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Abstract: Recently, robotic sensor systems have gained more attention annually in complex system
sense strategies. The robotic sensors sense the information from itself and the environment, and fuse
information for the use of perception, decision, planning, and control. As an important supplement
to traditional industrial robots, co-bots (short for co-working robots) play an increasingly vital role
in helping small and medium-sized enterprises realize intelligent manufacturing. They have high
flexibility and safety so that they can assist humans to complete highly repetitive and high-precision
work. In order to maintain robot safe operation in the increasing complex working environment
and human–computer intelligent interactive control, this paper is concerned with the problem of
applicant accuracy analysis and singularity avoidance for co-bots. Based on the dynamic model
with load and torque sensors, which is used to detect the external force at the end of the robot, this
paper systematically analyzes the causes of singularity phenomenon in the robot motion control. The
inverse solution is obtained by analytical method and numerical method, respectively. In order to
ensure the smooth and safe operation in the whole workspace, it is necessary for a robot to avoid
singularity. Singularity avoidance schemes are utilized for different control tasks, including point-to-
point control and continuous path control. Corresponding simulation experiments are designed to
verify the effectiveness of different evasion schemes, in which the advantages and disadvantages are
compared and analyzed.

Keywords: co-bot; modeling robotic systems; kinetic inverse solution; singular configuration analysis;
singularity avoidance; load and torque sensors

1. Introduction

Recently, appliance accuracy analysis and human–computer interaction have under-
gone rapid development in intelligent assembly machine factories, with typical examples in-
cluding assembly, polishing, dual-arm coordination, or dexterous hand manipulations [1–3].
In order to adapt to small-batch, customized, and short-cycle production, it is necessary
for co-bots, a new type of industrial robot that can work with human beings in the same
working environment, to develop a hierarchical control algorithm that enables safe and
stable cooperative locomotion. With dynamic model and torque sensors, the robot is
achieving the drag control by compensations of gravity and friction, which counteract
external disturbances. However, it will inevitably lead to the complexity and uncertainty of
environment [4,5]. Reaching the singular region makes it easy for a robot to cause various
problems, such as instability, poor performance, and so on. Emphasis is placed on the
co-bot singularity. Hence, the singularity avoidance is the basis to ensure co-bot stable
operation in the man–machine cooperation.

The singular configuration is a phenomenon which hampers the motion of the robot
end effector [6,7]. The freedom of the robot end will decrease in a singular configuration,
so it cannot be controlled to move in directions. While the robot approaches the singular
adjacent region, some joints calculated by the inverse kinematic tend to infinity, which will
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cause the decline of tracking expected trajectory [8]. The singularity is the inherent character-
istic of an articulated robot, which mainly appears in finding the inverse kinematics solution.
The actual performance is that the calculated expected joint speed is much greater than the
maximum joint speed which the actual motor can provide. Bohigas [9] gave the general
algorithm of robot singular configuration with different mechanical structures. Müller [10]
analyzed singular points by using Lie groups separated from the specific structure.

For more general singularity avoidance problems, Maciejewski [11] proposed a damped
least square method with a damping term near singular region to obtain approximate so-
lution of joint velocity. The essence lies in limiting the joint velocity near the singularity
by adding a damping coefficient. Serial robots conduct seam welding, sealant application,
spray painting, polishing, deburring, or other tasks requiring uninterrupted continuous
motion. Chiaverini [12] introduced a continuous nonlinear function to characterize the
damping factor, which is used to ensure the continuity of joint velocity near singular
configuration. However, it will increase the tracking error of robot end in all directions.
The damping factor is only added to the minimum singular value of a Jacobian matrix. In
addition, Megalingam et al. [13] proposed singular separation to determine the singular
direction of Kinova robots, and then avoid joint movement to pass through singular points.
References [14,15] also proposed similar analysis methods to analyze singular directions,
while these methods are not universal. A large number of SVD decomposition operations
are required in the above singular point avoidance methods. In order to reduce amount
of computation, Xu et al. [16] proposed the method of “singular separation + damping
reciprocal” for PUMA robots. It was the first time to separate the singular problem into two
parts of position and attitude. The redundant robots have infinite sets of inverse kinematics
solutions, hence the optimal solution (i.e., the solution furthest away from the singular re-
gion) can be found by designing some optimization objective. Wang et al. [17] summarized
some methods of using redundancy to avoid the singular region with series robot. The
ultimate goal is to find the solution of the singular configuration of the robot principle in
countless redundant solutions. The optimization directions include the determinant and
condition number of Jacobian matrixes. However, the calculation using Jacobian matrix is
too complex, and an optimization is proposed in reference [18,19].

All the singularity avoidance methods above are at the cost of tracking accuracy. The
parameters of most methods are closely related to experience, especially the determination
of damping factor and singular region. In addition to singularity avoidance method
satisfying trajectory tracking, Taki et al. [20] proposed a method strictly tracking the desired
path. Different from damping avoidance method, the avoidance algorithm proposed is
to reduce running speed by reducing the expected speed when approaching the singular
region, so as to avoid limiting the motion of the robot end effector caused by singular
configuration. However, the strange avoidance method will only produce partial errors in
tracking directions.

All these observations motivate the current study. In this paper, we concentrate on
singular configuration analysis and singularity avoidance of co-bot, taking the JACO2
robot of Kinova Robotics company as an example [4,13]. It has seven DOF (degrees of
freedom), with weight of 5.5 kg, a load of 1.5 kg, and a maximum arm span of 98.4 cm.
Each joint motor is equipped with a torque sensor. The rotating potentiometer detects robot
joint rotation, and the force sensor reflects ground reaction force information. The main
contributions can be summarized as follows.

1. The D-H modeling method is utilized to build a joint coordinate system of the JACO2
robot. The inverse kinematics is solved by analytical method and numerical method,
and the operation speed and accuracy of two schemes are compared.

2. The singularity caused by inverse kinematics is analyzed, and the robot singular
configuration conditions are based on the block analysis of wrist Jacobian matrix,
which are divided into three singular types: internal singularity, external singularity,
and wrist singularity.
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3. According to different task requirements, singularity avoidance schemes are utilized
in robot redundancy, damped least squares, and singularity consistency. It is noted
that these works focus on the working principle and control methods of robotic
sensor system.

2. Materials and Methods
2.1. D-H Model

The kinematics model of the JACO2 robot with D-H model is illustrated in Figure 1,
and its parameters are shown in Table 1.
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Figure 1. JACO2 robot coordinate system.

Table 1. D-H parameters of the JACO2 robot.

i αi− 1 (rad) αi− 1 (m) di (m) θi (rad)

1 π/2 0 −0.2755 θ1
2 π/2 0 0 θ2
3 π/2 0 −0.41 θ3
4 π/2 0 −0.0098 θ4
5 π/2 0 −0.3111 θ5
6 π/2 0 0 θ6
7 π 0 −0.2638 θ7

According to D-H parameters, the transformation matrix between each links is

baseT0 =


1 0 0 0
0 −1 0 1
0 0 −1 0
0 0 0 1

, iTi+1 =


cosθi+1 0 sinθi+1 0
sinθi+1 0 −cosθi+1 0

0 1 0 di+1
0 0 0 1

, 6T7 =


cosθ7 sinθ7 0 0
sinθ7 −cosθ1 0 0

0 1 −1 d7
0 0 0 1

,

where i = 0, 1, 2 . . . 5. Thus, the forward kinematics equation of the JACO2 robot can be
expressed as

baseTn = baseT0
0T1

1T2
2T3

3T4
4T5

5T6
6T7 = f (Θ) (1)
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where iT j denotes the homogeneous transformation matrix from {i} to {j} coordinate
system, and Θ = {θ1, θ2 · · · θn} denotes angle information of each joint. The Euler angle
(x-y-z)[α, β, γ] and p = [px, pv, pz, α, β, γ]T denote attitude of robot end and end pose,
respectively, where

[
px, py, pz

]
denote robot end position.

2.2. Inverse Kinematics

The analytical solution and numerical solution are generally adopted to resolve robot
inverse kinematics. The former uses a robot’s geometric configuration by separating the
forward kinematics parameters. The latter is based on numerical iteration, which obtains
the optimal solution by setting objective function and controlling joint angle to move to the
opposite gradient direction.

The JACO2 robot is a seven-DOF spherical revolution spherical configuration series
robot. For a certain end pose, the robot has countless sets of inverse kinematics solutions.
The redundancy makes the JACO2 robot operate more flexible than a traditional six-DOF
series robot but increases the computational complexity. Two methods are used to solve
inverse kinematics, respectively.

1. Analytical solution

The JACO2 robot has one more rotating joint at third joint and one more offset at fourth
joint. Taking the third joint angle θ3 as the redundant parameter, other joint angles are

θi = f (θ3) i = 1, 2, I, 7 (2)

All inverse kinematics solutions can be obtained by traversing all effective value, and
only one set of optimal solution can be selected according to cost function. Therefore, the
inverse kinematics optimization problem is simplified as

min f (Θ)

s.t. baseT(Θ) = baseTd , Θ ∈
[
Θmin, Θmax

]
,

(3)

where Θ = [θ1 θ2 θ3 θ4 θ5 θ6 θ7]
T is angle vectors of each joint, baseT(Θ) is the forward

kinematics equation, baseTd is the given end pose, and
[
Θmin, Θmax

]
represents the con-

straint of each joint.
Substituting (2) into (3), the inverse kinematics optimization problem is turned into a

one-dimensional optimization of θ3:

min f (θ3) s.t. Θ ∈
[
Θmin, Θmax

]
. (4)

Selecting the motion amplitude of each joint as the cost function,

f (Θ) = ∑7
i=1 λi

(
θt+1

i − θt
i

)2
, (5)

where λi is the weight coefficient, θt+1
i is the solution of the i-th joint in the current period,

and θt
i is the solution of the i-th joint in the previous cycle. A greedy search is used to find

the optimal solution.

2. Numerical solution

The numerical method focuses on the equation relationship instead of robot geometric
configuration. Given this, f (Θ) = baseTn, expected position baseTd, which are to be solved
with constraints Θ ∈

[
Θmin, Θmax

]
. The Jacobian matrix describes the relationship between

robot end velocity and joint velocity:
.
x = J

.
q (6)
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where
.
x =

[
vx vy vz wx wy wz

]T represents terminal velocity. R3×3 describes the relationship
between Euler angle and terminal angular velocity.

.
p =

[
I3×3
R3×3

−1

]
.
x =

[
I3×3
R3×3

−1

]
J

.
q = J′

.
q, R3×3 =

 1 0 sinβ
0 cosα − sinαcosβ
0 sinα cosαcosβ

 (7)

The pseudocodes of analytical and numerical inverse kinematics solutions are shown
in Algorithms 1 and 2.

Algorithm 1: According to the Cost Function (7), the Obtained Optimal Solution θ3

Input: Td (End pose to be solved)
Θ0 (Current joint angle vector)
n (Iterative numbers per layer loop)
ε (Minimum allowable error)[
θmin

3 , θmax
3
]

(Possible value range)
Output: Θopt (Optimal joint angle vector)
1: do
2: r =

(
θmax

3 − θmin
3
)
/(n− 1) (Search step of θ3)

3: S =
{

θmin
3 + (m− 1)r|m = I . . . n

}
4: Cmax = in f (Cost)
5: for r in S do
6: θ3 = r
7: Θ = InvKin

(
Td, θ3

)
(Given θ3 to find inverse kinematics solutions. If the

solution is within the joint limit, Θ is returned; otherwise, Φ is returned.)
8: if Θ 6= Φ and f (Θ) < Cmax then
9: Cmax = f (Θ)
10: Θopt = Θ
11: else
12: continue
13: end
14: θmin

3 = θ
opt
3 − s

15: θmax
3 = θ

opt
3 + s

16: while γ > ε

Algorithm 2: ϕ is the Partial Derivative of the Joint Angle

Input: Pd (Terminal position vector needed to be solved)
Θ0 (Current joint angle vector)
λ (Step size per iteration)
nmax (Maximum number of iterations)
ε (Maximum allowable error)
Output: Θopt (Optimal joint angle vector)
1: Θ = Θ0,n = 1
2: err = Pd − f (Θ)
3: do
4: ∆Θ = J+ · err +

(
I7×7 − J+ J

)
ϕ (ϕ is used to control the iteration direction)

5: ∆Θ = normalize(∆Θ) (Normalized to [-pi,pi])
6: Θ = Θ + λ · ∆Θ
7: err = Pd − f (Θ)
8: n = n + 1
9: while ‖err‖ < ε or n > nmax
10: Θopt = Θ
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2.3. Singular Configuration Analysis

Both of the two methods illustrated in Section 2.2 will introduce singularity. Whether
the robot is in a singular configuration depends on the full rank of the Jacobian matrix,

J =
[

Jp
Jω

]
=

[
v
ω

]
=

[
e1 × r1 e2 × I . . . e7 × r7

e1 e2 e7

]
(8)

where ei is the unit vector of the i-th joint, and ri is the vector between the origin and end
position. The Jacobian matrix at the end and wrist satisfies

Je =

[
I3×3 U3×3
03×3 I3×3

]
Jw, U3×3 =

 0 − d7c6 − d7s5s6
d7c6 0 d7c5s6
d7s5s6 − d7c5s6 0

 . (9)

Let ci and si be abbreviations of cosθi and sinθi, respectively, and that
det(Je JT

e ) = det(Jw JT
w), Rank(Je) = Rank(Jw). According to (8), the Jacobian matrix of

wrist is

Jw =

[
J11 3×4 03×3
J21 3×4 J22 3×3

]
. (10)

It is expressed as (11) in the wrist coordinate system:

w Jw =

[ baseR−1
w 03×3

03×3
baseR−1

w

]base

Jw (11)

where baseRw represents wrist Jacobian matrix.

1. Positional singularity

The unfilled rank of the first three rows of the Jacobian matrix will result in position
singularity, which can be described as det(w J11

w J T
11) = 0,

det(w J11
w J T

11) = ∑4
i=1 M2

i (12)

where Mi represents the determinant of cofactor of matrix w J11.

M1 = det([j1 j2 j3]) = 0,
M2 = det([j1 j2 j4]) = d3d5s4(d3s2 − d5s2c4 + c2d5c3s4 + c2d4s3),
M3 = det([j1 j3 j4]) = d3d5s2s4(c3d4 − d5s3s4),
M4 = det([j2 j3 j4]) = d3d5s4(d4s3 + c3d5s4).

The conditions in whether each co-factor equals zero are expressed as Table 2.

Table 2. The condition in which the determinant of the w J11 cofactor of each order is 0.

Number Condition M1 M2 M3 M4

1 s4 = 0
√ √ √ √

2 d3s2 − d5s2c4 + c2d5c3s4 + c2d4s3 = 0
√ √

3 s2 = 0
√ √

4 c3d4 − d5s3s4 = 0
√ √

5 d4s3 + d5s3s4 = 0
√ √

When s4 = 0, the θ4 joint limitation is 32◦~328◦, the robot arms stretch out, and the
end is at the boundary point, which is called boundary singularity. The θ2 joint limitation
is 49◦~311◦, when d4s3 + d5s3s4 = 0, the JACO2 robot is in a singular state, which is called
internal singularity, which is shown in Figure 2. The singularity condition is illustrated in
Table 3.
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Table 3. The position singularity condition.

Number Condition Combination in Table 2 (Serial Number) Simplified Conditions

1 1 s4 = 0
2 2 + 3 + 5 s2 = 0, d4s3 + d5s3s4 = 0
3 2 + 4 + 5 Not established (4 and 5 cannot be met at the same time).

2. Attitude singularity

Similarly, the attitude singularity can be judged by analyzing whether the last three
rows of the wrist Jacobian matrix are less than the rank. Substituting each item of Jacobian
matrix, the robot attitude singularity condition is shown in Table 4, and its wrist singularity
condition is shown in Figure 3.

det(w J22
w J T

22) = s2
6 = 0, det(w Jw

w J T
w) = 2d2

3d2
5s2

2s2
4(d4s5 + d3s4c5)

2 = 0.

Table 4. The robot attitude singularity condition.

Number Attitude Singularity Satisfying Condition Note

1 s6 = 0 s2 = 0
2 s6 = 0 s4 = 0 The position singularity is also satisfied.
3 s6 = 0 d4s5 + d3s4c5 = 0
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3. Theoretical Analysis

The main purpose of singularity avoidance is to keep the stable, continuous, and
bounded running speed of each joint when the robot is in the singular region. The relation-
ship between joint velocity and end velocity is described as

.
q = J−1 .

x (13)

Since the Jacobian matrix of the JACO2 robot is a nonsquare matrix, (13) is turned into

.
q = J+

.
x + α

(
I − JT J+

)
∇ϕ (14)
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where J+ = JT(J JT)−1 represents the pseudo-inverse of the Jacobian matrix J, α is coeffi-
cient, and ∇ϕ is an arbitrary vector. In order to ensure that the joint velocity is bounded, it
is necessary to change Jacobian matrix J or end running velocity

.
x.

3.1. Avoidance Strategy with End Velocity Constant

1. Internal singularity

To keep the end velocity constant, according to (15), only the Jacobian matrix J needs
to be changed. The cost function (10) is introduced to obtain the optimal solution. The
function is designed:

f (Θ) =
1√

det(J JT)
(15)

where J respresents Jacobian matrix corresponding to each group of possible inverse
kinematics solutions. Then, det

(
J JT) will be maximized to avoid singularity. The cost

function can be designed as

f (Θ) =
1
σ2

r
(16)

f (Θ) =
σ2

r

σ2
1

(17)

where σr and σ1 represent minimum and maximum singular value, respectively. The
convergence direction can be controlled by selecting an appropriate vector ∇ϕ, which
controls the gradient of cost function with respect to joint angle Θ. Hence, the equivalent
effect of avoiding singularity with the analytical rule is

∇ϕ =
∂ f (Θ)

∂Θ
(18)

However, considering that all redundant solutions of the JACO2 robot make the
manipulator elbow operate on a spatial circle, the above avoidance method can only have a
good avoidance effect on the internal singularity and yet have nothing to do with external
singularity and pose singularity.

2. Other singular configurations

Other singular configurations cannot be simply avoided by redundant solutions. When
the robot elbow is extended, which belongs to external singularity, the robot end is close to
the workspace boundary. The robot cannot find the solution far away from the singularity
(the fourth joint angle of all solutions approaches π). For six-DOF series industrial robots
(most are PUMA type), the method of “singular separation + damping coefficient” adopted
in literature [16,21] can obtain good results and analyze the corresponding errors, while
it is not suitable for the JACO2 redundant robot, since singular separation effect cannot
be realized directly. A damped least squares method is adopted for singular avoidance in
this section, which combines the merit of Newton and steepest descent method. It not only
ensures the convergence of iterative calculation, but also speeds up the convergence speed.

.
q = J# .

x (19)

where J# is the pseudo-inverse of damped Jacobian matrix,

J+ = JT
(

J JT + λ2 I
)−1

(20)

Then, minimizing the cost function, and regularizing velocity term by coefficient,

f (Θ) = ∑7
i=1

(
θt+1

i − θt
i

)2
+ ∑7

i=1 λ2
(

.
θ

t+1
i

)2
(21)
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Then, we regularize of velocity term by coefficient. The minimum singular value of
the Jacobian matrix is used as the criterion to judge whether the robot enters the singular
region. Equation (20) can be transformed into

J = ∑6
i=1 σiuivi (22)

J# =
6

∑
i=1

σi

σ2
i + λ2

viuT
i (23)

.
Θ = J# .

x =
6

∑
i=1

σi

σ2
i + λ2

viuT
i (24)

where λ2 =

{
0, σ6 > ε(

1−
( σ6

ε

)2
)

λ2
m σ6 ≤ ε

3.2. Avoidance Strategy with End Velocity Changed

The external singularity and wrist singularity are mainly discussed here. The avoid-
ance strategy of end speed change is to change the expected end speed in (15). A path
parameter p is introduced to describe the trajectory, and end operation trajectory can be
expressed as

x = x(p) (25)

The tracking of desired trajectory is expressed by mathematical expression,

h(q̃) = k(p)− x(p) = 0 (26)

where k(p) represents the forward kinematics solution process, q̃ is the set of path parame-
ters p and joint angles, i.e., q̃ = (q, p). The tracking target will satisfy

dh(q̃) = H(q̃)d(q̃) = 0 (27)

H(q̃) =
∂h(q̃)

∂q̃
= [J(q) − S] (28)

where S is a unit vector, which satisfies dx(p) = dpS, and ‖dv‖ = ‖dv(x)‖ direction, S
is the vector of the end running speed, and parameter P is the end running speed. The
general solution of (27) can be expressed as

dq̃ = b f (q̃) (29)

where b is constant, f (q̃) ∈ ker H(q̃),

f (q̃) =
[

f T(q) detJ(q)
]T

(30)

where f (q̃) = (adjJ(q))S(p). Equation (29) can be expanded to

dq = b f (q̃) (31)

dp = bdetJ(q) (32)

As long as the trajectory parameters are designed to satisfy (32) and give the joint speed
of formula (31), the robot end trajectory can be always followed. It can be found that when
the robot approaches the singular configuration, the determinant of the Jacobian matrix
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approaches 0, and the given constant and joint velocity both tend to infinity. Therefore, the
singular phenomenon can be avoided. The constant b is determined by

b∗ =
dqmax

f (q̃)
(33)

Reprogramming end velocity based on (32),

dp∗ = b∗det J(q) (34)

In that the JACO2 robot has redundant joints, (31) is deformed as

dq = bepnep + bs f ns f (35)

dp = bepdet J3 (36)

where bep and bs f are all constants, J3 is the Jacobian matrix removing cofactor of column 3,
nep ∈ rowJ, ns f ∈ kerJ. However, when internal singularity occurs, the symbol of det J3 and
dp will change, making the expected trajectory reverse, which is equivalent to an obstacle.

nep = ∑7
i=1 bini (37)

dp = bep ∑7
i=1 bidet Ji (38)

where Ji is the Jacobian matrix removing the cofactor of column i, the ith item of ni is
always 0, then remove n′i item, there is Jn′i = Cidet Ji. The ith item of Ci is 1, and other
items are 0.

Let bi = det Ji, then dp = bep ∑7
i=1 bidet Ji = bepdet

(
J JT), then the symbol dp will

not change.

4. Experimental Results and Comparisons

To demonstrate the performance of the proposed algorithm, a series of simulations
and comparisons are conducted. The simulations include a variety of avoidance strategies
which basically cover most of the actual situations. Four experimental studies including inverse
kinematics solutions and singularity analysis are carried out to test the feasibility of practical
application. The symbolic operation toolbox in MATLAB is used for dynamic modeling.

The robot home position is selected as the starting point (joint angle [283.24; 162.71; 0.;
43.58; 265.23; 257.52; 288.14], pose position [0.2113; −0.2656; 0.5065; 1.6477; 1.1081; 0.1282]).

4.1. Two Inverse Kinematics Solutions

Let the robot end run at a speed of 0.1 m/s along the y-axis for 3 s, and control period
be 0.1 s. A total of 200 trajectory middle points are inserted. The angles of each joint are
calculated by two inverse kinematics solution algorithms. Figure 4 shows the trajectories of
two kinematics algorithms. The red points represent the desired points, and blue and green
describe trajectories with numerical and analytical solutions, respectively. Their solution
errors are shown in Figures 5 and 6.
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4.2. Singularity Avoidance

To verify the effectiveness proposed in Section 3, singularity avoidance strategies
based on robot redundancy, damped least squares, and singularity consistency are realized,
respectively. Let the robot end run at the speed of 0.1 m/s along the positive direction along
the z-axis for 7.5 s and then turn back, and continue to run along the negative direction
along the z-axis for 7.5 s. Set a control cycle as 0.01 s. The joint state and tracking error are
plotted with a sampling period of 0.1 s. The compared simulations are as follows.

1. Taking no avoiding measures

Figure 7 shows the position change curve of each joint, Figure 8 shows the veloc-
ity variation curve (4.5 s~4.9 s), and Figure 9 shows the tracking errors of position and
orientation (4.5 s~4.9 s).
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2. Using damping Jacobian matrix to avoid singularity

Assume that ε = 0.1 is the boundary of the singular region, and λ2
m = 0.1 is the damping

coefficient. Figure 10 shows position change curve of each joint, Figure 11 shows the speed
change, and Figure 12 shows tracking errors of position and orientation, respectively.
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3. Using singular consistency to avoid singularity

Figures 13 and 14 show the position and speed change curve of each joint, respectively.
Figure 15 shows the running speed of the robot end, Figure 16 shows each item changes of
constant b, and Figure 17 shows the tracking errors of position and orientation.
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5. Results Discussion

From the simulation results in Section 4.1, it is noted that both accuracies can meet the
requirement of inverse kinematics. The average calculation time of using the numerical
method to calculate the inverse kinematics solution is 0.0021 s, and using the analytical
method is 0.0014 s. The calculation time of two methods is in the same order of magnitude.
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However, when the robot is in the singular configuration, the numerical method takes three
times more time than the numerical method due to more iterations needed.

Figures 7–9 show variation curves of joint position, velocity, and tracking error with
time under no avoiding measures. It is obvious that the robot enters the singular region in
about 4.65 s. At this time, the angle value of joint 4 is close to π and meets the condition
of external singularity. Due to the ill condition of the Jacobian matrix, the obtained joint
angle has a sudden change, and the joint speed is particularly huge, which is impossible
for the motor to realize in practice. Meanwhile, the robot tracking error end pose becomes
larger after entering the singular region, since the upper motor speed cannot be tracked in
practical operation.

From Figures 10–12, it can be seen that with damping Jacobian matrix (21), the joint
angle changes smoothly, and the whole joint speed can be below 1.5 rad/s. After entering
the singular region at about 4.65 s, the pose tracking error will also increase to a certain
extent. However, the avoidance method has a certain effect on limiting joint speeds, it
is too sensitive to the selection of parameters. Hence, it is necessary to design and select
appropriate control parameters for different task requirements.

Figures 13–17 show variation curves of joint position, velocity, end position, and
tracking error with singular consistency to avoid singularity. It can be seen that the robot
enters the singular region at about 4.1 s. By changing constant value bi, which makes the
following det Ji smaller, the desired robot end speed dp are forced to change (Figure 15), to
limit the speed of each joint (Figure 14). Compared with the singularity avoidance methods
in Section 3.1, the joint operation is more stable, and the operation speed of each joint can
also transit smoothly when entering into singularity region. Moreover, it will not cause an
error deviating from desired trajectory. Therefore, when the robot end velocity is constant,
the damping least square avoidance method is selected, while the singular consistency
avoidance method is more appropriate when the end velocity changes.

6. Conclusions

The emergence of co-bots is an important supplement to traditional industrial robots,
especially for new potential users such as small and medium-sized enterprises and in-
creasingly complex control tasks in 3C electronic products, which determines that co-bots
should have characteristics of safe use, simple operation, and convenient deployment.
Taking the JACO2 robot as a carrier, this paper provides research on singularity analysis
and avoidance strategies to realize safe control and smooth operation of a co-bot in the in-
creasingly complex working environment and man–machine intelligent interactive control.
The research results are summarized as follows.

The instability and potential safety hazards of the robot in the singular region are
analyzed in detail. The conditions for singularity of the robot are deduced by means
of Jacobian matrix separation. Then, the singular configuration conditions are analyzed
in detail by means of block analysis of robot wrist Jacobian matrix, which can be divided
into three singular types: internal singularity, external singularity, and wrist singularity. For
different types of singularity, three singularity avoidance schemes are realized based on robot
redundancy and different control tasks. This will ensure safe and stable operation of the co-bot
in the whole workspace, and it eliminates safety problems in the man–machine cooperation.

In the future work, it is necessary to study some security issues through other sensors
to ensure safety from the perspective of smooth operation, for example, replanning tasks
to avoid collision, and adjusting the robot running state according to the working state
of the operator. In addition, compliance control can also be studied to improve the robot
adaptability with complex industrial tasks.
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