preferences: Let Y 
be any random variable with positive variance. The Certainty Equivalent CE(Y, a) under 
CARA preferences is decreasing in “a”. This follows directly from Theorem 1 of Pratt 
(1964).  

Claim 2: The functions H1 a, NI-MY , H1 a, SY-MY  are increasing in a ∈ A.  

Proof: Consider H1 a, NI-MY . Divide both sides of (13) by 2. Then, Claim 2 is 
equivalent to the assertion that the solution PM to the following equation is increasing in 
a ∈ A: 

 U -PM, a  = 0.5U CE NI, a , a  + 0.5φMax[U(-PS2
d , a),U(CE NI, a , a)] 

+ 0.5 1-φ Max[U(-PS2

u
, a),U(CE(NI, a), a)]. (T7)

With an eye on (12), there are three relevant intervals in A associated with (T7): 
0 < a < a2

d:	a2
d ≤ a < a2

u:  a2
u ≤ a. Observe first that the solution PM(a) = H1 a, NI-MY  to 

(T7) is unique and continuous (since the solution to U -PM,a =K(a) is PM = 
log[-K(a)]

a
 ). 

Thus, it suffices to show the Claim for each of the three relevant intervals separately.  

Consider the first interval, 0 < a < a2
d. In this interval, NI is always superior to SY in 

period 2, so that (T7) can be expressed as  

 U -PM, a  = 0.5E{U( X1, a)} + 0.5φE{U( X2, a)} + 0.5(1-φ)E{U( X2, a)}	 (T8)

where X1,	X2 are the loss distributions for periods 1 and 2 respectively. We see that the 
rhs of (T8) is the expected utility of the random variable which yields X1 with probability 
0.5, and X2 with probability 0.5. The solution PM to (T8) is clearly just the negative of the 
CE of this random variable, so that Pratt’s result cited above, establishes the claim for 
this interval.  

Consider the second interval  a2
d ≤ a < a2

u. In this interval, SY is always superior to NI 
in period 2, when w = d and inferior to NI when w = u, so that (T7) can be expressed as  

 U -PM,a  = 0.5E{U( X1, a)} + 0.5φU(-PS2
d , a) + 0.5(1-φ)E{U( X2, a)}.	 (T9)

From (T9) PM is the negative of the CE of the random variable equal to X1 with 

probability 0.5, -PS2

d
 with probability 0.5φ, and X2 with probability 0.5(1-φ). Pratt’s result 

implies that PM is increasing in “a”.  

Finally, consider the interval  a2
u ≤ a, for which SY is superior to NI for all states of 

the world w ∈ {u, d}. In this case, (T7) is equivalent to  

 U -PM, a  = 0.5E{U( X1, a)} + 0.5φU(-PS2
d , a) + 0.5(1-φ)5φU(-PS2

u , a).	 (T10)
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Following the same logic as above establishes the claim for this interval. 
Thus,	H1 a, NI-MY  is strictly increasing in “a” as asserted in Claim 2. 

A similar argument establishes Claim 2 for H1 a, SY-MY . 

We finally note that H1 a, NI-MY  < H1 a, SY-MY  for “a” sufficiently small since 

from (T8) H1 a, NI-MY  → μ as a → 0, whereas H1 a, SY-MY  > μ since the price PM 
that would make a homeowner indifferent between an MY and SY policy is certainly no 
lower than the lowest SY policy price PS2

d  , which is clearly greater than the mean of the 
loss distribution μ. We see, therefore, that H1 a, NI-MY  is below H1 a, SY-MY  for “a” 

small. On the other hand, as explained in the text, H1 a, NI-MY  and H1 a, SY-MY  
have a unique intersection at a = a(PS1). As both functions are monotonic increasing, it 

must be that H1 a, NI-MY  > H1 a, SY-MY  for a > a(PS1). These facts establish the 
basic geometry of Figure 3. 

 

3. Reinsurance Costs for the CARA/Gaussian Case 

Reinsurance costs in period 1 for the CARA/Gaussian case are given by:  

 Cs1(n;r1, ζ) = λ1-1+ξ1x 1-F x, n, ζ dx
L2(n)

L1(n)
 (T11)

where r1= (λ1, ξ1) with λ1 > 1,	ξ1 > 0, and where F(x, n, ζ) is the cdf of the normal 

distribution with mean nμ and variance σ2[n+n n-1 ρ] corresponding to the loss 
distribution X n  = ∑ X(ai)

n
i=1  for a BoB of size n.  

Period 2 reinsurance costs are state dependent and are given by: 

 Cs2(n;r2(w), ζ) = λ2(w)-1+ξ2(w)x 1-F x, n, ζ dx
L2(n)

L1(n)
. (T12)

The reinsurance costs (T11) and (T12) are net of expected reinsurance payments (this 
is the effect of subtracting 1 from the respective loading factors, λ1 and λ2(w), in the first 
term under the integral). Thus, the total expected reinsurance payouts and premiums for 
this XoL treaty are given in a standard linearly increasing loading factor form by: 

 Payouts1(n;r1, ζ) = 1-F x, n, ζ dx;
L2(n)

L1(n)
 (T13)

 
Payouts2(n;r2(w), ζ) = 1-F x, n, ζ dx;

L2(n)

L1(n)
 (T14)

 
Premiums1(n;r1, ζ) = λ1+ξ1x 1-F x, n, ζ dx;

L2(n)

L1(n)
 (T15)

 
Premiums2(n;r2(w), ζ) = λ2(w)+ξ2(w)x 1-F x, n, ζ dx;

L2(n)

L1(n)
 (T16)
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where r2(w)= (λ2(w), ξ2(w)) with λ2(w) > 1, ξ2(w) > 0, w ∈ {d, u}.  

In line with our assumption that the state d (respectively u) represents a decrease 
(respectively increase) in capital cost relative to period 1, we assume: 

 λ2(d) ≤ λ1≤ λ2(u); ξ2(d) ≤ ξ1≤ ξ2(u). (T17)

Note that the cdf F(x, n, ζ) is identical in both periods, since we assume that the hazard 
distribution is identical in both periods (of course the BoB may change for the SY insurer 
between periods 1 and 2). For the same reason, for any fixed BoB of size n, the 
attachment points L1(n), L2(n) are also unchanged between periods 1 and 2. 
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