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Abstract. The spatial tunability of the electron density in graphene enables the dynamic engineering of
metasurfaces in the form of conductivity gratings, which can bridge the momentum gap between incident
radiation and surface plasmons. Here, we discuss singular graphene metasurfaces, whose conductivity is strongly
suppressed at the grating valleys. By analytically characterising their plasmonic response via transformation
optics, we first review the physical principles underlying these structures, which were recently found to exhibit
broadband, tunable THz absorption. We characterise the spectrum with different common substrates and then
move to study in further detail how conductivity gratingsmay be finely tuned by placing an array of charged gold
nanowires at sub-micron distance from the graphene.
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1 Introduction

Due to their low losses, high portability and ease of
realisation compared to bulky components, metasurfaces
are currently reshaping the field of metamaterials [1–5].
Interestingly, the optical properties of these structures may
be widely tuned by engineering their sub-wavelength
constituents. Transformation optics (TO) constitutes a
powerful analytical tool to design metasurfaces, as it allows
one to make intuitive predictions on how a given structure
will guide electromagnetic fields, by exploiting the mathe-
matical analogybetweendeformationsof spatial coordinates
and refraction [6–8]. A special class of coordinate trans-
formations, called conformal maps, features the desirable
propertyof leaving theLaplaceequationunchangedbetween
frames, sothattheyall sharethesameelectrostaticpotential.
This fact makes them a valuable tool in the study of
subwavelength plasmonic structures, which can be well
described within the quasistatic limit [9]. This is most con-
venient in the case of structures with geometrical singulari-
ties, and it often enables analytic solutions, thus bypassing
the need for expensive numerical computation [10,11].

Following this approach, theoretical advances have
been made in the use of conformal TO for the design and
characterisation of subwavelength plasmonic gratings,
which bridge the momentum gap between free space
radiation and surface plasmons [12–14]. Furthermore, the
metasurface concept was hybridised with that of singular

structures in order to propose a new class of metasurfaces
called ‘singular metasurfaces’ [15–17]. Similar to singular
plasmonic nanoparticles [10,18], these structures are able
to harvest radiation in their smooth regions, and
adiabatically concentrate it near their sharp points. This
results in a continuous set of resonance frequencies, in other
words, the response of singular metasurfaces is broadband
[15,16,19]. A particularly promising platform for the
realisation of singular metasurfaces is graphene, thanks
to its tunable conductivity.

Graphene is a promising plasmonic material, due to its
high electron mobility, and the unrivalled field enhance-
ment achieved by its THz plasmons [20–25]. However,
coupling THz radiation to graphene surface plasmons
(GSPs) requires the matching of the large momentum
gap between them. One way of achieving this is by
engineering a periodic pattern of the charge carrier
concentration of graphene, and hence of its dynamical
conductivity [12,26–28]. This can be realised by optical [29]
or electrostatic [30] doping, or by patterning the graphene
[31,32] or its environment [33,34]. Doping levels as high as
EF∼ 2 eV (corresponding to carrier densities ns∼
1015 cm�2) have been reported [35,36]. Alternatively, the
use of flexural waves to produce gratings for momentum-
matching has been suggested [37,38].

In this work, we start by reviewing the concept and
design of singular metasurfaces and their proposed
implementation on free-standing graphene, thereby dis-
cussing a number of intuitive ways of understanding their
behaviour. We then explore additional effects that would
be present in three possible experimental configurations.* Corresponding author: emanuele.galiffi12@imperial.ac.uk
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We consider two different substrates placed in contact with
the graphene, SiO2 and hexagonal boron nitride (hBN),
which can be patterned to form a grating (SiO2) or flat
(hBN). Finally, we consider how an array of charged gold
nanowires close to homogeneously doped graphene induce a
carrier density modulation on the graphene, which is used
in further full-wave simulations of the THz response of the
metasurface. Realistic experimental parameters are used
throughout the paper.

2 Singular grating design

The conformal invariance of the Laplace operator
ensures that different geometrical structures which can
be mapped to each other via a conformal transformation
share the same electrostatic potential, thus being
spectrally equivalent in the quasistatic approximation,
a feature of subwavelength plasmonic structures that has
been referred to as ‘hidden symmetry’ [10,11,39–41].
However, the excitation of these shared eigenmodes
depends strongly on the source used for each individual
structure. For example, surface plasmons in homo-
geneously doped graphene may be excited from the near
field, but would remain dark under plane wave
illumination. By contrast, a conductivity grating can
enable the far field-excitation of plasmons even at normal
incidence [12,26,27,42].

In order to conformally design a grating, we start from a
translationally invariant slab of thickness d0, positioned at
x= x0 as shown in the ‘slab’ frame ~z ¼ xþ iy (Fig. 1a).

Applying an exponential map ~z1 ¼ e
2p~z
d wraps each length d

of this slab to a concentric annulus of radius ex0 and

thickness ex0ðe
d0
d � 1Þ (Fig. 1b). We now invert the

structure in Figure 1b with respect to the point iw0, which
lies inside the annulus, via the map ~z2 ¼

1

~z1�iw0

thus breaking rotational symmetry and realising a non-
concentric annulus (Fig. 1c). Finally, shifting the origin to
the axis of the smaller cylinder ~z2 ¼ �iy0 in Figure 1c, and

applying a logarithmic map ~z0 ¼ x0ðx; yÞ þ iy0ðx; yÞ ¼
d0

2p
log ð~z2ðx2; y2Þ þ iy0Þ realises the desired modulated

thickness d(y0) (Fig. 1d). The scale factor d0

2p
fixes the

period d0 of the grating [12]. The cascaded transformation
thus reads:

~z0 ¼
d0

2p
log

1

e2pz=d � iw0

þ iy0

� �

ð1Þ

and it can be shown that y0 ¼
w0

e4pðx0þdÞ=d�w2
0

. In the following,

we assume plane wave illumination at normal incidence.
In order to incorporate this into our calculation, we invert
the conformal transformation above to map plane waves
in the grating frame to waves with periodically modulated
phase front in the slab frame, where boundary conditions
are applied.

We call a grating ‘singular’ if its valley point-
thickness vanishes, i.e. if the black and red lines in
Figure 1d touch. A moment of thought will reveal to the
reader that, given that a conformal map preserves local

angles, no such map should ever be able to cause the two
parallel lines in frame ~z to cross on the same Riemann
sheet. Nevertheless, this can be approached via the
following limiting procedure: it is easy to see that, if
the inversion point iw0 (green dot) in Figure 1b tends to
the point iex0 (orange dot) on the inner (red) circumfer-
ence, the subsequent inversion will map the latter to�i∞
in Figure 1c, resulting in the apex of the grating in
Figure 1d to diverge. However, this divergence may be
renormalised by simultaneously letting the periodicity
d!∞ in Figure 1a, as doing so will rescale the entire
geometry by a factor ≃

2p
d
[16]. Since the valley point-

thickness of the grating is not affected by the aforemen-
tioned divergence, it will automatically tend to zero as a
result of the rescaling [15,16].

Metallic singular structures, both localised [10,11,18]
and as metasurfaces [17], have been proposed in the past.
However, the tunability of graphene offers the opportunity
of continuously approaching the singular limit within the
same sample. This is typically realised by periodically
modulating its charge carrier density via electrostatic
gating, thus realising a conductivity grating [12–14].
Furthermore, the extremely subwavelength character of

Fig. 1. Individual steps (a)–(d) of the conformal map used to
generate a grating from a translationally invariant slab. The
thickness of a metallic grating is equivalent to the conductivity
profile of a inhomogeneously doped graphene sheet (e). The setup
consists of a p-polarised wave, normally incident on a graphene
sheet, whose chemical potential m, and hence its conductivity s is
periodically modulated.
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graphene plasmons results in this system being accurately
described by a quasistatic approximation, which is a
natural playground for conformal TO.

The framework described above can be straightfor-
wardly applied to graphene through the following
consideration: the permittivity

eðvÞ ¼ 1þ
isgðvÞ

e0vd
ð2Þ

of a thin metallic slab of conductivity sg(v) and thickness d
is conserved across the conformal map [12]. Hence, by
writing e in the slab and in the grating frames, the
modulated thickness d(y0) in the grating frame is
straightforwardly shown to be proportional to a modulated

conductivity profile according to sðv; y0Þ ¼ dðy0Þ
d0

sgðvÞ. In

the limit d0!0, the modulation profile dðy0Þ
d0

becomes

independent of d0. Thus, the transformation can be used
to model a periodically doped graphene sheet, as illustrated
in Figure 1e.

3 Results

3.1 Free-standing modulated graphene

As a first demonstration of the capabilities of these
metasurfaces, we consider three gratings, increasingly close
to the singular limit, surrounded by free space. Their
conductivity modulation profiles, generated from a slab of
(dimensionless) thickness d0=2� 10�3 and periods
d1=2p, d2=2.6� 2p and d3=5.3� 2p via the transfor-
mation described above, withmodulation depthsw0=0.55,
0.8 and 0.9, respectively, are shown in log scale in Figure 2
(top inset). The apex-doping level is maintained fixed at a
chemical potential m≈ 1.5 eV, while its valley point doping
is gradually reduced, thus tending to a ‘singular’ point,
where the conductivity sg, which is approximately
proportional to the chemical potential m in the Drude
limit, is strongly suppressed. The periodicity d 0

≈ 2.5mm,
temperature T=300K and a conservative electron
mobility of 5000 cm2/(V s) is assumed, which correspond
to commonly achieved values in state-of-the-art experi-
ments [31]. More details on the local random phase-
approximated (RPA) conductivity model are in
Appendix A and the analytical solution of the scattering
problem may be found in [12,13,16]. The effect of
approaching the singularity on the transmission spectra,
shown in Figure 2, is twofold: on the one hand, the evident
reduction in relative spacing between transmission dips
shows the progressive merging of GSP resonances towards
a continuum of modes (Fig. 2a). On the other hand, higher
order GSPs, exhibiting stronger confinement and higher
field enhancements (Fig. 2b), can now be excited with high
efficiency from the far field.

In the non-singular regime (top), the metasurface is
able to strongly excite surface plasmons at a discrete set of
frequencies, which appear as transmission dips in Figure 2.
By reducing the valley-point conductivity, more peaks are
excited (middle), while their mutual spacing decreases.
Further approaching the singular limit, several moremodes

are strongly excited, and their resonant frequencies begin
to merge in the far infrared (bottom). In this limit, the
fields experience an extreme confinement near the singular
point, thus challenging numerical approaches. Once the
spacing between resonances becomes comparable to their

Fig. 2. (a) Transmission spectra for three metasurfaces
increasingly close to the singular limit. COMSOL simulations
(red dots) and analytic calculations performed with TO (blue
lines) show perfect agreement. The top inset shows the spatial
conductivity profile d(y0)/d0= s(y0)/sg along the metasurface.
(b) In-plane component of the electric field normalized to the
incident amplitude for the n=1, 3 and 5 modes at f≈ 7.4, 12.4
and 15.9 THz, respectively. The vertical extent of all plots
h=200 nm, highlighting the increase in GSP confinement with
mode order.
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broadening, the wealth of discrete surface plasmon
resonances fully merge into a continuum of modes, which
are strongly coupled to external radiation over a broad
frequency band. In this limit, these atom-thick metasur-
faces would act as broadband single-sheet absorbers,
efficiently harvesting THz radiation over fractional
bandwidths of nearly 200% [16].

Figure 2b shows the field profile of different GSPmodes.
Radiation is trapped in the smooth parts of the grating and
is compressed as it travels towards the singularity, as is
evident from the wavelength compression near the singular
point shown in the field plot. It should be noted, however,
that the scale of the GSP wavelength lGSP∝ f�2 near the
singularity quickly approaches the maximum lateral
confinement of surface plasmons given by nonlocality,
lD∼ l0/300∝ f�1 [34]. This sensitivity of the far field
spectrum to nonlocality could be used to probe quantum
nonlocal effects in graphene [43].

The broadband behaviour of singular gratings can
be intuitively explained via our TO approach. In the
quasistatic approximation, the slab and the grating frame
share the same GSP spectrum, which is given by
the quasistatic dispersion relation for GSPs [12]:

e1 þ e2 þ 4pisgðvÞ
jkj

v
¼ 0 ð3Þ

with e1 and e2 being the relative permittivities of the
substrate and superstrate, sg(v) the surface conductivity, k
the in-plane wavevector and v the angular frequency.
However, in the grating frame the waves are quantised over
a finite period d0. As described above, the singular limitmay
be conformally realised only by letting the length of the
quantisation box of the plasmons in the slab frame d!∞.
The consequence can be easily visualised by looking at the
band structures in Figure 3 and considering that, as
the quantisation box d!∞, the size of the first Brillouin

zone in the slab frame shrinks to zero, so that the modes at
k=0 become increasingly close to one another. The
matching between the crossing of our folded dispersion
relations with the frequency axis (k=0) in Figure 3 (left)
and the extended dispersion relation obtained from our
calculations for each increasingly singular metasurface
(right) confirms the above analysis. Hence, a singular
metasurface, as opposed to a conventional one, exhibits a
continuous spectrum.

Interestingly, this phenomenon can be related to what
is known in high-dimensional field theories as compacti-
fication [15,44]. In fact, despite appearing to be a
two-dimensional object, a singular grating contains, hidden
in the singularity, a third dimension. Once again, the origin
of this effect becomes apparent if we consider the
equivalent structure in the slab frame. As the periodicity
d of the system in the slab frame tends to infinity, an extra
dimension is effectively generated along the y axis. The
system is periodic along y, hence infinite, but the length d of
each of these periods becomes itself infinite, in the singular
limit. Hence, an additional dimension is being intruded
along the y axis, so that, including the out-of-plane axis,
the total number of dimensions present amounts to three.
This additional dimension, hidden within the singularity
in the grating frame, introduces a third spatial degree of
freedom, which is freely available for the incoming
radiation to satisfy the dispersion relation over a continu-
um of frequencies.

The ability of singular metasurfaces to merge the
plasmonic dispersion relation enables the excitation of a
much higher number of modes compared to a conventional
subwavelength grating, since the resonances are shifted to a
lower frequency region, where the conductivity of graphene
sgðvÞ∼

1
v
suffices to efficiently capture the incoming THz

waves. In fact, higher order GSP modes can now be
efficiently excited and exhibit a much stronger confinement
compared to their low order counterparts. This enables
broadband harvesting of THz radiation [16].

3.2 Modulated graphene with SiO2 grating

A possible way of modulating the conductivity of graphene
is by applying a gate potential through a periodically
patterned dielectric substrate (or superstrate). This would
induce a periodic modulation of the carrier density in
graphene with the same periodicity as that of the dielectric
relief. This motivates us to consider a SiO2 superstrate with
modulated thickness placed on top of the graphene
metasurfaces considered previously (top inset of Fig. 4).
SiO2 is a common material of choice for graphene-based
heterostructures, and it features three surface optical
phonon (SOP) bands in the THz [42], as described in
Appendix B. Here, we study how the SOP bands affect the
broadband spectra of the singular graphene metasurfaces.
For illustration purposes, we consider only the THz
scattering problem, assuming the local conductivity of
the graphene to be proportional to the SiO2 thickness.

The apex thickness of all SiO2 gratings considered is
300 nm, whereas their valley-point thickness is gradually
reduced, simultaneously with the minimum conductivity

Fig. 3. The RHS shows the dispersion relations at normal
incidence, constructed by assigning a wavevector kn ¼ 2p

a
n to

each resonance peak. The resonances are denoted by dots, while
the horizontal lines are a guide to the eye. As shown in the LHS,
the modes for the increasingly singular gratings can be
equivalently found by folding the dispersion relation over a
gradually narrower Brillouin zone, whose width is dictated by the
effective periodicity d of the mother structure in the slab frame.
The slab frame periods used are d1=2p, d2≈ 2.6� 2p and
d3≈ 5.3� 2p.
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of the graphene, from 50 to 8, and finally to 3 nm, for
w0=0.55, 0.8 and 0.9, respectively. Their modulation is
generated via the same transformation above, by placing
the additional boundary at a (dimensionless) distance 0.3
from the graphene in the slab frame. The graphene
modulations are analogous to the previous case. We solve
this problem analytically, following the TO scheme used in
[12], which only had to be generalised to account for the
arbitrary period d of the structure in the slab frame. We
benchmark our results with numerical full-wave simu-
lations, demonstrating nearly perfect agreement, as shown
in Figure 4.

Compared to the suspended graphene case, here the
spectrum exhibits large additional features due to the
excitation of SOPs, and their interaction with the GSP
modes. As the singularity is gradually approached, more
and more peaks move towards the low frequency region of
the spectrum, and a wealth of GSP modes is concentrated
within a narrow frequency band near f≈ 15THz.
However, the field enhancement achieved by these high
order modes is at least an order of magnitude lower than
in the case of free-standing graphene, due to the
interaction with the SOP band. This is also reflected
in the weaker contrast of the dips in the transmission
spectrum. The latter might pose an additional challenge
to the clear observation of this effect in graphene-SiO2

heterostructures.

3.3 Modulated graphene with hBN substrate

The material that has so far demonstrated to be most
promising for high-quality graphene heterostructures is
hBN, primarily due to its matching of the crystalline
structure of graphene, which improves the quality of
graphene growth, and its intrinsically low losses
[34,45,46]. However, hBN features two surface phonon
bands: one affecting the out-of-plane component e|| of the
permittivity tensor at 23–14 THz and one affecting its in-
plane components e⊥ at 41–48 THz, as described in
Appendix B. Hence, in order to anticipate the effect of
these phonon modes on our GSP spectra, we consider
substrates of thickness hhBN=20 nm and 200 nm placed
below the graphene conductivity gratings considered in
Section 3.1, as shown in the top inset of Figure 5.

The transmission spectra resemble more closely the
ones of free-standing graphene, compared to the case
with SiO2, thus demonstrating a very weak interaction of
the incident radiation with the out-of-plane phonon
band at ≈24 THz. This is due to the in-plane polarisation
of the incident field, which does not directly interact
with the out of plane component of the permittivity e||.
On the other hand, the spectra show a reduction in
transmission due to the in-plane phonon band at
≈41THz, which is clearly more pronounced for thicker
hBN substrates. However, this does not affect the
observation of our GSP modes, since they are excited
at much lower frequencies.

Finally, we highlight how the merging of the GSP
modes is significantly more pronounced compared to the
free-standing graphene case. This can be intuitively
understood from the dispersion relation (Eq. (3)) which
shows, assuming a Drude-like conductivity regime sg ∼

1
v
,

that the GSP frequency v∼ (e1+ e2)
�1/2 scales approxi-

mately as the inverse square root of the sum of the
permittivities of the dielectrics surrounding the graphene.
As a consequence, very high field enhancements can be
exploited by efficiently exciting higher order modes, whose
resonant frequencies are now conveniently reduced, as
shown in the bottom inset of Figure 5. On the other hand, it
should be noted that the presence of the substrate will
reduce the GSP wavelength, so that nonlocal effects will
become appreciable at lower frequencies compared to the
free-standing graphene case.

Fig. 4. The transmittance plots show the excitation of GSPs and
SOPs for the three increasingly singular graphene metasurfaces
covered by a similarly modulated SiO2 superstrate. The presence
of peaks due to SOPs in SiO2 could pose an experimental challenge
to a clear measurement of the close-to-singular plasmonic
spectrum. The maximum thickness of the SiO2 grating is
300 nm, whereas the minima are 50, 8 and 3 nm respectively
(top to bottom). The bottom inset shows the 4th order GSPmode
at f≈ 11.3 THz, showing a maximum (in-plane) field enhance-
ment of ≈70, and a minimum vertical decay length of ≈9 nm. The
maximum total field enhancement |E|/|E0|≈ 80.
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3.4 Electrostatically doped graphene via wire-array

In the final setup considered we show how the singular
graphene conductivity grating can be generated by
electrostatic doping with an array of metal wires. We
consider a periodic array (period d0≈ 2.5mm along the
x-axis) of charged (potential difference V) gold nanowires
of radius R=80 nm, vertically (y-axis) separated from
free-standing, homogeneously biased graphene, by a gap

a=100 nm, as shown in the mid-inset of Figure 6. By
analytically computing the electrostatic potential of the
wire array (Appendix C), we obtain the periodic charge
carrier density pattern induced on the graphene:

ns ¼
2e0V

elog
2a�R

R

� �

X

n

a

ðx� nd0Þ2 þ a2
ð4Þ

By tuning the wire voltage V and simultaneously
adjusting the Fermi level of graphene via a constant bias
(as could be realised e.g. via a flat back-gating), the
singularity of the metasurface may be approached without

Fig. 5. Due to its horizontal polarisation, the incoming radiation
can only weakly interact with the phonon band affecting the
normal component of e at ≈24 THz, so that the GSP spectrum is
left intact by the presence of the hBN substrate even for
significant thicknesses. In contrast, the in-plane phonon band is
responsible for the strong transmittance dip at ≈41 THz. For our
singular gratings, this lies way above the GSP frequency region.
The field plot (bottom) shows the 4th order GSP mode for
hhBN=20 nm at f≈ 9.3 THz, exhibiting a maximum (in-plane)
field enhancement Ey0=jE0j≈ 150, and a minimum vertical
decay length is ≈5 nm. The maximum total field enhancement
E|/|E0|≈ 210.

Fig. 6. The singular limit is approached by simultaneously
increasing the voltage (V=1.03, 1.23 and 1.33 eV from top to
bottom) between a graphene sheet and an array of 160 nm-thick
gold wires, and down-shifting the chemical potential of the whole
sheet by a constant value (�0.11, �0.24 and �0.30 V from top
to bottom). The increasingly high (blue to cyan lines) losses,
corresponding to electron mobilities 2� 104, 1� 104 and
5� 103 cm2/(V s) result in a faster merging of the spectrum
due to smearing of the transmittance dips. The dielectric function
of gold is obtained from experimental data [47].
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requiring multiple fabrications to tune the modulation
levels. The possibility of dynamically tuning the spectrum
is desirable for applications and would be helpful in an
experiment as it would avoid intrinsic discrepancies
between different samples. The resulting carrier densities
are plotted in the bottom inset of Figure 6 in logarithmic
scale. The carrier density at the apex is ∼4� 1014 cm�2,
while the valley-point values range from ∼1013cm�2,
∼1.5� 1012 cm�2 to ∼6� 1011 cm�2, as the singular limit
is approached. We note that these values are typical
experimental values. With these carrier density profiles,
we calculate the chemical potential profile mðxÞ ¼

�hyF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jnsðxÞj
p

, to feed into the conductivity model
(Appendix A).

Given the derived inhomogeneous chemical potential,
together with the electron mobilitym (which we assume to
be fixed by the quality of the graphene sample), we obtain

the normalised scattering frequency as GðxÞ ¼
�hy2

F

mmðxÞ2
, as

well as spatially inhomogeneous finite temperature con-
tributions. Note that this is in contrast to the previous
calculations, where G was taken as a constant.

As shown in Figure 6, these more realistic experimental
considerations play an important role in the resulting
transmission spectra, as the losses are significantly
enhanced when the mobility is rescaled by the position-
dependent chemical potential, which is suppressed near the
singularity. In fact, if this is not accounted for, the lifetime
of GSPs is not preserved across the spectrum, which
explains why the broadening of the peaks in Figures 2–5
does not scale linearly with frequency.

The results in Figure 6 show a trend similar to the
previous scenarios. We observe a systematic reduction of
the GSP frequencies, and their relative spacing as the
singular limit is approached. In this case, as the singularity
is approached, the plasmon resonances effectively merge
into a continuum faster than in the previous cases due to
the more prominent effect of resistive losses in graphene. In
contrast, no additional extinction was caused by the losses
in gold, due to the weak field penetration at THz
frequencies. On the other hand, in a real experiment, the
emergence of nonlocality is likely to oppose the merging of
the peaks. This is expected due to the longer Thomas–
Fermi wavelength of the electrons in the depleted region of
our conductivity gratings, which becomes comparable to
the plasmon wavelength [43].

4 Conclusions and perspectives

In this work, we reviewed how, by spatially modulating
the conductivity of graphene in a singular grating
pattern, THz radiation can be efficiently harvested
and coupled to GSPs over a broad band with an
atomically thin layer. We used TO to provide insight
and further clarification to the broadband behaviour
exhibited by these metasurfaces, and their link to the
concept of compactification. We stress that the singu-
larity dominates the behaviour of these gratings. In fact,
these effects are very robust to changes in geometrical
parameters as long as the smooth part of the grating

allows the plasmons to adiabatically travel towards the
singularity without significant reflection.

We then gave further details on experimental oppor-
tunities for realising these structures by exploring the
effects introduced by the environment on the transmission
spectra. Our conclusions highlight the fact that hBN
constitutes the ideal substrate for the observation of the
GSP spectra in the singular limit, whereas the SOP bands
of SiO2 may significantly interfere with GSP measure-
ments. Finally, we discussed how the necessary spatial
inhomogeneity of the graphene conductivity profile may be
engineered by placing an array of metallic nanowires at
sub-micron distance from a uniformly doped graphene
sample, thereby enabling dynamic tunability of the GSP
spectrum. Given the realistic parameters used in our
calculations, we thus conclude that, assuming that
sufficiently high quality graphene is used, the possibility
of observing the merging of GSPs in a close-to-singular
graphene metasurface is promising.

Finally, it is important to note that these singular
metasurfaces are able to compress the plasmon wavelength
to very short scales, such that lGSP,min near the singular
point approaches the wavelength of the Dirac carriers
l0/300. In this regime, nonlocal contributions to the
graphene conductivity become significant. Heuristically,
nonlocality will tend to oppose the effect of the singularity
by pushing the resonances apart. Microscopically, this is
due to the smearing of the charge density along the
metasurface, which will become more prominent once the
grating valleys become significantly depleted. Hence,
singular graphene metasurfaces may serve as an effective
experimental window into the quantum nonlocal features
of Dirac carriers in graphene.

E.G. acknowledges support from the Centre for Doctoral Training
on Theory and Simulation of Materials at Imperial College
London funded by the EPSRC (EP/G036888/1). J.B.P. and
P.A.H. acknowledge funding from the Gordon and Betty Moore
Foundation. P.A.H. acknowledges funding from a Marie
Sklodowska Curie Fellowship.

Appendix A: Graphene conductivity model

The local RPA conductivity of graphene is considered [48],
which depends on frequency v, chemical potential m,
temperature T and carrier’s mobility m. This can be
expressed as a sum of intraband and interband contribu-
tions, sg= sintra+ sinter, as follows [48]:

sintra ¼
2ie2t

�hp Vþ iG½ �
ln 2cosh

1

2t

� �� �

; ðA:1Þ

sinter¼
e2

4�h

1

2
þ

1

p
arctan

V� 2

2t

� �

�
i

2p
ln

ðVþ 2Þ2

ðV� 2Þ2þð2tÞ2

" #

;

ðA:2Þ

where V= �hv/m and t= kBT/m are frequency and
temperature normalised to the chemical potential, respec-
tively. The normalised damping term is G= �h/(mt),
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where t ¼ mm=v2F is the carriers’ scattering time, m is the
electron mobility and vF= 9.5� 107 cm s�1 is the Fermi
velocity [16].

Appendix B: Dielectric properties
of substrates

In the THz regime, the dielectric function of SiO2:

eSiO2
¼ e∞ þ

X

3

j¼1

fj
v2
TO;j

v2
TO;j � v2 � ivGTO;j

ðB:1Þ

is characterised by three transverse optical phononic bands,
with vTO,1=13.45 THz, vTO,2=23.8 THz and vTO,3=
33.9 THz, weights f1=0.751, f2=0.150 and f3=0.601, and
widthsGTO,1=8.01THz,GTO,2=1.27THzandGTO,3=1.27
THz. The bands, centred at their respective vTO,j over
their widths GTO,j, are plotted in Figure 4 [42].

The anisotropic response of hBN is characterised by
two reststrahlen bands, one for each permittivity compo-
nent, of the form:

ej ¼ e∞ 1�
v2
LO;j � v2

TO;j

v2 � ivGj � v2
TO;j

 !

ðB:2Þ

where j=⊥ , || (note, symbols are defined with respect to
the axis normal to the surface, as customary with
hyperbolic materials) are the in-plane and out-of-plane
components of the relative permittivity respectively, with
vTO,⊥=41.07 THz, vLO,⊥=48.27 THz, e∞,⊥=4.87, G⊥=
0.15 THz, and vTO,||=23.38 THz, vLO,||=24.88 THz,
e∞,||=2.95, G||=0.12 THz [45].

Appendix C: Electrostatic screening theory

The setup is shown in the mid-inset of Figure 6. For a
cylinder of radius R with surface charge density sc the
electric field reads E ¼ sc

e0
R=r, with r being the radial

coordinate from the axis of the cylinder. The effect of the
conductive plane parallel to the cylinder is straightfor-
wardly obtained via the method of images, so that the
complete potential reads

fðx; yÞ ¼ �
sc

2e0
R log

ðx� x0Þ
2 þ ðy� aÞ2

ðx� x0Þ
2 þ ðyþ aÞ2

( )

ðC:1Þ

and the voltage difference between the wire and the sheet
can be expressed in terms of the surface charge density as
V ¼ � sc

e0
RlogðR=2a�RÞ. If we now consider an infinite

array of metal cylinders, each placed at position xn=nd0,
y= a, the total potential is then given by:

fðx; yÞ ¼ �
sc

2e0
R
X

þ∞

n¼�∞

log
ðx� nd0Þ2 þ ðy� aÞ2

ðx� nd0Þ2 þ ðyþ aÞ2

( )

ðC:2Þ

So that the charge carrier density ns along the graphene
induced by the electrode is ns= e0E/e is:

ns ¼
2e0V

elog
2a�R

R

� �

X

þ∞

n¼�∞

a

ðx� nd0Þ2 þ a2
ðC:3Þ

where we substituted the expression for sc in terms of the
potential V at the cylinder. This series is bounded from
above by the convergent over-harmonic series

P

n
1
n2. The

convergence speed depends on the ratio a/d0, which is
intuitive, as the contribution from neighbouring cylinders
becomes comparable as this ratio increases.

In our calculations we consider cylinders of radius
R=80 nm centred at a height a=180 nm above the
graphene, tune the wire voltage V to 1.03, 1.23 and 1.33 V
(top to bottom in Fig. 6), and calculate the corresponding
chemical potential mðxÞ ¼ �hvF

ffiffiffiffiffiffiffiffiffiffiffiffi

nsðxÞ
p

while assuming a
subsequent uniform down-shift of the chemical potential of
the graphene sample by �0.11, �0.24 and �0.30 eV,
respectively, so as to maintain a constant apex of our
conductivity grating in the three cases considered, while
reducing the valley-point conductivity.
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