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The theory of the singlet ground state for the s-d exchange model is extended to the core 
of d-electrons with orbital degeneracy. The effective s-d Hamiltonian is derived from the 
extended Anderson Hamiltonian by the Schrieffer-Wolff canonical transformation. On the basis 
of the effective Hamiltonian, the ground-state wave function and the ground-state energy are 
calculated. The anomalous part of the ground-state.energy is given by -Dexp[N/(2l+1)pJ], 
independently of the d-electron number, 'fhen the Hund coupling is neglected compared with 

the effective s-d interaction. This bindirlg energy is much larger than that for a localized s

electron because of an extra factor of 1/(2l+1) in the exponent. This large value is caused 
mainly by the orbital quenching. For a more realistic case in which the Hund coupling is 

larger than the s-d interaction, it reduces to a smaller value of -Dexp[(2l+1)N/pJ] for a 
half-filled shell in which orbital exchange does not exist. This value is due purely to the 
spin quenching. Qualitative discussion is given about the spin quenching and orbital quenching 

on the effective Hamiltonian derived for n=2l, n being the number of d-electrons. 

§ I. Introduction 

This paper deals with a problem concerning the ground state for d-electrons 

of a magnetic impurity atom in nonmagnetic metals, by extending the theory of 

the singlet ground state developed for the s-d exchange model.1l-BJ 

The usual s-d exchange Hamiltonian is expressed by 

(1·1) 

where o- represents the Pauli spin IP.:~trix and S the localized spin possessed by 

the impurity atom. at, and ak, are the creation and annihilation operators for a 

conduction electron with wave vector k and spin s. This form of the s-d exchange 

Hamiltonian describes s-wave scattering of the conduction electrons by the localized 

spin. Therefore, this Hamiltonian is a correct expression for the local s-orbital 

with spin the magnitude of which is 1/2. 

For local d-electrons, d-wave scattering IS important and 111 this case d-part 

of s-d exchange integral J(k', k) 

*' Now at the Department of Physics, University of Yokohama City, Mutsuura, Kanazawa-ku, 

Yokohama. 
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1484 I. Okada and K. Yosida 

(1·2) 

should be taken. In (1· 2), P 1 and Y1m are respectively Legendre polynomials 
and the spherical harmonics and !Jk represents the direction of wave vector k. 
If l-part of (1· 2) is used in place of J in (1·1), the s-d exchange Hamiltonian 
for d-wave scattering is obtained as 

- -Jt 1 2R3 "" kk' "" t S - --.-.---- ~. £....J ak'Lms'tTs'saklms• ., 
2N 2l+ 1 3 kk' mss' 

(1·3) 

where aLms represents the creation operator of the ·electron whose wave function 
is given by the spherical l, m-wave 

(1·4) 

R being the radius of the spherical crystal, j 1 the spherical Bessel function, and 
it is related to at. 

(1·5) 

This form of H.a expressed by (1· 3) may be used for discussing the Kondo 
effect of the localized d-orbitals of iron-group impurities. Since this Hamiltonian 
does not express the orbital states of d-electrons explicitly, some ambiguities 
remain except for a special case of the half-filled shell, for which (1· 3) repre
sents the proper s-d Hamiltonian as will be shown in this paper. 

In order to derive the s-d effective Hamiltonian which describes the orbital 
states ford-electrons explicitly, one should start with the Anderson Hamiltonian9l 

extended to the case of local degenerate d-orbitals. This is done in the next 
section for d-orbitals by the use of the Schrieffer-Wolff transformation.10l In § 3 
the starting ground-state wave function in perturbative approach is investigated 
for the case in which an impurity atom has one d-electrons. The scattering 
t-matrix for this effective Hamiltonian is calculated in the approximation that the 
most divergent terms are retained in § 4. In § 5 the energy and the wave 
function of the singlet ground state are calculated by the perturbational method 
developed so far for the usual s-d ·exchange Hamiltonian (1·1) .··· This calculation 
is extended to the general case in which an impurity atom has n d-electroris 
in § 6 without taking into account the Hund coupling and the case in which the 
Hund coupling is taken account of is discussed in § 7. 
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Singlet Ground State of the Localized d-Electrons 1485 

§ 2. Effective Hamiltoniap for local d-electrons 

The usual s-d exchange Hamiltonian Jor S = 1/2 is derived from the Anderson 

Hamiltonian in the limit of a large intra-Coulomb integral U between two localized 

electrons, by the perturbation method or by the Schrieffer-Wolff transformation.10l· 11l 

The Anderson Hamiltonian for degenerate d-orbitals may be written as12l-l4J 

(2·1) 

(2·2) 

(2·3) 

(2·4) 

Here H, and H"' represent respectively the energy of the conduction electrons 

and that of the localized d-electrons, and Hmix represents the mixing Hamiltonian 

expressing mutual transfer between conduction and localized d-electrons. at, and 

dJ.. 'are the creation operators for conduction and d-electrons, respectively. The 

second and the third terms in Hd. express the intra-Coulomb and exchange interac

tions between d-electrons in the impurity atom. This form of interaction which 

satisfies rotational invariance in the real space and the spin space was adopted 

by Dworin/6l and it can also be expressed as 

(2·5) 

where nd., Sd. are, respectively, the number and .spin operators of d-electrons. 

The matrix element Vkm in H,a is given ·by 

Vkm = Jv S e-tkryimp(r)Rd.(r)Y1m(SJ.),r 2drdSJ, (2·6) 

where the impurity pQtential is assumed to be spherically symmetric, anq Rd.(r) 

· represents the radial part of the d-electron wave function. If one introduces the 

mixing matrix element between the sp~erical l, m-wave given by (1·4) and the 

localized d-orbital 

(2·7) 

Vkm 1s given m terms of vkz as 

(2·8) 
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1486 I. Okada and 1(. Yosida 

With the use of (2 · 8) m (2 · 4), Hm 1 ~ can be expressed as 

Hmix = L:; Vktaltmsdms +h. c., 
km 

where the summation over k is the one-dimensional sum. 

(2·9) 

Now we consider the case in which sd and U are very large compared with Vkt 

and eliminate Hmix from the Anderson Hamiltonian by the Schrieffer-Wolff trans
formation. In order to do so, we introduce the matrix S which satisfies the 
following relations ; 

[H.+Hd, S] =Hmix, 

H=e8 HAe- 8 =H,+Hd+t[S,Hmix] +t[S, [S, Hm;x]] + ···. 

(2·10) 

(2·11) 

For the case of Jt = 0, this matrix S can be obtained for general nd as 

(2·12) 

(2·13) 

(2·14) 

(2·15) 

Here and also in the following, q denotes the degree of degeneracy of d-electrons, 
namely, q=2(2l+1) =10. 

Now, the d-electron number in the most stable unperturbed state is assumed 
to be nd = n. Then we have 

JEn=sd+ nU>sF, 
(2·16) 

where ep is the Fermi energy and is taken as the origin of energy. 
With the use of matrix S obtained by (2 ·12) ~ (2 ·15), the transformed 

Hamiltonian is given to second order in vk by 

H=H.+Hd+H.d, 

H - J " [ t 'dt d. 1 t . . -It d J ld.- -- "-.J ak'm's'akms mi m/s'- -ak/msakmsUm/s' m'l' , 
2N •• ~,:;;,., q 

(2·-17) 

(2·18) 

Here those parts which are constant and which change the number of d-electrons 
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Singlet Ground State of tAe Localized d-Electrons 1487 

are omitted, and the ek-dependence of J is also neglected. The effective s-d 

interaction of (2·17) is chosen so as to exclude the part due to potential scatter

ing which is diagonal with respect to the d-state by subtracting the second 
terms.lo), 16) 

When the intra-exchange integral Ji between d-electrons is taken into account, 

the calculation becomes somewhat complicated, though practicable, because the 

spin multiplicity should be taken care of. So, here, the effective Hamiltonian 

for the case in which the impurity atom has one d-electron in the unperturbed 

state is only written down: as 

, H=H.+Ha+H.a, 

H - " { Jl t dt d J2 t dt d 
att·:- - k-J -ak'm's'akms m• m's' + -ak'm/sakmB m•' m's' 

k' km'm•'• 2N 2N 

- _!i_al'ms'akmsdJ.,,dm'•'- _!i_al'msakmsdJ.,,,dm's'}, 
2N 2N 

(2·19) 

~=.lvkFI2 U(ea+ U) -Ji' <O' 
2N · ea(ea+ U-Ji) (ea+ U+Ji) 

(2·20) 

J2 -1 12 -Ji <O -- VkF , , 
2N (ea+ U-Ji) (ea+ U+Ji) 

(2· 21) 

_!i_ = _!_ (~- (2l-1) _!i_). 
2N q 2N 2N 

(2·22) 

The first term of the effective s-d interaction of (2·19) exchanges both orbital 

and spin states, the second only orbital states and the third only spin states. 

The second and third terms. seem to be important in distinguishing between 

orbital and spin states for the case in which the impurity atom has one localized 

d-electron, but, for simplicity, we shall neglect Ji compared with U in the s-d 

effective interaction and take account of it only in Ha in this paper. 

§ 3. Zero-approximation of the ground-state wave function 

for the effective Hamiltonian 

In this section, we calculate the ground.,$tate wave function of zero-approxi

mation for the effective Hamiltonian for one' d-electron given by (2 · 17), which 

will be taken as a starting wave function of the ground-state wave function by 

perturbative approach. The zero-approximate wave function denotes the ground

state eigenfunction for the effective Hamiltonian in the subspace in which only 

extra one-electron is excited above the Fermi sea or extra one-hole is excited 

below the Fermi sea. In the present case, these two cases give different results 

as we. shall see later. 

First ~e shall consider the case in which one-hole is added to the Fermi 

sea. Since the effective Hamiltonian conserves the total angular momentum L. 
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1488 I. Okada and K. Yosida 

and spin S., we seek for the solution in the subspace of L.=O and S.=O. Such 
a wave function 1s written as 

(3·1) 

where JF) represents the wave function of the Fermi sea and amplitude'S T~cms 

are determined by the Schrodinger equation 

(3·2) 

Inserting (3 ·1) into (3 · 2) and cutting the states with electron-hole pair excitations 
besides one hole excitation, we obtain the following eigenvalue equation with 
reSpeCt tO amplitudeS TkmB; 

(3·3) 

We assume that the state-density for l-wave conduction electrohs is a constant 

p*> between -D and D and zero outside, and introduce Gm, arid X by 

(3·4) 

1 1 ~ p -E _ 1 
--~ log---. 

2N 1c - e~c- E 2N D X 
(3·5) 

Then we have 

{-X- J)Gms+J~ Gm's'=O, 
\ q m'•' 

(3·6) 

which leads to the following eigenvalue equation: 

(3·7) 

Only the first factor of (3 · 7) gives rise to a negative-value solution for X, ·· 

(3·8) 

This solution expresses the bound state whose binding energy, is given by 

E= -Dexp . [ 2N J 
pJ(q''-:1/q) . .. 

(3·9) 

For this solution, amplitudes T~cms are i11dE)pendentof m and s ;mdso it repre~ents 

a singlet state with respect to both orbital and spin states, th~t is, in this state 
orbital and spin moments are quenched. 

*> p is connected with the state density Pp for plane waves by p= (3/2kF2R 2)Pp· On the other 
hand, lv~cFI 2 =ikF 2 R 2 (Jv~cp.ml 2 ) by (2·8). Therefore, the relation pJ=ppJp holds if one defines ·'p by 
replacing Jv~cFI 2 in the expression of J with (v~cFmJ2). · 
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Singlet Ground State of .the Localized d-Electrons 1489 

As shown above, W('! have obtained the singlet bound state by making an 

extra hole excited below the Fermi sea coupled with a localized d-electron, while 
the state with an extra electron added to the Fermi sea coupled with the lo~alized 
d-electron does not give any singlet bound state. For this case, the zero-approxi
mate wave function is given by 

(3·10) 

Inserting this wave function into the Schrodinger equation, we obtain the follow
ing equation for amplitudes Fkms: 

(3·11) 

Corresponding to (3·4) and (3·5) we introduce Gms and X in which the sum
'illation is now taken over the states above the Fermi energy. Then (3·11) gives 

(x-: J)Gms+JG_m-•=0, 

which leads to the eigenvalue equation 

The bound-state solution is given by 

I 1 \ 
X= (1+-JJ, 

, q I 

[ 2N · J 
E= -D exp p(l+(1/q))J . 

The amplitudes for this solution satisfy 

(3·12) 

(3·13) 

(3·14) 

(3·15) 

This state has (2l+ 1)-fold degeneracy. If one introduces the intra-exchange Ji, 

this level splits into two levels having l-fold and (l+ 1)-fold degeneracies. These 

belong to the states of (S, L) = (1, 1), (1, 3) and those of (S, L) = (0, 0), (0, 2) 
and (0, 4) for l = 2. Thus: in the zero-approximation, the degeneracy of the ground 
state is not removed by the s-d interaction in contrast to the case in which a 
hole is coupled to the d~electron. This is quite natural, because our Hamiltonian 
has not particle-hole symmetry from the beginning for' the present case where 
one of ten local d-states is occupied. 

For the usual s-d exchange model, the fact is recognized that if the bound
state solution in its zero-approximation is degenerate, this bound-state solution 
disappears in its final stage in which particle-hole excitations are taken into 
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1490 I. Okada and K. Yosida 

account by the perturbation calculation starting from the zero-approximate state. 7h 17> 

For the present case, also, the bound state solutions having degeneracy in the 

starting approximation disappear as particle-hole excitations are taken into account 

and only the non-degenerate solution survives in the final stage. Before we show 

this fact by taking into account higher-order effects, we shall calculate the scat

tering t-matrix for the present effective Hamiltonian (2 ·17) in the approximation 

in which the most divergent terms are taken into account. 

§ 4. Scattering t·matrix 

In this section we calculate the scattering t-matrix for one occupied d-electron 
m the most divergent approximation after the Abrikosov theory18> for the usual 

s-d model. This calculation can be done in a way quite parallel to what Abrikosov 

has done for the s-d model and we have the following integral equation for the 

scattering matrix r (w): 

(m1s1o massir(t) imzsa, m,s,) 

J J 1 = - -tJm1miJmamaiJslsiJszsa +- -tJmlmz?Jmam,(Jslsztlsas, 
2N 2N q 

- rtds :E {(m!Sb masair(s) im5ss, msSa)(msSs, mssair(s) lm2s2, m,s4) Jo m 5m 8 
B5Be 

(4·1) 

In the matrix element (m1s1o mass I r (t) I m2s2, m 4s,), m 1s1 and m2s2 denote orbital and 

spin states of the conduction electron and m 3s8 and m 4s4 denote those of the local 

d-electron. t is defined by p log(D/Iwl). The first and the second terms are 

nothing but the matrix element of the effective s-d interaction, and the third term 

consists of two parts AI and A2• AI represents the contributions from process 

(a) and A2 those from process (b) shown in Fig. 1. The matrix element of r 

can be put as 

(m1s1o masalrlm2sz, m4s4) 

(4·2) 
i-

because it is expected that r has the same structure as the s-d interaction. If 

one inserts this form of r into (4 ·1), the following integral equations for r 1, and 

---·--
m,s. 

(b) Aa 

Fig. 1. Two type~ of vertex function. 
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Singlet Ground State of the Localized d-Electrons 1491 

ro are obtained: 

rz.(t) = --+q dsr~.(s), J st 
2N o 

(4· 3) 

ro(t) =--- dsd.(s). J 1 st 
- 2N q o 

(4·4) 

Equation ( 4 · 3) can easily be solved and leads to 

J { pJ D} -1 rz.{w) = -- 1+q-log-
2N 2N lwl 

(4·5) 

and 

ro (w) = - _!_rz. (w). (4·6) 
q 

rz.(w) and r0 (w) have a pole at lwl =wk=D exp[2NjqpJ] =Tk. This value of Tk 

is very big compared with the value of D exp[N/pJ] on account of an extra 

factor q = 10 for l = 2 in the denominator in the exponent. With the use of these 

results A1 and A2 of the third term on the right-hand side of (4·1) are calculated 

as 

= - ( __!___) { pJ log _!!____/ ( 1 +.q pJ log _!!____)} 
2N 2N. lwl 2N .. lwl 

{ ' 1' 2 } 
X ( 1 + q') iJm1m2iJmamiJs1slJsas•- -;;_iJm1m.iJm2maiJs1s.iJs2sa , 

(4·7) 

= (_!_) { pJ log _!!____/ ( 1 + q pJ log _!!____ J} 
2N 2N lwl , 2N lwl' 

X { : 2 iJm1m2iJmam.iJs1s2iJsas• + ( q- : ) iJm1m,iJm2maiJs1s,iJs2sa}. 

(4·8) 

These two A's play the role of integration kernel of integral equation which the 

the amplitude for the ground-state wave function satisfies.19l 

§ 5. The ground-state wave function. and its energy eigenvalue· 

for one local d-electron 

After the method developed for the s-d model, we expand the ground-state 

wave function in the perturbation series, starting with the zero-approximate wave 

function (3 ·1) or (3 ·10). For the case in which a hole is coupled with the 
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1492 I. Okada and K. Yosida 

d-electron, this expansion becomes 

+ ···. (5·1) 

By inserting (5 ·1) into the Schrodinger equation, the following relations between 
the amplitudes r are obtained: 

(5·2a) 

(5·2b) 

In (5 · 2a) and (5 · 2b), a single suffix m is used for ms and [ · · ·] m T indicates 
the antisymmetrized form: 

(5·3) 

From the set of equations (5 · 2a), (5 · 2b), · · ·, we' derive the equation for the 
lowest amplitudes rkmB• This equation for the bound-state solution. in which 
Tkms=Tk holds is calculated as 
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Singl~t Ground, State of the Localized d-Electrons 1493 

T(ea) {,-ea-E+ (__{__) 2.E(_!_ -q)-1 + ···} 
, 2N 4,o q D4,~6 

= - ( q- _!_) ( __{___) .E r1 + ( 1- \) ( __{___ r .E - 1 r1 
q, 2N 1 _ q 2N- 1,2 D 2, 16 

---rl ---- --r1 ---r2 1.} 11{1 1 
D2,u · q Ds,2s Ds,1s D1,2s 

+···, (5·4) 

where the suffixies k, are abbreviated simply to i, and D 1, 28 is used for energy 

denominator (e1 - e2 _: e8 - E). Carrying out the summations in (5 · 4) with 

l~garithmic accuracy or in the most divergent approxim~tion, we obtain 

(1 1) 1 (qJ) 2 "r 1 -ek-ek,-E - -- - - p "'-' k' og ---=-----"'------

l q2 2N k' D 

x [1+ qpJ log· -ek-ek,-E + ( qpJ log -ek-ek'-E) 2 + ... J. 
2N D 2N D 

If we here identify the series in pJ/2N in the integration kernel as the geometric 

series, (5 · 5) can be written as 

(-ek-E)T(ek)=-(1- 1,) qJp so r(e')de'-(1- 1
2 ) 1a(qJp)a 

· , _q 2N -» q q 2N 

x f»r(e') {log -ek~'-E /(1- ~~- log -ek-~'-E)}ae'. (5·5) 

E is defined by 

E=E-.JE' (5·6) 

where LIE is called the normal part of the energy which is obtained by the usual 

perturbation calculation. I 

The integral equation (5 · 5) can be more generally written as 

( -ek-E)Tkm= .E rk'm'{(m', miH.alm, m') 
1 k'm' 

(5·7) 
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1494 I. Okada and K. Yoshida 

where (mh maiH.alm2, m4) and (mh msiA1Ca>) lm2, m4) are given, respectively, by 

the sum. of the first and second terms of (4·1) and by (4·7). The correspond

ing integral equation for the amplitudes r~m of cj/, (3 ·10)' in which an extra 

electron excited above the Fermi sea is coupled with the d-electron, is given by 

(ek-E)Tkm=- I:; rk'm'{(m, -miH.alm', -m') 
k'm' 

+(m, -miA2(ed-e'-E)Im', -m')}, (5·8) 

where (mh m 8 l A21 m2, m4) is given by ( 4 · 8). With the use of (4 · 8) for A2 and 

relation (3. 15) which says rk-m±B = - TkmB = - rk> (5. 8) can be written as 

(5·9) 

This integral equation can also be derived by direct calculation. The integral 

equations (5 · 5) and (5 · 9) · can be solved with logarithmic accuracy by applying 

Yoshimori's method.6> Calculation is straightforward. Putting 

G(e)= fr(e')de', 

qpJ -e-E 
P(e) =1-~-log ---

2N D 

1 
a=1-~ 

2 ' q 

we obtain a bound-state solution for (5 · 5) as 

G (e)= G( -D) [P(e) ]a-[P(O) ]<a-P>[P(e)]P. 

1- ((3/a) [P(O)]<a-P> 

(5·10) 

(5·11) 

(5·12) 

(5·13) 

The eigenvalue E is determined by the relation qbtained by putting e = - D in 

(5·13)' 

1= 1- [P(O)]<a-P> 

1-((3/a) [P(O)]'a-P> 
(5 ·14) 

This relation is satisfied by P(O) = 0, namely, 

E= -D exp[( 2 l+~)pJ]. (5·15) 

It is noted· that the binding energy I El 1s enlarged by a factor (2l + 1) in the 

denominator of the exponent. 
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Singlet Ground State of the Localized d-Electrons 1495 

On the other hand, for (5 · 9) we have no bound-state solution except for 
l = 0. Defining, as before, 

P'(e) =1- qpJ log e-E 
2N D ' 

(5·16) 

1 1 
a'=-+-, 

q l 
(5·17) 

we have the relation, corresponding to (5 · 14), which determines the eigenvalue 
-E as 

1 = 1- [P' (0) ]<a'-,8') . 

1- ({3' /a') [P' (0) ]<a'-tl'> 
(5·18) 

Since a'- {3' = t >O for l = 0, the binding energy is obtained as 

but for l>1, a'- {3' becomes negative, and therefore, we have P' (0) = oo which 
means E = 0. Thus, we have no bound-state solution from (5 · 9). 

§ 6. Ground state for n d-electrons 

In the preceding section we have derived the ground singlet wave function 
for one localized d-electron coupled with the conduction electrons by the s-d 
effective interaction. In this and the next sections we consider the case in which 
the impurity atom carries n dcelectrons (l<n<10). For this case, the intra
exchange interaction between d-electrons may be neglected in the effective s-d 
Hamiltonian, but it may not be neglected in Ha. On account of this Hund 
coupling included in Ha, the situation becomes .. complicated. Therefore, to avoid 
this difficulty, we take two extreme cases; in one case the intra-exchange coupling 
J, is assumed to be zero, and in the other case J~, is much greater than H•a· 

We begin with the consideration for the first case. By inferring from the 
results obtained for one d-electron, a starting wave function for the ground singlet 
state may be put as 

(6·1) 

where n is assumed n<2l+l. For n>2l+1, electrons and holes are exchanged. 
Inserting (6 ·1) into the Schrodinger equation and cutting the higher-order states 
with particle-hole excitations, we obtain the equation for amplitudes T as 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

9
/5

/1
4
8
3
/1

9
1
8
2
7
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1496 I. Okada and K. Yosida 

j [ kl k. . . . k' ... k l 
J " . " 

+-:E :E :E r mlm2 ... m/ ... m,,. 
2N II:' i=l (mi'Bi')=F(mJBJ) 1 

1=1,2,···'1-l,i+l,···n S1 S2 · · · Si · · · S,. 

(6·2) 

Here we put r as T= IH=l T~~:jmJ•i and divide (6· 2) by r. Then we obtain 

( E) J " 1 { n } :E -ekj-- +-:E--:E :E rk'ms--rk'miBi =0, 
i n 2N i=l Tk·m·•i k' <m•>+<mi•J) q 

' ' (i=FJ) 

(6·3) 

where the summation over ms is taken over the unoccupied states and misi. If 

rkms are independent of ms and satisfy the equation 

( -e~~:- E)rk +L{q- (n-1) -~} :E r~~:,=O, 
n 2N q k' 

(6·4) 

Eq. (6·3) 1s satisfied by such T~~:. From (6·4) the energy eigenvalue is calcu-

lated as 

E . D [ 2N ] = -n exp . 
{q- (n-1)-n/q}pJ 

(6·5) 

In order to take into account the higher-order effects due to particle-hole pair 

excitations, we expand the ground-state wave function as 

For the suffixes possessed by the second amplitudes, 

n+l n n+l n 

:E mi-mn+2=:E m/, :E Si- Sn+2 = :E S/ 
l=l i=l i=l i=l 

are satisfied. Also in the present case, we can derive an equation for the first 

amplitudes T[k1k2· · ·k,] that are independent of (misi) by the same iterative 

procedure as has been done in § 5. To do this needs a somewhat lengthy calcu

lation but its principle is so simple that we shall here write down only the 
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Singlet Ground State of the Localized d-Electrons 1497 

result without describing detailed processes of calculation. 

(6·7) 

where e£ is used for ek£ for simplicity, and a,. and /3,. are respectively defined by 

n-1 n a,.=1-----, 
q l 

(6·8) 

This equation (6 · 7) has been obtained within logarithmic accuracy. In deriving 
the integration kernel those scattering processes in which more-than-one holes 
participate have not been taken into account. Their contributions are always 
less-divergent. 

As has been shown before, the solution for the equation of zero approximation 
obtained by omitting the term with the integration kernel can be solved in a 
form of the products of one-particle amplitudes. ·For the complete equation of 
(6 · 7), a solution cannot be obtained in such a simple product form, but it can 
be obtained with logarithmic accuracy in the following form: 

(6·9) 

where suffix n is attached to amplitude T to signify explicitly the number of d
electrons. If we. introduce T,. of this form in (6·7), assume /(log(( -e-E)/D))/ 
(-e- E) for T 1(e; E), which will be confirmed later and neglect less-divergent 
quantities, then (6· 7) is reduced to the following one-particle equation: 

~ N qpJ so ~ (qpJ)2 ( -e-E,.)T1(e; E.,.)= -a,.-- T1(e'; E.,.) de' -a,.f3n --
. 2N -D 2N 
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1498 I. Okada and K. Yosida 

x fJlog -e-~-En /(1- ~~log -e-~-En )}r1 (e';En)de'. 

(6·10) 

A bound-state solution for this equation is given by (5 · 13) modified by replacing 

a and {3 by an and f3n, and En is given by 

~ N 
En= -nDexp . 

(2l+ 1)pJ 
(6·11) 

We can see from this result that the singlet ground state for the n-d-electron 

system has a binding energy whose exponent is the same as that for one-d-electron 

system. 

§ 7. Effect of a strong Hund coupling 

In the actual case, a strong Hund coupling will change the results obtained 

above. In the limit of a strong Hund coupling, the d-electrons are mutually 

coupled and they are in the state of the lowest multiplet specified by the total 

angular momentum L and the total spin S. 

For the half-filled shell with d-electron number n equal to 2l + 1, the effective 

s-d Hamiltonian can easily be written down by taking only the terms of m = m' 

in (2 · 17), because in this special case d-electrons cannot change their orbital 

states, and by projecting them into the subspace of S = 5/2, that is, by replacing 

d~,dms' by (2/ q) :Em d~,dmr'· The result is 

(7 ·1) 

This can be written in the following form: 

J 
H.a = - L; at'ms'o-,,,. Sakms. 

2 (2l + 1) N kk'm,.' 
(7 ·2) 

This is nothing but the form given by {1· 3) and has first been used for discus

sing the Kondo effect of degenerate d-orbitals by Schrieffer.14l However, this 

form is allowable only for the half-filled shell. 

For the s-d exchange Hamiltonian given by (7 · 2), 2l + 1 conduction electrons 

or holes can be coupled with the localized spin S, forming a singlet state on 

account of 2l + 1 d-wave components. The situation is quite similar to the case 

- for the s-d model with S = 1/2, and the energy lowering is given by 

(7 ·3) 

This has a factor 2l + 1 in the numerator of the exponent, and is therefore very 

small compared with the value given by (6·11). This is due to the absence of 
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Singlet Ground State of the Localized d-Electrons 1499 

orbital exchange in this case. 

For the case in which d-electron number is less than the half-filled value of 
2l + 1, the lowest multiplet has an orbital angular momentum L as well as a spin 
momentum S. Therefore, for such cases, the s-d Hamiltonian should be projected 

onto the subspace made by L and S. This process can most easily be done for 

the case in which one electron is removed from the half-filled shell. For this 
case of n = 2l, there exists one multiplet with the maximum value of S. 

For this case of n = 2l, the effective Hamiltonian obtained by the projection 

process mentioned above can be written down as 

+ ~J (-1Yt ~ ( 1)-M'-M t T(M' M) ~ ~ - ak-M'Bak'-Ms' -.(-
2N 2 kk'MM' .,, 

X[&,,,+~ (s·S),.,]. (7·4) 

In this expression the state of the localized d-electrons is specified by z-components 

M and M, of the orbital and spin moments L and S whose magnitudes are both 
equal to l. T (M' ~ M) denotes the ope:t:ator of changing the orbital state of d
electrons from M to M'. The second term of (7 · 4) exchanges spins between 
conduction electrons and the localized d-electrons, and the third term consists 
of the part which exchanges only orbital states and that which exchanges both 

orbitals and spins. 

For n = 1, the effective Hamiltonian (2 · 17) can be written in the represen
tation in which the d-electron state is specified by M and M, as 

J 1 ---
2N 2 

(7 ·5) 

As shown in the previous sections, this Hamiltonian has an effect of quenching 
spin and orbital moments of the lodttlized d-electron simultaneously. In contrast 

to this special case, the effective Hamiltonian given by (7 · 4) has different effects 
on spin quenching and on orbital quenching through the process of projection to 

the L-S subspace. This can be seen from the fact that the Abrikosov-type integral 
equations which are satisfied by three parts of the scattering t-matrix, correspond
ing to spin exchange, orbital exchange and orbital and spin exchange terms of 

(7 · 4) give rise to different w-dependence for these three parts. Therefore, in 
the following we shall give qualitative discussion on the quenching of spin and 

orbital moments on the basis of the effective Hamiltonian (7 · 4) for n = 2l. 

Hamiltonian (7 · 4) can also he written as 
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1500 I. Okada and K. Yosida 

(7·6a) 

+ J c -w~ "' c 1)-M'-M t TCM' M) - £...J - ak-M'sak'-M• ~ · 2N 2 Tclc'MM's 
(7·6b) 

J ( -1Y1
' "' ( 1)-M'-M t +- £...J - ak-M'Iak'-Ms' 2N 8 lcTc'MM'BB' 

M=FM' 

X T(M'~M) (s·S),,,. (7 · 6c) 

In this expression, three parts mentioned before, namely, spin exchange, orbital 
exchange and spin and orbital exchange parts are more clearly separated. The 
first spin exchange term (7 · 6a) has been adopted by Schrieffer for non-S-state ions. 
Under this term alone, the ground-state wave function will be described by a 
bilinear form of the product of d-electron wave function cp (M, M,) and the con
duction-electron wave function in which 1/2 m-state hole with up-spin and 1/2 
m-state electron with down-spin are bound around the impurity ion. Here, for 
simplicity, M, is taken as its maximum value of S. Thus, in this ground 
state the localized spin will be quenched, but the orbital moment will be unaf
fected. The characteristic energy for this spin quenching mechanism will be 
given by D exp[(2S) (N/Jp)]. 

The second term (7 · 6b) quenches only the orbital moment of the impurity 
ion. If one expresses the ground-state wave function stabilized by this term in 
a form of 

I:; c/Jcond(M)cp(M, M,), (7·7) 
M. 

the bound electrons and holes in c/Jcond (M) will be described by the following: 

bound electron number 1-a ( -M, s), 

bound hole number a (m1 s) (m2 s) (ms s) · ·· (m2z s) lmt+-M, 
(7·8) 

where the number of bound holes a is given by the neutrality condition (1-a)=2la, 
namely, a=1/(2l+1). These numbers of bound holes and electrons are deter
mined by the Anderson condition20> for the matrix elements of (7 · 6) between 
two different M-components not to vanish. The characteristic ··energy for this 
process is given by D exp [ ( 4/2l + 1) (N / pJ)]. 

The third term represents simultaneous exchange of spin' and orbital states 
between conduction electrons and the localized d-electrons and will link mutually 
independent spin exchange and orbital exchange given by (7 · 6a) and (7 · 6b). 

In the ground state for the whole s-d effective Hamiltonian (7 · 6), the local 
spin and orbital moments are both quenched. The ground-state wave function 
would be given by 
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Singlet Ground State of the Localized d-Electrons 1501 

1/Jground = :L; 1/Jcond (M, M,) ¢ (M, M,), (7 ·9) 
M,M8 

m which the wave function of conduction .electrons in each (M, M,)-component 

1s characterized by the following numbers of bound electrons and holes: 
I 

electron (1-a) ( -n) (- (l-1H) ... en), (-lt) 
1/Jcond(M=l, M,=S)~ . 

hole a (-(l-1)j)(-(l-2)t) .. ·((l-1)j)(lj), 

i/Jcond(M=l-1, M,=S)~ 
electron (1-a) c-n) .. ·(l~), (-(l-1)j) 

hole a (-lj)(-(l-2)j)· .. (l-1j)(lj), 

etc. (7 ·10) 

a is given by (1-a)2(l+i)=2al, namely, a=(l+1)/(2l+1). 

Although in this paper we cannot derive the two characteristic energy values 

T Ks and T Ko, corresponding respectively to spin quenching and orbital quenching, 

the former value being much smaller than the latter, we can derive the phase 

shifts of the conduction electrons at the Fermi surface from the number of bound 

electrons and holes in each (M, M,)-component of the ground-state wave function 

by the use of the Friedel relation. The phase-shift values thus obtained im

mediately lead us to the following residual resistivity for l = 2: 

p=5p0 sin2 (;0 n-), (n=4) (7·11) 

where p0 denotes the resistivity value of s-d model (S = 1/2). This result coincides 

with the result obtained by the Hartree-Fock approximation for the case in which 

local spin and orbital moment are quenched. It is expected that this coincidence 

is generally valid. It is easy to see that the same result as Hartree and Fock's 

is obtained for general values of n when the Hund coupling is neglected. At 

high temperatures at which only orbital moment is quenched, the resistivity value 

can be evaluated by (7 · 8) as 

5 . 2( n ) 
p=2Po sm Sn' . (7·12) 

§8. Summary 

Starting from the Anderson Hamiltonian generalized to the case in which 

the orbital degree of freedom of the localized d-electron is taken into account, 

we have derived the effective s-d Hamiltonian for any number of localized d

electrons in the limit of strong correlation, U'P J; On the basis of this effec

tive Hamiltonian, the nature of the singlet ground state of the localized d-electrons 

has been studied in two limiting cases, one unrealistic in which the Hund cou

pling is completely neglected and the other realistic in which the Hund coupling 

is so strong that the state of the local d-electrons is restricted into the subspace 

of the lowest multiplet of the isolated ion. 
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1502 I. Okada and K. Yosida 

In the former case, the spin and the orbital moment are simultaneously 
quenched and the energy gain due to the formation of the singlet bound state is 
given by D exp [ (N I pJ) (11 (2l + 1))]. This large value of the binding energy 
indicates that the orbital moments of the localized d-electrons are quenched at 
high-enough temperatures. The residual resistivity is equal to the value obtained 
by the Hartree-Fock approximation. 

For a strong Hund coupling, the effective Hamiltonian for n=2l+ 1 and n=2l 
has been derived. For the half-filled shell, the situation is so simple that the 
groundstate wave function and its energy are easily obtained by using the results 
for s-d exchange model. The binding energy or the Kondo temperature is given 
by D exp [ (N I pJ) 2S]. For general cases, further investigations are needed, but 
here a qualitative discussion has been given for the ground singlet state for 
n = 2l and it has been concluded with the aid of the Anderson theorem that 
the residual resistivity again coincides with the Hartree-Fock value. 
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