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Abstract. We consider the following nonlinear singular elliptic equation

−div (|x|−2a∇u) = K(x)|x|−bp|u|p−2u + λg(x) in RN ,

where g belongs to an appropriate weighted Sobolev space and p denotes the Caffarelli–
Kohn–Nirenberg critical exponent associated to a, b, and N . Under some natural assumptions
on the positive potential K(x) we establish the existence of some λ0 > 0 such that the above
problem has at least two distinct solutions provided that λ ∈ (0, λ0). The proof relies on
Ekeland’s variational principle and on the mountain pass theorem without the Palais–Smale
condition, combined with a weighted variant of the Brezis–Lieb lemma.
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1. Introduction and the main result

Many papers have been devoted in recent decades to the study of degenerate elliptic
problems. We start with the following example:{

div (a(x)∇u) + f(u) = 0 in Ω

u = 0 on ∂Ω
, (1)

where Ω is an arbitrary domain in RN (N ≥ 1) and a is a nonnegative function
that may have “essential” zeroes at some points or may even be unbounded. The
continuous function f satisfies f(0) = 0 and t f(t) behaves like |t|p as |t| → ∞,
with 2 < p < 2∗, where 2∗ denotes the critical Sobolev exponent. Notice that
equations of this type come from the consideration of standing waves in anisotropic
Schrödinger equations (see [2,20,21,25]). Equations like (1) are also introduced
as models for several physical phenomena related to equilibrium of anisotropic
media that possibly are somewhere “perfect” insulators or “perfect” conductors
[10, p. 79]. Problem (1) also has some interest in the framework of optimization
and G-convergence (see, e.g., [14] and references therein).
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Classical results [1,17] ensure the existence and the multiplicity of posi-
tive or nodal solutions for problem (1), provided that the differential operator
Tu := div (a(x)∇u) is uniformly elliptic. Several difficulties occur both in the
degenerate case (if inf

Ω
a = 0) and in the singular case (if sup

Ω

a = +∞). In these

situations, the classical methods fail to be applied directly so that the existence
and the multiplicity results (which hold in the nondegenerate case) may become
a delicate matter that is closely related to some phenomena due to the degenerate
character of the differential equation. These problems have been intensively studied
starting with the pioneering paper by Murthy and Stampacchia [15] (we also refer
the reader to [8,13,16], as well as to the monograph [22]).

In concrete applications, it is natural to want to see what happens if these ellip-
tic (degenerate or nondegenerate) problems are affected by a certain perturbation.
It is worth pointing out here that the idea of using perturbation methods in the
treatment of nonlinear boundary value problems was introduced by Struwe [23].
Recently, many authors have been interested in this kind of perturbation prob-
lem involving both critical and sub- or supercritical Sobolev exponents
(see, e.g., [9,18,24]).

Our aim in this paper is to study the following degenerate perturbed problem:

−div (|x|−2a∇u) = K(x)|x|−bp|u|p−2u + λg(x) in RN , (2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for N ≥ 3: −∞ < a <
N − 2

2
, a < b < a + 1,

and p = 2N

N − 2 + 2(b − a)
;

for N = 2: −∞ < a < 0, a < b < a + 1, and p = 2

b − a
;

for N = 1: −∞ < a < −1

2
, a + 1

2
< b < a + 1,

and p = 2

−1 + 2(b − a)
.

(3)

Equation (2) contains the critical Caffarelli–Kohn–Nirenberg exponent p, de-
fined as in (3). In this critical case, some concentration phenomena may occur, due
to the action of the noncompact group of dilations in RN . The lack of compactness
of problem (2) is also given by the fact that we are looking for entire solutions, that
is, solutions defined on the whole space.

The reason we choose the parameters a, b, and p to satisfy the assumption (3)
has to do with the following inequality, due to Caffarelli et al. [6]:

(∫
RN

|x|−bp |u|pdx

)1/p

≤ Ca,b

(∫
RN

|x|−2a|∇u|2dx

)1/2

, (4)

for all u ∈ C∞
0 (RN ), where a, b, and p satisfy condition (3). We point out that

inequality (4) also holds for b = a + 1 (if N ≥ 1) and b = a (if N ≥ 3), but
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in these cases, the best Sobolev constant Ca,b in (4) is never achieved (see [7] for
details). The Caffarelli–Kohn–Nirenberg inequality (4) contains as particular cases
the classical Sobolev inequality (if a = b = 0) and the Hardy inequality (if a = 0
and b = 1); we refer the reader to [4,11,19] for further details.

The extremal functions for (4) are ground state solutions of the singular Euler
equation

−div (|x|−2a ∇u) = |x|−bp |u|p−2u, in RN .

This equation has been recently studied [7,26] in connection with a complete
understanding of the best constants, the qualitative properties of extremal functions,
the existence (or nonexistence) of minimizers, and the symmetry properties of
minimizers.

Function K is assumed to fulfill

(K1) K ∈ L∞(RN ),
(K2) esslim|x|→0 K(x) = esslim|x|→∞K(x) = K0 ∈ (0,∞) and K(x) ≥ K0 a.e.

in RN ,
(K3) meas

({x ∈ RN : K(x) > K0}
)

> 0.

Many authors have made contributions to the study of this problem, especially
for the case λ = 0. The Palais–Smale condition PS plays a central role when
variational methods are applied in the study of problem (2). In this paper, we
establish the existence and the multiplicity of nontrivial solutions of (2) with
λ > 0 sufficiently small, in a case where the PS condition is not assumed even
for λ = 0. More precisely, we will show that there exists at least two weak
solutions of (2) for g �= 0 in an appropriate weighted Sobolev space and λ > 0
small enough. Our proof relies on Ekeland’s variational principle [12] and on the
mountain pass theorem without the Palais–Smale condition (in the sense of Brezis
and Nirenberg, see [5]), combined with a weighted variant of the Brezis–Lieb
Lemma [3].

The natural functional space to study problem (2) is H1
a (RN ), defined as the

completion of C∞
0 (RN ) with respect to the norm

‖u‖ =
(∫

RN
|x|−2a|∇u|2dx

)1/2

. (5)

It turns out that H1
a (RN ) is a Hilbert space with respect to the inner product

〈u, v〉 =
∫
RN

|x|−2a∇u · ∇vdx, ∀ u, v ∈ H1
a (RN ).

It follows that (4) holds for all u ∈ H1
a (RN ). According to [7] we have

H1
a (RN ) = C∞

0

(
RN \ {0})‖·‖

, (6)

where ‖ · ‖ is given by (5). Let ‖ · ‖−1 denote the norm in the dual space H−1
a (RN )

of H1
a (RN ).
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Throughout this paper we suppose that g ∈ H−1
a (RN ) \ {0}.

For an arbitrary open set Ω ⊂ RN , let L p
b (Ω) be the space of all measurable

real functions u defined on Ω such that
∫

Ω

|x|−bp |u|pdx is finite. By (4) it follows

that the weighted Sobolev space H1
a (Ω) is continuously embedded in L p

b (Ω).

Definition 1. We say that a function u ∈ H1
a (RN ) is a weak solution of problem (2)

if ∫
RN

|x|−2a∇u · ∇v dx −
∫
RN

K(x)|x|−bp |u|p−2uv dx − λ

∫
RN

g(x)v dx = 0,

for all u ∈ C∞
0 (RN ).

Obviously, the solutions of problem (2) correspond to critical points of the
energy functional

Jλ(u) = 1

2

∫
RN

|x|−2a|∇u|2 dx − 1

p

∫
RN

K(x)|x|−bp |u|p dx − λ

∫
RN

g(x)u dx,

where u ∈ H1
a (RN ) .

Our main result is the following.

Theorem 1. Suppose that assumptions (K1), (K2), (K3) are fulfilled, and fix
g ∈ H−1

a (RN ) \ {0}. Then there exists λ0 > 0 such that for all λ ∈ (0, λ0),
problem (2) has at least two solutions.

Since the embedding H1
a (RN ) ↪→ L p

b (RN ) is not compact, the energy func-
tional Jλ fails to satisfy the PS condition. Such a failure makes it difficult to apply
a variational approach to (2). Furthermore, since g �≡ 0, then 0 is no longer a trivial
solution of problem (2), and therefore the mountain pass theorem cannot be applied
directly. Using ideas developed in [24], we obtain the first solution by applying
Ekeland’s variational principle. Then, the mountain pass theorem without the PS
condition yields a bounded PS sequence whose weak limit is a critical point of Jλ.
The proof is concluded by showing that these two solutions are distinct because
they realize different energy levels.

The paper is organized as follows. In Section 2 we give some technical results
that allow us to give a variational approach of our main result, which we prove in
Section 3. We point out that since the perturbation term g is not assumed to be
nonnegative, we cannot expect that the distinct solutions given by Theorem 1 will
be positive. However, if g ≥ 0 is a nontrivial perturbation, then a straightforward
argument based on the maximum principle implies that the solutions of problem (2)
are positive.

Notations. Throughout this paper we will denote by BR the open ball in H1
a (RN )

centered at the origin and having radius R > 0. We also denote by 〈 · , · 〉 the
duality pairing between H1

a (RN ) and H−1
a (RN ). The notations “⇀” and “→”

stand, respectively, for the weak and the strong convergence in an arbitrary Banach
space.



Singular elliptic problems with lack of compactness 67

2. Auxiliary results

Define the functionals J0, I : H1
a (RN ) → R by

J0(u) = 1

2

∫
RN

|x|−2a|∇u|2 dx − 1

p

∫
RN

K(x)|x|−bp |u|p dx,

I(u) = 1

2

∫
RN

|x|−2a|∇u|2 dx − 1

p

∫
RN

K0|x|−bp |u|p dx.

The Caffarelli–Kohn–Nirenberg inequality (4) and the conditions (K1), (K2) imply
that the functionals Jλ, J0, and I are well defined and Jλ, J0, I ∈ C1(H1

a (RN ),R).

Remark 1. If Ω ⊂ RN is a smooth bounded set such that 0 �∈ Ω , then, by the
Sobolev inequality, we have

(∫
Ω

|x|−bp |u|pdx

)1/p

≤ C1

(∫
Ω

|u|pdx

)1/p

≤ C2

(∫
Ω

|∇u|2dx

)1/2

≤ C3

(∫
Ω

|x|−2a|∇u|2dx

)1/2

,

for all u ∈ H1
a (Ω). It follows that H1

a (Ω) is compactly embedded in L p
b (Ω).

Inequality (4) implies that if {un} is a sequence that converges weakly to some
u0 in H1

a (RN ), then {un} is bounded in L p
b (RN ). Therefore, we can assume (up to

a sequence) that

un ⇀ u0 in L p
b, loc(R

N \ {0}) and un → u0 a.e. in RN . (7)

Definition 2. Let X be a Banach space, F : X → R be a C1−functional, and
c be a real number. A sequence {un} ⊂ X is called a (PS)c sequence of F if
F(un) → c and ‖F′(un)‖X∗ → 0.

Our first result shows that if a (PS)c sequence of Jλ is weakly convergent,
then its limit is a solution of problem (2).

Lemma 1. Let {un} ⊂ H1
a (RN ) be a (PS)c sequence of Jλ for some c ∈ R.

Suppose that {un} converges weakly to some u0 in H1
a (RN ). Then u0 is a solution

of problem (2).

Proof. Let ϕ ∈ C∞
0 (RN \ {0}) be an arbitrary function, and set Ω := supp ϕ.

Since J ′
λ(un) → 0 in H−1

a (RN ) , we obtain 〈J ′
λ(un), ϕ 〉 → 0 as n → ∞ , that

is,

lim
n→∞

( ∫
Ω

|x|−2a∇un · ∇ϕ dx −
∫

Ω

K(x)|x|−bp |un|p−2unϕ dx

− λ

∫
Ω

g(x)ϕ dx

)
= 0. (8)
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Since un ⇀ u0 in H1
a (RN ), it follows that

lim
n→∞

∫
Ω

|x|−2a∇un · ∇ϕ dx =
∫

Ω

|x|−2a∇u0 · ∇ϕ dx. (9)

The boundedness of {un} in H1
a (RN ) and the Caffarelli–Kohn–Nirenberg in-

equality imply that {|un|p−2un} is bounded in L p/p−1
b (RN ). Since |un|p−2un →

|u0|p−2u0 a.e. in RN (which is a consequence of (7)), we deduce that |u0|p−2u0 is
the weak limit in L p/p−1

b (RN ) of the sequence {|un|p−2un}. Therefore,

lim
n→∞

∫
Ω

K(x)|x|−bp |un|p−2unϕ dx =
∫

Ω

K(x)|x|−bp |u0|p−2u0ϕ dx. (10)

Consequently, relations (8)–(10) yield∫
Ω

|x|−2a∇u0 · ∇ϕ dx −
∫

Ω

K(x)|x|−bp |u0|p−2u0ϕ dx − λ

∫
Ω

g(x)ϕ dx = 0.

By virtue of (6) we deduce that the above equality holds for all ϕ ∈ H1
a (RN ) ,

which means that J ′
λ(u0) = 0. The proof of our lemma is now complete. ��

We now establish a weighted variant of the Brezis–Lieb lemma (see [3]).

Lemma 2. Let {un} be a sequence that is weakly convergent to u0 in H1
a (RN ) .

Then

lim
n→∞

∫
RN

K(x)|x|−bp (|un|p − |un − u0|p) dx =
∫
RN

K(x)|x|−bp |u0|p dx.

Proof. Using the boundedness of {un} in H1
a (RN ) and the Caffarelli–Kohn–Niren-

berg inequality, it follows that the sequence {un} is bounded in L p
b (RN ) . Let ε > 0

be a positive real number. By (K1) and (K2) we can choose Rε > rε > 0 such
that ∫

|x|<rε

K(x)|x|−bp |u0|p dx < ε, (11)

and ∫
|x|>Rε

K(x)|x|−bp |u0|p dx < ε. (12)

Denote Ωε = B(0, Rε) \ B(0, rε). We have∣∣∣∣
∫
RN

K(x)|x|−bp
(|un|p − |u0|p − |un − u0|p

)
dx

∣∣∣∣
≤

∣∣∣∣
∫

Ωε

K(x)|x|−bp (|un|p − |u0|p) dx

∣∣∣∣ +
∫
Ωε

K(x)|x|−bp |un − u0|p dx

+
∫

|x|<rε

K(x)|x|−bp |u0|p dx +
∣∣∣∣
∫

|x|<rε

K(x)|x|−bp
(|un|p − |un − u0|p

)
dx

∣∣∣∣

+
∫

|x|>Rε

K(x)|x|−bp |u0|p dx +
∣∣∣∣
∫

|x|>Rε

K(x)|x|−bp (|un|p − |un − u0|p) dx

∣∣∣∣ .
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By the Lagrange mean value theorem we have
∫

|x|<rε

K(x)|x|−bp
(|un|p − |un − u0|p

)
dx

= p
∫

|x|<rε

K(x)|x|−bp |θu0 + (un − u0)|p−1|u0| dx , (13)

where 0 < θ(x) < 1. Next, we employ the following elementary inequality: for all
s > 0, there exists a constant c = c(s) such that

(x + y)s ≤ c(xs + ys) for any x, y ∈ (0,∞).

Then, by Hölder’s inequality and relation (11) we deduce that
∫

|x|<rε

K(x)|x|−bp |θu0 + (un − u0)|p−1|u0| dx

≤ c
∫

|x|<rε

K(x)|x|−bp (|u0|p + |un − u0|p−1|u0|
)

dx

= c
∫

|x|<rε

K(x)|x|−bp |u0|p dx + c
∫

|x|<rε

K(x)|x|−bp |un − u0|p−1|u0| dx

≤ c ε + c

(∫
|x|<rε

K(x)|x|−bp |un − u0|p dx

)(p−1)/p

×
(∫

|x|<rε

K(x)|x|−bp |u0|p dx

)1/p

≤ c1 (ε + ε1/p),

where the constant c1 is independent of n and ε . Using relation (13) we have
∫

|x|<rε

K(x)|x|−bp |u0|p dx +
∣∣∣∣
∫

|x|<rε

K(x)|x|−bp (|un|p − |un − u0|p) dx

∣∣∣∣
≤ p c̃1 (ε + ε1/p). (14)

In a similar manner we obtain∫
|x|>Rε

K(x)|x|−bp |u0|p dx +
∣∣∣∣
∫

|x|>Rε

K(x)|x|−bp
(|un|p − |un − u0|p

)
dx

∣∣∣∣
≤ p c̃2 (ε + ε1/p). (15)

Since un ⇀ u0 in H1
a (RN ), relation (7) implies

lim
n→∞

∫
Ωε

K(x)|x|−bp (|un|p − |u0|p) dx = 0,

lim
n→∞

∫
Ωε

K(x)|x|−bp |un − u0|p dx = 0.

(16)
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Now, relations (14)–(16) yield

lim sup
n→∞

∣∣∣∣
∫
RN

K(x)|x|−bp (|un|p − |u0|p − |un − u0|p) dx

∣∣∣∣ ≤ (pC + 1) (ε + ε1/p).

Since ε > 0 is arbitrary, it follows that

lim
n→∞

∫
RN

K(x)|x|−bp (|un|p − |un − u0|p) dx =
∫
RN

K(x)|x|−bp |u0|p dx.

This concludes the proof. ��
Lemma 3. Let {vn} be a sequence that converges weakly to 0 in H1

a (RN ). Then
the following properties hold:

lim
n→∞[Jλ(vn) − I(vn)] = 0,

lim
n→∞[〈J ′

λ(vn), vn〉 − 〈I ′(vn), vn〉] = 0.

Proof. A simple computation yields

Jλ(vn) = I(vn) − 1

p

∫
RN

(K(x) − K0)|x|−bp |vn|p dx − λ

∫
RN

g(x)vn dx,

〈J ′
λ(vn), vn〉 = 〈I ′(vn), vn〉 −

∫
RN

(K(x) − K0)|x|−bp |vn |p dx − λ

∫
RN

g(x)vn dx.

Since vn ⇀ 0 in H1
a (RN ), it follows from the above equalities that it suffices to

prove that

lim
n→∞

∫
RN

(K(x) − K0)|x|−bp |vn |p dx = 0. (17)

Fix ε > 0. By our assumptions (K1) and (K2), there exists Rε > rε > 0 such
that

|K(x) − K0| = K(x) − K0 < ε for a.e. x ∈ RN \ Ωε,

where Ωε = B(0, Rε) \ B(0, rε). Next, we have
∫
RN

(K(x) − K0)|x|−bp |vn |p dx

=
∫
RN \Ωε

(K(x) − K0)|x|−bp |vn |p dx +
∫

Ωε

(K(x) − K0)|x|−bp |vn|p dx

≤ ε

∫
RN\Ωε

|x|−bp |vn|p dx + (‖K‖∞ − K0)

∫
Ωε

|x|−bp |vn |p dx

≤ ε

∫
RN

|x|−bp |vn|p dx + (‖K‖∞ − K0)

∫
Ωε

|x|−bp |vn |p dx.
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Since vn ⇀ 0 in H1
a (RN ), the Caffarelli–Kohn–Nirenberg inequality implies

that {vn} is bounded in L p
b (RN ). Moreover, by (7) it follows that vn → 0 in

L p
b, loc(R

N \ {0}). The above relations yield

lim sup
n→∞

∫
RN

(K(x) − K0)|x|−bp |vn|p dx ≤ Cε

for some constant C > 0 independent of n and ε. Since ε > 0 was arbitrarily
chosen, we conclude that (17) holds, and the proof of Lemma 3 is now complete.

��
Lemma 4. There exists λ1 > 0 and R = R(λ1) > 0 such that for all λ ∈ (0, λ1),
the functional Jλ admits a (PS)c0,λ

sequence with c0,λ = c0,λ(R) = inf
u∈BR

Jλ(u).

Moreover, c0,λ is achieved by some u0 ∈ H1
a (RN ) with J ′

λ(u0) = 0 .

Proof. Fix λ ∈ (0, 1). For all u ∈ H1
a (RN ) , the assumption (K1) and the

Caffarelli–Kohn–Nirenberg inequality imply

Jλ(u) = 1

2
‖u‖2 − 1

p

∫
RN

K(x)|x|−bp |u|p dx − λ

∫
RN

g(x)u dx

≥ 1

2
‖u‖2 − ‖K‖∞

p
C p

a,b‖u‖p − λ‖g‖−1‖u‖.

We now apply the inequality αβ ≤ α2 + β2

2
, for any α, β ≥ 0. Hence

Jλ(u) ≥ 1 − λ

2
‖u‖2 − ‖K‖∞

p
C p

a,b ‖u‖p − λ

2
‖g‖2

−1. (18)

Since p > 2 and the right side of (18) is a decreasing function on λ , we find
λ1 > 0 and R = R(λ1) > 0, δ = δ(λ1) > 0 such that

Jλ(u) ≥ −λ

2
‖g‖2

−1, for all u ∈ BR and λ ∈ (0, λ1) (19)

and

Jλ(u) ≥ δ > 0, for all u ∈ ∂BR and λ ∈ (0, λ1). (20)

For instance, we can take

λ1 := min

{
1

2
,

1

2‖g‖2
−1

(
1

2
− 1

p

)
r2

0

}
,

r0 :=
[

1

2‖K‖∞C p
a,b

]1/(p−2)

, R :=
[

1 − λ1

‖K‖∞C p
a,b

]1/(p−2)

and

δ(λ1) := λ1

2
‖g‖2

−1.

Using now estimate (18) we easily deduce (19) and (20).
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Next, we define c0,λ := c0,λ(R) = inf{Jλ(u) ; u ∈ BR}. We first note that
c0,λ ≤ Jλ(0) = 0 . The set BR becomes a complete metric space with respect to
the distance

dist(u, v) = ‖u − v‖ , for any u, v ∈ BR.

The functional Jλ is lower semicontinuous and bounded from below on BR . Then,
by Ekeland’s variational principle [12, Theorem 1.1], for any positive integer n there
exists un such that

c0,λ ≤ Jλ(un) ≤ c0,λ + 1

n
(21)

and

Jλ(w) ≥ Jλ(un) − 1

n
‖un − w‖ for all w ∈ BR. (22)

We first show that ‖un‖ < R for n large enough. Indeed, if not, then ‖un‖ = R
for infinitely many n, and so (up to a subsequence) we can assume that ‖un‖ = R
for all n ≥ 1. It follows that Jλ(un) ≥ δ > 0 . Using (21) and letting n → ∞ , we
have 0 ≥ c0,λ ≥ δ > 0, which is a contradiction.

We now claim that J ′
λ(un) → 0 in H−1

a (RN ) . Fix u ∈ H1
a (RN ) with ‖u‖ = 1

and let wn = un + tu. For some fixed n , we have ‖wn‖ ≤ ‖un‖ + t < R if t > 0
is small enough. Then relation (22) yields

Jλ(un + tu) ≥ Jλ(un) − t

n
‖u‖ ,

that is,

Jλ(un + tu) − Jλ(un)

t
≥ −1

n
‖u‖ = −1

n
.

Letting t ↘ 0 , it follows that 〈J ′
λ(un), u〉 ≥ −1

n
. Arguing in a similar way for

t ↗ 0, we obtain 〈J ′
λ(un), u〉 ≤ 1

n
. Since u ∈ H1

a (RN ) with ‖u‖ = 1 has been

arbitrarily chosen, we have

‖J ′
λ(un)‖ = sup

u∈H1
a (RN ),

‖u‖=1

|〈J ′
λ(un), u〉| ≤ 1

n
→ 0 as n → ∞.

We have proved the existence of a (PS)c0,λ
sequence, i.e., a sequence {un} ⊂

H1
a (RN ) with

Jλ(un) → c0,λ and J ′
λ(un) → 0 in H1

a (RN ). (23)

Since ‖un‖ ≤ R , it follows that {un} converges weakly (up to a subsequence) in
H1

a (RN ) to some u0. Moreover, relations (7) and (23) and Remark 1 yield

un ⇀ u0 in H1
a (RN ), un → u0 a.e. in RN (24)
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and

J ′
λ(u0) = 0. (25)

Next, we prove that Jλ(u0) = c0,λ. Using relations (23) and (24) we have

o(1) = 〈J ′
λ(un), un〉

=
∫
RN

|x|−2a|∇un|2 dx −
∫
RN

K(x)|x|−bp |un|p dx − λ

∫
RN

g(x)un dx.

Therefore,

Jλ(un) =
(

1

2
− 1

p

)∫
RN

K(x)|x|−bp|un|p dx − λ

2

∫
RN

g(x)un dx + o(1).

Hence

Jλ(u0) =
(

1

2
− 1

p

)∫
RN

K(x)|x|−bp|u0|p dx − λ

2

∫
RN

g(x)u0 dx + o(1).

Fatou’s lemma and relations (23)–(25) imply

c0,λ = lim inf
n→∞ Jλ(un) ≥

(
1

2
− 1

p

)∫
RN

K(x)|x|−bp|u0|p dx − λ

2

∫
RN

g(x)u0 dx

= Jλ(u0).

Thus, c0,λ ≥ Jλ(u0). On the other hand, since u0 ∈ BR, we deduce that Jλ(u0) ≥
c0,λ, so Jλ(u0) = c0,λ. This concludes the proof of Lemma 4. ��

3. Proof of Theorem 1

Define

S = {
u ∈ H1

a (RN ) \ {0} ; 〈I ′(u), u〉 = 0
}
.

We claim that S �= ∅. For this purpose we fix u ∈ H1
a (RN ) \ {0} and set, for any

λ > 0,

Ψ(λ) = 〈I ′(λu), λu〉 = λ2
∫
RN

|x|−2a|∇u|2 dx − λp
∫
RN

K0|x|−bp |u|p dx.

Since p > 2, it follows that Ψ(λ) < 0 for λ large enough and Ψ(λ) > 0 for λ

sufficiently close to the origin. So, there exists λ > 0 such that Ψ(λ) = 0, that is,
λu ∈ S.

Proposition 1. Let I∞ := inf{ I(u) ; u ∈ S}. Then there exists ū ∈ H1
a (RN ) such

that

I∞ = I(ū) = sup
t≥0

I(tū). (26)
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Proof. For some fixed ϕ ∈ H1
a (RN ) \ {0} denote

f(t) = I(tϕ) = t2

2

∫
RN

|x|−2a|∇ϕ|2 dx − K0

p
t p

∫
RN

|x|−bp |ϕ|p dx.

We have

f ′(t) = t
∫
RN

|x|−2a|∇ϕ|2 dx − K0 t p−1
∫
RN

|x|−bp |ϕ|p dx.

Then f attains its maximum at

t0 = t0(ϕ) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
RN

|x|−2a|∇ϕ|2 dx
∫
RN

K0|x|−bp|ϕ|p dx

⎫⎪⎪⎬
⎪⎪⎭

1/(p−2)

.

Hence

f(t0) = I(t0ϕ) = sup
t≥0

I(tϕ) =
(

1

2
− 1

p

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
RN

|x|−2a|∇ϕ|2 dx

(∫
RN

K0|x|−bp|ϕ|p dx

)2/p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p/(p−2)

.

It follows that

inf
ϕ∈H1

0 (RN )\{0}
sup
t≥0

I(tϕ) =
(

1

2
− 1

p

)
[S(a, b)]p/(p−2) , (27)

where

S(a, b) = inf
ϕ∈H1

0 (RN )\{0}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
RN

|x|−2a|∇ϕ|2 dx

(∫
RN

K0|x|−bp|ϕ|p dx

)2/p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (28)

We now easily observe that for every u ∈ S, we have t0(u) = 1, so by (27) it
follows that

I(u) = sup
t≥0

I(tu) for all u ∈ S. (29)

According to [7, Theorems 1.2, 7.2, 7.6], the infimum in (28) is achieved
by a function U ∈ H1

a (RN ) such that
∫
RN K0|x|−bp|U|pdx = 1. Letting ū =

[S(a, b)]1/(p−2) U , we see that ū ∈ S and

I(ū) =
(

1

2
− 1

p

)
[S(a, b)]p/(p−2) . (30)
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Relations (29) and (30) yield

I∞ = inf
u∈S

I(u) = inf
u∈S

sup
t≥0

I(tu) ≥ inf
u∈H1

0 (RN )\{0}
sup
t≥0

I(tu)

=
(

1

2
− 1

p

)
[S(a, b)]p/(p−2) = I(ū),

which concludes our proof. ��
Proposition 2. Assume that {un} is a (PS)c sequence of Jλ that is weakly con-
vergent in H1

a (RN ) to some u0. Then the following alternative holds: either {un}
converges strongly in H1

a (RN ), or c ≥ Jλ(u0) + I∞.

Proof. Since {un} is a (PS)c sequence and un ⇀ u0 in H1
a (RN ), we have

Jλ(un) = c + o(1) and 〈J ′
λ(un), un〉 = o(1). (31)

Denote vn = un − u0. It follows that vn ⇀ 0 in H1
a (RN ), which implies

lim
n→∞

∫
RN

|x|−2a∇vn · ∇u0 dx = 0,

lim
n→∞

∫
RN

g(x)vn dx = 0.

The above relations imply

‖un‖2 = ‖u0‖2 + ‖vn‖2 + o(1)

Jλ(vn) = J0(vn) + o(1).
(32)

Using Lemmas 1–3 and relations (31) and (32) we deduce that

o(1) + c = Jλ(un) = Jλ(u0) + Jλ(vn) + o(1) = Jλ(u0) + I(vn) + o(1), (33)

o(1) = 〈J ′
λ(un), un〉 = 〈J ′

λ(u0), u0〉 + 〈J ′
λ(vn), vn〉 + o(1)

= 〈I ′(vn), vn〉 + o(1). (34)

If vn → 0 in H1
a (RN ) , then un → u0 in H1

a (RN ). It follows that Jλ(u0) =
lim

n→∞ Jλ(un). If vn �→ 0 in H1
a (RN ), using the fact that vn ⇀ 0 in H1

a (RN ), we can

asume that ‖vn‖ → l > 0.

By virtue of (33), it remains only to show that I(vn) ≥ I∞ +o(1). Taking t > 0
we have

〈I ′(tvn), tvn〉 = t2
∫
RN

|x|−2a|∇vn|2 dx − t p K0

∫
RN

|x|−bp |vn |p dx.

If we prove the existence of a sequence {tn} ⊂ (0,∞) with tn → 1 and
〈I ′(tnvn), tnvn〉 = 0, then tnvn ∈ S. This implies that

I(vn) = I(tnvn) + 1 − t2
n

2
‖vn‖2 − 1 − t p

n

p
K0

∫
RN

|x|−bp |vn|p dx

= I(tnvn) + o(1) ≥ I∞ + o(1),
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and the conclusion follows. For this purpose, we denote

αn =
∫
RN

|x|−2a|∇vn|2 dx = ‖vn‖2 ≥ 0,

βn = K0

∫
RN

|x|−bp|vn|p dx ≥ 0,

µn = αn − βn.

From (34) it follows that µn = 〈I ′(vn), vn〉 → 0 as n → ∞. If µn = 0, then we
take tn = 1. We next assume that µn �= 0. Let δ ∈ Rwith |δ| > 0 sufficiently small
and t = 1 + δ. Then

〈I ′(tvn), tvn〉 = (1 + δ)2αn − (1 + δ)pβn = (1 + δ)2αn − (1 + δ)p(αn − µn)

= αn(2δ − pδ + o(δ)) + (1 + δ)pµn

= αn(2 − p)δ + αno(δ) + (1 + δ)pµn.

Since p > 2, αn → l2 > 0 and µn → 0, for n large enough we can define

δ+
n = 2|µn|

αn(p − 2)
and δ−

n = − 2|µn|
αn(p − 2)

. It follows that

δ+
n ↘ 0 and

〈
I ′((1 + δ+

n

)
vn

)
,
(
1 + δ+

n

)
vn

〉
< 0,

δ−
n ↗ 0 and

〈
I ′((1 + δ−

n

)
vn

)
,
(
1 + δ−

n

)
vn

〉
< 0.

From the above relations we deduce the existence of some tn ∈ (1 + δ−
n , 1 + δ+

n )

such that tn → 1 and 〈I ′(tnvn), tnvn〉 = 0. This concludes the proof. ��
We now fix ū ∈ H1

a (RN ) such that (26) holds. Since p > 2, there exists t̄ such
that

I(tū) < 0 for all t > t̄,

Jλ(tū) < 0 for all t > t̄ and λ > 0.

Set

P = {
γ ∈ C

([0, 1], H1
a (RN )

) ; γ(0) = 0, γ(1) = t̄ū
}
, (35)

cg = inf
γ∈P

sup
u∈γ

Jλ(u). (36)

Proposition 3. There exists λ0 > 0, R0 = R0(λ0) > 0, δ0 = δ0(λ0) > 0 such that
Jλ |∂BR0

≥ δ0 and cg < c0,λ + I∞ for all λ ∈ (0, λ0), where c0,λ = inf
u∈BR0

Jλ(u).

Proof. By our hypothesis (K3) and the definition of I we can assume that

J0(tū) < I(tū) for all t > 0.

An elementary computation implies the existence of some t0 ∈ (0, t̄) such that

sup
t≥0

J0(tū) = J0(t0ū) < I(t0ū) ≤ sup
t≥0

I(tū) = I∞.
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Thus, we can choose ε0 ∈ (0, 1) such that

sup
t≥0

J0(tū) < I∞ − ε0. (37)

Set

λ0 := min

{
λ1,

ε0

2t̄ ‖ū‖ ‖g‖−1
,

ε0

2‖g‖2
−1

}
. (38)

Applying Lemma 4 it follows that there exists R0 = R0(λ0) > 0 such that for all
λ ∈ (0, λ0), the conclusion of Lemma 4 holds. Moreover, by virtue of its proof,
there exists δ0 = δ(λ0) > 0 such that Jλ |∂BR0

≥ δ0. Then relations (38) and (19)
yield

c0,λ = inf
u∈BR0

Jλ(u) ≥ −λ

2
‖g‖2

−1 > −ε0

2
, for all λ ∈ (0, λ0). (39)

For u ∈ γ0 = {tt̄ū ; 0 ≤ t ≤ 1} ∈ P we have

|Jλ(u) − J0(u)| = λ

∣∣∣∣
∫
RN

g(x)u dx

∣∣∣∣ ≤ λ t̄ ‖ū‖ ‖g‖−1 ≤ ε0

2
for all λ ∈ (0, λ0).

Therefore,

Jλ(u) ≤ J0(u) + ε0

2
, for all λ ∈ (0, λ0). (40)

Using relations (37), (39), and (40) we obtain

cg = inf
γ∈P

sup
u∈γ

Jλ(u) ≤ sup
u∈γ0

Jλ(u)

≤ sup
u∈γ0

J0(u) + ε0

2
≤ sup

t≥0
J0(tū) + ε0

2
< I∞ − ε0

2
< I∞ + c0,λ.

This completes the proof. ��
Proof of Theorem 1 concluded. Consider R0 > 0, δ0 > 0 given by Proposition 3.
In view of its proof, we deduce that for all λ ∈ (0, λ0) , the conclusion of Lemma 4
holds. Therefore, we obtain the existence of a solution u0 of problem (2) such that
Jλ(u0) = c0,λ.

On the other hand, applying the mountain pass theorem without the Palais–
Smale condition (see [5, Theorem 2.2]), it follows that there exists a (PS)cg se-
quence {un} of Jλ, that is,

Jλ(un) = cg + o(1) and J ′
λ(un) → 0 in H−1

a (RN ).

Therefore,

cg + o(1) + 1

p
‖J ′

λ(un)‖−1‖un‖ ≥ Jλ(un) − 1

p
〈J ′

λ(un), un〉

≥
(

1

2
− 1

p

)
‖un‖2 − λ

(
1 − 1

p

)
‖g‖−1‖un‖.
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This inequality shows that {un} is bounded in H1
a (RN ). Thus we can assume (up to

a subsequence) that un ⇀ u1 in H1
a (RN ). By Lemma 1 it follows that u1 is a weak

solution of problem (2).
We claim that u0 �= u1. Indeed, by Proposition 2, the following alternative

holds: either un → u1 in H1
a (RN ), which gives

Jλ(u1) = lim
n→∞ Jλ(un) = cg > 0 ≥ c0,λ = Jλ(u0),

and the conclusion follows; or

cg = lim
n→∞ Jλ(un) ≥ Jλ(u1) + I∞.

In the last case, if we suppose that u1 = u0, then Jλ(u1) = Jλ(u0) = c0,λ, and so
cg ≥ c0,λ + I∞, which contradicts Proposition 3. The proof of Theorem 1 is now
complete. ��
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