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Abstract. We consider the Löwner differential equation generating univalent maps of
the unit disk (or of the upper half-plane) onto itself minus a single slit. We prove that
the circular slits, tangent to the real axis are generated by Hölder continuous driving
terms with exponent 1/3 in the Löwner equation. Singular solutions are described, and
the critical value of the norm of driving terms generating quasisymmetric slits in the
disk is obtained.
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1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk and T := ∂D. The famous Löwner equation was
introduced in 1923 [3] in order to represent a dense subclass of the whole class of univalent
conformal maps f(z) = z(1 + c1z + . . . ) in D by the limit

f(z) = lim
t→∞

etw(z, t), z ∈ D,

where w(z, t) = e−tz(1 + c1(t)z + . . . ) is a solution to the equation

dw

dt
= −w

eiu(t) + w

eiu(t) − w
, w(z, 0) ≡ z, (1)

with a continuous driving term u(t) on t ∈ [0,∞), see [3, page 117]. All functions w(z, t)
map D onto Ω(t) ⊂ D. If Ω(t) = D \ γ(t), where γ(t) is a Jordan curve in D except one of
its endpoints, then the driving term u(t) is uniquely defined and we call the corresponding
map w a slit map. However, from 1947 [5] it is known that solutions to (1) with continuous
u(t) may give non-slit maps, in particular, Ω(t) can be a family of hyperbolically convex
digons in D.
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Marshall and Rohde [4] addressed the following question: Under which condition on
the driving term u(t) the solution to (1) is a slit map? Their result states that if u(t) is
Lip(1/2) (Hölder continuous with exponent 1/2), and if for a certain constant CD > 0, the
norm ‖u‖1/2 is bounded ‖u‖1/2 < CD, then the solution w is a slit map, and moreover, the
Jordan arc γ(t) is s quasislit (a quasiconformal image of an interval within a Stolz angle).
As they also proved, a converse statement without the norm restriction holds. The absence
of the norm restriction in the latter result is essential. On one hand, Kufarev’s example [5]
contains ‖u‖1/2 = 3

√
2, which means that CD ≤ 3

√
2. On the other hand, Kager, Nienhuis,

and Kadanoff [1] constructed exact slit solutions to the half-plane version of the Löwner
equation with arbitrary norms of the driving term.

Let us give here the half-plane version of the Löwner equation. Let H = {z : Im z > 0},
R = ∂H. The functions h(z, t), normalized near infinity by h(z, t) = z−2t/z+b−2(t)/z2+. . . ,
solving the equation

dh

dt
=

−2

h − λ(t)
, h(z, 0) ≡ z, (2)

where λ(t) is a real-valued continuous driving term, map H onto a subdomain of H. The
question about the slit mappings and the behaviour of the driving term λ(t) in the case of
the half-plane H was addressed by Lind [2]. The techniques used by Marshall and Rohde
carry over to prove a similar result in the case of the equation (2), see [4, page 765]. Let us
denote by CH the corresponding bound for the norm ‖λ‖1/2. The main result by Lind is the
sharp bound, namely CH = 4.

In some papers, e.g., [1, 2], the authors work with equations (1, 2) changing (–) to (+)
in their right-hand sides, and with the mappings of slit domains onto D or H. However, the
results remain the same for both versions.

Marshall and Rohde [4] remarked that there exist many examples of driving terms u(t)
which are not Lip(1/2), but which generate slit solutions with simple arcs γ(t). In particular,
if γ(t) is tangent to T, then u(t) is never Lip(1/2).

Our result states that if γ(t) is a circular arc tangent to R, then the driving term
λ(t) ∈Lip(1/3). Besides, we prove that CD = CH = 4, and consider properties of singular
solutions to the one-slit Löwner equation.

The authors are greateful for the referee’s remarks which improved the presentation.

2. Circular tangent slits

We shall work with the half-plane version of the Löwner equation and with the sign (+) in
the right-hand side, consequently with the maps of slit domains onto H.

We construct a mapping of the half-plane H slit along a circular arc γ(t) of radius 1
centered on i onto H starting at the origin directed, for example, positively. The inverse
mapping we denote by z = f(w, t) = w − 2t/w + . . . . Then ζ = 1/f(w, t) maps H onto the
lower half-plane slit along a ray co-directed with R+ and having the distance 1/2 between
them. Let ζ0 be the tip of this ray. Applying the Christoffel-Schwarz formula we find f in
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the form

1

f(w, t)
=

1/w∫

0

(1 − γw) dw

(1 − αw)2(1 − βw)
=

β − γ

(α− β)2
log

w − α

w − β
+

α− γ

α− β

1

w − α
, (3)

where the branch of logarithm vanishes at infinity, and f(w, t) is expanded near infinity as

f(w, t) = w −
2t

w
+ . . .

The latter expansion gives us two conditions: there is no constant term and the coefficient
is −2t at w, which implies γ = 2α + β and α(α + 2β) = −6t. The condition Im ζ0 = −1/2
yields

−2α

(α− β)2
=

1

2π
.

Then, β = α + 2
√
−απ, and α(3α + 4

√
−απ) = −6t. Considering the latter equation with

respect to α we expand the solution α(t) in powers of t1/3. Hence,

α(t) = −
(

9

4π

)1/3

t2/3 + A2t + A3t
4/3 + . . .

and

β(t) = (12π)1/3t1/3 + B2t
2/3 + . . .

Formula (3) in the expansion form regarding to 1/w gives

β − α

2π

1

w
+

β2 − α2

4π

1

w2
+ · · · +

(
1 + 2

α

β
+ 2

α2

β2
+ . . .

) (
1

w
+

α

w2
+ . . .

)
= ζ. (4)

Remember that this formula is obtained under the conditions γ = 2α+β and (α−β)2 = 4απ.
We substitute the expansions of α(t) and β(t) in this formula and consider it as an equation
for the implicit function w = h(z, t). Calculating coefficients B2 . . . B4 in terms of A2, . . . , A4,
and verifying A2 = −3/4π we come to the following expansion for h(z, t):

w = h(z, t) = h(
1

ζ
, t) =

1

ζ
+ 2ζt +

3

2
(12π)1/3t4/3 + . . . .

This version of the Löwner equation admits the form

dh

dt
=

2

h − λ(t)
, h(z, 0) ≡ z. (5)

Being extended onto R\λ(0) the function h(z, t) satisfies the same equation. Let us consider
h(z, t), z ∈ Ĥ \ λ(0) with a singular point at λ(0), where Ĥ is the closure of H. Then

λ(t) = h(z, t) −
2

dh(z, t)/dt
= λ(0) + (12π)1/3t1/3 + . . .

about the point t = 0. Thus, the driving term λ(t) is Lip(1/3) about the point t = 0 and
analytic for the rest of the points t.
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Remark 2.1. The radius of the circumference is not essential for the properties of λ(t).
Passing from h(z, t) to the function 1

r h(rz, t) we recalculate the coefficients of the function
h(z, t) and the corresponding coefficients in the expansion of λ(t) that depend continuously
on r. Therefore, they stay within bounded intervals whenever r ranges within the bounded
interval.

Remark 2.2. In particular, the expansion for h(z, t) reflects the Marshall and Rohde’s remark
[4, page 765] that the tangent slits can not be generated by driving terms from Lip(1/2).

3. Singular solutions for slit images

Suppose that the Löwner equation (5) with driving term λ(t) generates a map h(z, t) from
Ω(t) = H \ γ(t) onto H, where γ(t) is a quasislit. Extending h to the boundary ∂Ω(t) we
obtain a correspondence between γ(t) ⊂ ∂Ω(t) and a segment I(t) ⊂ R, while the remaining
boundary part R = ∂Ω(t) \ γ(t) corresponds to R \ I(t). The latter mapping is described
by solutions to the Cauchy problem for the differential equation (5) with the initial data
h(x, 0) = x ∈ R\λ(0). The set {h(x, t) : x ∈ R\λ(0)} gives R\ I(t), and λ(t) does not catch
h(x, t) for all t ≥ 0, see [2] for details.

The image I(t) of γ(t) can be also described by solutions h(λ(0), t) to (5), but the
initial data h(λ(0), 0) = λ(0) forces h to be singular at t = 0 and to possess the following
properties.

(i) There are two singular solutions h−(λ(0), t) and h+(λ(0), t) such that I(t) =
[h−(λ(0), t), h+(λ(0), t)].

(ii) h±(λ(0), t) are continuous for t ≥ 0 and have continuous derivatives for all t > 0.
(iii) h−(λ(0), t) is strictly decreasing and h+(λ(0), t) is strictly increasing, so that

h−(λ(0), t) < λ(t) < h+(λ(0), y).
We will focus on studying the singularity character of h± at t = 0.

Theorem 3.1. Let the Löwner differential equation (5) with the driving term λ ∈ Lip(1/2),
‖λ‖1/2 = c, generate slit maps h(z, t) : H \ γ(t) → H where γ(t) is a quasislit. Then
h+(λ(0), t) satisfies the condition

lim
t→0+

sup
h+(λ(0), t) − h+(λ(0), 0)√

t
≤

c +
√

c2 + 16

2
,

and this estimate is the best possible.

Proof. Assume without loss of generality that h+(λ(0), 0) = λ(0) = 0. Denote ϕ(t) :=
h+(λ(0), t)/

√
t, t > 0. This function has a continuous derivative and satisfies the differential

equation

tϕ′(t) =
2

ϕ(t) − λ(t)/
√

t
−

ϕ(t)

2
.

This implies together with property (iii) that ϕ′(t) > 0 iff

λ(t)√
t

< ϕ(t) < ϕ1(t) :=
λ(t)

2
√

t
+

√
λ2(t)

4t
+ 4.
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Observe that ϕ1(t) ≤ A := (c +
√

c2 + 16)/2.
Suppose that limt→0+ supϕ(t) = B > A, including the case B = ∞. Then there exists

t∗ > 0, such that ϕ(t∗) > B − ε > A, for a certain ε > 0. If B = ∞, then replace B − ε by
B′ > A. Therefore, ϕ′(t∗) < 0 and ϕ(t) increases as t runs from t∗ to 0. Thus, ϕ(t) > B − ε
for all t ∈ (0, t∗) and we obtain from (5) that

dh+(λ(0), t)

dt
≤

2√
t(B − ε− c)

,

for such t. Integrating this inequality we get

h+(λ(0), t) ≤
4
√

t

B − ε− c
<

4
√

t

A − c
,

that contradicts our supposition. This proves the estimate of Theorem 3.1.
In order to attain the equality sign in Theorem 3.1, one chooses λ(t) = c

√
t. Then

h+(λ(0), t) = A
√

t solves equation (5) with singularity at t = 0. This completes the proof.
!

Remark 3.1. Estimates similar to Theorem 3.1 hold for the other singular solution h−(λ(0).t).

Remark 3.2. Let us compare Theorem 3.1 with the results from Section 2. The image of a
circular arc γ(t) ⊂ H tangent to R is I(t) = [h−(λ(0), t), h+(λ(0), t)], where h−(λ(0), t) =
α(t) = −(9/4π)1/3t2/3+. . . , and h+(λ(0), t) = β(t) = (12π)1/3t1/3+. . . , so that h−(λ(0), t) ∈
Lip(2/3) and h+(λ(0), t) ∈ Lip(1/3).

Remark 3.3. Singular solutions to the differential equation (5) appear not only at t = 0
but at any other moment τ > 0. More precisely, there exist two families h−(γ(τ), t) and
h+(γ(τ), t), τ ≥ 0, t ≥ τ , of singular solutions to (5) that describe the image of arcs γ(t),
t ≥ τ under map h(z, t). They correspond to the initial data h(γ(τ), τ) = λ(τ) in (5) and
satisfy the inequalities h−(γ(τ), t) < λ(t) < h+(γ(τ), t), t > τ . These two families of singular
solutions have no common inner points and fill in the set

{(x, t) : h−(λ(0), t) ≤ x ≤ h+(λ(0), t), 0 ≤ t ≤ t0},
for some t0.

4. Critical norm values for driving terms

In this section we discuss the results and techniques of Marshall and Rohde [4] and Lind
[2]. The authors of [4] proved the existence of CD such that driving terms u(t) ∈ Lip(1/2)
with ‖u‖1/2 < CD in (1) generate quasisymmetric slit maps. This result remains true for an
absolute number CH in the half-plane version of the Löwner differential equation (2), see
e.g. [2].

Lind [2] claimed that the disk version (1) of the Löwner differential equation is ‘more
challenging’, than the half-plane version (2). Working with the half-plane version she showed
that CH = 4. The key result is based on the fact that if λ(t) ∈ Lip(1/2) in (2), and
h(x, t) = λ(t), say at t = 1, then Ω(t) = h(H, t) is not a slit domain and ‖λ‖1/2 ≥ 4.
Moreover, there is an example of λ(t) = 4 − 4

√
1 − t that yields h(2, 1) = λ(1). Although
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there may be more obstacles for generating slit half-planes than that of the driving term λ
catching up some solution h to (2), Lind showed that this is basically the only obstacle. The
latter statement was proved by using techniques of [4].

We will modify here the main Lind’s reasonings so that they could be applied to the
disk version of the Löwner equation. After that it remains to refer to [4] and [2] to state
that CD also equals 4.

Suppose that slit disks Ω(t) correspond to u ∈ Lip(1/2) in (1) with the sign ‘+’ in its
right-hand side instead of ‘-’. Then the maps w(z, t) are extended continuously to T\{eiu(0)}.
Let z0 ∈ T\{eiu(0)}, and let α(t,α0) := argw(z0, t) be a solution to the following real-valued
initial value problem

dα(t)

dt
= cot

α− u

2
, α(0) = α0. (6)

Similarly, suppose that slit half-planes Ω(t) correspond to λ ∈ Lip(1/2) in (2) with the
sign ‘+’ in its right-hand side instead of ‘-’. Then the maps h(z, t) are extended continuously
to R \ λ(0). Let x0 ∈ R \ λ(0) and let x(t, x0) := h(x0, t) be a solution to the following real-
valued initial value problem

dx(t)

dt
=

2

x(t) − λ(t)
, x(t0) = x0. (7)

For all t ≥ 0, tan((α(t) − u(t))/2) += 0 in (6), and x(t)− λ(t) += 0 in (7) (see [2] for the
half-plane version). Let us show a connection between the solutions α(t) to (6), and x(t) to
(7), where the driving terms u(t) and λ(t) correspond to each other.

Lemma 4.1. Given λ(t) ∈ Lip(1/2), there exists u(t) ∈ Lip(1/2), such that equations (6) and
(7) have the same solutions. Conversely, given u(t) ∈ Lip(1/2) there exists λ(t) ∈ Lip(1/2),
such that equations (6) and (7) have the same solutions.

Proof. Given λ(t) ∈ Lip(1/2), denote by x(t, x0) a solution to the initial value problem (7).
Then the solution α(t,α0) to the initial value problem (6) is equal to x(t,α0) when

tan
α− u

2
=

x − λ

2
,

and

x0 = λ(0) + 2 tan
α0 − u(0)

2
.

The function u(t) is normalized by choosing

u(0) = x0 − arctan
x0 − λ(0)

2
.

This condition makes α0 and x0 equal. Hence, the first part of Lemma 1 is true if we put

u(t) = x(t, x0) − 2 arctan
x(t, x0) − λ(t)

2
. (8)

Obviously, (8) preserves the Lip(1/2) property.
Conversely, given u(t) ∈ Lip(1/2), a solution x(t, x0) is equal to α(t,α0) when

λ(t) = α(t,α0) − 2 tan
α(t,α0) − u(t)

2
. (9)
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Again (9) preserves the Lip(1/2) property. This ends the proof. !

Observe that in some extreme cases relations (8) or (9) preserve not only the Lipschitz
class but also its norm. Lind [2] gave an example of the driving term λ(t) = 4 − 4

√
1 − t in

(7). It is easily verified that x(t, 2) = 4 − 2
√

1 − t. If t = 1, then x(1, 2) = λ(1) = 4, and λ
cannot generate slit half-plane at t = 1. This implies that CH ≤ 4. Going from (7) to (6) we
use (8) to put

u(t) = x(t, 2) − 2 arctan
x(t, 2) − λ(t)

2
= 4 − 2

√
1 − t − 2 arctan

√
1 − t.

From Lemma 4.1 we deduce that α(1, 2) = u(1). Hence u cannot generate slit disk at t = 1,
and CD ≤ ‖u‖1/2. Since

sup
0≤t<1

u(1) − u(t)√
1 − t

= sup
0≤t<1

(
2 + 2

arctan
√

1 − t√
1 − t

)
= 4,

we have that ‖u‖1/2 ≤ 4. It is now an easy exercise to show that ‖u‖1/2 = 4. This implies
that CD ≤ 4.

Lemma 4.2. Let u ∈ Lip(1/2) in (6) with u(0) = 0 and α0 ∈ (0,π). Suppose that α(t) is a
solution to (6) and α(1) = u(1). Then ‖u‖1/2 ≥ 4.

Proof. Observe that α(t) is increasing on [0, 1], and α(t)−u(t) > 0 on (0, 1). Let u ∈ Lip(1/2)
in (3), and ‖u‖1/2 = c. Then,

α(t) − u(t) ≤ α(1) − u(1) + c
√

1 − t = c
√

1 − t. (10)

Given ε > 0, there exists δ > 0, such that

tan
c
√

1 − t

2
<

c
√

1 − t

2
(1 + ε),

for 1 − δ < t < 1 and all 0 < c ≤ 4. We apply this inequality to (6) and obtain that

dα

dt
≥ cot

c
√

1 − t

2
>

2

c
√

1 − t(1 + ε)
.

Integrating gives that

α(1) − α(t) ≥
4
√

1 − t

c(1 + ε)
.

This allows us to improve (10) to

α(t) − u(t) ≤ α(1) −
4
√

1 − t

c(1 + ε)
− u(1) + c

√
1 − t =

(
c −

4

c(1 + ε)

)√
1 − t. (11)

Repeating these iterations we get

α(t) − u(t) ≤ cn

√
1 − t,

where c0 = c, cn+1 = c − 4/[(1 + ε)cn], and cn > 0. Let gn be recursively defined by (see
Lind [2])

g1(y) = y −
4

y
, gn(y) = y −

4

gn−1(y)
, n ≥ 2.
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It is easy to check that cn < gn((1 + ε)c) < (1 + ε)cn

Lind [2] showed that gn(yn) = 0 for an increasing sequence {yn}, and gn+1(y) is an
increasing function from (yn,∞) to R. So c(1 + ε) > yn for all n, and it remains to apply
Lind’s result [2] that limn→∞ yn = 4. Hence, c ≥ 4/(1+ε). The extremal estimate is obtained
if ε → 0 which leads to c ≥ 4. This completes the proof. !

Now Lind’s reasonings in [2] based on the techniques from [4] give a proof of the
following statement.

Proposition 4.1. If u ∈ Lip(1/2) with ‖u‖1/2 < 4, then the domains Ω(t) generated by the
Löwner differential equation (1) are disks with quasislits.

In other words, Proposition 4.1 states that CD = CH = 4.
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[4] D. E. Marshall, S. Rohde, The Löwner differential equation and slit mappings, J. Amer. Math.
Soc. 18 (2005), no. 4, 763–778.
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