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Singular diffusivity–facets, shocks and more

Yoshikazu Giga∗

Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan

Abstract: There is a class of nonlinear evolution equations with singular diffusivity,

so that diffusion effect is nonlocal. A simplest one-dimensional example is a diffusion

equation of the form ut = δ(ux)uxx for u = u(x, t), where δ denotes Dirac’s delta function.

This lecture is intended to provide an overview of analytic aspects of such equations, as

well as various applications. Equations with singular diffusivity are applied to describe

several phenomena in the applied sciences, and to provide several devices in technology,

especially image processing. A typical example is a gradient flow of the total variation

of a function, which arises in image processing, as well as in material science to describe

the motion of grain boundaries. In the theory of crystal growth the motion of a crystal

surface is often described by an anisotropic curvature flow equation with a driving force

term. At low temperature the equation includes a singular diffusivity, since the interfacial

energy is not smooth. Another example is a crystalline algorithm to calculate curvature

flow equations in the plane numerically, which is formally written as an equation with

singular diffusivity.

Because of singular diffusivity, the notion of solution is not a priori clear, even for the

above one-dimensional example. It turns out that there are two systematic approaches.

One is variational, and applies to divergence type equations. However, there are many

equations like curvature flow equations which are not exactly of divergence type. Fortu-

nately, our approach based on comparision principles turns out to be succesful in several

interesting problems. It also asserts that a solution can be considered as a limit of solution

of an approximate equation. Since the equation has a strong diffusivity at a particular

slope of a solution, a flat portion with this slope is formed. In crystal growth ploblems

this flat portion is called a facet. The discontinuity of a solution (called a shock) for a

scalar conservation law is also considered as a result of singular diffusivity in the vertical

direction.

∗Partly supported by the Grant-in-Aid for Scientific Research, No.14204011, No.15634008, Japan
Society for the Promotion of Science.
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1 Introduction

This is a review paper on nonlinear evolution equations with singular diffusivity, so that

the diffusion effect is nonlocal. Recently, such equations become popular in material

sciences and image analysis, although its mathematical analysis is far from being satisfac-

tory to cover all important problems. Our goal is to provide an overview of mathematical

analysis on this type of problems especially,

(i) unique solvability of the initial value problem;

(ii) stability under approximation of equations as well as data

for various but typical problems.

To see the difficulty of the problem we give a simplest one-dimensional example of the

form

ut = δ(ux)uxx, x ∈ R, t > 0 (1.1)

for u = u(x, t), where δ denotes Dirac’s delta function and ut = ∂u/∂t, ux = ∂u/∂x, uxx =

∂2u/∂x2. The multiplier δ(ux) is not well-defined as a distribution even if u is smooth.

So even the notion of solution is unclear in naive sense. Fortunately, this example can

be regarded as the gradient flow of (the half of) the total variation
∫ |ux|dx. So we are

able to apply the nonlinear semigroup theory [10], [5] for maximal monotone operators

(initiated by Kōmura [56]) to conclude unique global solvability under suitable boundary

conditions [49], [53], [31]. This example has also stability under approximation of the

functionals [11], [71]. An explicit form of a solution is often computable. For example if

the initial data is cos x, then a flat portion (ofter called a facet) instanteneously formed

at the maximum and minimum point of cos x. In fact, as in [53] we have

u(x, t) = min(cos x, h(t)), |x| ≤ π/2,
dh/dt = −L(t)−1, h(0) = 1,

where L(t) is the length of a facet (i.e. the length of the interval on which h(t) < cos x),

until h becomes zero. (By an elemetary observation this gives an explicit formula of u

[22], [53]). It is not difficult to see that h(t) becomes zero in finite time. From that

time u(x, t) ≡ 0. As we learn from this example, the speed on the facet is determined

by its length so the speed is nonlocal. It is formally obtained in the following way. Let

(a(t), b(t)) be the interval corresponding to the facet. Assume that ut is constant on

(a(t), b(t)). (This assumption is called facet-stay-as-facet hypothesis.) Since our equation

(1.1) can be written as

ut =
1

2
(sgn ux)x, (1.2)
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integrating over (a(t)− ε, b(t) + ε) and sending ε(> 0) to zero yields

ut(b(t)− a(t)) =
1

2
(sgn(−0)− sgn(+0)) = −1

if u is concave near (a(t), b(t)). This yields the desired speed.

One may write the equation (1.2) in the form

ut =
1

2
ξx, ξ = sgn ux.

However, sgn p should be regarded multivalued at p = 0 with values [-1,1] as a maximal

monotone function. Thus, instead of ξ = sgn ux one has to write

ξ(x, t) ∈ sgn ux(x, t).

At the first glance there should be a huge ambiguity. However, a honest regularity of

u implies the uniqueness of a solution thanks to the theory of nonlinear semigroups.

Although the equation may have ambiguity, the solution knows how to evolve.

Unfortunately, many important equations are not of the form of a gradient flow. A

typical example is a level-set equation of an anisotropic curvature flow, which is of the

form

ψt + |∇ψ|divξ(−∇ψ/|∇ψ|) = 0, x ∈ Rn, t > 0 (1.3)

for ψ = ψ(x, t), where ∇ψ = (∂ψ/∂x1, . . . , ∂ψ/∂xn) and n ≥ 2. Here ξ is the gradient of

the interfacial energy density γ : Rn → [0,∞) which is convex and positively homogeneous

of degree one. If γ(p) = |p| so that γ is isotropic, then (1.3) becomes the level-set equation

ψt = |∇ψ|div(∇ψ/|∇ψ|) (1.4)

of the mean curvature flow equation V = H, i.e., each level-set of ψ moves by its mean

curvature H at least formally. Here V denotes the normal velocity in the direction of

the normal n = −∇ψ/|∇ψ|. In general, (1.3) is the level-set equation of an anisotropic

curvature flow equation:

V = Λγ(n) with Λγ(n) := −divΓtξ(n) on Γt (1.5)

for an evolving hypersurface {Γt}. The quantity Λγ(n) is called a weighted mean cur-

vature. The level-set equation is important to solve equations like (1.5) globally in time

beyond singularities both analytically [15], [20] and numerically [60]; see also books [64],

[36], [59] and review articles [32], [33]. A classical result based on the theory of viscosity

solutions implies unique global solvability for any continuous (periodic) initial data for

3



(1.3) provided that γ is smooth enough, say C2 [15]. However, in crystal growth problems

γ may not be C1 [29]. A typical example is that

Frank γ = {p ∈ Rn|γ(p) ≤ 1} (1.6)

is a polyhedra. In this case γ is called a crystalline energy and (1.5) is called a crystalline

curvature flow (equation). This problem has a feature which is similar to (1.1). The

diffusion effect is very strong in the direction corresponding to verteces of Frank γ. Indeed,

if n = 2 and γ(p) = (|p1| + |p2|)/2 for p = (p1, p2), then (1.5) becomes (1.1) when Γt is

represented as the graph of function u(x1, t) of one variable x1.

Crystalline flow problems are first proposed by [4] and [68] independently for planar

curve evolutions, i.e. n = 2. They restricted a class of solution into special polygonal

evolution and reduced the problem to a system of ordinary differential equations (ODEs)

under facet-stay-as-facet hypothesis. Their solution is called a crystalline flow (for (1.5))

[26]. However, it was not clear that this facet-stay-as-facet hypothesis is natural at that

time. This problem has been solved affirmatively in [22], [25], [27] by extending the notion

of viscosity solutions [17] so that it applies to nonlocal problem. In particular, facet-

stay-as-facet hypothesis is actually obtained as a limit of smoother problem. Moreover,

the level-set method for (1.3) for singular γ has been established in [26], [27]. The key

observation is that the evolution is order-preserving despite the fact that diffusion effect is

nonlocal. In section 2 we highlight these results more precisely. For a higher dimensional

problem [9] the facet-stay-as-facet hypothesis contradicts the comparison principle so such

a hypothesis is no longer natural [73]. It is even not clear what is the reasonable notion

so that (1.3) is solvable globally-in-time for crystalline γ when n ≥ 3. (Of course, if one

admits the facet-stay-as-facet hypothesis, the problem is solvable [38]). Several notions of

solutions are proposed [8], [41]. However, it is not known that the initial value problem

is solvable even locally in time.

Instead of (1.5) one has to consider the equation with driving force like

V = Λγ(n) + C(x),

where C is a given function. Such an equation is important to study the Stefan type

problem with Gibbs-Thomson and kinetic supercooling effect. If C(x) is not a constant

so that the problem is spatially inhomogeneous, again the facet-stay-as-facet hypothesis

may contradict the comparison principle [23]. An expected speed is computable [24].

However, local existence of a solution is not known also for this problem. A Stefan

type problem with crystalline γ has been studied [42], [43]. Local existence of solution

is obtained under the facet-stay-as-facet hypothesis for a cylindrical crystal [42]. It is

4



expected that the facet-stay-as-facet hypothesis should be true for a small crystal but the

work is still under progress.

Besides these rather classical fields the singular diffusivity is important to understand

shocks for scalar first order equations. Let us start with an example

ϕt + yϕx = M |∇x,yϕ| ∂

∂y
(ϕy/|ϕy|), x ∈ R, y ∈ R, t > 0 (1.7)

for ϕ = ϕ(x, y, t), where M > 0 is a constant. Without M -term this is the level-set

equation for the graph of a solution of the Burgers equation

ut + uux = 0. (1.8)

However, the level-set of ϕ may overturn and it does not represent the graph of an

entropy solution after it develops jump discontinuities called shocks. It turns out that for

sufficiently large M the level-set of ϕ of (1.6) represents the graph of an entropy solution.

This is analytically proved in [28] and numerically confirmed in [70]. The right hand

side of (1.7) plays a role if ϕy = 0 otherwise it does not play any role. So this term

represents singuler vertical diffusion to prevent overturning. The method is not limited

to conservation laws but equations with nonconservative type, for which the level-set is

expected to represent a proper viscosity solution introduced by [34]. Since the problem is

not spatially homogeneous, it might be a chance that the level-set may still overturn so

facet-stay-as-facet hypothesis is not expected to hold for small M . The notion of solution

for (1.7) has not yet been fully established. In section 3 we highlight a level-set method

to track the graph of solutions with shocks by vertical singular diffusivity.

We are now going back to the gradient flow of total variation, its one-dimensional

version is (1.1). To remove noises from image it has been proposed in [62] to use the

gradient flow of total variation of a grey-level function under constraint
∫ |u − u0|2dx =

const, where u0 as a given image. There are several models related to this problem. For

example, the total variation flow with values in a sphere is important to remove noise

from direction fields of color grey-level mappings u = (u1, u2, u3) keeping its strength [67].

Its explicit form is

ut = div

(∇u

|∇u

)
+ |∇u|u. (1.9)

These problems do not have order-preserving structure and it does not apply nonlinear

semigroup theory since the nonlinear operator is not necessarily maximal monotone. For a

background of problems related to image analysis see [63]. A similar model for a direction

field is also important to model the evolution of multigrain [55], [72], where u represents

the orientation of the grain. In section 5 we review several analytic results for a gradient

flow of total variation.
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A fourth order parabolic equation with singular diffusivity is proposed for example in

[66] to model an evolution by surface diffusion with facet. Its analysis is just started by

Y. Kashima [51]. For more references see papers cited in [51].

2 Anysotropic curvature flow with singular interfa-

cial energy

A curvature flow equation is by now very popular to describe the motion of phase-

boundaries such as the motion of grain boundaries in material sciences (see e.g.[47]). It

is also used in image processing to remove noises from images (see [63], [12]). Anisotropic

effect is often important for a crystal growth problem [54]. In image processing it is

also important to use an equation with anisotropy depending on local feature of images

(e.g.[61]).

Here is a general form of an anisotropic curvature flow equation for evolving curves

{Γt} in R2 when it is spatially homogeneous and time independent:

V = g(n, Λγ(n)) on Γt, (2.1)

where g is nondereasing in the second variable so that the problem in parabolic. Recently,

for nondifferentiable γ including crystalline energy we are able to establish a level-set

method. First let us write a level-set equation of (2.1). It is of the form

ϕt − |∇ϕ|g(−∇ϕ/|∇ϕ|, Λγ(−∇ϕ/|∇ϕ|)) = 0. (2.2)

Let I denote the set of all convex interfacial energy density γ(≥ 0) such that the boundary

curve of Frank γ is a closed piecewise C2 curve so that it has at most finitely many

singularities. Let G0 denote the set of all continuous functions on S1 × R such that

λ 7→ g(p, λ) is nondereasing and

||g||1 = sup{|g(p, λ)|/(|λ|+ 1), p ∈ S1, x ∈ R} < ∞.

We state a periodic version of main results of [27]. Let Tn denote a flat torus defined by

Tn =
n

Π
i=1

(R/ωiZ) with ωi > 0.

Theorem 2.1. Assume that γ ∈ I and g ∈ G0. There is an explicit notion of viscosity-

like solutions (consistent with usual viscosity solutions) such that following properties are

valid.

(Global Unique Solvability). For ϕ0 ∈ C(T2) there exists a unique solution ϕ ∈
C(T2 × [0,∞)) of (2.2) with ϕ|t=0 = ϕ0.
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(Convergence Property). Assume that γε ∈ I and gε ∈ G0 for ε ∈ (0,1). Assume

that γε → γ, gε → g locally uniformly as ε → 0. Assume that sup0<ε<1 ||gε||1 < ∞. Let

ϕε be the solution of

ϕt − |∇ϕ|gε(−∇ϕ/|∇ϕ|, Λγε(−∇ϕ/|∇ϕ|)) = 0

with ϕ|t=0 = ϕ0ε ∈ C(T2). If ϕ0ε → ϕ0 in C(T2), then ϕε → ϕ locally uniformly in

T2 × [0,∞) as ε → 0.

As expected the (super) level-set {ϕ ≥ c} is uniquely determined from the initial

level-set {ϕ0 ≥ c} and the comparison principle still holds. However, one should notice

that the proof is not easy since the problem has nonlocal nature. We refer to [27] for the

proof.

We shall discuss a few applications of these powerful results. For this purpose following

[26] we recall a crystalline flow [4], [68] of (2.1) when γ is crystalline, i.e., Frank γ is a

convex , m-polygon. Let qi(i = 1, 2, ..., m) be its verteces. Let N ⊂ S1 = {p ∈ R2||p| = 1}
be the set of all unit vectors of form qi/|qi|(i = 1, 2, ..., m). A simple polygonal curve S

in R2 is called an admissible crystal if all outward normal (orientation) belongs to N and

the orientations of adjacent segments (facet) point to verteces adjacent in Frank γ. A

family of polygon {St}t∈J is an admissible evolving crystal if St moves at least C1 in time,

where J is a time interval. The last requirement implicitly assumes that the numbers

of facets and the orientation at each facet are independent of time. In other words, St

is of form St = ∪r
j=1Sj(t) and Sj(t) is a maximal nontrivial closed segment (facet) of St

and the orientation nj of Sj(t) is independent of time. To fix the idea we number facets

clockwise.

Let {St}t∈J be an admissible evolving crystal with J = [0, T ). We say that {St}t∈J is

a γ-regular flow of (2.1) if

Vj = g(nj ; χj∆(nj)/Lj(t)) on Sj(t) (2.3)

for j = 1, 2, ..., r, where Vj denotes the normal velocity of Sj(t). The quantity χj∆(nj)/Lj(t)

is a nonlocal weighted curvature Λγ(nj), where Lj(t) denotes the length of Sj(t) and

∆(mi) = γ̃′(θi + 0)− γ̃′(θi − 0),mi = (cos θi, sin θi) ∈ N with γ̃(θ) = γ(cos θ, sin θ). The

quantity χj is a transition number. It takes +1 (resp.-1) if St is concave (resp. convex)

in the direction of nj near Sj; we use the convention that χj = −1 for all j = 1, ..., r if St

is a convex polygon. Otherwise we set χj = 0. As well-known that ∆(mi) is the length

of a facet of the Wulff shape

Wγ = {x ∈ R2
∣∣ x · p ≤ γ(p) for all p ∈ R2}
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with outward normal mi ∈ N . By this convention the weighted curvature Λγ of Wulff

shape is -1, independent of the facet. For smooth γ the curvature Λγ of the corresponding

Wulff shape is always -1 so it is a substitute of a circle for isotropic γ. So the definition of

nonlocal curvature is quite natural as far as one admits the facet-stay-as-facet hypothesis

as derived from (1.1).

Note that Lj always fulfills a transport equation

dLj

dt
(t) = (cot σj+1 + cot σj)Vj − (sin σj)

−1Vj−1 − (sin σj+1)
−1Vj+1 (2.4)

as observed in [4], [68]. Here σj = θj − θj−1 for nj = (cos θj, sin θj) and Vj denotes the

normal velocity of Sj(t); the index j is considered modulo r. Combining (2.3) and (2.4)

we get an r-system of ordinary differential equations of Lj’s. A local existence theorem

of ODEs yields a local existence of γ-regular flow.

Proposition 2.2. Assume that λ 7→ g(mi, λ)(ni ∈ N ) is locally Lipschitz continuous

on R\{0}. Let S0 be an admissible crystal. Then there is a constant T > 0 and a unique

γ-regular flow {St}t∈J of (2.1) with initial data S0 where J = [0, T ).

During evolution some facets may disappear at the maximal existence time T of γ-

regular flow. As discussed in [26] for a wide class of equations (2.3) (or (2.1)) St becomes

still admissible at T so one can construct γ-regular flow starting from ST . A crystalline

flow {St} of (2.1) is obtained by repeating this procedure. For simplicity we consider (1.5)

with symmetric crystalline γ i.e. γ(p) = γ(−p). For this equation a unique crystalline flow

exists until it shrinks to a point without self-intersection if initially S0 is an admissible

crystal. Moreover, this crystalline flow is consistent with a level-set flow defined by {ϕ =

c} for ϕ solving (1.3) [26].

We now mention two typical applications of our convergence theorem (Theorem 2.1).

Let Is denote the set of γ ∈ I such that Frank γ has a smooth boundary with nonzero

curvature and that γ is symmetric, i.e. γ(p) = γ(−p). For γ ∈ Is it is well-known [16]

that (1.5) admits a smooth solution {Γt} starting from a simple, closed, smooth curve

Γ0 until it shrinks to a point. As well-known this {Γt} is also a level-set flow of (1.3), in

particular, no fattening occurs [37], [36]. It is easy to see that a symmetric crystalline

γ there is a family {γε} ⊂ Is such that γε → γ locally uniformly as ε → 0. It is also

easy to see that for γ ∈ Is there is a family {γε} of crystalline energies such that γε → γ.

Theorem 2.1 (with help of [27, Corollary 8.3]) provides various approximation results; see

e.g. [26]. We give a simple example.

Theorem 2.3 (Convergence of crystalline algorithm). For γ ∈ Is let γε be a

symmetric crystalline energy such that γε → γ locally uniformly as ε → 0. Let {Sε
t }t∈J
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be the crystalline flow of (1.5) with γ replaced by γε starting from Sε
0. For a smooth, closed,

simple curve Γ0 let {Γt}t∈J be the solution of (1.5) with Γt|t=0 = Γ0. If dH(Sε
0, Γ0) → 0

as ε → 0, then sup
0≤t≤T ′

dH(Γt, S
ε
t ) → 0 for T ′ < T , where J = [0, T ). Here dH denotes the

Haussdroff distance and T is the time when Γt shrinks to a point.

Theorem 2.4 (Approximation by a smooth problem). For a symmetric crystalline

energy let γε ∈ Is satisfy γε → γ as ε → 0 locally uniformly. Let {Γε
t}t∈J be the solution

of (1.5) with γ replaced by γε starting from a smooth, closed, simple curve Γε
0. Let {St}t∈J

be the crystalline flow of (1.5) starting from an adrissible crystal S0. If dH(Γε
0, S0) → 0 as

ε → 0, then sup
0≤t≤T ′

dH(Γε
t , St) → 0 for T ′ < T , where J = [0, T ). Here T is the time when

St shrinks to a point.

There are several preceding work on convergence of crystalline algorithm [21], [46],

[25] for graph-like curves. For isotropic energy i.e. for a curve shortening equation the

convergence is shown for a convex curve [45] and a general curve [50]. Theorem 2.3 is a

generalization of these results. For more general statement and more references see [26]

and references cited there.

Theorem 2.4 justified the crystalline flow as a limit of a smoother problem. There

are several preceeding works including [21], [25] for graph-like curves. This result is

‘essentially’ known from [27, Corollary 8.3] and consistency results; however, it seems

that this was not explicitly stated in the literature.

Our level-set flow for a crystalline energy provides a solution starting from nonadmis-

sible polygon. It turns out it evolves as a polygon and is still computable. We do not

touch this problem here and leave it to [30] and its application to image analysis to [48].

Finally, we mention that a singular interfacial energy really arises when one considers

a crystal at low temperature [29], where it is shown that an evaporation dynamics (with

a facet) proposed by [66] is approximated by a smoother problem as an application of a

convergence result in [25].

3 Shocks and vertical diffusion

We consider the initial value problem for a nonlinear first order equation of the form

ut + H(u,∇u) = 0, x ∈ Rn, t > 0 (3.1)

u(x, 0) = u0(x), (3.2)

where u = u(x, t) is a real-valued function and H = H(r, p) is continuous. Let us de-

rive a level-set equation for the graph of u. Let ϕ = ϕ(x, y, t) be a function such that
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ϕ(x, u(x, t), t) = 0 for x ∈ Rn, t > 0. To fix the idea we assume that ϕy ≤ 0. Then

ut = −ϕt/ϕy, ∂u/∂xi = −(∂ϕ/∂xi)/ϕy so (3.1) yields

ϕt − ϕyH(y,−∇xϕ/ϕy) = 0 (3.3)

on the zero level-set of ϕ. We consider (3.2) in Rn ×R× (0, T ) rather than on the zero

level-set of ϕ. To solve the initial value problem (3.1)-(3.2) we rather solve ϕ with initial

data ϕ0 such that the zero level-set of ϕ0 agrees with the graph of u0. One advantage

of (3.3) over (3.1) is that (3.3) does not contain unknown ϕ while (3.1) depends on

unknown u explicitly. This idea goes back to Jacobi [13] to solve (3.1)-(3.2) by a method of

characteristic. Such a level-set formulation is studied by Evans [19] for the heat equation.

A related level-set approach is proposed by Osher [58] for a stationary Hamilton-Jacobi

equation. The author with M.-H. Sato [44] applies the above level-set method to solve

(3.1) globally-in-time in viscosity sense when u0 is not necessarily continuous assuming

that r 7→ H(r, p) is nondecreasing (under some linear growth condition in p of H(r, p)).

Since the solution is not expected to be continuous, the uniqueness of a solution is not

generally valid. It turns out that this problem is related to ‘fattening’ in the level-set

method for a curvature flow equation [6]. The level-set method [44] provides the largest

and the smallest solutions of (3.1)-(3.2).

If the monotonicity condition on H(r, p) w.r.t. r is removed, the situation is quite

different. A typical example is the a conservation law

ut + div F(u) = 0

with F = (F1, ..., Fn), which includes the Burgers equation as a special example. The

solution of the initial value problem (3.1) may develop discontinuity (called shock) in

finite time even if initial data is smooth. (Under the monotonicity condition on H a

solution stays continuous if initial data is (uniformly) continuous.) For conservation laws

there is a unique way to extend a solution globally-in-time after it develop singularities.

This special weak solution is called an entropy solution [18], [57]. If one tracks the zero

level-set of (3.3) it may ‘overturn’ and it cannot be viewed as the graph of single-valued

function after the solution u develops shocks. In what way one should track the graph of

entropy solution ?

In [34], [35] we propose to consider

ϕt − ϕyH(y,−∇xϕ/ϕy) = M |∇x,yϕ| ∂

∂y

(
ϕy

|ϕy|
)

(3.4)

with some M > 0 instead of (3.3). This is again the equation with singular diffusivity

and the notion of solution is unclear. Each level-set {Γt} of ϕ is moved by

V = −nn+1H(y,−(n1, .., nn)/nn+1)−M divΓtξ(n) on Γt, (3.5)
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where n = (n1, ..., nn+1) is the upward normal of Γt and ξ = ∇γ with γ(p) = |pn+1| for

p = (p1, ..., pn+1). The equation (3.4) is the level-set equation of anisotropic curvature

flow equation (3.5) with singular interfacial energy. However, the theory in Section 2 does

not apply even for n = 1 since (3.5) is spatially inhomogeneous.

Instead of developing general theory for (3.4) or (1.7) we rather study its approxima-

tion. We consider a simple example (1.8) with initial data

u(x, 0) = u0(x) =

{
a , x > 0
a + d , x < 0

for a ∈ R, d > 0. Then it is well-known that the entropy solution of (1.8) is of the form

uE(x, t) =

{
a , x > ct
a + d , x < ct

with c = (f(a + d)− f(a))/d, where f(r) = r2/2. Consider

ϕt + yϕx = M |∇x,yϕ|divξε(−∇ϕ/|∇ϕ|) (3.6)

with ξε = ∇γε such that γε approximates γ. Initial data ϕ0 of ϕ is taken so that it is

uniformly continuous with

{(x, y)|ϕ0(x, y) ≤ 0} = {(x, y)|y ≤ u0(x)} (3.7)

and that y 7→ ϕ0(x, y) is nonincreasing. If γε is convex and C2, it is known that (3.6)

admits a unique continuous solution ϕε [36]. The next result indicates the role of vertical

diffusion term.

Let ϕε be the solution (3.6) satistfying (3.7). For technical reasons we assume that

M < d2/8.

Theorem 3.1. [28] There is a sequence of convex, C2 functions {γε} converging to

γ(p) = |pn+1| locally uniformly such that

Eε = {(x, y, t) ∈ R2 × [0, α)|ϕε(x, y, t) ≤ 0}

converges to

{(x, y, t) ∈ R2 × [∂,∞)|y ≤ uE(x, t)}
in the Haussdorff distance as ε → 0 if and only if M ≥ d2/16. If M < d2/16, then the

limit Eε cannot be viewed as the graph of a single-valued function.

The class of approximation so that the convergence is valid is given explicitly in [28].

For technical reasons we assume that γε is positively homogeneous of degree one and
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M < d2/8 but these assumptions are expected to be removed by further development of

the theory. The threshold value d2/16 is consistent with one obtained by the theory of

nonlinear semigroups [35], [28]. It does not depend on the way of our approximation. The

limit of Eε for M < d2/16 is also explicitly described in [28].

If the equation (3.1) is not a conservation law, it was not clear a priori what is a

reasonable notion of a weak solution after u develops shocks. A typical example is

ut − u(1 + |∇u|2)1/2 = 0 (3.8)

It controls the speed V of the graph Γt of u(·, t) as V = y in xy-space. Evidently, u may

develop jump discontinuity in finite time for some smooth initial data. Classical theory

for viscosity solutions does not apply for such a problem. In [34] we introduced a notion

of a proper viscosity solution which is a special viscosity solution [17] with a control of

the speed of shock. It turns out this is a suitable notion to solve the initial value problem

globally in time and it is consistent with the notion of an entropy solution when the

equation is a conservation law. A proper viscosity solution is obtained by a vanishing

viscosity method like an entropy solution [34].

The equation (3.4) is useful to track the evolution of the graph of a proper viscosity

solution of (3.1). Although it is still work in progress, it is expected that the set like

Eε converges to the subgraph set of a (maximal) proper viscosity solution for sufficiently

large M at least for bounded solutions. Thus it is reasonable to define the notion of a

solution of the level-set equation of the form

ϕt − ϕyH(y,−∇xϕ/ϕy) = ∞|∇x,yϕ| ∂

∂y

(
ϕy

|ϕy|
)

. (3.9)

For simplicity we consider a periodic function in x.

Definition 4.2. Assume that ϕ = ϕ(x, y, t) is nonincreasing in y and ϕ is upper

semicontinuous in Q = Tn ×R× (0, T ). We say that ϕ is a viscosity subsolution of (3.9)

if the height function

u]
c(x, t) = sup{y|ϕ(x, y, t) ≥ c}

of each super level-set {ϕ ≥ c} is a proper viscosity subsolution [34] of (3.1). The definition

of supersolution for a lower semicontinuous function is obtained by replacing sup by inf,

{ϕ ≥ c} by {ϕ ≤ c}, and subsolution by supersolution.

Since proper viscosity solutions enjoy a weak comparison principle [34, Theorem 4.1],

it is not difficult prove a comparison principle for (3.9).

Theorem 4.3. Assume that H is continuous and that H satisfies

|H(r, p)−H(r′, p)| ≤ C|r − r′|(|p|+ 1)

12



for all r, r′ ∈ R satisfying |r|, |r′| ≤ K and for all p ∈ Rn with C depending only on

K. Let ϕ1 and −ϕ2 be upper semicontinuous in Q̄. Assume that λH(r, p/λ) converges

locally uniformly in (r, p) ∈ Rn ×R as λ → 0. Assume that y 7→ ϕi(x, y, t)(i = 1, 2) is

nonincreasing. Assume that ϕ1 and ϕ2 are, respectively, a sub- and supersolution of (3.9)

in Q. Then ϕ1 ≤ ϕ2 in Q if ϕ1 ≤ ϕ2 at t = 0 (provided that each super and sub level-set

of ϕ1 and ϕ2 are bounded in y or −y direction.)

Proof. Suppose that the conclusion were false. Then there is c ∈ R such that

{ϕ1 ≥ c} ∩ {ϕ2 ≤ c}

contains an interior point in Q, where we abbreviate {(x, y, t) ∈ Q|ϕ1(x, y, t) ≥ c} by

{ϕ1 ≥ c} e.t.c. as before. Thus there is c′ < c close to c such that

{ϕ1 ≥ c} ∩ {ϕ2 ≤ c′} 6= ∅. (3.10)

Since ϕ1 ≤ ϕ2 at t = 0, then

{ϕ1|t=0 ≥ c} ∩ {ϕ2|t=0 ≤ c′} = ∅ in Tn ×R. (3.11)

By definition

u](x, t) = sup{y|ϕ1(x, y, t) ≥ c}
v](x, t) = inf{y|ϕ2(x, y, t) ≤ c′}

are, respectively, a proper viscosity sub and supersolution of (3.1).

Both functions are bounded. By (3.11) u] < v] at t = 0. We now apply the weak

comparison principle [34, Theorem 4.1] to conclude that u] < v] for all t ∈ [0, T ). However,

this contradicts (3.10). So we conclude that ϕ1 ≤ ϕ2 in Q. (A similar idea is found in

[36, Chapter 5] to discuss the relation of comparison principles of solutions of a level-set

equation and of their slices.) ¤

If each level-set of ϕ is bounded in y direction and the difference of upper bound and

lower bound is bounded independent of levels, it is expected that for a sufficiently large

M equation (3.4) and (3.9) are the same for such ϕ’s although the definition of a solution

for (3.4) is not yet established.

The equation (3.4) is also convenient to calculate a proper viscosity solution numeri-

cally as developed in [70], [69].
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4 Gradient flow of total variation

The gradient flow of total variation is of the form

ut = div

( ∇u

|∇u|
)

(4.1)

for u = u(x, t), x ∈ Ω ⊂ Rn with a bounded domain Ω. As mentioned for (1.1) under the

Dirichlet (or Neumann) boundary condition for this problem classical nonlinear semigroup

theory yields a global unique solution [53], [31] for the initial-boundary value problem for

(4.1). In [49] the global unique solvability is established for equations including (4.1) with

time dependent Dirichlet boundary data. It is also shown in [49] that the solution tends

to a minimizer of total variation as time tends infinity when the boudary data is time

independent. Note that (4.1) is different from the level-set mean curvature flow equation

(1.4) [15], [20] where the singularity at ∇ϕ = 0 is weaker than (4.1) so that equation

(1.4) is still a local equation. Other than L2 theory, L1-theory has been esteblished in

[3], [1], [2] and concludes that solution semigroup is L1-contraction as well as L2 and

L∞-contraction. However, a detailed behaviour of a facet is not well studied for n ≥ 2

except [7]. What is known is that the facet-stay-as-facet hypothesis is no longer valid.

In other words ut may not be a constant on a facet of slope zero [8], [9] when the space

dimension n ≥ 2.

For applications to both image processing and multigrain motion [55], [72] it is impor-

tant to consider spatially inhomogeneous equation of the form

b(x)ut = div(a(x)∇u/|∇u|) (4.2)

with a(x) > 0, b(x) > 0. In [53], [31] one dimensional version of (4.2) with Dirchlet

condition is studied. It provides a necessary and sufficient condition that a facet (called

a plateau in [53], [31]) may break. Note that this problem is still in a realm of nonlinear

semigroup theory for maximal monotone operators in L2. Thus the notion of solution is

a priori defined. When a is piecewise linear with b ≡ 1, the whole evolution for piecewise

constant initial data with jumps included in the singular set of a is easily computed by

solving ODEs; here, facet-stay-facet-hypothesis in still valid [31]. In [31] the evolution of

piecewise constant functions is studied in detail. In the meanwhile the Allen-Cahn type

equation with top order term div(∇u/|∇u|) and with obstacle type double well potential

has been studied in detail. For example, classification of a stationary solution and its

stability is discussed in [52], [65] for n = 1. Recently, a higher dimensional problem is

also studied by M. Kimura and K. Shirakawa.
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There are several analytic results reflecting constraint
∫ |u− u0|2dx = const. For the

equation

ut = div(a(x)∇u/|∇u|)− b(u− u0) (b > 0)

the global unique solvability has been established with Neumann data; see [14]. However,

the gradient flow of total variation with the constraint
∫ |u−u0|2 = const seems to be not

studied from the mathematical analysis point of view. For the value constraint problem

like (1.9) little is known. In [40] the initial value problem for (1.9) with the Dirichlet

problem is studied when n = 1 and the constraint is u2
1 + u2

2 = 1 (with u3 ≡ 0). For

a piecewise constant initial data it is shown that the solution tends to some stationary

solution in finite time [40]. It is expected that a solution exists globally-in-time for a

general initial data by suitable interpretation of the equation (1.9). Recently, a local

solvability has been proved in [39] when initial data is smooth and its total variation is

small under periodic boundary conditions.
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[56] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan., 19

(1967), 493-507.

[57] P. D. Lax, Hyperbolic Systems of Conservation Laws and Mathematical Theory of

Shock Waves, SIAM, Philadelphia, Pa., 1973.

[58] S. Osher, A level set formulation for the solution of the Dirichlet problem for

Hamilton-Jacobi equations, SIAM J. Math. Anal., 24 (1993), 1145-1152.

[59] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,

Applied Math. Ser. 153 Springer, 2003.

[60] S. Osher and J. A. Sethian, Front propagation with curvature dependent speed:

Algorithm based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-

49.

19



[61] T. Preusser and M. Rumpf, A level set method for anisotropic geometric diffusion

in 3D image processing, SIAM J. Appl. Math., 62 (2002), 1772-1793.

[62] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise

removal algorithms, Physica D., 60 (1992), 259-268.

[63] G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cam-

bridge University Press, United Kingdom, 2001.

[64] J. A. Sethian, Level Set Methods, Evolving Interfaces in Geomety, Fluid Mechanics,

Computer Vision, and Materials Science, Cambridge Univ. Press., 1996.

[65] K. Shirakawa, Parabolic variational inequality associated with the total variation

functional, Nonlinear Anal., 47 (2001), 3195-3206.

[66] H. Spohn, Surface dynamics below the roughening transition, J. Phys. I France., 3

(1993), 69-81.

[67] B. Tang, G. Sapiro and V. Caselles, Color image enhancement via chromaticity

diffusion, IEEE Trans. on Image Processing, 10 (2001), 701-707.

[68] J. Taylor, Constructions and conjectures in crystalline nondifferential geometry,

in Differential Geometry, B. Lawson and K. Tanenblat, eds., Proceedings of the

Conference on Differential Geometry, Rio de Janeiro, Pitman Monograph Surveys

Pure Appl. Math., 52 (1991), 321-336.

[69] Y.-H. R. Tsai and Y, Giga, A numerical study of anisotropic crystal growth with

bunching under very singular vertical diffusion, preprint.

[70] Y.-H. R. Tsai, Y. Giga and S. Osher, A level set approach for computing

discontinuous solutions of a class of Hamilton-Jacobi equations, Math. Comp., 72

(2003), 159-181.

[71] J. Watanabe, Approximation of nonlinear problems of a certain type, in Numerical

Analysis of Evolution Equations, H. Fujita and M. Yamaguti, eds., Lecture Notes in

Num. Appl., 1, Kinokuniya, Tokyo, (1979), pp. 147-163.

[72] J. A. Warren, R. Kobayashi and W. C. Carter, Modeling grain boundaries

using a Phase-field technique, J. Cryst. Growth., 211 (2000), 18-20.

[73] J. Yunger, Facet stepping and motion by crystalline curvature, PhD Thesis, Rutgers

University, 1998.

20


